2018届高考理科数学二轮专题复习讲义 不等式
2018届高考数学(理)二轮复习 名师讲义:专题一 函数与导数、不等式 第1讲
第1讲 函数图象与性质高考定位 1.以基本初等函数为载体,考查函数的定义域、最值、奇偶性、单调性和周期性;2.利用函数的图象研究函数性质,能用函数的图象性质解决简单问题;3.函数与方程思想、数形结合思想是高考的重要思想方法.真 题 感 悟1.(2017·全国Ⅲ卷)函数y =1+x +sin xx2的部分图象大致为( )2.(2017·山东卷)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( )A.2B.4C.6D.83.(2017·全国Ⅰ卷)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]4.(2016·全国Ⅱ卷)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1x i =( )A.0B.mC.2mD.4m考 点 整 合1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:①若f (x )是偶函数,则f (x )=f (-x ). ②若f (x )是奇函数,0在其定义域内,则f (0)=0.③奇函数在关于原点对称的单调区间内有相同的单调性,偶函数在关于原点对称的单调区间内有相反的单调性.(3)周期性:①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x +2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数.②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数.③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数.④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数.易错提醒 错用集合运算符号致误:函数的多个单调区间若不连续,不能用符号“∪”连接,可用“和”或“,”连接. 2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换. (2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究.(数形结合)(3)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则y =f (x )的图象关于直线x =a 对称;②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则y =f (x )的图象关于点(a ,0)对称.热点一 函数及其表示【例1】 (1)(2017·邯郸调研)函数y =lg (1-x 2)2x 2-3x -2的定义域为( )A.(-∞,1]B.[-1,1]C.⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫-12,1 D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1 (2)(2015·全国Ⅰ卷)已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1且f (a )=-3,则f (6-a )=( ) A.-74 B.-54 C.-34 D.-14【训练1】 (1)(2017·郑州二模)函数y =a -a x (a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A.1B.2C.3D.4(2)已知函数f (x )=⎩⎨⎧a ·2x,x ≥0,2-x ,x <0(a ∈R ),若f (f (-1))=1,则a =( )A.14B.12C.1D.2热点二 函数的图象及应用 命题角度1 函数图象的识别【例2-1】 (2017·汉中模拟)函数f (x )=⎝ ⎛⎭⎪⎫21+e x -1·sin x 的图象大致形状为( )命题角度2 函数图象的应用【例2-2】 (1)(2017·历城冲刺)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( ) A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值(2)(2015·全国Ⅰ卷)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则实数a 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34D.⎣⎢⎡⎭⎪⎫32e ,1探究提高 1.已知函数的解析式,判断其图象的关键是由函数解析式明确函数的定义域、值域、单调性、奇偶性、周期性等,以及函数图象上的特殊点,根据这些性质对函数图象进行具体分析判断.2.(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.【训练2】 (1)(2017·长沙二模)函数y =⎝ ⎛⎭⎪⎫13|log 3x |的图象是( )(2)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则实数a 的取值范围是( )A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]热点三 函数的性质与应用【例3】 (1)(2017·山东卷)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.(2)(2017·天津卷)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( ) A.a <b <c B.c <b <a C.b <a <cD.b <c <a探究提高 1.利用函数的奇偶性和周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题,转化到已知区间上求解.2.函数单调性应用:可以比较大小、求函数最值、解不等式、证明方程根的唯一性.【训练3】 (1)(2017·淄博诊断)已知奇函数f (x )=⎩⎨⎧3x-a (x ≥0),g (x )(x <0),则f (-2)的值等于________.(2)(2017·西安质检)已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝ ⎛⎭⎪⎫1-2e x +1,则( ) A.f (-3)<f (2)<f ⎝ ⎛⎭⎪⎫52B.f ⎝ ⎛⎭⎪⎫52<f (-3)<f (2) C.f (2)<f (-3)<f ⎝ ⎛⎭⎪⎫52D.f (2)<f ⎝ ⎛⎭⎪⎫52<f (-3)1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f (x )=1x ln x 的定义域时,只考虑x >0,忽视ln x ≠0的限制.2.如果一个奇函数f (x )在原点处有意义,即f (0)有意义,那么一定有f (0)=0;若f (x )为偶函数,则f (|x |)=f (x ).3.三种作函数图象的基本思想方法(1)通过函数图象变换利用已知函数图象作图;(2)对函数解析式进行恒等变换,转化为已知方程对应的曲线; (3)通过研究函数的性质,明确函数图象的位置和形状.4.函数是中学数学的核心,函数思想是重要的思想方法,利用函数思想研究方程(不等式)才能抓住问题的本质,对于给定的函数若不能直接求解或画出图形,常会通过分解转化为两个函数图象,数形结合直观求解.一、选择题1.(2017·唐山一模)若函数f (x )=⎩⎨⎧e x -1,x ≤1,5-x 2,x >1,则f (f (2))=( ) A.1 B.4 C.0D.5-e 22.(2017·衡阳二模)已知函数g (x )的定义域为{x |x ≠0},且g (x )≠0,设p :函数f (x )=g (x )⎝ ⎛⎭⎪⎫11-2x -12是偶函数;q :函数g (x )是奇函数,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.(2017·全国Ⅰ卷)函数y =sin 2x1-cos x的部分图象大致为( )4.已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <cB.a <c <bC.c <a <bD.c <b <a5.(2016·天津卷改编)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-∞,32C.⎝ ⎛⎭⎪⎫12,+∞D.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞ 二、填空题6.(2017·成都诊断)函数f (x )=2x -12+3x +1的定义域为________.7.(2017·郴州二模)已知函数f (x )是奇函数,当x >0时,f (x )=a x (a >0且a ≠1),且f (log 124)=-3,则a 的值为________.8.(2015·全国Ⅰ卷改编)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________. 三、解答题9.已知函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.10.(2017·贵阳质检)已知函数f (x )=ln(x +1)-ax1-x(a >0). (1)当a =1时,求函数f (x )的单调区间;(2)若-1<x <1时,均有f (x )≤0成立,求正实数a 的取值范围.。
2018届高考数学二轮复习 导数与不等式及参数范围 ppt课件(全国通用)
-7-
解 (1)由题设易知 f(x)=ln x,g(x)=ln x+ ,∴g'(x)=
������
1
������-1 ������ 2
,
令g'(x)=0得x=1, 当x∈(0,1)时,g'(x)<0, 故(0,1)是g(x)的单调减区间, 当x∈(1,+∞)时,g'(x)>0, 故(1,+∞)是g(x)的单调增区间, 因此,x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点, 所以最小值为g(1)=1.
-8-
(2)g
1 ������
=-ln x+x,设 h(x)=g(x)-g
1 ������
1 ������
=2ln x-x+ ,则 h'(x)=������
1
(������ -1)2 ������ 2
,
当 x=1 时,h(1)=0,即 g(x)=g
,
当x∈(0,1)∪(1,+∞)时,h'(x)<0,h'(1)=0, 因此,h(x)在(0,+∞)内单调递减,当0<x<1时,h(x)>h(1)=0,
2.4.2
导数与不等式及参数范围
-2-
求参数的取值范围(多维探究) 解题策略一 构造函数法 角度一 从条件关系式中构造函数 例1设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x) 都过点P(0,2),且在点P处有相同的切线y=4x+2. (1)求a,b,c,d的值; (2)若x≥-2时,f(x)≤kg(x),求k的取值范围. 难点突破一(作差构造) f(x)≤kg(x)⇔kg(x)-f(x)≥0,设F(x)=kg(x)f(x)=2kex(x+1)-x2-4x-2⇒F'(x)=2kex(x+2)-2x-4=2(x+2)(kex-1)⇒令 F'(x)=0得x1=-ln k,x2=-2. 此时,类比二次函数根的分布进行分类讨论F(x)的最小值大于或等 于0时的k的范围.
高考数学复习讲义 不等式(学生版)
高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。
2018届高三数学二轮复习课件:第二讲 不等式
������+������ 2
≥
������������ ≥
2������������ (a,b>0). ������+������
5.线性规划 (1)判断Ax+By+C≥0表示的平面区域是在直线的哪一侧,方法为:
①当C≠0时,取原点(0,0),若能满足Ax+By+C≥0,则不等式表示的平面区域就是
①变形⇒
g(x)≠0.
(2)简单指数不等式的解法 ①当 a>1 时,af(x)>ag(x)⇔f(x)>g(x); ②当 0<a<1 时,af(x)>ag(x)⇔f(x)<g(x). (3)简单对数不等式的解法 ①当 a>1 时,logaf(x)>logag(x)⇔f(x)>g(x),且 f(x)>0,g(x)>0; ②当 0<a<1 时,logaf(x)>logag(x)⇔f(x)<g(x),且 f(x)>0,g(x)>0.
4.几个重要的不等式 (1)|a|≥0,a2≥0(a∈R). (2)a2+b2≥2a ab(a,b∈R). (3)
������+������ ≥ 2
������������ (a,b>0).
������+������ 2 2+������ 2
≥
①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题.
������+������ 2
≥ ������������ (a≥0,b≥0)
1.不等式的性质 (1)a>b⇔ b<a. (2)a>b, b>c⇔a>c. (3)a>b⇔a+c>b+c. 推论 a>b,c>d⇒a+c>b+d. (4)a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc. 推论 1 a>b>0,c>d>0⇒ac>bd ; 推论 2 a>b,ab>0⇒ < ; 推论 3 a>b>0⇒an>bn(n∈N*,且 n>1). ������ ������ (5)a>b>0⇒ ������ > ������ (n∈N*,且 n>1).
2018年高考理科数学二轮复习 讲学案:考前专题八 系列4选讲 第2讲 不等式选讲
第2讲不等式选讲本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想.热点一含绝对值不等式的解法含有绝对值的不等式的解法(1)|f(x)|>a(a>0)⇔f(x)>a或f(x)<-a.(2)|f(x)|<a(a>0)⇔-a<f(x)<a.(3)对形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,可利用绝对值不等式的几何意义求解.例1(2017届四川省成都市三诊)已知f(x)=|x-a|,a∈R.(1)当a=1时,求不等式f(x)+|2x-5|≥6的解集;(2)若函数g(x)=f(x)-|x-3|的值域为A,且[-1,2]⊆A,求a的取值范围.解(1)当a=1时,不等式即为|x-1|+|2x-5|≥6.当x≤1时,不等式可化为-(x-1)-(2x-5)≥6,∴x≤0;时,不等式可化为(x-1)-(2x-5)≥6,当1<x<52∴x∈∅;当x≥5时,不等式可化为(x-1)+(2x-5)≥6,2∴x≥4.综上所述,原不等式的解集为{x|x≤0或x≥4}.(2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|,∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] .∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎪⎨⎪⎧ -|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5. ∴a 的取值范围是(-∞,1]∪[5,+∞).思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54,故m 的取值范围是⎝⎛⎦⎤-∞,54. 热点二 不等式的证明1.含有绝对值的不等式的性质||a |-|b ||≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ; (2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1, 当且仅当x ≤-23或x ≥12时等号成立,所以M =1. (2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1≥2⎣⎢⎡⎦⎥⎤a +b +(a +b )22+1 =(a +b +1)2≥0,当且仅当a =b =-12,c =12时取等号, 所以存在实数a =b =-12,c =12满足条件. 思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数.(1)求证:a 4+6a 2b 2+b 4≥4ab (a 2+b 2);(2)求函数f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|的最小值.(1)证明 a 4+6a 2b 2+b 4-4ab (a 2+b 2)=(a 2+b 2)2-4ab (a 2+b 2)+4a 2b 2=(a 2+b 2-2ab )2=(a -b )4.因为(a -b )4≥0,所以a 4+6a 2b 2+b 4≥4ab (a 2+b 2).(2)解 f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|=|2x -a 4+(1-6a 2b 2-b 4)|+|2x -2(2a 3b +2ab 3-1)|≥|[2x -2(2a 3b +2ab 3-1)]-[2x -a 4+(1-6a 2b 2-b 4)]|=|(a -b )4+1|≥1.即f (x )min =1.热点三 柯西不等式的应用柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.例3 (2017届长沙市雅礼中学模拟)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}.(1)求实数a ,b 的值;(2)求证:2≤at +12+bt ≤4.(1)解 由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1.(2)证明 由柯西不等式,有(-3t +12+t )2=(3·-t +4+1·t )2≤[(3)2+12][(-t +4)2+(t )2]=16, 所以-3t +12+t ≤4, 当且仅当4-t 3=t 1,即t =1时等号成立. 又(-3t +12+t )2=-3t +12+t +2-3t +12·t ≥12-2t ≥4(0≤t ≤4),所以-3t +12+t ≥2,当且仅当t =4时等号成立,综上,2≤at +12+bt ≤4.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 已知函数f (x )=|x +2|-m ,m ∈R ,且f (x )≤0的解集为[-3,-1].(1)求m 的值;(2)设a ,b ,c 为正数,且a +b +c =m ,求3a +1+3b +1+3c +1的最大值. 解 (1)由f (x )≤0,得|x +2|≤m ,所以⎩⎪⎨⎪⎧m ≥0,-m -2≤x ≤m -2, 又f (x )≤0的解集为[-3,-1], 所以⎩⎪⎨⎪⎧-m -2=-3,m -2=-1,解得m =1.(2)由(1) 知a +b +c =1,由柯西不等式,得 (3a +1+3b +1+3c +1)2≤(3a +1+3b +1+3c +1)·(12+12+12),所以(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3]=18, 所以3a +1+3b +1+3c +1≤32, 当且仅当3a +1=3b +1=3c +1,即a =b =c =13时等号成立, 所以3a +1+3b +1+3c +1的最大值为3 2.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ -1≤x ≤-1+172.(2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2. 押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R .(1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐.解 (1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2; 当-12<x <2时,不等式等价于2-x +2x +1≥4, 即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4, 解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|.因为∃x 0,使f (x 0)+|x 0-2|<3成立,所以(f (x )+|x -2|)min <3,所以|a +4|<3,解得-7<a <-1,故实数a 的取值范围为(-7,-1).2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y≥|a +2|-|a -1|恒成立,求实数a 的取值范围; (2)求证:x 2+2y 2≥323,并指出等号成立的条件. 押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.(1)解 因为x ,y ∈R +,x +y =4,所以x 4+y 4=1. 由基本不等式,得1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y≥12+12 y x ·x y=1, 当且仅当x =y =2时取等号.要使不等式1x +1y≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可.构造函数f (a )=|a +2|-|a -1|,则等价于解不等式f (a )≤1.因为f (a )=⎩⎪⎨⎪⎧ -3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0].(2)证明 因为x ,y ∈R +,x +y =4,所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届山西省实验中学模拟)已知函数f (x )=|x -2|+|x +4|,g (x )=x 2+4x +3.(1)求不等式f (x )≥g (x )的解集;(2)如果f (x )≥|1-5a |恒成立,求a 的取值范围.解 (1)f (x )≥g (x ),即|x -2|+|x +4|≥x 2+4x +3,①当x <-4时,原不等式等价于-(x -2)-(x +4)≥x 2+4x +3,即x 2+6x +5≤0,解得-5≤x ≤-1,∴-5≤x <-4;②当-4≤x ≤2时,原不等式等价于-(x -2)+(x +4)≥x 2+4x +3,即x 2+4x -3≤0,解得-2-7≤x ≤-2+7,∴-4≤x ≤-2+7;③当x >2时,原不等式等价于(x -2)+(x +4)≥x 2+4x +3,即x 2+2x +1≤0,解得x =-1,得x ∈∅.综上可知,不等式f (x )≥g (x )的解集是{x |-5≤x ≤-2+7}.(2)∵|x -2|+|x +4|≥|x -2-x -4|=6,且f (x )≥|1-5a |恒成立,∴6≥|1-5a |,即-6≤1-5a ≤6,∴-1≤a ≤75,∴a 的取值范围是⎣⎡⎦⎤-1,75. 2. (2017届陕西省渭南市二模)已知函数f (x )=|x +3|-m ,m >0,f (x -3)≥0的解集为(-∞,-2]∪[2,+∞).(1)求m 的值;(2)若∃x ∈R ,f (x )≥|2x -1|-t 2+32t +1成立,求实数t 的取值范围. 解 (1)∵f (x )=|x +3|-m ,∴f (x -3)=|x |-m ≥0.∵m >0,∴x ≥m 或x ≤-m .又∵f (x -3)≥0的解集为(-∞,-2]∪[2,+∞),∴m =2.(2)f (x )≥|2x -1|-t 2+32t +1等价于不等式 |x +3|-|2x -1|≥-t 2+32t +3,g (x )=|x +3|-|2x -1|=⎩⎨⎧ x -4,x ≤-3,3x +2,-3<x <12,-x +4,x ≥12,故g (x )max =g ⎝⎛⎭⎫12=72,则有72≥-t 2+32t +3, 即2t 2-3t +1≥0,解得t ≤12或t ≥1. 即实数t 的取值范围为⎝⎛⎦⎤-∞,12∪[1,+∞). 3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值. 解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.4.(2017届河南省洛阳市统考)设不等式0<|x +2|-|1-x |<2的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪a +12b <34;(2)比较|4ab -1|与2|b -a |的大小,并说明理由.(1)证明 记f (x )=|x +2|-|1-x |=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1.由0<2x +1<2,解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. ∵a ,b ∈M ,∴|a |<12,|b |<12, ∴⎪⎪⎪⎪a +12b ≤|a |+12|b |<12+12×12=34. (2)解 由(1)得a 2<14,b 2<14. ∵|4ab -1|2-4|b -a |2=(16a 2b 2-8ab +1)-4(b 2-2ab +a 2)=(4a 2-1)(4b 2-1)>0,∴|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1. 证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1,即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2 =⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a·a +n 2b ·b +p 2c ·c 2 =(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1. B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc . (1)解 令g (x )=2f (x )-x =2|x -1|-x =⎩⎪⎨⎪⎧ x -2,x ≥1,-3x +2,x <1,当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)证明 |x -1|-|x +5|≤|x -1-(x +5)|=6,又∵a ,b ,c >0,∴1a 3+1b 3+1c 3+3abc ≥331a 3·1b 3·1c 3+3abc =3abc+3abc ≥23abc ·3abc =6, 当且仅当a =b =c =1时取等号,∴|x -1|-|x +5|≤1a 3+1b 3+1c3+3abc .7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和.接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4, 即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43, 即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94.8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于 |x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12, 解得x ≥0.综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a | ≤|x +a -x +1-a | =|a +1-a |=a +1-a , 当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a , 对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a ) =1+2 -⎝⎛⎭⎫a -122+14.∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。
2018年高考数学大二轮、小三轮复习培优讲义全版 课标理科
最新高考数学大二轮、小三轮精准复习课堂讲义专题一函数第1讲函数的图象与性质1第2讲基本初等函数9第3讲分段函数与绝对值函数15第4讲函数的零点问题21第5讲函数的综合应用28专题二导数第6讲曲线的切线35第7讲函数的单调性40第8讲函数的极值与最值45第9讲导数及其应用53专题三不等式第10讲三个“二次”的问题62第11讲基本不等式与线性规划68专题四三角函数、向量与解三角形第12讲三角函数的化简与求值74第13讲三角函数的图象及性质79第14讲正、余弦定理及其应用84第15讲平面向量数量积89第16讲向量与三角函数的综合问题93专题五立体几何第17讲直线与平面的位置关系98第18讲平面与平面的位置关系103第19讲立体几何中的计算108专题六解析几何第20讲直线与圆115第21讲隐性圆问题121第22讲圆锥曲线的基本量计算125第23讲圆锥曲线中定点、定值问题130第24讲圆锥曲线中最值、范围问题138第25讲圆锥曲线中探索性问题144专题七数列第26讲等差、等比数列的基本运算151第27讲等差、等比数列的判定与证明155第28讲等差、等比数列的综合应用161第29讲数列的求和及其运用166第30讲数列中的创新性问题171专题八思想方法第31讲函数方程思想177第32讲数形结合思想183第33讲分类讨论思想190第34讲化归转化思想198专题九理科附加第35讲曲线与方程205第36讲空间向量与立体几何212第37讲随机变量及其分布列219第38讲数学归纳法225第39讲计数原理与二项式定理230课后训练专题一函数第1讲函数的图象与性质235第2讲基本初等函数238第3讲分段函数与绝对值函数240第4讲函数的零点问题243第5讲函数的综合应用246专题二导数第6讲曲线的切线249第7讲函数的单调性251第8讲函数的极值与最值253第9讲导数及其应用255专题三不等式第10讲三个“二次”的问题258第11讲基本不等式与线性规划261专题四三角函数、向量与解三角形第12讲三角函数的化简与求值264第13讲三角函数的图象及性质267第14讲正、余弦定理及其应用270第15讲平面向量数量积272第16讲向量与三角的综合问题274专题五立体几何第17讲直线与平面的位置关系277第18讲平面与平面的位置关系280第19讲立体几何中的计算282专题六解析几何第20讲直线与圆285第21讲隐性圆问题287第22讲圆锥曲线的基本量计算291第23讲圆锥曲线中定点、定值问题294第24讲圆锥曲线中最值、范围问题297第25讲圆锥曲线中探索性问题300专题七数列第26讲等差、等比数列的基本运算303第27讲等差、等比数列的判定与证明305第28讲等差、等比数列的综合应用307第29讲数列的求和及其运用310第30讲数列中的创新性问题312专题八思想方法第31讲函数方程思想315第32讲数形结合思想318第33讲分类讨论思想321第34讲化归转化思想324专题九理科附加第35讲曲线与方程327第36讲空间向量与立体几何330第37讲随机变量及其分布列333第38讲数学归纳法335第39讲计数原理与二项式定理338小三轮回归第一部分知识微专题——回归课本第1练函数图象与性质340第2练基本初等函数342第3练函数与方程344第4练用导数研究函数的性质346第5练不等式的解法348第6练基本不等式与线性规划350第7练三角函数化简与求值352第8练解三角形354第9练三角函数与平面向量356第10练等差数列与等比数列358第11练数列的通项与求和360第12练直线与圆362第13练圆锥曲线364第14练立体几何366第二部分热点微专题——抢分冲刺第1练多元函数的最值问题369第2练三角形中的三角函数371第3练解析几何中最值与范围问题374第4练实际应用性问题377第5练探索与创新性问题380第三部分压轴预测——考前热身2018年江苏高考预热卷(一)3832018年江苏高考预热卷(二)388专题一 函 数 第1讲 函数的图象与性质1. 函数的图象与性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合在一起考查,既有具体函数也有抽象函数.2. 函数的图象与性质会涉及如下题型:(1) 函数“二域三性”的考查;(2) 函数性质在解决不等式问题中的应用;(3) 函数与方程问题;(4) 函数性质在数列等问题中的应用;(5) 利用导数来刻画函数的性质.1. 根据函数f(x)=x 2+1的图象,若0<x 1<x 2,则f(x 1)________f(x 2). 答案:<解析:作出函数图象,f(x)在(0,+∞)上单调递增,所以f(x 1)<f(x 2). 2. (2017·全国卷Ⅰ)函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x -2)≤1的x 的取值范围是________.答案:[1,3] 解析:因为f(x)为奇函数,所以f(-1)=1,不等式-1≤f(x -2)≤1,即f(1)≤f(x -2)≤f(-1).因为f(x)单调递减,所以-1≤x -2≤1,解得1≤x ≤3,故x 的取值范围是[1,3].3. 若关于x 的方程|x|=a -x 只有一个解,则实数a 的取值范围是________. 答案:(0,+∞)解析:由题意a =|x|+x ,令y =|x|+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x|+x 只有一解,则a>0.4. (2017·山东卷)已知f(x)是定义在R 上的偶函数,且f(x +4)=f(x -2).若当x ∈[-3,0]时,f(x)=6-x,则f(919)=________.答案:6解析:由f(x +4)=f(x -2)可知周期T =6,所以f(919)=f(153×6+1)=f(1).因为f(x)为偶函数,所以f(1)=f(-1)=6-(-1)=6., 一) 研究函数的单调性, 1) 已知函数f(x)=a -1|x|.(1) 求证:函数y =f(x)在(0,+∞)上是增函数;(2) 若f(x)<2x 在(1,+∞)上恒成立,求实数a 的取值范围.(1) 证明:当x ∈(0,+∞)时,f(x)=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0,f(x 2)-f(x 1)=(a -1x 2)-(a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f(x)在(0,+∞)上是增函数.(2) 解:由题意a -1x<2x 在(1,+∞)上恒成立,设h(x)=2x +1x,则a<h(x)在(1,+∞)上恒成立. 任取x 1,x 2∈(1,+∞)且x 1<x 2,h(x 1)-h(x 2)=(x 1-x 2)(2-1x 1x 2).因为1<x 1<x 2,所以x 1-x 2<0,x 1x 2>1,所以2-1x 1x 2>0,所以h(x 1)<h(x 2),所以h(x)在(1,+∞)上单调递增. 故a ≤h(1),即a ≤3,所以实数a 的取值范围是(-∞,3].已知a 为实常数,y =f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x<0时,f(x)=2x -a 3x2+1.(1) 求函数f(x)的单调区间;(2) 若f(x)≥a -1对一切x >0成立,求a 的取值范围.解:(1) 由奇函数的对称性可知,我们只要讨论f(x)在区间(-∞,0)上的单调性即可.f ′(x)=2+2a 3x3,令f′(x)=0,得x =-a.① 当a ≤0时,f ′(x)>0,故f(x)在区间(-∞,0)上单调递增; ② 当a >0时,x ∈(-∞,-a),f ′(x)>0,所以f(x)在区间(-∞,-a)上单调递增;x ∈(-a ,0),f ′(x)<0,所以f(x)在区间(-a ,0)上单调递减.综上所述,当a ≤0时,f(x)的单调增区间为(-∞,0),(0,+∞);当a >0时,f(x)的单调增区间为(-∞,-a),(a ,+∞),单调减区间为(-a ,0),(0,a).(2) 因为f(x)为奇函数,所以当x >0时,f(x)=-f(-x)=-(-2x -a 3x 2+1)=2x +a 3x2-1.① 当a <0时,要使f(x)≥a -1对一切x >0成立,即2x +a3x2≥a 对一切x >0成立.当x=-a2>0时,有-a +4a ≥a ,所以a ≥0,与a <0矛盾.所以a <0不成立.② 当a =0时,f(x)=2x -1>-1=a -1对一切x >0成立,故a =0满足题设要求. ③ 当a >0时,由(1)可知f(x)在(0,a)上是减函数,在(a ,+∞)上是增函数,所以f min (x)=f(a)=3a -1>a -1,所以a >0时也满足题设要求.综上所述,a 的取值范围是[0,+∞)., 二) 研究函数的最值 , 2) 已知函数f(x)=x 2-1,g(x)=a|x -1|.(1) 若关于x 的方程|f(x)|=g(x)只有一个实数解,求实数a 的取值范围;(2) 求函数h(x)=|f(x)|+g(x)在区间[-2,2] 上的最大值(直接写出结果,不需给出演算步骤).解:(1) 方程|f(x)|=g(x),即|x 2-1|=a|x -1|,变形得|x -1|(|x +1|-a)=0,显然,x =1已是该方程的根,从而欲使原方程只有一解,即要求方程|x +1|=a 有且仅有一个等于1的解或无解,结合图形得a<0或a =2.(2) 因为h(x)=|f(x)|+g(x)=|x 2-1|+a|x -1|=⎩⎪⎨⎪⎧x 2+ax -a -1,x ≥1,-x 2-ax +a +1,-1≤x<1,x 2-ax +a -1,x<-1.① 当a2>1,即a>2时,结合图形可知h(x)在[-2,1]上单调递减,在[1,2]上单调递增,且h(-2)=3a +3,h(2)=a +3.经比较,此时h(x)在[-2,2]上的最大值为3a +3.② 当0≤a 2≤1,即0≤a ≤2时,结合图形可知h(x)在[-2,-1],[-a2,1]上递减,在[-1,-a 2],[1,2]上递增,且h(-2)=3a +3,h(2)=a +3,h(-a 2)=a24+a +1.经比较,知此时h(x)在[-2,2]上的最大值为3a +3.③ 当-1≤a2<0,即-2≤a<0时,结合图形经比较,知此时h(x)在[-2,2]上的最大值为a +3.④ 当-32≤a2<-1,即-3≤a<-2时,结合图形经比较,知此时h(x)在[-2,2]上的最大值为a +3.⑤ 当a 2<-32,即a<-3时,结合图形可知h(x)在[-2,2]上的最大值为h(1)=0.综上所述,当a ≥0时,h(x)在[-2,2]上的最大值为3a +3; 当-3≤a<0时,h(x)在[-2,2]上的最大值为a +3; 当a<-3时,h(x)在[-2,2]上的最大值为0.设a 为实数,函数f(x)=x 2+|x -a|+1,x ∈R .(1) 讨论f(x)的奇偶性; (2) 求f(x)的最小值.解:(1) 当a =0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.当a ≠0时,f(a)=a 2+1,f(-a)=a 2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a).此时函数f(x)既不是奇函数,也不是偶函数.(2) ① 当x ≤a 时,函数f(x)=x 2-x +a +1=(x -12)2+a +34.若a ≤12,则函数f(x)在(-∞,a]上单调递减,从而函数f(x)在(-∞,a]上的最小值为f(a)=a 2+1;若a >12,则函数f(x)在(-∞,a]上的最小值为f(12)=34+a ,且f(12)≤f(a).② 当x ≥a 时,函数f(x)=x 2+x -a +1=(x +12)2-a +34.若a ≤-12,则函数f(x)在[a ,+∞)上的最小值为f(-12)=34-a ,且f(-12)≤f(a);若a >-12,则函数f(x)在[a ,+∞)上单调递增,从而函数f(x)在[a ,+∞)上的最小值为f(a)=a 2+1.综上,当a ≤-12时,函数f(x)的最小值是34-a ;当-12<a ≤12时,函数f(x)的最小值是a 2+1;当a >12时,函数f(x)的最小值是a +34.点评:函数奇偶性的讨论问题是中学数学的基本问题,如果平时注意知识的积累,对解此题会有较大帮助.因为x ∈R ,f(0)=|a|+1≠0,由此排除f(x)是奇函数的可能性.运用偶函数的定义分析可知,当a =0时,f(x)是偶函数,第(2)题主要考查学生对分类讨论思想、对称思想的运用., 三) 研究函数的图象 , 3) 已知f(x)为定义在R 上的奇函数,当x>0时,f(x)为二次函数,且满足f(2)=1,f(x)在(0,+∞)上的两个零点为1和3.(1) 求函数f(x)在R 上的解析式;(2) 作出f(x)的图象,并根据图象讨论关于x 的方程f(x)-c =0(c ∈R )根的个数.解:(1) 由题意,当x>0时,设f(x)=a(x -1)·(x -3)(a ≠0), 因为f(2)=1,所以a =-1,所以f(x)=-x 2+4x -3. 当x<0时,-x>0,因为f(x)为R 上的奇函数, 所以f(-x)=-f(x),所以f(x)=-f(-x)=-[-(-x)2+4(-x)-3]=x 2+4x +3, 即x<0时,f(x)=x 2+4x +3.因为f(x)是奇函数,所以当x =0时,得f(0)=0,所以f(x)=⎩⎪⎨⎪⎧-x 2+4x -3,x>0,0,x =0,x 2+4x +3,x<0.(2) 作出f(x)的图象(如图所示),由f(x)-c =0得c =f(x),在图中作y =c ,根据交点讨论方程的根:当c ≥3或c ≤-3时,方程有1个根; 当1<c<3或-3<c<-1时,方程有2个根; 当c =-1或c =1时,方程有3个根; 当0<c<1或-1<c<0时,方程有4个根; 当c =0时,方程有5个根.设函数f(x)=ax 2+bx +c(a>b>c)的图象经过点A(m 1,f(m 1))和点B(m 2,f(m 2)),且f(1)=0.若a 2+[f(m 1)+f(m 2)]·a +f(m 1)·f(m 2)=0,则b 的取值范围是________.答案:[0,+∞) 解析:因为f(1)=0,所以c =-(a +b).又由a>b>c 可知a>0,c<0.由a 2+[f(m 1)+f(m 2)]·a +f(m 1)·f(m 2)=0可得a =-f(m 1)或a =-f(m 2),即f(x)+a =0的两个根分别为m 1,m 2,即ax 2+bx +c +a =0有两个根m 1,m 2.所以ax 2+bx -b =0有两个根m 1,m 2,所以Δ=b 2-4a(-b)=b(b +4a)≥0,所以b ≥0或b ≤-4a.当b ≤-4a 时,4a +b ≤0,所以4a +b +c<0,所以a+b +c<0,与a +b +c =0矛盾,所以b ≥0., 四) 函数图象与性质的综合应用, 4) (2017·张家港模拟)已知函数f(x)=x|x -a|+2x(a ∈R ). (1) 当a =4时,解不等式f(x)≥8;(2) 当a ∈[0,4]时,求f(x)在区间[3,4]上的最小值;(3) 若存在a ∈[0,4],使得关于x 的方程f(x)=tf(a)有3个不相等的实数根,求实数t 的取值范围.解:(1) 当a =4时,不等式可化为x|x -4|+2x ≥8. 若x ≥4,则x 2-2x -8≥0,所以x ≥4; 若x<4,则x 2-6x +8≤0,所以2≤x<4. 综上,不等式的解集为{x|x ≥2}.(2) f(x)=⎩⎪⎨⎪⎧x 2-(a -2)x ,x ≥a ,-x 2+(a +2)x ,x<a=⎩⎨⎧(x -a -22)2-(a -22)2,x ≥a ,-(x -a +22)2+(a +22)2,x <a.下面比较a -22,a +22,a 的大小:因为a ∈[0,4],所以当a ∈[0,2]时,a -22-a =-a -22<0,a +22-a =2-a2≥0,所以作出函数f(x)的图象如图1.所以f(x)在(-∞,a],[a ,+∞)上为增函数, 即f(x)在R 上是增函数,所以f(x)在区间[3,4]上的最小值为f(3)=15-3a.,图1) ,图2)当a ∈(2,4]时,a -22-a =-a -22<0,a +22-a =2-a 2<0,a +22≤3.所以作出函数f(x)的图象如图2.所以f(x)在(-∞,a +22],[a ,+∞)上为增函数,在[a +22,a]上为减函数,所以若a ≤3,则f(x)在区间[3,4]上为增函数,最小值为f(3)=15-3a ; 若3<a ≤4,则f(x)在区间[3,4]上的最小值为f(a)=2a.(3) 由(2)知当a ∈[0,2]时,如图1,关于x 的方程f(x)=tf(a)不可能有3个不相等的实数根.当a ∈(2,4]时,要存在a ,使得关于x 的方程f(x)=tf(a)有3个不相等的实数根,则f(a)<tf(a)<f(a +22)有解,所以1<t<⎣⎢⎢⎡⎦⎥⎥⎤f (a +22)f (a )max (2<a ≤4), f (a +22)f (a )=18(a +4a +4),且函数y =a +4a 在区间(2,4]上为增函数,所以⎣⎢⎢⎡⎦⎥⎥⎤f (a +22)f (a )max =98,所以1<t<98.(2017·南通三模)已知函数f(x)=⎩⎪⎨⎪⎧x ,x ≥a ,x 3-3x ,x<a.若函数g(x)=2f(x)-ax 恰有2个不同的零点,则实数a 的取值范围是________.答案:(-32,2)解析:(解法1)要使g(x)=2f(x)-ax 有2个不同的零点,只需y =f(x)的图象与直线y =12ax 有两个不同的交点,考虑直线x =a ,y =12ax 与y =x 3-3x 交于同一点时的临界状态可求出a =-32(如图1)和a =2(如图2),当a 从-32连续变化到2时,直线y =12ax 绕着原点逆时针转动,分析可得a ∈(-32,2). ,图1) ,图2),图3)(解法2)可将条件转化为“若f(x)=⎩⎪⎨⎪⎧1,x ≥a ,x 2-3,x<a ,且y =2f(x)-a 恰有1个零点”求解.点评:本题考查分段函数、函数的零点,意在考查考生分类讨论、数形结合、等价转化、函数与方程的数学思想.填空题中的零点问题常利用分离函数、分离参数,继而数形结合得到处理,解答题中的零点问题常利用导数研究函数的性质,常考虑区间端点处函数值的符号、极值的符号,常通过零点赋值法由零点存在性定理处理.1. (2017·全国卷Ⅱ)已知函数f(x)是定义在R 上的奇函数,当x ∈(-∞,0)时,f(x)=2x 3+x 2,则f(2)=________.答案:12解析:因为函数f(x)为奇函数,所以f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.2. (2017·山东卷)设f(x)=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1.若f(a)=f(a +1),则f(1a )=________.答案:6解析:当0<a<1时,a +1>1,由f(a)=f(a +1)得a =2(a +1-1)=2a ,解得a =14,此时f(1a)=f(4)=2×(4-1)=6;当a ≥1时,a +1≥2,由f(a)=f(a +1)得2(a -1)=2(a +1-1),此时方程无解.综上可知,f(1a )=6.3. 设函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f(f(a))≤2,则实数a 的取值范围是________.答案:(-∞,2]解析:∵ 函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,它的图象如图:由f(f(a))≤2,可得f(a)≥-2.当a <0时,f(a)=a 2+a =(a +12)2-14≥-2恒成立;当a ≥0时,f(a)=-a 2≥-2,即a 2≤2,解得0≤a ≤ 2. 综上,实数a 的取值范围是(-∞,2].4. (2017·天津卷)已知函数f(x)=⎩⎪⎨⎪⎧|x|+2,x<1,x +2x,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥⎪⎪⎪⎪x 2+a 在R 上恒成立,则a 的取值范围是________.答案:[-2,2]解析:(解法1)由题意可知,函数y =f(x)的图象恒不在函数y =⎪⎪⎪⎪x 2+a 的图象下方,画出函数y =f(x)和函数y =⎪⎪⎪⎪x 2的图象,如图所示.当a =0时,显然f(x)>⎪⎪⎪⎪x 2+a ;当a<0时,函数y =⎪⎪⎪⎪x 2+a 的图象由函数y =⎪⎪⎪⎪x2的图象向右平移|2a|个单位长度得到.由图可知,当函数y =⎪⎪⎪⎪x 2+a 在x<-2a 部分的图象经过点(0,2)时,a 取得最小值,此时a =-2;当a>0时,函数y =⎪⎪⎪⎪x 2+a 的图象由函数y =⎪⎪⎪⎪x2的图象向左平移2a 个单位长度得到,由图可知,当函数y =⎪⎪⎪⎪x 2+a 在x>-2a 部分的图象经过点(0,2)或与函数y =f(x)在x>1部分的图象相切时,a 取得最大值,而经过点(0,2)时,a =2,当函数y =⎪⎪⎪⎪x 2+a 在x>-2a 部分的图象与函数y =f(x)在x>1部分的图象相切时,设切点为P(x 0,y 0)(x 0>1),因为x>1时,f ′(x)=1-2x 2,则1-2x 20=12,解得x 0=2,所以y 0=3.又点P(2,3)在函数y =⎪⎪⎪⎪x 2+a 在x>-2a 部分的图象上,所以⎪⎪⎪⎪22+a =3,解得a =2,因此a 的最大值为2.综上所述,a 的取值范围是[-2,2].(解法2)不等式f(x)≥⎪⎪⎪⎪x 2+a 转化为-f(x)≤x 2+a ≤f(x),当x<1时,有-|x|-2≤x 2+a ≤|x|+2,即-|x|-2-x 2≤a ≤|x|+2-x 2.因为当x<0时,-|x|-2-x 2=x 2-2<-2,|x|+2-x 2=-3x2+2>2,当0≤x<1时,-|x|-2-x 2=-3x 2-2≤-2,|x|+2-x 2=x2+2≥2,所以-2≤a ≤2;当x ≥1时,有-x -2x ≤x 2+a ≤x +2x ,即-3x 2-2x ≤a ≤x 2+2x .又-3x 2-2x ≤-23,x 2+2x≥2,所以-23≤a ≤2.综上,-2≤a ≤2.5. (2016·浙江卷)已知函数g(x)=ax 2-2ax +b(a >0)在区间[1,3]上有最大值5,最小值1.设f(x)=g (x )x.(1) 求a ,b 的值;(2) 若f(|lg x -1|)+k·2|lg x -1|-3k ≥1对任意x ∈[1,10)∪(10,100]恒成立,求k 的取值范围.解:(1) g(x)=a(x -1)2+b -a ,因为a >0,所以g(x)在区间[1,3]上是增函数, 故⎩⎪⎨⎪⎧g (1)=1,g (3)=5,解得⎩⎪⎨⎪⎧a =1,b =2. (2) 由已知和(1)可得f(x)=x +2x-2,f(|lg x -1|)+k·2|lg x -1|-3k ≥1,即|lg x -1|+2|lg x -1|-2+2k|lg x -1|-3k ≥1.令t =|lg x -1|,则t ∈(0,1],t +2+2kt-3k -3≥0对任意t ∈(0,1]恒成立.令h(t)=t +2+2kt-3k -3,t ∈(0,1],则① 当k =-1时,h(t)=t ≥0成立;② 当k <-1时,h(t)=t +2+2k t-3k -3在(0,1]上为增函数,t →0+时,h(t)→-∞,舍去;③ 当k >-1时,h(t)在(0,2+2k]上为减函数,在[2+2k ,+∞)上为增函数,若2+2k <1,即-1<k <-12时,h min (t)=h(2+2k)=22+2k -3k -3≥0,得-1≤k ≤-19,即-1<k <-12; 若2+2k ≥1,即k ≥-12时,h(t)在(0,1]上为减函数,h min (t)=h(1)=-k ≥0,即-12≤k≤0.综上,k 的取值范围是[-1,0].(本题模拟高考评分标准,满分16分) 已知函数f(x)=1+x +1-x. (1) 求函数f(x)的定义域和值域;(2) 设F(x)=a2·[f 2(x)-2]+f(x)(a 为实数),求F(x)在a<0时的最大值g(a);(3) 对(2)中g(a),若-m 2+2tm +2≤g(a)对a<0所有的实数a 及t ∈[-1,1]恒成立,求实数m 的取值范围.解:(1) 由1+x ≥0且1-x ≥0,得-1≤x ≤1,所以定义域为[-1,1].(2分) 又f 2(x)=2+21-x 2∈[2,4],由f(x)≥0得值域为[2,2].(4分)(2) 令t =f(x)=1+x +1-x ,则1-x 2=12t 2-1,所以F(x)=m(t)=a(12t 2-1)+t =12at 2+t -a ,t ∈[2,2].(6分)由题意知g(a)即为函数m(t)=12at 2+t -a ,t ∈[2,2]的最大值.注意到直线t =-1a 是抛物线m(t)=12at 2+t -a 的对称轴.因为a<0时,函数y =m(t),t ∈[2,2]的图象是开口向下的抛物线的一段,① 若t =-1a ∈(0,2],即a ≤-22,则g(a)=m(2)= 2.(7分)② 若t =-1a ∈(2,2],即-22<a ≤-12,则g(a)=m(-1a )=-a -12a .(8分)③ 若t =-1a ∈(2,+∞),即-12<a<0,则g(a)=m(2)=a +2.(9分)综上有g(a)=⎩⎪⎨⎪⎧a +2,-12<a<0,-a -12a ,-22<a ≤-12,2,a ≤-22.(10分)(3) 易得g min (a)=2,(11分)由-m 2+2tm +2≤g(a)对a<0恒成立, 即要使-m 2+2tm +2≤g min (a)=2恒成立⇒m 2-2tm ≥0,令h(t)=-2mt +m 2,对所有的t ∈[-1,1],h(t)≥0成立,只需⎩⎪⎨⎪⎧h (-1)=2m +m 2≥0,h (1)=-2m +m 2≥0,(14分)求出m 的取值范围是(-∞,-2]∪{0}∪[2,+∞).(16分)1. 已知函数f(x)=log 2a -x1+x为奇函数,则实数a 的值为________.答案:1解析:由奇函数得f(x)=-f(-x),即log 2a -x 1+x =-log 2a +x 1-x ,a -x 1+x =1-xa +x,解得a 2=1.因为a ≠-1,所以a =1.2. 已知函数f(x)=2x -ax的定义域为(0,1](a 为实数).(1) 当a =1时,求函数y =f(x)的值域;(2) 求函数y =f(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x 的值.解:(1) 当a =1时,f(x)=2x -1x ,任取1≥x 1>x 2>0,则f(x 1)-f(x 2)=2(x 1-x 2)-(1x 1-1x 2)=(x 1-x 2)(2+1x 1x 2).∵ 1≥x 1>x 2>0,∴ x 1-x 2>0,x 1x 2>0. ∴ f(x 1)>f(x 2),∴ f(x)在(0,1]上单调递增,无最小值,当x =1时取得最大值1,∴ f(x)的值域为(-∞,1].(2) 当a ≥0时,y =f(x)在(0,1]上单调递增,无最小值, 当x =1时取得最大值2-a ;当a <0时,f(x)=2x +-ax,当-a2≥1,即a ∈(-∞,-2]时,y =f(x)在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ;当-a 2<1,即a ∈(-2,0)时,y =f(x)在(0,-a 2]上单调递减,在[-a2,1]上单调递增,无最大值,当x =-a2时取得最小值2-2a.3. 设函数f(x),g(x)的定义域均为R ,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x ,其中e 为自然对数的底数.(1) 求f(x),g(x)的解析式,并求证:当x>0时,f(x)>0,g(x)>1;(2) 设a ≤0,b ≥1,求证:当x>0时,ag(x)+(1-a)<f (x )x<bg(x)+(1-b).(1) 解:f(x)是奇函数,g(x)是偶函数,即有f(-x)=-f(x),g(-x)=g(x),f(x)+g(x)=e x ,f(-x)+g(-x)=e -x ,即为-f(x)+g(x)=e -x ,∴ f(x)=12(e x -e -x ),g(x)=12(e x +e -x ).证明如下:当x>0时,e x >1,0<e -x <1,故f(x)>0.又由基本不等式,有g(x)=12(e x +e -x )>e x e -x =1,即g(x)>1.(2) 证明:由(1)得f ′(x)=12(e x -1e x )′=12(e x +e x e 2x )=12(e x +e -x)=g(x) ①,g ′(x)=12(e x +1e x )′=12(e x -e x e 2x )=12(e x -e -x)=f(x) ②,当x>0时,f (x )x>ag(x)+(1-a)等价于f(x)>axg(x)+(1-a)x ③,f (x )x<bg(x)+(1-b)等价于f(x)<bxg(x)+(1-b)x ④, 于是设函数h(x)=f(x)-cxg(x)-(1-c)x.由①②,有h′(x)=g(x)-cg(x)-cxf(x)-(1-c)=(1-c)[g(x)-1]-cxf(x).当x>0时,若c ≤0,则h′(x)>0,故h(x)在(0,+∞)上为增函数,从而h(x)>h(0)=0,即f(x)>cxg(x)+(1-c)x ,故③成立.若c ≥1,则h′(x)<0,故h(x)在(0,+∞)上为减函数,从而h(x)<h(0)=0,即f(x)<cxg(x)+(1-c)x ,故④成立.综合③④得,当x >0时,ag(x)+(1-a)<f (x )x<bg(x)+(1-b).请使用“课后训练·第1讲”活页练习,及时查漏补缺!第2讲 基本初等函数1. 高考对指数、对数函数的考查主要与其他基本初等函数知识相结合,考查函数的单调性及其基本性质,考查指数式的运算.2. 高考中主要涉及如下题型:(1) 指数与对数的基本运算、对数的运算性质;(2) 与指数式综合考查比较大小;(3) 有关图象的识别问题.1. (2017·南京、盐城二模)函数f(x)=ln 11-x的定义域为________.答案:(-∞,1)解析:由11-x>0,得1-x >0,即x <1.2. y =(log 12a)x 在R 上为减函数,则a ∈________.答案:(12,1)解析:因为y =(log 12a)x 在R 上为减函数,所以0<log 12a <1,所以12<a <1,即a ∈(12,1).3. (2017·天津卷)已知奇函数f(x)在R 上是增函数,g(x)=xf(x).若a =g(-log 25.1),b =g(20.8),c =g(3),则a ,b ,c 的大小关系为________.答案:b<a<c解析:由函数f(x)为奇函数且在R 上单调递增,可知当x>0时,f(x)>0,所以g(x)=xf(x)为偶函数,且在(0,+∞)上单调递增,所以c =g(3)>a =g(-log 25.1)=g(log 25.1)>g(2),b =g(20.8)<g(2),所以b<a<c.4. 已知函数f(x)(x ∈R ,且x ≠1)的图象关于点(1,0)对称,当x>1时f(x)=log a (x -1),且f(3)=-1,则不等式f(x)>1的解集是________.答案:(-∞,-1)∪(1,32)解析:由题意,f(x)=-f(2-x),因为当x >1时,f(x)=log a (x -1),且f(3)=-1,所以log a 2=-1,所以a =12.所以当x >1时,不等式f(x)>1可化为log 12(x -1)>1,所以1<x <32;当x <1时,2-x >1,不等式f(x)>1可化为-log 12(1-x)>1,所以x <-1., 一) 基本初等函数的性质研究, 1) 已知定义域为R 的函数f(x)=-2x +b2x +1+a是奇函数.(1) 求a ,b 的值;(2) 解关于t 的不等式f(t 2-2t)+f(2t 2-1)<0. 解:(1) 因为f(x)是定义在R 上的奇函数,所以f(0)=0,即-1+b2+a =0,解得b =1,所以f(x)=-2x +12x +1+a.由f(1)=-f(-1)知-2+14+a =--12+11+a,解得a =2.经检验,当a =2,b =1时,f(x)为奇函数.(2) 由(1)知f(x)=-2x +12x +1+2=-12+12x +1.易知f(x)在(-∞,+∞)上为减函数. 因为f(x)是奇函数,所以不等式f(t 2-2t)+f(2t 2-1)<0等价于f(t 2-2t)<-f(2t 2-1)=f(-2t 2+1). 因为f(x)是减函数,由上式推得t 2-2t>-2t 2+1,即3t 2-2t -1>0,解不等式可得t>1或t<-13,所以不等式的解集为⎩⎨⎧⎭⎬⎫t|t>1或t<-13.已知函数f(x)=a -22x +1(a ∈R ).(1) 试判断f(x)的单调性,并证明你的结论; (2) 若f(x)为定义域上的奇函数,求: ① 函数f(x)的值域;② 满足f(ax)<f(2a -x 2)的x 的取值范围. 解:(1) 函数f(x)的定义域为(-∞,+∞),且f(x)=a -22x +1,任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则f(x 2)-f(x 1)=a -22x 2+1-a +22x 1+1=2(2x 2-2x 1)(2x 2+1)(2x 1+1).因为y =2x 在R 上单调递增,且x 1<x 2,所以0<2x 1<2x 2,2x 2-2x 1>0,2x 1+1>0,2x 2+1>0, 所以f(x 2)-f(x 1)>0,即f(x 2)>f(x 1),所以f(x)在(-∞,+∞)上是单调增函数. (2) 因为f(x)是定义域上的奇函数, 所以f(-x)=-f(x),即a -22-x +1+(a -22x +1)=0对任意实数x 恒成立,化简得2a -(2·2x 2x +1+22x +1)=0,所以2a -2=0,即a =1.① 由a =1得f(x)=1-22x +1.因为2x +1>1,所以0<12x +1<1,所以-2<-22x +1<0,所以-1<1-22x +1<1,故函数f(x)的值域为(-1,1).② 由a =1得f(x)<f(2-x 2),且f(x)在(-∞,+∞)上单调递增, 所以x<2-x 2,解得-2<x<1. 故x 的取值范围是(-2,1)., 二) 基本初等函数的图象变换, 2) 设f(x)=|lg x|,a ,b 为实数,且0<a<b. (1) 若a ,b 满足f(a)=f(b),求证:ab =1;(2) 在(1)的条件下,求证:由关系式f(b)=2f(a +b2)所得到的关于b 的方程g(b)=0,存在b 0∈(3,4),使g(b 0)=0.证明:(1) 结合函数图象,由f(a)=f(b),0<a<b 可判断a ∈(0,1),b ∈(1,+∞),从而-lg a =lg b ,即ab =1.(2) 因为0<a<b ,所以a +b2>ab =1.由已知可得b =(a +b 2)2,得4b =a 2+b 2+2ab ,得1b2+b 2+2-4b =0.设g(b)=1b2+b 2+2-4b ,因为g(3)<0,g(4)>0,根据零点存在性定理可知,函数g(b)在(3,4)内一定存在零点, 即存在b 0∈(3,4),使g(b 0)=0.(2017·徐州、连云港、宿迁三检)如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在函数y 1=3log a x ,y 2=2log a x 和y 3=log a x(a>1)的图象上,则实数a 的值为________.答案: 2解析:设A(t ,3log a t)(t>0),因为正方形ABCD 的边长为2, 所以B(t ,2log a t),C(t 2,2log a t),则⎩⎪⎨⎪⎧t 2-t =2,3log a t -2log a t =2,即⎩⎪⎨⎪⎧t 2-t -2=0,log a t =2, 解得⎩⎨⎧t =2,a =2,即所求的实数a 的值为 2., 三) 基本初等函数与不等式综合, 3) 已知f(log 2x)=x.(1) 若f(x)+x =10的根x 0∈(k 2,k +12),k ∈Z ,求k 的值;(2) 设g(x)=f (x +1)+af (x )+b(a<b)为其定义域上的奇函数,求实数a ,b 的值.解:(1) 令t =log 2x ,则x =2t , 所以f(t)=2t ,即f(x)=2x .方程f(x)+x =10即为2x +x =10.设h(x)=2x +x -10,显然h(x)在R 上为增函数,因为h(2)=22+2-10=-4<0,h(3)=23+3-10=1>0,h(52)=252+52-10=42-152<0, 所以函数h(x)的零点x 0∈(52,3),所以符合条件的整数k =5.(2) g(x)=2x +1+a2x +b,因为g(x)为其定义域上的奇函数, 所以g(-x)+g(x)=0恒成立,即2-x +1+a 2-x +b +2x +1+a 2x +b=0恒成立, 所以2+a·2x 1+b·2x +2x +1+a 2x +b=0,即(2+a·2x )(2x +b)+(1+b·2x )(2x +1+a)=0恒成立,化简为(a +2b)22x +2(ab +2)2x +(a +2b)=0恒成立,所以a +2b =0,且ab +2=0, 解得a =2,b =-1或a =-2,b =1. 因为a<b ,所以a =-2,b =1.已知函数f(x)=3-2log 2x ,g(x)=log 2x.(1) 当x ∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域; (2) 如果对任意的x ∈[1,4],不等式f(x 2)·f(x)>k·g(x)恒成立,求实数k 的取值范围. 解:(1) h(x)=(4-2log 2x)·log 2x =-2(log 2x -1)2+2,因为x ∈[1,4],所以log 2x ∈[0,2],故函数h(x)的值域为[0,2]. (2) 由f(x 2)·f(x)>k·g(x), 得(3-4log 2x)(3-log 2x)>k·log 2x.令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t)(3-t)>k·t 对一切t ∈[0,2]恒成立, ① 当t =0时,k ∈R ;② 当t ∈(0,2]时,k<(3-4t )(3-t )t恒成立,即k<4t +9t -15,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3.综上,实数k 的取值范围是(-∞,-3)., 四) 基本初等函数与方程综合, 4) 已知a>0,且a ≠1,函数f(x)=log a (x +1),g(x)=log a 11-x,记F(x)=2f(x)+g(x).(1) 求函数F(x)的定义域D 及其零点;(2) 若关于x 的方程F(x)-m =0在区间[0,1)内有解,求实数m 的取值范围.解:(1) F(x)=2f(x)+g(x)=2log a (x +1)+log a 11-x (a>0且a ≠1),由⎩⎪⎨⎪⎧x +1>0,1-x>0,解得-1<x<1,所以函数F(x)的定义域D 为(-1,1).令F(x)=0,则2log a (x +1)+log a 11-x=0 (*).方程变为log a (x +1)2=log a (1-x), 即(x +1)2=1-x ,即x 2+3x =0,解得x 1=0,x 2=-3,经检验x =-3是方程(*)的增根,所以方程(*)的解为x =0, 即函数F(x)的零点为0.(2) m =2log a (x +1)+log a 11-x =log a x 2+2x +11-x =log a (1-x +41-x-4)(0≤x<1),a m =1-x +41-x -4,设1-x =t ∈(0,1],函数y =t +4t在区间(0,1]上是减函数,当t =1时,x =0,y min =5,所以a m ≥1. ① 若a>1,则m ≥0,方程有解; ② 若0<a<1,则m ≤0,方程有解.所以,当a >1时,m ≥0;当0<a <1时,m ≤0.已知函数f(x)=log a x -1x +1(其中a >0且a ≠1).(1) 讨论函数f(x)的奇偶性;(2) 已知关于x 的方程log a m(x +1)(7-x )=f(x)在区间[2,6]上有实数解,求实数m的取值范围.解:(1) 由对数有意义可得x -1x +1>0,解得x <-1或x >1,所以f(x)=log a x -1x +1的定义域为(-∞,-1)∪(1,+∞),关于原点对称.又f(-x)=log a -x -1-x +1=log a x +1x -1=-log a x -1x +1,所以f(-x)=-f(x),所以函数f(x)为奇函数.(2) 由题意可得⎩⎪⎨⎪⎧m(x +1)(7-x )>0,x -1x +1>0,m (x +1)(7-x )=x -1x +1.问题转化为求函数m =(x -1)(7-x)在x ∈[2,6]上的值域,该函数在[2,4]上递增,在[4,6]上递减,所以当x =2或6时,m 取最小值5;当x =4时,m 取最大值9. 所以m 的取值范围是[5,9].1. (2017·全国卷Ⅱ)函数f(x)=ln(x 2-2x -8)的单调增区间是________.答案:(4,+∞) 解析:函数y =x 2-2x -8=(x -1)2-9图象的对称轴为直线x =1,由x 2-2x -8>0解得x >4或x <-2,所以(4,+∞)为函数y =x 2-2x -8的一个单调增区间.根据复合函数的单调性可知,函数f(x)=ln(x 2-2x -8)的单调增区间为(4,+∞).2. (2017·山东卷)设函数y =4-x 2的定义域为A ,函数y =ln(1-x)的定义域为B ,则A ∩B = ________.答案:[-2,1)解析:由4-x 2≥0得-2≤x ≤2,所以A ={x|-2≤x ≤2};由1-x>0得x<1,所以B ={x|x<1}.故A ∩B ={x|-2≤x<1}.3. (2017·北京卷)已知函数f(x)=3x -(13)x ,则f(x)是________函数.(选填“奇”或“偶”)答案:奇解析:因为f(-x)=3-x -(13)-x =(13)x -3x =-3x +(13)x =-f(x),所以f(x)为奇函数.4. (2017·山东卷)若函数e xf(x)(e =2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M 性质.下列函数中所有具有M 性质的函数为________.(填序号)① f(x)=2-x ;② f(x)=3-x ;③ f(x)=x 3;④ f(x)=x 2+2. 答案:①④解析:令g(x)=e x f(x).对于①,f(x)的定义域为R ,g(x)=e x 2-x =(e 2)x 在R 上单调递增,具有M 性质;对于②,f(x)的定义域为R ,g(x)=e x 3-x =(e 3)x 在R 上单调递减,不具有M 性质;对于③,f(x)的定义域为R ,g(x)=e x x 3,g ′(x)=e x x 3+3x 2e x =e x (x 3+3x 2)>0在R 上不恒成立,所以g(x)在R 上不单调递增,不具有M 性质;对于④,f(x)的定义域为R ,g(x)=e x (x 2+2),g ′(x)=e x (x 2+2)+2xe x =e x (x 2+2x +2)>0在R 上恒成立,所以g(x)在R 上单调递增,具有M 性质.故填①④.5. (2017·全国卷Ⅰ)已知函数f(x)=e x (e x -a)-a 2x. (1) 讨论f(x)的单调性;(2) 若f(x)≥0,求a 的取值范围.解:(1) 函数f(x)的定义域为(-∞,+∞),f′(x)=2e 2x -ae x -a 2=(2e x +a)(e x -a). ① 若a =0,则f(x)=e 2x ,在(-∞,+∞)上单调递增. ② 若a >0,则由f′(x)=0得x =ln a.当x ∈(-∞,ln a)时,f ′(x)<0;当x ∈(ln a ,+∞)时,f ′(x)>0.故f(x)在(-∞,ln a)上单调递减,在(ln a ,+∞)上单调递增.③ 若a <0,则由f′(x)=0得x =ln(-a2).当x ∈(-∞,ln(-a 2))时,f ′(x)<0;当x ∈(ln(-a2),+∞)时,f ′(x)>0.故f(x)在(-∞,ln(-a 2))上单调递减,在(ln(-a2),+∞)上单调递增.(2) ① 若a =0,则f(x)=e 2x ,所以f(x)≥0.② 若a >0,则由(1)得,当x =ln a 时,f(x)取得最小值,最小值为f(ln a)=-a 2ln a .从而当且仅当-a 2ln a ≥0,即0<a ≤1时,f(x)≥0.③ 若a <0,则由(1)得当x =ln(-a 2)时,f(x)取得最小值,最小值为f(ln(-a 2))=a 2[34-ln(-a 2)].从而当且仅当a 2[34-ln(-a2)]≥0,即a ≥-2e 34时,f(x)≥0. 综上,a 的取值范围是[-2e 34,1].(本题模拟高考评分标准,满分16分)定义在D 上的函数f(x),如果满足:对任意x ∈D ,存在常数M>0,都有|f(x)|≤M 成立,则称f(x)是D 上的有界函数,其中M 称为函数f(x)的上界.举例:f(x)=x ,D =[-3,2],则对任意x ∈D ,|f(x)|≤3,根据上述定义,f(x)=x 在[-3,2]上为有界函数,上界可取3,5等等.已知函数f(x)=1+a·2x +4x,g(x)=1-2x1+2x.(1) 当a =1时,求函数f(x)在(0,+∞)上的值域,并判断函数f(x)在(0,+∞)上是否为有界函数,请说明理由;(2) 求函数g(x)在[0,1]上的上界T 的取值范围;(3) 若函数f(x)在(-∞,0]上是以3为上界的函数,求实数a 的取值范围. 解:(1) 当a =1时,f(x)=1+2x +4x ,设t =2x ,x ∈(0,+∞),所以t ∈(1,+∞), y =t 2+t +1,值域为(3,+∞), 不存在正数M ,使x ∈(0,+∞)时,|f(x)|≤M 成立,即函数在(0,+∞)上不是有界函数.(5分)(2) 设t =2x ,t ∈[1,2],g(t)=1-t 1+t =21+t-1在t ∈[1,2]上是减函数,值域为[-13,0],要使|g(x)|≤T 恒成立,则T ≥13.(10分)(3) 由已知x ∈(-∞,0]时,不等式|f(x)|≤3恒成立,即|1+a·2x +4x |≤3, 设t =2x ,t ∈(0,1],不等式化为|1+a·t +t 2|≤3. (解法1)讨论:当0<-a 2≤1,即-2≤a <0时,1-14a 2≥-3且2+a ≤3,得-2≤a<0;当-a 2≤0或-a2>1,即a <-2或a ≥0时,-3≤2+a ≤3,得-5≤a <-2或0≤a ≤1.综上,-5≤a ≤1.(16分)(解法2)不等式1+at +t 2≥-3且1+at +t 2≤3在t ∈(0,1]上恒成立.分离参数法得-a ≤t +4t 且-a ≥t -2t在t ∈(0,1]上恒成立,得-5≤a ≤1.(16分)1. 已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x >0,3x +1,x ≤0,则f(f(14))的值是________.答案:109解析:由题意可得f(14)=log 214=-2,∴ f(f(14))=f(-2)=3-2+1=109.2. 已知函数f(x)=ax 2+bx +c(a>0,b ∈R ,c ∈R ).(1) 若函数f(x)的最小值是f(-1)=0,且c =1,F(x)=⎩⎪⎨⎪⎧f (x ),x>0,-f (x ),x<0,求F(2)+F(-2)的值;(2) 若a =1,c =0,且|f(x)|≤1在区间(0,1]上恒成立,试求b 的取值范围.解:(1) 由已知c =1,a -b +c =0,且-b2a=-1,解得a =1,b =2,∴ f(x)=(x +1)2.∴ F(x)=⎩⎪⎨⎪⎧(x +1)2,x>0,-(x +1)2,x<0. ∴ F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8. (2) 由a =1,c =0,得f(x)=x 2+bx ,从而|f(x)|≤1在区间(0,1]上恒成立,等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又在区间(0,1]上,1x -x 的最小值为0,-1x-x 的最大值为-2.∴ -2≤b ≤0.故b 的取值范围是[-2,0].3. 已知a ∈R ,函数f(x)=log 2(1x+a).(1) 当a =5时,解不等式f(x)>0;(2) 若关于x 的方程f(x)-log 2[(a -4)x +2a -5]=0的解集中恰好有一个元素,求a 的取值范围.解:(1) 当a =5时,f(x)=log 2(1x+5),由f(x)>0,得log 2(1x+5)>0,即1x +5>1,即x >0或x <-14, 即不等式的解集为⎩⎨⎧⎭⎬⎫x|x >0或x <-14.(2) 由f(x)-log 2[(a -4)x +2a -5]=0,得log 2(1x +a)-log 2[(a -4)x +2a -5]=0,即log 2(1x +a)=log 2[(a -4)x +2a -5],即1x+a =(a -4)x +2a -5>0 ①, 则(a -4)x 2+(a -5)x -1=0, 即(x +1)[(a -4)x -1]=0 ②,当a =4时,方程②的解为x =-1,代入①,成立; 当a =3时,方程②的解为x =-1,代入①,成立;当a ≠4且a ≠3时,方程②的解为x =-1或x =1a -4,若x =-1是方程①的解,则1x+a =a -1>0,即a >1;若x =1a -4是方程①的解,则1x +a =2a -4>0,即a >2.则要使方程①有且仅有一个解,则1<a ≤2.综上,若方程f(x)-log 2[(a -4)x +2a -5]=0的解集中恰好有一个元素,则a 的取值范围是1<a ≤2或a =3或a =4.请使用“课后训练·第2讲”活页练习,及时查漏补缺!第3讲 分段函数与绝对值函数1. 分段函数和绝对值函数是高考的重点内容,主要考查分类讨论思想,关键弄清楚为什么要分类,需要分几类,如何分,做到不重不漏.2. 涉及的题型主要有:一是明确在各个分段上的函数解析式,然后对各个分段进行性质讨论;二是结合函数图象,寻求解题方法.1. (2017·启东模考)设函数f(x)=⎩⎪⎨⎪⎧(12)x -1,x<0,-x 2+x ,x ≥0,则f(f(2))=________.答案:3解析:因为f(2)=-4+2=-2,f(-2)=(12)-2-1=3,所以f(f(2))=3.2. (2017·盐城模考)已知函数f(x)=⎩⎪⎨⎪⎧a x +1-2,x ≤1,2x -1,x >1.若f(0)=3,则f(a)= ________.答案:9解析:由f(0)=3,所以a -2=3,即a =5,所以f(a)=f(5)=9.3. (2017·盐城期中)若函数f(x)=⎩⎪⎨⎪⎧1x ,x<a ,|x +1|,x ≥a在区间(-∞,a)上单调递减,在(a ,+∞)上单调递增,则实数a 的取值范围是________. 答案:[-1,0]解析:函数f(x)=⎩⎪⎨⎪⎧1x ,x<a ,|x +1|,x ≥a ,根据反比例函数的性质可知,在区间(-∞,0)上单调递减,要使函数f(x)在区间(-∞,a)上单调递减,则a ≤0.因此函数f(x)=|x +1|在区间(a ,+∞)上单调递增,那么a +1≥0,解得a ≥-1.所以实数a 的取值范围是[-1,0].4. (2017·苏北四市一模)已知函数f(x)=|x 2-4|+a|x -2|,x ∈[-3,3].若f(x)的最大值是0,则实数a 的取值范围是________.答案:(-∞,-5] 解析:(解法1)因为函数f(x)的最大值为0,故f(x)≤0在[-3,3]上恒成立,从而f(3)≤0,解得a ≤-5.又f(x)=⎩⎪⎨⎪⎧x 2+ax -2a -4=(x +a 2)2-a 24-2a -4,x ∈[2,3],-x 2-ax +2a +4=-(x +a 2)2+a24+2a +4,x ∈(-2,2),x 2-ax +2a -4=(x -a 2)2-a 24+2a -4,x ∈[-3,-2]. 因为a ≤-5,所以-a 2≥52,当-a 2∈[52,3]时,画出f(x)的草图,结合图象可知函数f(x)在[-3,a 2]上单调递减,在[a 2,2]上单调递增,在[2,-a 2]上单调递减,在[-a2,3]上单调递增.因为f(2)=0,故f(-3)≤0且f(3)≤0,解得a ≤-5.当-a2≥3,即a ≤-6时,f(x)在[-3,2]上单调递增,在[2,3]上单调递减,且f(2)=0,所以f(x)≤0恒成立.故a ≤-5.(解法2)因为f(x)=|x -2|(|x +2|+a),|x -2|≥0,且函数f(x)的最大值为0,故|x +2|+a ≤0在[-3,3]上恒成立,从而a ≤-|x +2|在[-3,3]上恒成立.因为(-|x +2|)min =-5,故a ≤-5., 一) 绝对值函数的图象与性质, 1) 已知函数f(x)=x|x -2|. (1) 写出f(x)的单调区间; (2) 解不等式f(x)<3;(3) 设a>0,求f(x)在[0,a]上的最大值. 解:(1) f(x)=x|x -2|= ⎩⎪⎨⎪⎧x 2-2x =(x -1)2-1,x ≥2,-x 2+2x =-(x -1)2+1,x <2, 所以f(x)的单调增区间是(-∞,1]和[2,+∞); 单调减区间是[1,2].(2) 因为x|x -2|<3⇔⎩⎪⎨⎪⎧x ≥2,x 2-2x -3<0或⎩⎪⎨⎪⎧x<2,x 2-2x +3>0,解得2≤x <3或x <2,所以不等式f(x)<3的解集为{x|x<3}.(3) ① 当0<a <1时,f(x)是[0,a]上的增函数,此时f(x)在[0,a]上的最大值是f(a)=a(2-a);② 当1≤a ≤2时,f(x)在[0,1]上是增函数,在[1,a]上是减函数,此时f(x)在[0,a]上的最大值是f(1)=1;③ 当a >2时,令f(a)-f(1)=a(a -2)-1=a 2-2a -1>0,解得a>1+ 2. (ⅰ) 当2<a ≤1+2时,此时f(a)≤f(1),f(x)在[0,a]上的最大值是f(1)=1; (ⅱ) 当a>1+2时,此时f(a)>f(1),f(x)在[0,a]上的最大值是f(a)=a(a -2).综上,当0<a <1时,f(x)在[0,a]上的最大值是a(2-a);当1<a ≤1+2时,f(x)在[0,a]上的最大值是1;当a>1+2时,f(x)在[0,a]上的最大值是a(a -2).点评:对于绝对值函数可以转化为与它等价的分段函数,然后结合函数的单调区间和图象,对于每一段上的函数进行研究,得出相应的结论,最终将各段得出的结论进行综合,就可以得到问题的解.(2017·南通平潮中学模考)设函数f(x)=|lg x|.若方程f(x)=(110)x 有两个不等的实数根x 1,x 2(x 1<x 2),试比较x 1x 2与1的大小.解:由题意,|lg x 1|=(110)x 1,|lg x 2|=(110)x 2,因为x 1<x 2,由图知,0<x 1<1<x 2.所以-lg x 1=(110)x 1,lg x 2=(110)x 2,所以(110)x 2-(110)x 1=lg x 2+lg x 1=lg x 1x 2.因为x 1<x 2,所以(110)x 2-(110)x 1<0,所以lg x 1x 2<0,从而x 1x 2<1., 二) 分段函数的图象与性质, 2) 已知函数f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x>0,0,x =0,x 2+mx ,x<0是奇函数.(1) 求实数m 的值;(2) 若函数f(x)在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1) 设x<0,则-x>0,。
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
【高考数学】2018届高三数学(理)二轮复习课件:专题二 函数、不等式、导数2.1(高频考点汇总PPT课件)
用哪一段求解.
◎ 变式训练 1.(2017· 石家庄市教学质量检测(一))设函数 =2,则实数 n 为( 5 A.-4 1 C.4 ) 1 B.-3 5 D.2
2x+n,x<1, f(x)= log2x,x≥1
,若
3 ff4
解析: 因为
3 3 3 3 f 4 =2×4+n=2+n,当2+n<1,即
1 1 x 当 0<x≤2时,原不等式为 2 +x+2>1,显然成立. 1 1 x 当 x>2时,原不等式为 2 +2x-2>1,显然成立. 1 综上可知,x>-4. 答案: (1)B
1 (2)-4,+∞
1.求函数值时的三个关注点 (1)形如 f(g(x))的函数求值时,应遵循先内后外的原则. (2)对于分段函数的求值(解不等式)问题,必须依据条件准确地找出利用哪一段 求解. (3)对于利用函数性质的求值问题,必须依据条件找到函数满足的性质,利用该 性质求解. 2.[警示] 对于分段函数的求值(解不等式)问题,必须依据条件准确地找出利
第一部分 专题突破——破译命题密码
专题二 函数、不等式、导数 第 1 课时 函数的图象与性质
高考对本部分考查主要从以下方面进行: (1)对于函数性质的考查往往综合多个性质,一般借助的载 体为二次函数、 指数函数、 对数函数或者由基本的初等函数 复合而成, 尤其在函数单调性、 奇偶性和周期性等性质的综 合问题上应重点加强训练.
解析: 排除选项 B.
sin x sin x (1)当 x→+∞时, x2 →0,1+x→+∞,y=1+x+ x2 →+∞,故
π sin x 当 0<x<2时,y=1+x+ x2 >0,故排除选项 A,C.故选 D. (2)由题意得,利用平移变换的知识画出函数|f(x)|,g(x)的图象如图, 而
2018届高考数学理二轮复习全国通用课件 专题一 函数与导数、不等式 第5讲 精品
即 1+ln(x0+1)=x0,
又函数 h(x)在(0,+∞)上单调递增,
所以当 x∈(0,x0)时,h(x)<h(x0)=0;
当 x∈(x0,+∞)时,h(x)>h(x0)=0. 从而当 x∈(0,x0)时,g′(x)=h(xx2)<0; 当 x∈(x0,+∞)时,g′(x)=h(xx2)>0, 所以 g(x)在(0,+∞)上的最小值为 g(x0)=(x0+1)[1+x0ln(x0+1)]=x0+1. 因此 f(x)>x+kx1-x2 在(0,+∞)上恒成立等价于 k<g(x)min=x0 +1.由 x0∈(2,3),知 x0+1∈(3,4),所以 k 的最大值为 3.
【训练1】 (2016·武汉模拟)设函数f(x)=1-x2+ln(x+1).
(1)求函数 f(x)的单调区间; (2)若不等式 f(x)>x+kx1-x2(k∈N*)在(0,+∞)上恒成立, 求 k 的最大值.
解 (1)函数 f(x)的定义域为(-1,+∞), f′(x)=x+1 1-2x,由 f′(x)>0,得-1<x< 32-1; 由 f′(x)<0,得 x> 32-1.所以函数 f(x)的单调递增区间为 -1, 32-1,单调递减区间为 32-1,+∞.
设 g(x)=ln x-mx-1x, 即∀x∈[1,+∞),g(x)≤0 恒成立, 等价于函数 g(x)在[1,+∞)上的最大值 g(x)max≤0. g′(x)=1x-m1+x12=-mx2x+2 x-m. ①若 m≤0,g′(x)>0,g(x)在[1,+∞)上单调递增, 即 g(x)≥g(1)=0,这与要求的 g(x)≤0 矛盾. ②若 m>0,方程-mx2+x-m=0 的判别式 Δ=1-4m2.
高三数学-2018届高考数学二轮专题讲座专题五不等式 精品
专题五 不等式【考点聚焦】考点1:不等式8条性质的正确运用考点2:不等式证明的常用方法:比较法、综合法、分析法、反证法、数学归纳法. 考点3:一元二次不等式、分式不等式、无理不等式、指数不等式、对数不等式的解法. 考点4:不等式的应用:利用重要不等式求函数的值域或最值及对实际问题的处理. 考点5:含有参数的指数不等式或对数不等式 考点6:绝对值不等式的解法与证明 【自我检测】1、 写出不等式的基本性质:_______;_______;_______;_______;_______;_______;_______;_______.2、 重要不等式:a 2≥0;| a |≥0;a 2+b 2≥___________;a +b ≥____________________ 3、 不等式证明方法:__________,___________,___________,分析综合法,数学归纳法,反证法,换元法,放缩法等. 4、 不等式解法:(1)高次不等式:序轴标根法;(2)分式不等式:移项通分,⇔>0)()(x g x f ____,⇔≥0)()(x g x f ____(3)含绝对值不等式:|f(x)|>g(x)⇔__________; |f(x)|>g(x) ⇔_________;|f(x)|>|g(x)| ⇔____________.(4)指数对数不等式:a f(x)>a g(x)⇔________;⇔>)(log )(log x g x f a a __________.(5)无理不等式:⇔<)()(x g x f ______;⇔>)()(x g x f ________;⇔<)()(x g x f ________.【重点∙难点∙热点】不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点. 问题1:不等式与函数的综合题不等式与函数的综合题,是高考的常考题型,如求函数的定义域、值域,求参数的取值范围,与函数有关的不等式证明等,解决此类综合题,要充分运用函数的单调性,注意函数的定义域,并结合函数的奇偶性、周期性一起讨论.例1:已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[-1,1],m +n ≠0时nm n f m f ++)()(>0(1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x +21)<f (11-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围思路分析 (1)问单调性的证明,利用奇偶性灵活变通使用已知条件不等式是关键,(3)问利用单调性把f (x )转化成“1”是点睛之笔(1) 证明 任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=2121)()(x x x f x f --+·(x 1-x 2)∵-1≤x 1<x 2≤1, ∴x 1+(-x 2)≠0,由已知2121)()(x x x f x f --+>0,又 x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数 (2)解 ∵f (x )在[-1,1]上为增函数,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-112111111211x x x x 解得 {x |-23≤x <-1,x ∈R } (3)解 由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1, 故对x ∈[-1,1],恒有f (x )≤1,所以要使f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立,故t 2-2at ≥0,记g (a )=t 2-2at ,对a ∈[-1,1],有g (a )≥0,只需g (a )在[-1,1]上的最小值大于等于0,g (-1)≥0,g (1)≥0, 解得,t ≤-2或t =0或t ≥2∴t 的取值范围是 {t |t ≤-2或t =0或t ≥2}点评 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 它主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题(2)、(3)要求的都是变量的取值范围,不等式的思想起到了关键作用演变1:已知)1(log )(+=x x f a ,点P 是函数y=f(x)图象上任意一点,点P 关于原点的对称点Q 的轨迹是函数y=g(x)的图象.(1)当0<a <1时,解不等式:2f(x)+g(x)≥0;(2)当a >1,x ∈[)1,0时,总有2f(x)+g(x)≥m 恒成立,求m 的范围.点拨与提示:利用对称性求出g(x)的解析式,2f(x)+g(x)≥m 恒成立,即m ≤[2f(x)+g(x)]min .利用重要不等式求出F(x)=2f(x)+g(x)的最小值即可.问题2:不等式与数列的综合题不等式与数列的综合题,一般来说多是证明题,要熟悉不等式的常用证明方法,特别是比较法、综合法、分析法、数学归纳法等,也可利用函数的思想. 例2:数列{x n }由下列条件确定:.),(21,011N n x ax x a x nn n ∈+=>=+ (Ⅰ)证明:对n ≥2,总有a x n ≥;(Ⅱ)证明:对n ≥2,总有1+≥n n x x ; 思路分析:(Ⅰ)证明:由)(21,011nn n x ax x a x +=>=+及,可归纳证明0>n x 从而有)()(211N n a x ax x a x xnn n n n ∈=⋅≥+=+(均值不等式的应用—综合法),所以,当n ≥2时,a x n ≥成立.(Ⅱ)证法一(作差比较法):当n ≥2时,因为)(21,01nn n n x ax x a x +=>≥+, 所以021)(2121≤-⋅=-+=-+nn n n n n n x x a x x a x x x ,故当n ≥2时,1+≥n n x x 成立.证法二(作商比较法):当n ≥2时,因为)(21,01nn n n x ax x a x +=>≥+, 所以122)(21222221=+≤+=+=+nn n n n n n n nn x x x x a x x x a x x x ,故当n ≥2时,1+≥n n x x 成立. 点评:此题是以数列为知识背景,把数列与不等式证明综合起来,重点还是考查不等式证明方法中最基本的方法——综合法和比较法.演变2:数列{a n }满足a 1=1且a n +1=nna n n 21)11(2+++(n ≥1).(1)用数学归纳法证明:a n ≥2(n ≥2);(2)已知不等式ln (1+x )<x 对x >0成立,证明:a n <e 2(n ≥1),其中无理数e =2.71828….问题3:含有参数的不等式问题含有参数的不等式问题是高考常考题型,求解过程中要利用不等式的性质将不等式进行变形转化,化为一元二次不等式等问题去解决,注意参数在转化过程中对问题的影响. 例3:已知是参数)t R t t x x g x x f ,)(2lg(2)(),1lg()(∈+=+=.(1)当t=-1时,解不等式:f(x)≤g(x);(2)如果当x ∈[0,1]时,f(x)≤g(x)恒成立,求参数t 的取值范围.思路点拨:将对数方程转化为不含对数的方程,在转化过程中要注意定义域.解:(1)t =-1时,f(x)≤g(x),即为)12lg(2)1lg(-≤+x x ,此不等式等价于⎪⎩⎪⎨⎧-≤+>->+2)12(101201x x x x 解得x ≥45,∴原不等式的解集为{x |x ≥45}(2) x ∈[0,1]时,f(x)≤g(x)恒成立, ∴x ∈[0,1]时,⎪⎩⎪⎨⎧+≤+>+>+2)2(10201t x x t x x 恒成立,∴x ∈[0,1]时,⎪⎩⎪⎨⎧++-≥->>+12201x x t x t x 恒成立,即x ∈[0,1]时,12++-≥x x t 恒成立,于是转化为求12++-x x ( x ∈[0,1])的最大值问题.令1+=x u ,则x=u 2-1,由x ∈[0,1],知u ∈[1,2].∴ 12++-x x =-2(u 2-1)+u=817)41(22+--u当u=1时,即x=0时,12++-x x 有最大值为1.∴t 的取值范围是t ≥1.点评:对于含参数问题,常常用分类讨论的方法;而恒成立问题,除了运用分类讨论的方法外,还可采用分离参数的方法.演变3:解关于x 的不等式:)1,0(2|log ||)(log |2≠>+<a a x ax a a 且 点拨与提示:用换元法将原不等式化简,注意对a 的讨论.问题4:不等式的实际应用问题对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系,抽象出事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建立起数学模型,然后利用不等式的知识求出题中的问题例4、为了竖一块广告牌,要制造三角形支架.三角形支架如图,要求∠ACB=60°,BC 长度大于1米,且AC 比AB 长0.5米.为了广告牌稳固,要求AC 的长度越短越好,求AC 最短为多少米?且当AC 最短时,BC 长度为多少米?解:设BC=a ,(a >1),AB=c ,AC=b ,21=-c b .︒-+=60cos 2222ab b a c . 将21-=b c 代入得ab b a b -+=-222)21(,代简得41)1(2-=-a a b .∵a >1,∴a -1>0232)1(43)1(14322)1(14122+≥+-+-=-+-+-=--=a a a a a a a b.当且仅当)1(431-=-a a 时,取“=”号,即231+=a 时,b 有最小值32+.答:AC 最短为)32(+米,此时,BC 长为)231(+米 演变4.如图,一载着重危病人的火车从O 地出发,沿射线OA 行驶,其中,31=αtg 在距离O 地5a (a 为正数)公里北偏东β角的N 处住有一位医学专家,其中 sin β=,53现有110指挥部紧急征调离O 地正东p 公里的B 处的救护车赶往N 处载上医学专家全速追赶乘有重危病人的火车,并在C 处相遇,经测算当两车行驶的路线与OB 围成的三角形OBC 面积S 最小时,抢救最及时.(1)求S 关于p 的函数关系;(2)当p 为何值时,抢救最及时. 专题小结1、不等式与函数的综合题,如求函数的定义域、值域,求参数的取值范围,与函数有关的不等式证明等,解决此类综合题,要充分运用函数的单调性,注意函数的定义域,并结合函数的奇偶性、周期性一起讨论.2、不等式与数列的综合题,一般来说多是证明题,要熟悉不等式的常用证明方法,特别是比较法、综合法、分析法、数学归纳法等,也可利用函数的思想.3、含有参数的不等式问题,求解过程中要利用不等式的性质将不等式进行变形转化,化为一元二次不等式等问题去解决,注意参数在转化过程中对问题的影响.4、对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系,抽象出事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建立起数学模型,然后利用不等式的知识求出题中的问题 【临阵磨枪】一、选择题:1、不等式x x x <-24解集是( )A (0,2)B (2,+∞)C (]4,2D (-∞,0)∪(2,+∞) 2.函数)34(log 1)(22-+-=x x x f 的定义域为 ( )A .(1,2)∪(2,3)B .),3()1,(+∞⋃-∞C .(1,3)D .[1,3]3、已知x,y ∈R ,M=x 2+y 2+1,N=x+y+xy ,则M 与N 的大小关系是( ) A 、M ≥NB 、M ≤NC 、M=ND 、不能确定4.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得x x f 的0)(<的取值范围是 ( )A .)2,(-∞B .),2(+∞C .),2()2,(+∞--∞D .(-2,2)5、(18年江苏)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是( ) (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 6、在∆ABC 中三边长为a ,b ,c ,若cb a 1,1,1成等差数列,则b 所对的角( ) A 、是锐角B 、是直角C 、是钝角D 、不能确定7、若不等式|x-1|<a 成立的充分条件是0<x<4,则实数a 的取值范围是( ) A 、a ≥1B 、a ≥3C 、a ≤1D 、a ≤38.集合A ={x |11+-x x <0=,B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是( )A .-2≤b <0B .0<b ≤2C .-3<b <-1D .-1≤b <29.若函数2()log (2)(0,1)a f x x x a a =+>≠在区间1(0,)2,内恒有()0f x >,则()f x 的单调递增区间为 ( ) A 1(,)4-∞- B 1(,)4-+∞ C (0,)+∞ D 1(,)2-∞-. 10.若动点(y x ,)在曲线)0(14222>=+b b y x 上变化,则y x 22+的最大值为( ) A .⎪⎩⎪⎨⎧≥<<+)4(2),40(442b b b b B .⎪⎩⎪⎨⎧≥<<+)2(2),20(442b b b b C .442+b D .2b 二、填空题: 11.不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集为______12.(18年江苏卷)不等式3)61(log 2≤++xx 的解集为______ 13、已知点(x 0,y 0)在直线ax+by=0,(a ,b 为常数)上,则2020)()(b y a x -+-的最小值为.14、设a ,b ∈R +,且a+b =1,则1212+++b a 的最大值是_____.三、解答题:15、已知函数b kx x f +=)(的图象与y x ,轴分别相交于点A 、B ,22+=(,分别是与y x ,轴正半轴同方向的单位向量),函数6)(2--=x x x g . (1)求b k ,的值;(2)当x 满足)()(x g x f >时,求函数)(1)(x f x g +的最小值. 16、已知正项数列{a n }满足a 1=P(0<P<1),且nnn a a a +=+11 (I)求数列的通项a n ; (II)求证:11432321<++⋅⋅⋅+++n a a a a n . 17.已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(.18.已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n ;(Ⅱ)试确定一个正整数N ,使得当N n >时,对任意b >0,都有.51<n a 参考答案:1.C 提示:原不等式转化为⎪⎩⎪⎨⎧<-≥->2224040x x x x x x ,解此不等式组可得x 的范围.2.A 提示:由题意可知,222log (43)0213430x x x x x x ⎧-+-≠≠⎧⎪⇒⎨⎨<<-+->⎪⎩⎩.3、A 提示:2M -2N =(x -y )2+(x -1)2+(y -1)2≥04.D 提示:∵函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,∴f(-2)=0, 在]0,(-∞上0)(<x f 的x 的取值范围是(2,0]-,又由对称性[0,)+∞,∴在R 上f(x)<0,得x 的取值范围为(-2,2)5.C 提示:因为()()||||||a b a c b c a c b c -=---≤-+-,所以(A )恒成立;在(B )两侧同时乘以2,a 得()()()()()()2434332*********a a a a a a a a a a a a +≥+⇐-+-≥⇐---≥⇐-++≥所以(B )恒成立;(C )中,当a>b 时,恒成立,a<b 时,不成立; (D≤C ). 6.A 提示:依题意有c a ac b +=2,222222)(222cos c a acac c a ac b c a B +-+=-+= =01212142241)(22)(22>--=--≥-+-+ac ac ac ac c a ac ac c a ,角B 是锐角. 7.B 提示:t=|x -1|在x ∈[0,4]的最大值为3,故a ≥3.8.D 提示:由题意得:A :-1<x<1,B:b -a<x<a+b 由”a=1”是“≠⋂B A ¢”的充分条件.则A :-1<x<1与B: b -1<x<1+b 交集不为空.所以-2<b<2,检验知:21<≤-b 能使≠⋂B A ¢.9.D 提示:函数的定义域为1{|0}2x x x ><-或,在区间1(0,)2上,2021x x <+<,又()0f x >,则01a <<,因此log a y t =是减函数,函数()f x 的单调递增区间为函数22y x x =+的递减区间,考虑对数函数的定义域,得所求的单调递增区间为1(,)2-∞-10.A 提示:设x=2cos α,y=bsin α,则x 2+2y=4cos 2α+2bsin α=-4sin 2α+2bsin α+4=-2(sin 2α-bsin α-2)=-2(sin α-2b )2+4+22b ,∴22x y +的最大值为2404424b b b b ⎧+<<⎪⎨⎪≥⎩. 二、填空题:11.)4,3( 提示:∵|x-2|<2的解集为(0,4),log 2(x 2-1)>1的解集为)(,+∞⋃-∞,∴不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集)4,3(.12.{}331x x x --<-+= 提示211log (6)3068x x x x++≤⇔<++≤ ()2220168101816033x x x x x x x x x ><++≤⇒-≤⇒=<≤++<⇒--<<-+当x 0时,当x 0时,综上:{}331x x x --<<-+= 13.22b a + 提示:最小值为2222||b a b a b b a a +=+⋅+⋅14.22 提示:2)12()12(2121222+++≤+++b a b a =222)(2=++b a ,当且仅当a=b=c 时等号成立.15、解 (1)由已知得A(kb -,0),B(0,b),则={k b ,b},于是k b=2,b=2. ∴k =1,b =2.(2)由f(x)> g(x),得x+2>x 2-x-6,即(x+2)(x-4)<0, 得-2<x<4,)(1)(x f x g +=252+--x x x =x+2+21+x -5,由于x+2>0,则)(1)(x f x g +≥-3,其中等号当且仅当x+2=1,即x=-1时成立 ∴)(1)(x f x g +的最小值是-3. 16、解:(1)由已知得a n+1a n =a n -a n+1111)1(11,11111-+=⇒-+===-∴+pn a n pa p a a a n n nn 得由 (2)证明:01110>-∴<<pp111111141313121211)1(134123112114321111321<+-=+-+⋅⋅⋅⋅⋅⋅+-+-+-=++⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯<++⋅⋅⋅⋅⋅⋅+++<-+=⇒n n n nn n a a a a n pn a n n 17:(1)将0124,3221=+-+==x bax x x x 分别代入方程得 ).2(2)(,21,84169392≠-=⎩⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-=+-=+x x x x f b a ba ba 所以解得 (2)不等式即为02)1(,2)1(222<-++---+<-xkx k x x k x k x x 可化为 即.0))(1)(2(>---k x x x①当).,2(),1(,21+∞⋃∈<<k x k 解集为②当);,2()2,1(0)1()2(,22+∞⋃∈>--=x x x k 解集为不等式为时 ③),()2,1(,2+∞⋃∈>k x k 解集为时当.点评:解不等式的过程实质上就是转化的过程,分式不等式转化成整式不等式,解分式不等式一般情况下是移项,通分,然后转化成整式不等式,对于高次不等式,借助数轴法,则简单,快捷,另外()0()()0()f x f x g x g x >⇔>,()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩18.解:(Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a n n n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有 .111,,3111,211112312n a a a a a a n n ≥-≥-≥--所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >-∵.][log 22.2][log 2][log 2111,2221n b ba bn b n b a b a n n +<+=+>∴=证法2:设n n f 13121)(+++=,首先证不等式.,5,4,3,)(1 =+≤n bn f b a n (i )当n=3时,由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立. (ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k +≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k kk k ,)1(1)11)((1)()1()1()1(bk f bb k k f bbb k f k k bk ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][l o g 22][l o g 21122 =+=+<n n b bb n b a n(Ⅱ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a 【挑战自我】设f(x)是定义在[-1,1]上的奇函数,且对任意a ,b ∈[-1,1],当a+b ≠0时,都有0)()(>++ba b f a f .(1)若a>b ,试比较f(a)与f(b)的大小; (2)解不等式:)41()21(-<-x f x f ;(3)证明:若-1≤c ≤2,则函数g(x)=f(x-c)和h(x)=f(x-c 2) 存在公共定义域,并求出这个公共定义域.解:(1)任取x 1,x 2∈[-1,1],当x 1<x 2时,由奇函数的定义和题设不等式,得0)()()()()()()()(1212122121>--+-+=-+=-x x x x x f x f x f x f x f x f∴ f(x)是增函数,a ,b ∈[-1,1] ,且a>b ,∴f(a)>f(b) (2)因为f(x)是[-1,1]上的增函数∴)41()21(-<-x f x f 等价于:⎪⎪⎪⎩⎪⎪⎪⎨⎧-<-≤-≤-≤-≤-412114111211x x x x 4521≤≤-⇔x ;(3)设函数g(x)与h(x)的定义域分别为P 和Q ,则P =[c-1,c+1],Q=[c 2-1,c 2+1],∵-1≤c ≤2,∴(c 2-1)-(c +1)=(c +2)(c +1) ≤0,即c 2-1≤c +1.又c 2+1>c -1,所以g (x )定义域与h (x )定义域交集非空.当-1≤c <0,或1<c ≤2时,c (c -1)>0,这时公共定义域为[c 2-1,c +1]当0≤c ≤1时,c (c -1) ≤0,这时公共定义域为[c -1,c 2+1]【答案及点拨】演变1:设点Q 的坐标为(x ,y ),由点P 、Q 关于原点对称,得P 点坐标为(-x ,-y ).又点P 在函数y=f(x)的图象上,∴-y=)1(log x a -,即y=-)1(log x a -得g(x)= -)1(log x a -.(1) 由2f(x)+g(x)≥0得)1(log )1(log 2x x a a -≥+,∵0<a<1,∴⎪⎩⎪⎨⎧-≤+>->+xx x x 1)1(01012010311≤<-⇒⎪⎩⎪⎨⎧≤≤-<->⇒x x x x 故不等式的解集为(]0,1-(2) 由2f(x)+g(x)≥m ,得xx m a -+≤1)1(log 2,在a>1,且x ∈(]0,1-时恒成立.记[))1,0(1)1(log )(2∈-+=x xx x F a ,则问题等价于min )(x F m ≤而xx x x x x x -+--=-+---=-+144)1(14)1(4)1(1)1(22令t =(1-x ),t ∈(]1,0,可证得H (x )=(]1,044∈-+t tt 在上单调递减. ∴H(t)的最小值为H (1)=1,又a>1,∴F (x )的最小值为0,故m 的取值范围为m ≤0演变题要有点拨,原创题有详解,一般题给答案 演变2:(1)①当n =2时,a 2=2≥2,不等式成立. ②假设当n =k (k ≥2)时不等式成立,即a k ≥2(k ≥2), 那么a k +1=kk a k k 21))1(11(++++≥2.这就是说,当n =k +1时不等式成立.根据①、②可知:a k ≥2对所有n ≥2成立. (2)证法一:由递推公式及(1)的结论有 a n +1=nn a nn 21)11(2+++≤n na nn )2111(2+++,(n ≥1)两边取对数并利用已知不等式得 ln a n +1≤ln )2111(2nnn ++++ln a n ≤ln a n +nnn 2112++.故ln a n +1-ln a n ≤n n n 21)1(1++,(n ≥1).上式从1到n -1求和可得 ln a n -ln a 1≤211⨯+321⨯+…+n n )1(1-+21+221+…+121-n=1-21+)3121(-+ (2)11211211111--⋅+---n n n =1-n 1+1121--n <2,即ln a n <2,故a n <e 2(n ≥1).(2)证法二:由数学归纳法易证2n >n (n -1)对n ≥2成立, 故a n +1=nn a nn 21)11(2+++<)1(1))1(11(-+-+n n a n n n (n ≥2) 令b n =a n +1 (n ≥2),则b n +1≤n b n n ))1(11(-+ (n ≥2)取对数并利用已知不等式得 ln b n +1≤ln n b n n ))1(11(-++ln b n ≤ln b n +)1(1-n n (n ≥2).上式从2到n 求和得 ln b n +1-ln b 2≤211⨯+321⨯…+)1(1-n n =1-21+21-31+…+n n 111--<1.因b 2=a 2+1=3.故ln b n +1<1+ln 3,b n +1<3ln 1+e =3e (n ≥2) 故a n +1<3e -1<e 2,n ≥2,又显然a 1<e 2,a 2<e 2,故a n <e 2对一切n ≥1成立.点评:本题考查数学归纳法、数列、不等式的有关内容,涉及到对数函数、放缩法、数列求和的知识,具有较强的综合性.演变3:设t x a =log ,原不等式化为 |1+2t |-|t |<2(1)当21-<t 时,-1-2t +t<2,∴t>-3,∴213-<<-t (2)当021<≤-t 时,1+2t+t<2,∴31<t ,∴021<≤-t(3)当t ≥0时,1+2t -t<2,∴t <1, ∴0≤t <1 综上可知:-3<t <1,即-3<x a log <1当a >1时,a x a <<31,当0<a <1时,31a x a << 所以当a >1时,原不等式的解集为{x|a x a<<31}, 当0<a <1时,原不等式的解集为{x |31ax a <<}演变4 解:(1)以O 为原点,正北方向为y 轴建立直角坐标系,则x y l O A 3:=设N (x 0,y 0),05sin 3x a aβ∴== 05cos 4(3,4)y a aN a a β==∴又B (p ,0),∴直线BC 的方程为:)(34p x pa ay --=由⎪⎩⎪⎨⎧--==)(343p x p a a y x y 得C 的纵坐标)35(5312a p a p ap y c >-=,∴)35(,536||||212a p a p ap y OB S c >-=⋅=∆(2)由(1)得)0(35,35253622>-=-=-=t a p t ap ap a p ap S 令 ∴22340]310925[2a a t a t a S ≥++=,∴当且仅当,9252t a t =310,35a p a t ==此时即时,上式取等号,∴当a p 310=公里时,抢救最及时.。
2018届高三数学二轮复习课件:专题八选修系列8.2不等式选讲
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
解析: (1)当 a=1 时,不等式 f(x)≥g(x)等价于 x2-x+|x+1|+|x-1|-4≤0.① 当 x<-1 时,①式化为 x2-3x-4≤0,无解; 当-1≤x≤1 时,①式化为 x2-x-2≤0,从而-1≤x≤1; 当 x>1 时,①式化为 x2+x-4≤0, -1+ 17 从而 1<x≤ 2 .
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
(2)因为(a+b)3=a3+3a2b+3ab2+b3 3a+b2 =2+3ab(a+b)≤2+ 4 (a+b) 3a+b3 =2+ 4 , 所以(a+b)3≤8,因此 a+b≤2.
二轮数 学· 理
第一部分 专题突破——破译命 题密码
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
a-3-2xx≤-3 (2)由题知 f(x)=a+3-3<x<a, 2x+3-ax≥a 当 a+3≥6 时,不等式 f(x)≥6 的解集为 R,不合题意;
x≤-3 当 a+3<6 时,不等式 f(x)≥6 的解为 a-3-2x≥6 x≥a 或 2x+3-a≥6
-1+ 所以 f(x)≥g(x)的解集为 x-1≤x≤ 2
17
.
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
(2)当 x∈[-1,1]时,g(x)=2, 所以 f(x)≥g(x)的解集包含[-1,1]等价于当 x∈[-1,1]时,f(x)≥2. 又 f(x)在[-1,1]的最小值必为 f(-1)与 f(1)之一, 所以 f(-1)≥2 且 f(1)≥2,得-1≤a≤1. 所以 a 的取值范围为[-1,1].
2018届浙江高三数学二轮专题复习讲义 不等式
第2讲 不等式考情考向分析1.利用不等式性质比较大小,利用基本不等式求最值及线性规划问题是高考的热点. 2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数的取值范围. 热点分类突破 热点一 不等式的解法 1.一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. 2.简单分式不等式的解法 (1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.例1 (1)设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2, 则不等式f (x )>2的解集为( ) A .(1,2)∪(3,+∞) B .(10,+∞) C .(1,2)∪(10,+∞) D .(1,2)答案 C解析 令2e x -1>2(x <2),解得1<x <2.令log 3(x 2-1)>2(x ≥2),解得x >10,则不等式f (x )>2的解集为(1,2)∪(10,+∞),故选C. (2)(2017·温州市普通高中模拟)若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数对(a ,b )=______. 答案 (1,3)解析 由题意知,-2,1是方程|x |+|x +a |=b 的两个根,则⎩⎪⎨⎪⎧ 2+|a -2|=b ,1+|a +1|=b ,解得⎩⎪⎨⎪⎧a =1,b =3,所以实数对(a ,b )=(1,3).思维升华 (1)对于和函数有关的不等式,可先利用函数的单调性进行转化.(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.(3)含参数的不等式的求解,要对参数进行分类讨论.跟踪演练1 (1)不等式5-xx -1≥0的解集是__________.答案 {x |1<x ≤5}解析 原不等式化为-x +5x -1≥0,即x -5x -1≤0,等价于⎩⎪⎨⎪⎧(x -5)(x -1)≤0,x -1≠0,解得1<x ≤5,即不等式5-x x -1≥0的解集是{x |1<x ≤5}.(2)已知函数f (x )=ln|x |,则f (x )>1的解集为________________. 答案 (-∞,-e)∪(e ,+∞)解析 函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧ln (-x ),x <0,ln x ,x >0.当x >0时,解f (x )=ln x >1,得x >e ,即x 的取值范围是(e ,+∞);当x <0时,解f (x )=ln(-x )>1,得x <-e ,即x 的取值范围是(-∞,-e). 综上可得f (x )>1的解集为(-∞,-e)∪(e ,+∞). 热点二 基本不等式的应用利用基本不等式求最大值、最小值,其基本法则是:(1)如果x >0,y >0,xy =p (定值),当x =y 时,x +y 有最小值2p (简记为:积定,和有最小值);(2)如果x >0,y >0,x +y =s (定值),当x =y 时,xy 有最大值14s 2(简记为:和定,积有最大值).例2 (1)(2017·温州九校协作体联考)已知实数x >0,y >0且满足x +y =1,则2x +xy 的最小值为________. 答案 2+2 2解析 因为x +y =1, 所以2x +x y =2x +2y x +x y =2+2y x +xy ≥2+22,当且仅当⎩⎪⎨⎪⎧2y x =x y ,x +y =1,即x =2-2,y =2-1时等号成立.(2)(2017届甘肃肃南裕固族自治县一中月考)已知a >b ,且ab =1,则a 2+b 2a -b 的最小值是________. 答案 2 2解析 a 2+b 2a -b =(a -b )2+2ab a -b=a -b +2a -b≥22,当且仅当a -b =2a -b时取得等号.思维升华 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号成立的条件)的条件,否则会出现错误.跟踪演练2 (1)已知a >1,b >1,且ab +2=2(a +b ),则ab 的最小值为________. 答案 6+4 2解析 因为ab +2=2(a +b )≥4ab ,当且仅当a =b 时取等号. 所以(ab -2)2≥2.因为a >1,b >1,所以ab ≥2+2,ab ≥6+4 2. 即ab 的最小值为6+4 2.(2)(2017届无锡市普通高中期中)已知正实数a ,b 满足a +3b =7,则11+a +42+b 的最小值为______. 答案 13+4314解析11+a +42+b =114[(a +1)+3(2+b )]⎝⎛⎭⎫11+a +42+b=114⎣⎢⎡⎦⎥⎤13+3(2+b )a +1+4(a +1)2+b ≥13+4314, 当且仅当3(2+b )a +1=4(a +1)2+b 时取等号. 热点三 简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.例3 (1)(2017·全国Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0, 则z =2x +y 的最小值是( )A .-15B .-9C .1D .9 答案 A解析 不等式组表示的可行域如图中阴影部分所示.将目标函数z =2x +y 化为y =-2x +z ,作出直线y =-2x ,并平移该直线知,当直线y =-2x +z 经过点A (-6,-3)时,z 有最小值,且z min =2×(-6)-3=-15.故选A. (2)若x ,y 满足⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,且z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .(-1,2)B .(-2,4)C .(-4,0]D .(-4,2) 答案 D解析 作出不等式组对应的平面区域如图,当a =0时,显然成立;当a >0时,直线ax +2y -z =0的斜率k =-a 2>k AC =-1,计算得出a <2,即0<a <2;当a <0时,k =-a2<k AB =2,计算得出a >-4,即-4<a <0.综上得-4<a <2,故选D.思维升华 (1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.跟踪演练3 (1)(2017·绍兴一中适应性考试)若直线y =x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -4≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32 D .2答案 D解析 由于不等式组⎩⎪⎨⎪⎧x +y -4≤0,x -2y -3≤0,x ≥m所表示的平面区域是由点A ⎝⎛⎭⎫m ,m -32,B ⎝⎛⎭⎫113,13,C (m,4-m )围成的三角形区域(含边界),若直线y =x 上存在点(x ,y )满足约束条件,则有当m >0时,k OC ≥1,即m ≤4-m ,解得m ≤2,m ≤0,符合题意.即实数m 的最大值为2,故选D.(2)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,3x -y -5≥0,则z =y +12x的最大值为________.答案 56解析 画出约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,3x -y -5≥0表示的可行域,如图,y +1x 就是可行域内的点P (x ,y )与点A (0,-1)连线的斜率,由⎩⎪⎨⎪⎧x -y +1=0,3x -y -5=0,得直线交点为(3,4),当P 在点(3,4)时,y +1x 有最大值4+13=53,则y +12x 的最大值为56. 热点四 绝对值不等式及其应用 1.绝对值不等式的解法(1)|ax +b |≤c (c >0)⇔-c ≤ax +b ≤c ; |ax +b |≥c (c >0)⇔ax +b ≥c 或ax +b ≤-c .(2)含绝对值的不等式的几种解法:公式法;零点分区间法;几何意义法;图象法. 2.绝对值三角不等式(1)|a +b |≤|a |+|b |,当且仅当ab ≥0时等号成立.(2)|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.例4 (1)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( ) A .1 B .2 C .4 D .5 答案 D解析 ∵|x -2y +1|=|(x -1)-2(y -2)-2| ≤|x -1|+2|(y -2)+1| ≤|x -1|+2|y -2|+2, 再由|x -1|≤1,|y -2|≤1,可得|x -1|+2|y -2|+2≤1+2+2=5, 故|x -2y +1|的最大值为5.(2)已知m ∈R ,要使函数f (x )=|x 2-4x +9-2m |+2m 在区间[0,4]上的最大值是9,则m 的取值范围是__________. 答案 ⎝⎛⎦⎤-∞,72 解析 不等式即为|x 2-4x +9-2m |+2m ≤9, 等价于|x 2-4x +9-2m |≤9-2m , 2m -9≤x 2-4x +9-2m ≤9-2m , 4m -18≤x 2-4x ≤0,结合函数的定义域可得(x 2-4x )min =-4, 据此可得4m -18≤-4,m ≤72,即m 的取值范围是⎝⎛⎦⎤-∞,72. 思维升华 (1)利用绝对值三角不等式求最值要注意等号成立的条件.(2)绝对值不等式在某一区间上的最值可以进行分类讨论,也可以直接分析区间端点的取值,结合最值取到的条件灵活确定.跟踪演练4 (1)如果0<p <15,那么当p ≤x ≤15时,代数式|x -p |+|x -15|+|x -p -15|的最小值是( )A .30B .0C .15D .一个与p 有关的代数式 答案 C解析 ∵p ≤x ≤15,∴x -p ≥0,x -15≤0,x -p -15≤0, ∴|x -p |+|x -15|+|x -p -15| =x -p +15-x +p +15-x =30-x ,故当x =15时,|x -p |+|x -15|+|x -p -15|的最小值为30-15=15. (2)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .4 答案 C解析 |x -1|+|x |+|y -1|+|y +1| ≥|(x -1)-x |+|(y -1)-(y +1)|=3. 真题体验1.(2017·浙江改编)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是____________. 答案 [4,+∞)解析 作出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =-12x +z2过点A (2,1)时,z 取得最小值,即z min =2+2×1=4.所以z =x +2y 的取值范围是[4,+∞).2.(2016·浙江改编)已知实数a ,b ,c ,则下列正确的是________.(填序号) ①若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100; ②若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100; ③若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100; ④若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100. 答案 ④解析 对①,当a =b =10,c =-110时,此式不成立; 对②,当a =10,b =-100,c =0时,此式不成立; 对③,当a =10,b =-10,c =0时,此式不成立. 故填④.3.(2016·上海)设x ∈R ,则不等式|x -3|<1的解集为__________. 答案 (2,4)解析 由-1<x -3<1,得2<x <4,故解集为(2,4).4.(2017·天津)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号.故a 4+4b 4+1ab 的最小值为4.押题预测1.已知x ,y 为正实数,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92押题依据 基本不等式在历年高考中的地位都很重要,已成为高考的重点和热点,用基本不等式求函数(和式或积式)的最值问题,有时与解析几何、数列等知识相结合. 答案 C解析 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x +y +4x +y ,当且仅当x =y 时取等号. ∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.2.在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32 C.12 D.32押题依据 不等式的解法作为数学解题的一个基本工具,在高考中是必考内容.往往与函数的单调性相结合,最后转化成一元一次不等式或一元二次不等式. 答案 D解析 由定义知,不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立. ∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =4x +y 的最小值为( )A .-6B .6C .7D .8押题依据 线性规划的实质是数形结合思想的应用,利用线性规划的方法求一些线性目标函数的最值是近几年高考的热点. 答案 C解析 由x ,y 满足的约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,画出可行域如图所示,当直线z =4x +y 过点C (1,3)时,z 取得最小值且最小值为4+3=7,故选C.4.若不等式x 2+2x <a b +16ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-4,2)B .(-∞,-4)∪(2,+∞)C .(-∞,-2)∪(0,+∞)D .(-2,0)押题依据 “恒成立”问题是函数和不等式交汇处的重要题型,可综合考查不等式的性质,函数的值域等知识,是高考的热点. 答案 A解析 不等式x 2+2x <a b +16ba 对任意a ,b ∈(0,+∞)恒成立,等价于不等式x 2+2x <⎝⎛⎭⎫a b +16b a min . 因为对任意a ,b ∈(0,+∞),a b +16b a ≥2a b ·16b a =8(当且仅当a b =16ba,即a =4b 时取等号), 所以x 2+2x <8,解得-4<x <2,故选A.强化训练A 组 专题通关1.已知下列四个关系:①a >b ⇔ac 2>bc 2;②a >b ⇒1a <1b ;③a >b >0,c >d >0⇒a d >bc ;④a >b >1,c <0⇒a c <b c .其中正确的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 当c =0时,①不正确;当a >0>b 时,②不正确;由于c >d >0,所以1d >1c >0,所以a d >bc>0,③正确;由于a >b >1,当x <0时,a x <b x ,故a c <b c 正确.所以有两个正确. 2.若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +12,x ≤0,则“0<x <1”是“f (x )<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当0<x <1时,f (x )=log 2x <0, 所以“0<x <1”⇒“f (x )<0”;若f (x )<0,则⎩⎪⎨⎪⎧x >0,log 2x <0或⎩⎪⎨⎪⎧x ≤0,-2x +12<0,解得0<x <1或-1<x ≤0,所以-1<x <1, 所以“f (x )<0”D ⇒/“0<x <1”.故选A.3.对于使f (x )≤M 恒成立的所有常数M 中,我们把M 的最小值叫做f (x )的上确界,若a >0,b >0且a +b =1,则-12a -2b 的上确界为( )A.92 B .-92 C.14 D .-4 答案 B解析 -12a -2b =-⎝⎛⎭⎫12a +2b (a +b ) =-⎝⎛⎭⎫52+b 2a +2a b ≤-⎝⎛⎭⎫52+2 b 2a ×2a b =-92, 当且仅当b 2a =2a b ,即b =2a =23时取等,所以原式的上确界为-92,故选B.4.已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)答案 D解析 ∵2x +1y =1,∴x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +x y ≥4+24=8,当且仅当4y x =xy 时取等号. ∵x +2y >m 2+2m 恒成立,∴m 2+2m <8,求得-4<m <2,故选D.5.(2017·嘉兴月考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -3≤0,y -1≥0,x -y +1≥0,若ax +y 的最大值为10,则实数a等于( ) A .4 B .3 C .2 D .1答案 C解析 在平面直角坐标系内画出题中的不等式组表示的平面区域是以(0,1),(3,1),(3,4)为顶点的三角形区域如图(阴影部分,包含边界)所示,令z =ax +y ,由图易得当-a >1,即a <-1时,目标函数z =ax +y 在点(0,1)处取得最大值1,与题意不符;当-a ≤1,即a ≥-1时,目标函数z =ax +y 在点(3,4)处取得最大值3a +4=10,解得a =2.综上所述,实数a 的值为2,故选C.6.(2017·浙江“超级全能生”联考)若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x +2y +2≥0,2x -y -1≤0,则2|x +1|+y 的最大值是( ) A.143 B.193 C .4 D .1答案 B解析 设z =2|x +1|+y =⎩⎪⎨⎪⎧-2x +y -2,x <-1,2x +y +2,x ≥-1,在平面直角坐标系中画出不等式组表示的平面区域如图中阴影部分所示,是以A (-2,0),B (0,-1),C ⎝⎛⎭⎫43,53为顶点的三角形区域(含边界).z =-2x +y -2(x <-1)在点A (-2,0)处取得最大值2;z =2x +y +2 (x ≥-1)在点C ⎝⎛⎭⎫43,53处取得最大值193,故z =2|x +1|+y 的最大值是193,故选B.7.(2017·宁波十校适应性考试)已知直线(m +2)x +(m +1)y +1=0上存在点(x ,y )满足⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥1,则实数m 的取值范围是( )A.⎣⎡⎦⎤-1,12 B.⎣⎡⎦⎤-14,12 C.⎣⎡⎭⎫-53,+∞ D.⎝⎛⎦⎤-∞,-53 答案 D解析 由题意可知,目标函数对应的直线表示过定点A (-1,1)的直线束,约束条件对应的平面区域是以点B (1,2),C (1,-1),D (3,0)为顶点的三角形区域及其边界,如图所示,当直线经过该区域时,k AB =12,k AC =-1,易知在题设条件下m +1≠0,即直线(m +2)x +(m+1)y +1=0的斜率-m +2m +1∈[k AC ,k AB ].即-1≤-m +2m +1≤12,解得m ≤-53.8.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -5≤0,x +y -4≤0,3x +y -10≥0,则z =x 2+y 2的最小值为( )A.10 B .10 C .8 D .5答案 B解析 作出不等式组表示的平面区域,如图所示,因为z =x 2+y 2表示区域内的点到原点距离的平方,由图知,当区域内的点与原点的连线与直线3x +y -10=0垂直时z =x 2+y 2取得最小值,此时垂直正好在平面区域内.所以z min =⎝⎛⎭⎪⎫|3×0+0-10|32+122=10,故选B.9.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 答案 [-2,4]解析 |x -a |+|x -1|≥|a -1|,则只需要|a -1|≤3,解得-2≤a ≤4.10.(2017·北京)已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是________. 答案 ⎣⎡⎦⎤12,1解析 方法一 由x +y =1,得y =1-x .又x ≥0,y ≥0,所以0≤x ≤1,x 2+y 2=x 2+(1-x )2=2x 2-2x +1=2⎝⎛⎭⎫x -122+12. 由0≤x ≤1,得0≤⎝⎛⎭⎫x -122≤14,即12≤x 2+y 2≤1.所以x 2+y 2∈⎣⎡⎦⎤12,1. 方法二 x 2+y 2=(x +y )2-2xy ,已知x ≥0,y ≥0,x +y =1,所以x 2+y 2=1-2xy .因为1=x +y ≥2xy ,当且仅当x =y 时取等号.所以0≤xy ≤14,所以12≤1-2xy ≤1,即x 2+y 2∈⎣⎡⎦⎤12,1.方法三 依题意,x 2+y 2可视为原点与线段x +y -1=0(x ≥0,y ≥0)上的点的距离的平方,如图所示,故(x 2+y 2)min =⎝⎛⎭⎪⎫|-1|22=12,(x 2+y 2)max=|OA |2=|OB |2=1,故x 2+y 2∈⎣⎡⎦⎤12,1.11.已知函数f (x )=|x -3|-|x -a |.若存在实数x ,使得不等式f (x )≥a 成立,则实数a 的取值范围为______. 答案 ⎝⎛⎦⎤-∞,32 解析 由不等式性质可知,f (x )=|x -3|-|x -a | ≤|(x -3)-(x -a )|=|a -3|,所以若存在实数x ,使得不等式f (x )≥a 成立, 则|a -3|≥a ,解得a ≤32,所以实数a 的取值范围是⎝⎛⎦⎤-∞,32. 12.(2017·金华十校模拟)已知实数x ,y ,z 满足⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5,则xyz 的最小值为________. 答案 -77-20解析 由xy +2z =1,得xy =1-2z ,则5=x 2+y 2+z 2≥2xy +z 2=2-4z +z 2,解得2-7≤z ≤2+7,则xyz =(1-2z )z =-2z 2+z 的最小值为-2(2+7)2+2+7=-77-20.B 组 能力提高13.(2017·山东)若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1b C .a +1b <log 2(a +b )<b2aD .log 2(a +b )<a +1b <b 2a答案 B解析 方法一 ∵a >b >0,ab =1,∴log 2(a +b )>log 2(2ab )=1.∵b 2a =1a 2a =a -1·2-a ,令f (a )=a -1·2-a ,又∵b =1a ,a >b >0,∴a >1a ,解得a >1. ∴f ′(a )=-a -2·2-a -a -1·2-a ·ln 2=-a -2·2-a (1+a ln 2)<0,∴f (a )在(1,+∞)上单调递减.∴f (a )<f (1),即b 2a <12.∵a +1b =a +a =2a >a +b >log 2(a +b ),∴b 2a <log 2(a +b )<a +1b .故选B.方法二 ∵a >b >0,ab =1,∴取a =2,b =12,此时a +1b =4,b 2a =18,log 2(a +b )=log 25-1≈1.3,∴b 2a <log 2(a +b )<a +1b.故选B. 14.(2017·杭州质检)若实数a ,b ,c 满足对任意实数x ,y 有3x +4y -5≤ax +by +c ≤3x +4y +5,则( )A .a +b -c 的最小值为2B .a -b +c 的最小值为-4C .a +b -c 的最大值为4D .a -b +c 的最大值为6 答案 A解析 由题意可得-5≤(a -3)x +(b -4)y +c ≤5恒成立,所以a =3,b =4,-5≤c ≤5,则2≤a +b -c ≤12,即a +b -c 的最小值是2,最大值是12,A 正确,C 错误;-6≤a -b +c ≤4,则a -b +c 的最小值是-6,最大值是4,B 错误,D 错误,故选A.15.(2017·绍兴市稽阳联谊学校联考)已知实数x ,y 满足x -2x =2y +1-y ,则x +y 的最大值为________. 答案 4+2 6解析 设⎩⎨⎧u =x ,v =y +1,则⎩⎪⎨⎪⎧x =u 2,y =v 2-1(u ≥0,v ≥0), 则x -2x =2y +1-y 化为u 2-2u =2v -v 2+1,即(u -1)2+(v -1)2=3(u ≥0,v ≥0),其在平面直角坐标系uO v 中表示以(1,1)为圆心,以3为半径的圆在第一象限内的弧,x +y =u 2+v 2-1表示弧上的点到原点的距离的平方减1,则(x +y )max =(u 2+v 2-1)max =(12+12+3)2-1=4+2 6.16.已知a >b ,二次三项式ax 2+2x +b ≥0对于一切实数x 恒成立,又存在x 0∈R ,使ax 20+2x 0+b =0成立,则a 2+b 2a -b 的最小值为________.答案 2 2解析 由题意,得a >b ,二次三项式ax 2+2x +b ≥0对于一切实数x 恒成立,所以a >0,且Δ=4-4ab ≤0,所以ab ≥1.由存在x 0∈R ,使ax 20+2x 0+b =0成立,可得Δ=0,所以ab =1,所以a >1,所以a 2+b2a -b=a 2+1a 2a -1a=a 4+1a 3-a >0,所以⎝ ⎛⎭⎪⎫a 4+1a 3-a 2=a 8+1+2a 4a 6+a 2-2a 4=a 4+1a 4+2a 2+1a 2-2=⎝⎛⎭⎫a 2+1a 22⎝⎛⎭⎫a 2+1a 2-2=⎝⎛⎭⎫a 2+1a 2-22+4⎝⎛⎭⎫a 2+1a 2-4⎝⎛⎭⎫a 2+1a 2-2,令a 2+1a2=t >2,则⎝ ⎛⎭⎪⎫a 4+1a 3-a 2=(t -2)2+4(t -2)+4t -2=(t -2)+4t -2+4≥4+4=8, 当且仅当t =4时取等号.所以⎝ ⎛⎭⎪⎫a 4+1a 3-a 2的最小值为8,所以a 2+b 2a -b的最小值为2 2.。
2018届高三(新课标)数学(理)第七章 不 等 式
第七章⎪⎪⎪不 等 式 第一节不等式的性质及一元二次不等式突破点(一) 不等式的性质基础联通 抓主干知识的“源”与“流”1.比较两个实数大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b (a ,b ∈R ),a -b =0⇔a =b (a ,b ∈R ),a -b <0⇔a <b (a ,b ∈R ).(2)作商法⎩⎪⎨⎪⎧ab >1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b >0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的基本性质性质 性质内容 特别提醒对称性 a >b ⇔b <a ⇔ 传递性 a >b ,b >c ⇒a >c ⇒ 可加性a >b ⇔a +c >b +c⇔可乘性⎭⎬⎫a >b c >0⇒ac >bc注意c 的符号⎭⎬⎫a >b c <0⇒ac <bc同向可加性⎭⎬⎫a >b c >d ⇒a +c >b +d ⇒本节主要包括2个知识点: 1.不等式的性质;2.一元二次不等式.同向同正可乘性⎭⎬⎫a >b >0c >d >0⇒ac >bd >0 ⇒可乘方性 a >b >0⇒a n >b n (n ∈N ,n ≥1) a ,b 同为正数可开方性 a >b >0⇒na >nb (n ∈N ,n ≥2)3.不等式的一些常用性质 (1)倒数的性质①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >b d .④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质若a >b >0,m >0,则:①b a <b +m a +m ;b a >b -m a -m (b -m >0).②a b >a +m b +m ;a b <a -mb -m (b -m >0).考点贯通 抓高考命题的“形”与“神”比较两个数(式)的大小[例1] (1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定(2)若a =ln 22,b =ln 33,则a ________b (填“>”或“<”).[解析] (1)M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .(2)易知a ,b 都是正数,b a =2ln 33ln 2=log 89>1,所以b >a .[答案] (1)B (2)<[方法技巧] 比较两个数(式)大小的两种方法不等式的性质[例2] (1)如果a <b A.1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b(2)下列命题中,正确的是( ) A .若a >b ,c >d ,则ac >bd B .若ac >bc ,则a >b C .若a c 2<bc2,则a <bD .若a >b ,c >d ,则a -c >b -d(3)(2016·西安八校联考)“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] (1)法一(性质判断):对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -aab >0,1a >1b,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝⎛⎭⎫-1b =a -b ab <0,-1a <-1b 成立,故D 项正确.法二(特殊值法):令a =-2,b =-1,则1a =-12>1b =-1,ab =2>b 2=1,-ab =-2>-a 2=-4,-1a =12<-1b=1.故A 、B 、C 项错误,D 项正确.(2)取a =2,b =1,c =-1,d =-2,可知A 错误;当c <0时,ac >bc ⇒a <b ,∴B 错误;∵a c 2<bc2,∴c ≠0,又c 2>0,∴a <b ,C 正确;取a =c =2,b =d =1,可知D 错误. (3)x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20,x 1+x 2=412>6,x 1x 2=10>9,但x 1<3.故“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的充分不必要条件.[答案] (1)D (2)C (3)A [方法技巧]不等式性质应用问题的常见类型及解题策略(1)不等式成立问题.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充分、必要条件相结合问题.用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.(3)与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.1.[考点一]设a,b∈[0,+∞),A=a+b,B=a+b,则A,B的大小关系是()A.A≤B B.A≥BC.A<B D.A>B解析:选B由题意得,B2-A2=-2ab≤0,且A≥0,B≥0,可得A≥B.2.[考点二]若m<0,n>0且m+n<0,则下列不等式中成立的是()A.-n<m<n<-m B.-n<m<-m<nC.m<-n<-m<n D.m<-n<n<-m解析:选D法一:(取特殊值法)令m=-3,n=2分别代入各选项检验即可.法二:m+n<0⇒m<-n⇒n<-m,又由于m<0<n,故m<-n<n<-m成立.3.[考点二]若a>0>b>-a,c<d<0,则下列结论:①ad>bc;②ad+bc<0;③a-c>b-d;④a(d-c)>b(d-c)中,成立的个数是()A.1 B.2 C.3 D.4解析:选C∵a>0>b,c<d<0,∴ad<0,bc>0,∴ad<bc,故①不成立.∵a>0>b>-a,∴a>-b>0,∵c<d<0,∴-c>-d>0,∴a(-c)>(-b)(-d),∴ac+bd<0,∴ad+bc=ac+bdcd<0,故②成立.∵c<d,∴-c>-d,∵a>b,∴a+(-c)>b+(-d),a-c>b-d,故③成立.∵a>b,d-c>0,∴a(d-c)>b(d-c),故④成立.成立的个数为3.4.[考点二]设a,b是实数,则“a>b>1”是“a+1a>b+1b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为a+1a-⎝⎛⎭⎫b+1b=(a-b)(ab-1)ab,若a>b>1,显然a+1a-⎝⎛⎭⎫b+1b=(a-b)(ab-1)ab>0,则充分性成立,当a=12,b=23时,显然不等式a+1a>b+1b成立,但a>b>1不成立,所以必要性不成立.突破点(二)一元二次不等式1.三个“二次”之间的关系判别式 Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0(a >0)的根 有两个相异实根x 1,x 2(x 1<x 2) 有两个相等实根x 1=x 2=-b2a没有实数根一元二次不等式ax 2+bx +c >0(a >0)的解集 {x |x <x 1或x >x 2}⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠-b 2aR一元二次不等式ax 2+bx +c <0(a >0)的解集 {x |x 1<x <x 2} ∅∅2.不等式ax 2+bx +c >0(<0)恒成立的条件 (1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.考点贯通 抓高考命题的“形”与“神”一元二次不等式的解法[例1] (1)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4;(3)ax 2-(a +1)x +1<0(a >0).[解] (1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0.解得-2≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3. (3)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以a ⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1,即1a <1时,解为1a <x <1;当a =1时,解集为∅;当0<a <1,即1a >1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. [方法技巧]1.解一元二次不等式的方法和步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.由一元二次不等式恒成立求参数范围上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外,常转化为求二次函数的最值或用分离参数求最值.考法(一) 在实数集R 上恒成立[例2] 已知不等式mx 2-2x -m +1<0,是否存在实数m 使得对所有的实数x ,不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.[解] 不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数f (x )=mx 2-2x -m +1为二次函数, 需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m (1-m )<0, 不等式组的解集为空集,即m 无解.综上可知不存在这样的实数m 使不等式恒成立. 考法(二) 在某区间上恒成立[例3] 设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.[解] 要使f (x )<-m +5在[1,3]上恒成立,则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.法一:令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)=m -6<0.所以m <6,则m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪0<m <67或m <0. 法二:因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是mm <0或0<m <67.考法(三) 在参数的某区间上恒成立时求变量范围[例4] 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.[解] 由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4,则原问题转化为关于m 的一次函数问题. 由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0, 解得x <1或x >3.故当x 的取值范围是(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零.[易错提醒]解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.1.[考点一]不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}解析:选C 解x (x +2)>0,得x <-2或x >0;解|x |<1,得-1<x <1.因为不等式组的解集为两个不等式解集的交集,即解集为{x |0<x <1}.2.[考点一]已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},∴A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,则a +b =-3.3.[考点二·考法(一)]若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]解析:选D 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].4.[考点二·考法(二)]若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.5.[考点二·考法(三)]要使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立,则x 的取值范围为________.解析:将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.答案:(-∞,2)∪(4,+∞)[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:选A A ={x |x ≤-1或x ≥3},故A ∩B =[-2,-1],故选A.2.(2014·新课标全国卷Ⅱ)设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( ) A .{1} B .{2} C .{0,1}D .{1,2}解析:选D N ={x |x 2-3x +2≤0}={x |1≤x ≤2},又M ={0,1,2},所以M ∩N ={1,2}. 3.(2013·新课标全国卷Ⅰ)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B解析:选B 集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R ,故选B.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2abD.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:选C ∵a >b >0,∴1a <1b ,且|a |>|b |,a +b >2ab ,又f (x )=⎝⎛⎭⎫12x 是减函数,∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b.故C 项不成立.2.函数f (x )= 1-xx +2的定义域为( ) A .[-2,1] B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞)解析:选B 要使函数f (x )=1-xx +2有意义,则⎩⎪⎨⎪⎧(1-x )(x +2)≥0,x +2≠0,解得-2<x ≤1,即函数的定义域为(-2,1].3.已知x >y >z ,x +y +z =0,则下列不等式成立的是( ) A .xy >yz B .xz >yz C .xy >xzD .x |y |>z |y |解析:选C 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,所以x >0,又y >z ,所以xy >xz ,故选C.4.不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,2x 2-7x +6>0的解集是( )A .(2,3) B.⎝⎛⎭⎫1,32∪(2,3) C.⎝⎛⎭⎫-∞,32∪(3,+∞) D .(-∞,1)∪(2,+∞)解析:选B ∵x 2-4x +3<0,∴1<x <3.又∵2x 2-7x +6>0,∴(x -2)(2x -3)>0,∴x <32或x >2,∴原不等式组的解集为⎝⎛⎭⎫1,32∪(2,3). 5.已知关于x 的不等式ax 2+2x +c >0的解集为-13,12,则不等式-cx 2+2x -a >0的解集为________.解析:依题意知,⎩⎨⎧-13+12=-2a ,-13×12=ca ,∴解得a =-12,c =2,∴不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0,解得-2<x <3.所以不等式的解集为(-2,3).答案:(-2,3)[练常考题点——检验高考能力]一、选择题1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]解析:选D A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B.a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1bD.⎭⎬⎫a >b ab >0⇒1a >1b解析:选C 当c =0时,ac 2=0,bc 2=0,故由a >b 不能得到ac 2>bc 2,故A 错误;当c <0时,a c >b c ⇒a <b ,故B 错误;因为1a -1b =b -aab >0⇔⎩⎪⎨⎪⎧ab >0,a <b 或⎩⎪⎨⎪⎧ab <0,a >b ,故选项D 错误,C 正确.故选C.3.已知a >0,且a ≠1,m =a a 2+1,n =a a +1,则( ) A .m ≥n B .m >n C .m <nD .m ≤n解析:选B 由题易知m >0,n >0,两式作商,得m n =a (a 2+1)-(a +1)=a a (a -1),当a >1时,a (a -1)>0,所以a a (a-1)>a 0=1,即m >n ;当0<a <1时,a (a -1)<0,所以a a (a-1)>a 0=1,即m >n .综上,对任意的a >0,a ≠1,都有m >n .4.若不等式组⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不是空集,则实数a 的取值范围是( )A .(-∞,-4]B .[-4,+∞)C .[-4,3]D .[-4,3)解析:选B 不等式x 2-2x -3≤0的解集为[-1,3],假设⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(a +1)≤0的解集为空集,则不等式x 2+4x -(a +1)≤0的解集为集合{x |x <-1或x >3}的子集,因为函数f (x )=x 2+4x -(a +1)的图象的对称轴方程为x =-2,所以必有f (-1)=-4-a >0,即a <-4,则使⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不为空集的a 的取值范围是a ≥-4.5.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞)D.⎝⎛⎦⎤-∞,-235 解析:选A 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝⎛⎭⎫-235,+∞. 6.在R 上定义运算:⎝⎛⎭⎫a c b d =ad -bc ,若不等式⎝⎛⎭⎫x -1a +1 a -2x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32 C.12 D.32解析:选D 由定义知,不等式⎝⎛⎭⎫x -1a +1 a -2x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.二、填空题7.已知a ,b ,c ∈R ,有以下命题: ①若1a <1b ,则c a <c b ;②若a c 2<b c 2,则a <b ;③若a >b ,则a ·2c >b ·2c .其中正确的是__________(请把正确命题的序号都填上).解析:①若c ≤0,则命题不成立.②由a c 2<b c 2得a -bc 2<0,于是a <b ,所以命题正确.③中由2c >0知命题正确.答案:②③8.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. 解析:原不等式为(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a9.已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax ,x ≥0,bx 2-3x ,x <0为奇函数,则不等式f (x )<4的解集为________.解析:若x >0,则-x <0,则f (-x )=bx 2+3x .因为f (x )为奇函数,所以f (-x )=-f (x ),即bx 2+3x =-x 2-ax ,可得a =-3,b =-1,所以f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥0,-x 2-3x ,x <0.当x ≥0时,由x 2-3x <4解得0≤x <4;当x <0时,由-x 2-3x <4解得x <0,所以不等式f (x )<4的解集为(-∞,4).答案:(-∞,4)10.(2016·西安一模)若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是________.解析:不等式x 2+mx +1≥0的解集为R ,相当于二次函数y =x 2+mx +1的最小值非负,即方程x 2+mx +1=0最多有一个实根,故Δ=m 2-4≤0,解得-2≤m ≤2.答案:[-2,2] 三、解答题11.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0, 即a 2-6a -3<0,解得3-23<a <3+2 3. ∴不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎨⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.故a 的值为3+3或3-3,b 的值为-3.12.已知函数f (x )=x 2-2ax -1+a ,a ∈R. (1)若a =2,试求函数y =f (x )x (x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围. 解:(1)依题意得y =f (x )x =x 2-4x +1x =x +1x -4.因为x >0,所以x +1x ≥ 2.当且仅当x =1x 时,即x =1时,等号成立. 所以y ≥-2. 所以当x =1时,y =f (x )x的最小值为-2. (2)因为f (x )-a =x 2-2ax -1,所以要使得“对任意的x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]恒成立”.不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎡⎭⎫34,+∞. 第二节二元一次不等式(组)与简单的线性规划问题突破点(一) 二元一次不等式(组)表示的平面区域基础联通 抓主干知识的“源”与“流” 1.二元一次不等式(组)表示的平面区域不等式 表示区域Ax +By +C >0 直线Ax +By +C =0某一侧的所有点组成的平面区域不包括边界直线 Ax +By +C ≥0 包括边界直线不等式组 各个不等式所表示平面区域的公共部分2.确定二元一次不等式(组)表示的平面区域的方法步骤本节主要包括3个知识点:1.二元一次不等式(组)表示的平面区域;2.简单的线性规划问题;3.线性规划的实际应用.考点贯通 抓高考命题的“形”与“神”求平面区域的面积1.求平面区域的面积,要先作出不等式组表示的平面区域,然后根据区域的形状求面积. 2.求平面区域的面积问题,平面区域形状为三角形的居多,尤其当△ABC 为等腰直角三角形(A 为直角)时,点B 到直线AC 的距离即△ABC 的腰长|AB |.由点到直线的距离公式求得|AB |,面积便可求出.[例1] 不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大[解析] 不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即所求.求出点A ,B ,C 的坐标分别为A (1,2),B (2,2),C (3,0),则△ABC 的面积为S =12×(2-1)×2=1.[答案] B [方法技巧]解决求平面区域面积问题的方法步骤(1)画出不等式组表示的平面区域;(2)判断平面区域的形状,并求得直线的交点坐标、图形的边长、相关线段的长(三角形的高、四边形的高)等,若为规则图形则利用图形的面积公式求解;若为不规则图形则利用割补法求解.[提醒] 求面积时应考虑圆、平行四边形等图形的对称性.根据平面区域满足的条件求参数不等式组中的参数影响平面区域的形状,如果不等式组中的不等式含有参数,这时它表示的区域的分界线是一条变动的直线,此时要根据参数的取值范围确定这条直线的变化趋势、倾斜角度、上升还是下降、是否过定点等,确定区域的可能形状,进而根据题目要求求解;如果是一条曲线与平面区域具有一定的位置关系,可以考虑对应的函数的变化趋势,确定极限情况求解;如果目标函数中含有参数,则要根据这个目标函数的特点考察参数变化时目标函数与平面区域的关系,在运动变化中求解.[例2] 若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是( )A.⎣⎡⎭⎫43,+∞ B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞ [解析] 不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).由⎩⎪⎨⎪⎧ y =x ,2x +y =2,得A 23,23;由⎩⎪⎨⎪⎧y =0,2x +y =2,得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中a 的取值范围是0<a ≤1或a ≥43.[答案] D[易错提醒]此类问题的难点在于参数取值范围的不同导致平面区域或者曲线位置的改变,解答的思路可能会有变化,所以求解时要根据题意进行必要的分类讨论及对特殊点、特殊值的考虑.能力练通 抓应用体验的“得”与“失”1.[考点一]设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π解析:选D 作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,AB 长度的最大值为4,则以AB 为直径的圆的面积为最大值S =π×⎝⎛⎭⎫422=4π.2.[考点二]若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1 C.43D .3解析:选B 作出可行域,如图中阴影部分所示,易求A ,B ,C ,D 的坐标分别为A (2,0),B (1-m,1+m ),C 2-4m 3,2+2m3,D (-2m,0).S△ABC=S △ADB -S △ADC =12|AD |·|y B -y C |=12(2+2m )⎝⎛⎭⎫1+m -2+2m 3=(1+m )⎝⎛⎭⎫1+m -23=43,解得m =1或m =-3(舍去).3.[考点一]不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.解析:作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.答案:44.[考点二]若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为________.解析:不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,增加了(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点,此时,整点的个数共9个,故整数a =-1.答案:-1突破点(二) 简单的线性规划问题基础联通 抓主干知识的“源”与“流”1.线性规划中的基本概念名称 意义约束条件 由变量x ,y 组成的不等式(组)线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式(组) 目标函数 关于x ,y 的函数解析式,如z =2x +3y 等线性目标函数关于x ,y 的一次函数解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合最优解 使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤概括为“画、移、求、答”.即考点贯通 抓高考命题的“形”与“神”线性目标函数的最值[例1] (2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17[解析] 由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小.又知点A 的坐标为(3,0),∴z min =2×3+5×0=6.故选B.[答案] B [方法技巧]求解线性目标函数最值的常用方法线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.非线性目标函数的最值[例2] (2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12[解析] 作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.[答案] C[方法技巧]非线性目标函数最值问题的常见类型及求法(1)距离平方型:目标函数为z =(x -a )2+(y -b )2时,可转化为可行域内的点(x ,y )与点(a ,b )之间的距离的平方求解.(2)斜率型:对形如z =ay +bcx +d (ac ≠0)型的目标函数,可利用斜率的几何意义来求最值,即先变形为z =a c ·y -⎝⎛⎭⎫-b a x -⎝⎛⎭⎫-d c 的形式,将问题化为求可行域内的点(x ,y )与点⎝⎛⎭⎫-d c ,-b a 连线的斜率的ac 倍的取值范围、最值等.(3)点到直线距离型:对形如z =|Ax +By +C |型的目标函数,可先变形为z =A 2+B 2·|Ax +By +C |A 2+B2的形式,将问题化为求可行域内的点(x ,y )到直线Ax +By +C =0的距离的A 2+B 2倍的最值.线性规划中的参数问题[例3] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3[解析] 画出不等式组表示的平面区域如图阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验知x =2,y =0符合题意,∴2a +0=4,此时a =2.[答案] B [方法技巧]求解线性规划中含参问题的两种基本方法(1)把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或范围;(2)先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.能力练通 抓应用体验的“得”与“失”1.[考点一]设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.2.[考点二]已知(x ,y )满足⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,则k =yx +1的最大值为( )A.12 B.32 C .1D.14解析:选C 如图,不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域为△AOB 的边界及其内部区域,k =y x +1=y -0x -(-1)表示平面区域内的点(x ,y )和点(-1,0)连线的斜率.由图知,平面区域内的点(0,1)和点(-1,0)连线的斜率最大,所以k max =1-00-(-1)=1.3.[考点一](2017·银川模拟)设z =x +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则z 的最小值为( )A .-3B .-2C .-1D .0解析:选A 作出实数x ,y 满足的平面区域,如图中阴影部分所示,由图知,当目标函数z =x +y 经过点C (k ,k )时,取得最大值,且z max =k +k =6,得k =3.当目标函数z =x +y 经过点B (-6,3)时,取得最小值,且z min =-6+3=-3,故选A.4.[考点三]x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1解析:选D 由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.5.[考点二]设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =(x +1)2+y 2的最大值为________.解析:作出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,如图中阴影部分所示.(x +1)2+y 2可看作点(x ,y )到点P (-1,0)的距离的平方,由图可知可行域内的点A 到点P (-1,0)的距离最大.解方程组⎩⎪⎨⎪⎧x =3,x -y +5=0,得A 点的坐标为(3,8),代入z =(x +1)2+y 2,得z max =(3+1)2+82=80. 答案:80突破点(三) 线性规划的实际应用基础联通 抓主干知识的“源”与“流”解线性规划应用题的一般步骤考点贯通 抓高考命题的“形”与“神”线性规划的实际应用[典例] 1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A .12万元B .16万元C .17万元D .18万元[解析] 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,z =3x +4y ,作出可行域如图阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18.[答案] D[易错提醒]求解线性规划应用题的三个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否为整数、是否为非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.能力练通 抓应用体验的“得”与“失”1.某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =( )A .10B .12C .13D .16解析:选C 如图所示,画出约束条件所表示的区域,即可行域,作直线b +a =0,并平移,结合a ,b ∈N ,可知当a =6,b =7时,a +b 取最大值,故x =6+7=13.2.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.解析:设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z =300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点M 或其附近的整数点处取得最大值,由方程组⎩⎪⎨⎪⎧ 3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.答案:1 700[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3解析:选C 画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.2.(2013·新课标全国卷Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3).若z =2x +y 的最小值为1,则a =( )A.14 B.12C .1D .2解析:选B 由已知约束条件,作出可行域如图中△ABC 内部及边界部分所示,由目标函数z =2x +y 的几何意义为直线l :y =-2x +z 在y 轴上的截距,知当直线l 过可行域内的点B (1,-2a )时,目标函数z =2x +y 的最小值为1,则2-2a =1,a =12,故选B.3.(2016·全国丙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解析:不等式组表示的平面区域如图中阴影部分所示.平移直线x +y =0,当直线经过A 点时,z 取得最大值, 由⎩⎪⎨⎪⎧x -2y =0,x +2y -2=0得A 1,12,z max =1+12=32.答案:324.(2016·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产A 产品x 件,B 产品y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分所示.作直线2 100x +900y =0,即7x +3y =0并上下平移,易知当直线经过点M 时,z 取得最大值,联立⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600,解得B (60,100).则z max =2 100×60+900×100=216 000(元). 答案:216 0005.(2015·新课标全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为________.解析:画出可行域如图阴影所示,∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时yx 最大.。
2018届高考数学理二轮复习全国通用课件 专题一 函数与导数、不等式 第1讲 精品
热点二 函数图象的问题 [微题型1] 函数图象的变换与识别 【例2-1】 (1)(2016·成都诊断)已知f(x)=2x-1,g(x)=1-x2,
规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)= -g(x),则h(x)( )
A.有最小值-1,最大值1 B.有最大值1,无最小值 C.有最小值-1,无最大值 D.有最大值-1,无最小值
第1讲 函数图象与性质及函数与方程
高考定位 1.以分段函数、二次函数、指数函数、对数函数为载 体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用 图象研究函数性质、方程及不等式的解,综合性强;3.以基本初 等函数为依托,考查函数与方程的关系、函数零点存在性定理. 数形结合思想是高考考查函数零点或方程的根的基本方式.
若存在唯一的整数x0使得f(x0)<0,则实数a的取值范围是( )
A.-23e,1 C.23e,34
B.-23e,34 D.23e,1
解析 (1)函数y=|f(x)|的图象如图.y=ax为过原点的一条直线, 当a>0时,与y=|f(x)|在y轴右侧总有交点,不合题意;当a=0 时成立;当a<0时,找与y=|-x2+2x|(x≤0)相切的情况,即 y′=2x-2,切线方程为y=(2x0-2)(x-x0),由分析可知x0=0, 所以a=-2,综上,a∈[-2,0].
D.4m
解析 (1)由f(x)=2|x-m|-1是偶函数可知m=0,
所以f(x)=2|x|-1.
所以a=f(log0.53)=2|log0.53|-1=2log23-1=2, b=f(log25)=2|log25|-1=2log25-1=4, c=f(0)=2|0|-1=0,所以c<a<b.
2018大二轮高考总复习理数文档自检4 不等式与线性规划 Word版含解析
自检:不等式与线性规划组高考真题集中训练解不等式问题.(·全国卷Ⅰ)已知集合={--≥},={-≤<},则∩=( ).[-).[-,-].[).[-]解析:={≤-或≥},故∩=[-,-],选.答案:.(·全国卷Ⅱ)设集合={},={-+≤},则∩=( ).{}.{}.{}.{}解析:={-+≤}={≤≤},又={},所以∩={}.答案:线性规划问题.(·全国卷Ⅱ)设,满足约束条件(\\(+-≤,-+≥,+≥,))则=+的最小值是( ).-.-..解析:不等式组表示的可行域如图中阴影部分所示.将目标函数=+化为=-+,作出直线=-,并平移该直线,知当直线=-+经过点(-,-)时,有最小值,且=×(-)-=-.故选.答案:.(·全国卷Ⅰ)不等式组(\\(+≥,-≤))的解集记为.有下面四个命题::∀(,)∈,+≥-;:∃(,)∈,+≥;:∀(,)∈,+≤;:∃(,)∈,+≤-.其中真命题是( ).,.,.,.,解析:画出可行域如图中阴影部分所示,由图可知,当目标函数=+经过可行域内的点(,-)时,取得最小值,故+≥,因此,是真命题,选.答案:.(·全国卷Ⅱ)设,满足约束条件(\\(+-≤,-+≤--≥,))则=-的最大值为( )....解析:作出可行域如图中阴影部分所示,由=-得=-,作出直线=,平移使之经过可行域,观察可知,当直线经过点()时,对应的值最大.故=×-=.答案:.(·浙江卷)若,满足约束条件(\\(≥,+-≥,-≤,))则=+的取值范围是( ).[].[].[,+∞).[,+∞)。
(新课标)2018届高考数学二轮复习 专题一 集合、常用逻辑用语、不等式 1.2 不等式讲义 理
D.(-∞,- 7]∪[ 7,+∞)
关闭
D
解析 答案
-21-
命题热点一 命题热点二 命题热点三 命题热点四
迁移训练 3
设实数 x,y 满足约束条件
2������ + ������-6 ������ + 2������-6
若过点 A,则 2a+3=7,解得 a=2;若过点 C,则 a+6=7,解得 a=1, 不合题意.
当 a<0 时,由图可知,直线 y=-���3���x+3������过点 A 或 B 时,直线在 y 轴 上的截距最小,z 有最小值.
若过点 A,则 2a+3=7,解得 a=2,不合题意;若过点 B,则 4a+15=7,解得 a=-2,不合题意.
解析 答案
-5-
热点考题诠释 高考方向解读
������2-������ + 3,������ ≤ 1,
4.(2017 天津,理
8)已知函数
f(x)=
������
+
2 ������
,������
>
1.
设 a∈R,若关于 x
的不等式
f(x)≥
������ 2
+
������
在
R
上恒成立,则
a
的取值范围是(
3 2
������
+
3,������
≤
1,
������ 2
+
2 ������
,������
>
1.
当 x≤1 时,p(x)=x2-32x+3=
������-
3 4
2018年高考数学二轮复习第一部分专题六函数、不等式、导数教学案理
专题六函数、不等式、导数[研高考·明考点]3.函数与不等式问题(3年4考)综合应用,难度较大,题型主要有: 1.导数的简单应用问题2.导数与函数零点或方程根的问题3.导数与不等式恒成立、存在性问题4.导数与不等式的证明问题偶考点 1.函数与方程 2.不等式的性质3.利用导数研究函数的单调性、极值最值问题 4.导数的几何意义偶考点 导数与函数、不等式的其他综合问题第一讲 小题考法——函数的图象与性质 考点(一) 主要考查函数的定义域、分段函数求值或已知函数值取值范围求字母的值取值范围等.函数的概念及表示[典例感悟][典例] (1)(2015·全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 22-x,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12(2)(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.[解析] (1)∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.(2)由题意知,当x ≤0时,原不等式可化为x +1+x +12>1,解得x >-14,∴-14<x ≤0;当0<x ≤12时,原不等式可化为2x+x +12>1,显然成立;当x >12时,原不等式可化为2x+2x -12>1,显然成立.综上可知,x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.[答案] (1)C (2)⎝ ⎛⎭⎪⎫-14,+∞[方法技巧]1.函数定义域的求法求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套”的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小 解不等式 根据分段函数中自变量取值范围的界定,代入相应的解析式求解,但要注意取值范围的大前提求参数 “分段处理”,采用代入法列出各区间上的方程 利用函数 性质求值 必须依据条件找到函数满足的性质,利用该性质求解[演练冲关]1.(2018届高三·浙江名校联考)已知函数f (x )=⎩⎪⎨⎪⎧f x -4,x >2,e x,-2≤x ≤2,f -x ,x <-2,则f (-2 017)=( )A .1B .e C.1eD .e 2解析:选B 由已知可得,当x >2时,f (x )=f (x -4),故f (x )在x >-2时的周期为4,则f (-2 017)=f (2 017)=f (2 016+1)=f (1)=e.2.(2017·山东高考)设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1.若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a=( )A .2B .4C .6D .8解析:选C 当0<a <1时,a +1≥1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,∵f (a )=f (a +1),∴a =2a ,解得a =14或a =0(舍去).∴f ⎝ ⎛⎭⎪⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1≥2,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∴2(a -1)=2a ,无解.综上,f ⎝ ⎛⎭⎪⎫1a=6. 3.已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1,x 3+x ,x ≥1,则f (f (x ))<2的解集为( )A .(1-ln 2,+∞)B .(-∞,1-ln 2)C .(1-ln 2,1)D .(1,1+ln 2)解析:选B 因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.[典例感悟][典例] (1)(2017·全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )(2)(2015·全国卷Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )[解析] (1)令函数f (x )=sin 2x1-cos x,其定义域为{x |x ≠2k π,k ∈Z},又f (-x )=sin -2x 1-cos -x =-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 21-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A 、C.当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4=1+5,f ⎝ ⎛⎭⎪⎫π2=2 2. ∵22<1+5,∴f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4,从而排除D ,故选B.[答案] (1)C (2)B[方法技巧]由函数解析式识别函数图象的策略[演练冲关]1.(2017·惠州调研)已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln |x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:选A 由函数图象可知,函数f (x )为奇函数,排除B 、C.若函数为f (x )=x -1x,则当x →+∞时,f (x )→+∞,排除D ,故选A.2.(2017·全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:选D 法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.故选D.3.如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 在t =0时与l 2相切于点A ,圆O 沿l 1以1 m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 如图,设∠MON =α,由弧长公式知x =α.在Rt △AOM 中,|AO |=1-t ,cos x 2=|OA ||OM |=1-t ,∴y =cos x =2cos 2x2-1=2(1-t )2-1.又0≤t ≤1,故选B.考点(三) 主要考查函数的单调性、奇偶性、周期性、对称性以及函数值的取值范围、比较大小等.函数的性质及应用[典例感悟][典例] (1)(2016·全国卷Ⅱ)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m(2)(2017·成都模拟)已知定义在R 上的奇函数f (x )满足f (x +3)=f (x ),且当x ∈⎣⎢⎡⎭⎪⎫0,32时,f (x )=-x 3,则f ⎝ ⎛⎭⎪⎫112=( )A .-18 B.18C .-1258 D.1258(3)(2017·四川模拟)已知定义在R 上的函数f (x )满足下列三个条件: ①对任意的x ∈R 都有f (x +2)=-f (x ); ②对任意的0≤x 1<x 2≤2,都有f (x 1)<f (x 2); ③f (x +2)的图象关于y 轴对称.则f (4.5),f (6.5),f (7)的大小关系是________.(用“<”连接)[解析] (1)因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m(x i +y i )=m .(2)由f (x +3)=f (x )知函数f (x )的周期为3,又函数f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫112=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫123=18. (3)由①可知,f (x )是一个周期为4的函数;由②可知,f (x )在[0,2]上是增函数;由③可知,f (x )的图象关于直线x =2对称.故f (4.5)=f (0.5),f (6.5)=f (2.5)=f (1.5),f (7)=f (3)=f (1),f (0.5)<f (1)<f (1.5),即f (4.5)<f (7)<f (6.5).[答案] (1)B (2)B (3)f (4.5)<f (7)<f (6.5)[方法技巧] 函数3个性质的应用(1)奇偶性:具有奇偶性的函数在关于原点对称的区间上其图象、函数值、解析式和单调性联系密切,研究问题时可转化到只研究部分(一半)区间上.尤其注意偶函数f (x )的性质:f (|x |)=f (x ).(2)单调性:可以比较大小、求函数最值、解不等式、证明方程根的唯一性.(3)周期性:利用周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题,转化到已知区间上求解.[演练冲关]1.(2018届高三·湖北七市(州)联考)函数y =f (x )为R 上的偶函数,函数y =g (x )为 R 上的奇函数,f (x )=g (x +2),f (0)=-4,则g (x )可以是( )A .4tan πx8B .-4sin πx2C .4sin πx4D .-4sin πx4解析:选D ∵f (x )=g (x +2),f (0)=-4,∴g (2)=-4.而4tan 2π8=4tan π4=4,-4sin2π2=-4sin π=0,4sin 2π4=4sin π2=4,-4sin 2π4=-4,∴y =g (x )可以是g (x )=-4sin πx4,经检验,选项D 符合题干条件.故选D.2.(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D ∵f (x )为奇函数,∴f (-x )=-f (x ). ∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3.3.定义在R 上的奇函数f (x )满足f (x +1)=f (-x ),当x ∈(0,1)时,f (x )=⎩⎪⎨⎪⎧log 12⎪⎪⎪⎪⎪⎪12-x ,x ≠12,0,x =12,则f (x )在区间⎝ ⎛⎭⎪⎫1,32内是( )A .增函数且f (x )>0B .增函数且f (x )<0C .减函数且f (x )>0D .减函数且f (x )<0解析:选D 由f (x )为奇函数,f (x +1)=f (-x )得,f (x )=-f (x +1)=f (x +2),∴f (x )是周期为2的周期函数.根据条件,当x ∈12,1时,f (x )=log 12⎝ ⎛⎭⎪⎫x -12,x -2∈⎝ ⎛⎭⎪⎫-32,-1,-(x -2)∈⎝ ⎛⎭⎪⎫1,32,∴f (x )=f (x -2)=-f (2-x )=log 12⎝ ⎛⎭⎪⎫x -12.设2-x =t ,则t ∈⎝ ⎛⎭⎪⎫1,32,x =2-t ,∴-f (t )=log 1232-t ,∴f (t )=-log 12⎝ ⎛⎭⎪⎫32-t ,∴f (x )=-log 12⎝ ⎛⎭⎪⎫32-x ,x ∈⎝ ⎛⎭⎪⎫1,32,可以看出当x 增大时,32-x 减小,log 12⎝ ⎛⎭⎪⎫32-x 增大,f (x )减小,∴在区间⎝ ⎛⎭⎪⎫1,32内,f (x )是减函数.而由1<x <32得0<32-x <12.∴log 12⎝ ⎛⎭⎪⎫32-x >1,∴f (x )<0.故选D.[必备知能·自主补缺] (一) 主干知识要记牢 函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期.(二) 二级结论要用好1.函数单调性和奇偶性的重要结论(1)当f (x ),g (x )同为增(减)函数时,f (x )+g (x )为增(减)函数.(2)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.(3)f (x )为奇函数⇔f (x )的图象关于原点对称;f (x )为偶函数⇔f (x )的图象关于y 轴对称.(4)偶函数的和、差、积、商是偶函数,奇函数的和、差是奇函数,积、商是偶函数,奇函数与偶函数的积、商是奇函数.(5)定义在(-∞,+∞)上的奇函数的图象必过原点,即有f (0)=0.存在既是奇函数,又是偶函数的函数:f (x )=0.(6)f (x )+f (-x )=0⇔f (x )为奇函数;f (x )-f (-x )=0⇔f (x )为偶函数.2.抽象函数的周期性与对称性的结论 (1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )是周期函数,T =2a . ②若函数f (x )满足f (x +a )=-f (x ),则f (x )是周期函数,T =2a . ③若函数f (x )满足f (x +a )=1f x,则f (x )是周期函数,T =2a .(2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a,0)对称.③若函数y =f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.3.函数图象平移变换的相关结论(1)把y =f (x )的图象沿x 轴左右平移|c |个单位(c >0时向左移,c <0时向右移)得到函数y =f (x +c )的图象(c 为常数).(2)把y =f (x )的图象沿y 轴上下平移|b |个单位(b >0时向上移,b <0时向下移)得到函数y =f (x )+b 的图象(b 为常数).(三) 易错易混要明了1.求函数的定义域时,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根,被开方数一定是非负数;对数式中的真数是正数.列不等式时,应列出所有的不等式,不能遗漏.2.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“和”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.3.判断函数的奇偶性时,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.4.用换元法求解析式时,要注意新元的取值范围,即函数的定义域问题. [针对练1] 已知f (cos x )=sin 2x ,则f (x )=________.解析:令t =cos x ,且t ∈[-1,1],则f (t )=1-t 2,t ∈[-1,1],即f (x )=1-x 2,x ∈[-1,1].答案:1-x 2,x ∈[-1,1]5.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应法则的函数,它是一个函数,而不是几个函数.[针对练2] 已知函数f (x )=⎩⎪⎨⎪⎧e x,x <0,ln x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1e =________.解析:f ⎝ ⎛⎭⎪⎫1e =ln 1e =-1,f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1e =f (-1)=e -1=1e .答案:1e[课时跟踪检测]A 组——12+4提速练一、选择题 1.函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)解析:选C 由题意可知x 满足log 2x -1>0,即log 2x >log 22,根据对数函数的性质得x >2,即函数f (x )的定义域是(2,+∞).2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos 6π+x ,x ≤0,则下列结论正确的是( )A .函数f (x )是偶函数B .函数f (x )是减函数C .函数f (x )是周期函数D .函数f (x )的值域为[-1,+∞)解析:选D 由函数f (x )的解析式,知f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数.当x >0时,f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x ) ∈[-1,1].所以函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).故选D.3.(2017·合肥模拟) 函数y =x 2ln |x ||x |的图象大致是( )解析:选D 易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x+1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D.4.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象.因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A ,C ,D ,故选B.5.(2017·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选D 选项A ,B 是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y=x -1x在(0,+∞)上为增函数,所以选项D 正确.故选D.6.(2017·陕西质检)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (8)=( ) A .-1 B .0 C .1D .-2解析:选B 由奇函数f (x )的定义域为R ,可得f (0)=0,由f (x +2)为偶函数,可得f (-x +2)=f (x +2),故f (x +4)=f [(x +2)+2]=f [-(x +2)+2]=f (-x )=-f (x ),则f (x +8)=f [(x +4)+4]=-f (x +4)=-[-f (x )]=f (x ),即函数f (x )的周期为8,所以f (8)=f (0)=0,故选B.7.函数y =ln |x |x 2+1x2在[-2,2]上的图象大致为( )解析:选B 当x ∈(0,2]时,函数y =ln |x |+1x 2=ln x +1x2,x 2>0恒成立,令g (x )=ln x +1,则g (x )在(0,2]上单调递增,当x =1e 时,y =0,则当x ∈⎝ ⎛⎭⎪⎫0,1e 时,y =ln x +1x 2<0,x ∈⎝ ⎛⎦⎥⎤1e ,2时,y =ln x +1x 2>0,∴函数y =ln x +1x 2在(0,2]上只有一个零点1e ,排除A ,C ,D ,只有选项B 符合题意.8.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数. 因为f (x )在R 上单调递增,f (0)=0, 所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0.又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3), 20.8<2=log 24<log 25.1<log 28=3, 所以b <a <c .9.已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (x +1)=f (x ).又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.故选D.10.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)解析:选A x ≤0时,f (x )=2-x-1, 0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.故当x >0时,f (x )是周期函数,f (x )的图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).11.(2018届高三·广西三市联考)已知函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧e x ,x ≤4,4e 5-x,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),则m 的取值范围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:选D 作出函数y 1=e|x -2|和y =g (x )的图象,如图所示,由图可知当x =1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e5-x,得e2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.12.(2017·洛阳统考)已知函数f (x )=⎩⎪⎨⎪⎧a -1x +4-2a ,x <1,1+log 2x ,x ≥1.若f (x )的值域为R ,则实数a 的取值范围是( )A .(1,2]B .(-∞,2]C .(0,2]D .[2,+∞)解析:选A 依题意,当x ≥1时,f (x )=1+log 2x 单调递增,f (x )=1+log 2x 在区间[1,+∞)上的值域是[1,+∞).因此,要使函数f (x )的值域是R ,则需函数f (x )在(-∞,1)上的值域M ⊇(-∞,1).①当a -1<0,即a <1时,函数f (x )在(-∞,1)上单调递减,函数f (x )在(-∞,1)上的值域M =(-a +3,+∞),显然此时不能满足M ⊇(-∞,1),因此a <1不满足题意;②当a -1=0,即a =1时,函数f (x )在(-∞,1)上的值域M ={2},此时不能满足M ⊇(-∞,1),因此a =1不满足题意;③当a -1>0,即a >1时,函数f (x )在(-∞,1)上单调递增,函数f (x )在(-∞,1)上的值域M =(-∞,-a +3),由M ⊇(-∞,1)得{ a >1,-a +3≥1,解得1<a ≤2.综上所述,满足题意的实数a 的取值范围是(1,2],故选A.二、填空题13.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1).又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:614.(2017·陕西质检)已知函数f (x )=1|x |-1,下列关于函数f (x )的结论:①y =f (x )的值域为R ;②y =f (x )在(0,+∞)上单调递减; ③y =f (x )的图象关于y 轴对称;④y =f (x )的图象与直线y =ax (a ≠0)至少有一个交点. 其中正确结论的序号是________.解析:函数f (x )=1|x |-1=⎩⎪⎨⎪⎧1x -1,x ≥0,1-x -1,x <0,其图象如图所示,由图象可知f (x )的值域为(-∞,-1)∪(0,+∞),故①错;f (x )在(0,1)和(1,+∞)上单调递减,而在(0,+∞)上不是单调的,故②错;f (x )的图象关于y轴对称,故③正确;由于f (x )在每个象限都有图象,所以与过原点的直线y =ax (a ≠0)至少有一个交点,故④正确.答案:③④15.(2017·惠州调研)已知定义在R 上的函数y =f (x )满足条件fx +32=-f (x ),且函数y=fx -34为奇函数,给出以下四个结论:①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中正确结论的序号为________.解析:f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数fx-34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,②正确;因为f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,-34=-x +⎝ ⎛⎭⎪⎫-32+x 2,所以f (-x )=-f -32+x ,又f ⎝⎛⎭⎪⎫-32+x =-f ⎝⎛⎭⎪⎫-32+x +32=-f (x ),所以f (-x )=f (x ),③正确;f (x )是周期函数,在R 上不可能是单调函数,④错误.故正确结论的序号为①②③.答案:①②③16.(2017·合肥质检)函数f (x )=-x 3+3x 2-ax -2a ,若存在唯一的正整数x 0,使得f (x 0)>0,则a 的取值范围是________.解析:由f (x )>0可得,a (x +2)<-x 3+3x 2,原问题等价于不等式a (x +2)<-x 3+3x 2的解集中只包含唯一的正整数,结合函数g (x )=a (x +2),h (x )=-x 3+3x 2的图象(图略)可知唯一的正整数只可能是1或2.若x 0=1,则⎩⎪⎨⎪⎧a >0,g 2≥h 2,g 1<h 1,即⎩⎪⎨⎪⎧a >0,4a ≥4,3a <2,解得a ∈∅;若x 0=2,则⎩⎪⎨⎪⎧a >0,g 2<h 2,g 1≥h 1,即⎩⎪⎨⎪⎧a >0,4a <4,解得23≤a <1,3a ≥2,答案:⎣⎢⎡⎭⎪⎫23,1B 组——能力小题保分练1.(2017·郑州质检)函数f (x )=1-2x1+2x cos x 的图象大致为( )解析:选C 依题意,f (-x )=1-2-x1+2-x cos(-x )=2x1-2-x 2x1+2-x cos x =2x-12x+1cos x =-f (x ),因此函数f (x )是奇函数,其图象关于原点对称,结合各选项知,选项A ,B 均不正确;当0<x <1时,1-2x1+2x <0,cos x >0,f (x )<0,结合选项知,C 正确,故选C.2.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1). 因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).3.(2017·成都模拟)已知函数f (x )=a x(a >0,a ≠1)的反函数的图象经过点⎝⎛⎭⎪⎫22,12.若函数g (x )的定义域为R ,当x ∈[-2,2]时,有g (x )=f (x ),且函数g (x +2)为偶函数,则下列结论正确的是( )A .g (π)<g (3)<g (2)B .g (π)<g (2)<g (3)C .g (2)<g (3)<g (π)D .g (2)<g (π)<g (3)解析:选C 因为函数f (x )的反函数的图象经过点⎝⎛⎭⎪⎫22,12,所以函数f (x )的图象经过点⎝ ⎛⎭⎪⎫12,22,所以a 12=22,即a =12,函数f (x )在R 上单调递减.函数g (x +2)为偶函数,所以函数g (x )的图象关于直线x =2对称,又x ∈[-2,2]时,g (x )=f (x )且g (x )单调递减,所以x ∈[2,6]时,g (x )单调递增,根据对称性,可知在[-2,6]上距离对称轴x =2越远的自变量,对应的函数值越大,所以g (2)<g (3)<g (π).故选C.4.(2017·广州模拟)已知函数f (x )=x 3-32x 2+34x +18,则∑k =12 016f ⎝⎛⎭⎪⎫k 2 017的值为( )A .0B .504C .1 008D .2 016解析:选B 因为f (1-x )=(1-x )3-32(1-x )2+34(1-x )+18=-x 3+32x 2-34x +38,所以f (x )+f (1-x )=x 3-32x 2+34x +18-x 3+32x 2-34x +38=12,所以∑k =12 016f ⎝ ⎛⎭⎪⎫k 2 017=f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+…+f ⎝⎛⎭⎪⎫2 0162 017=1 008×⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫2 0162 017=1 008×12=504.故选B.5.设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =________.解析:依题意得,曲线y =f (x )即为-x =(-y )2+a (y <0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,解得a =23.答案:236.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点.设顶点P (x ,y )的轨迹方程是y =f (x ),则对函数y =f (x )有下列判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④∫20f (x )d x =π+12.其中判断正确的序号是________.(写出所有正确的序号)解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每过4个单位长度图象重复出现一次,且在区间[2,3]上其函数值随x 增大而增大,所以①②正确,③错误;又函数图象与直线x =0,x =2,x 轴围成的图形由一个半径为2、圆心角为π4的扇形,一个半径为1、圆心角为π2的扇形和一个直角边长为1的等腰直角三角形组成,其面积S =18×π×2+14×π+12=π+12,所以④正确.答案:①②④第二讲 小题考法——基本初等函数、函数与方程考点(一)主要考查指数函数、对数函数、幂函数的图象辨析以及比较大小问题.基本初等函数的图象与性质[典例感悟][典例] (1)若当x ∈R 时,函数f (x )=a |x |(a >0且a ≠1)满足f (x )≤1,则函数y =log a (x +1)的图象大致为( )(2)(2017·全国卷Ⅰ)设x,y,z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3yC.3y<5z<2x D.3y<2x<5z[解析] (1)由a|x|≤1(x∈R),知0<a<1,又函数y=log a(x+1)的图象是由y=log a x的图象向左平移一个单位而得,故选C.(2)设2x=3y=5z=k>1,∴x=log2k,y=log3k,z=log5k.∵2x-3y=2log2k-3log3k=2log k2-3log k3=2log k3-3log k2 log k2·log k3=log k32-log k23 log k2·log k3=log k98log k2·log k3>0,∴2x>3y;∵3y-5z=3log3k-5log5k=3log k3-5log k5=3log k5-5log k3log k3·log k5=log k53-log k35log k3·log k5=log k125243log k3·log k5<0,∴3y<5z;∵2x-5z=2log2k-5log5k=2log k2-5log k5=2log k5-5log k2log k2·log k5=log k52-log k25log k2·log k5=log k2532log k2·log k5<0,∴5z>2x.∴5z>2x>3y.[答案] (1)C (2)D[方法技巧]3招破解指数、对数、幂函数值的大小比较问题(1)底数相同,指数不同的幂用指数函数的单调性进行比较. (2)底数相同,真数不同的对数值用对数函数的单调性比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.[演练冲关]1.(2017·北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数解析:选A 因为f (x )=3x -⎝ ⎛⎭⎪⎫13x ,且定义域为R ,所以f (-x )=3-x -⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-3x-⎝ ⎛⎭⎪⎫13x=-f (x ),即函数f (x )是奇函数. 又y =3x 在R 上是增函数,y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,所以f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.2.(2017·洛阳统考)已知f (x )是偶函数,当x >0时,f (x )单调递减,设a =-21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则f (a ),f (b ),f (c )的大小关系为( ) A .f (c )<f (b )<f (a ) B .f (c )<f (a )<f (b ) C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )解析:选C 依题意,注意到21.2>20.8=⎝ ⎛⎭⎪⎫12-0.8>1=log 55>log 54=2log 52>0,又函数f (x )在区间(0,+∞)上是减函数,于是有f (21.2)<f (20.8)<f (2log 52),由函数f (x )是偶函数得f (a )=f (21.2),因此f (a )<f (b )<f (c ),故选C.3.(2018届高三·西安八校联考)如图所示,已知函数y =log 24x 图象上的两点A ,B 和函数y =log 2x 图象上的点C ,线段AC 平行于y 轴,当△ABC 为正三角形时,点B 的横坐标为________.解析:依题意,当AC ∥y 轴,△ABC 为正三角形时,|AC |=log 24x-log 2x =2,点B 到直线AC 的距离为3,设点B (x 0,2+log 2x 0),则点A (x 0+3,3+log 2x 0).由点A 在函数y =log 24x 的图象上,得log 24(x 0+3)=3+log 2x 0=log 28x 0,则4(x 0+3)=8x 0,x 0=3,即点B 的横坐标是 3. 答案: 3考点(二)主要考查利用函数零点存在性定理或数形结合函 数 的 零 点法确定函数零点的个数或其存在范围,以及应用零点求参数的值或范围.[典例感悟][典例] (1)(2017·南昌模拟)已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x(e 为自然对数的底数)的零点个数是( )A .0B .1C .2D .3(2)(2017·成都模拟)已知函数f (x )是定义在R 上的偶函数,且f (-x -1)=f (x -1),当x∈[-1,0]时,f (x )=-x 3,则关于x 的方程f (x )=|cos πx |在⎣⎢⎡⎦⎥⎤-52,12上的所有实数解之和为( )A .-7B .-6C .-3D .-1(3)(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12 B.13C.12D .1[解析] (1)当x >0时,f (x )=ln x -x +1,f ′(x )=1x-1=1-xx,所以x ∈(0,1)时,f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max =f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =e x 的大致图象,如图,观察到函数y =f (x )与y =e x的图象有两个交点,所以函数g (x )=f (x )-e x(e 为自然对数的底数)有2个零点.故选C.(2)因为函数f (x )为偶函数,所以f (-x -1)=f (x +1)=f (x -1),即f (x )=f (x +2),所以函数f (x )的周期为2,又当x ∈[-1,0]时,f (x )=-x 3,由此在同一平面直角坐标系内作出函数y =f (x )与y =|cos πx |的图象,如图所示.由图知关于x 的方程f (x )=|cos πx |在⎣⎢⎡⎦⎥⎤-52,12上的实数解有7个.不妨设x 1<x 2<x 3<x 4<x 5<x 6<x 7,则由图,得x 1+x 2=-4,x 3+x 5=-2,x 4=-1,x 6+x 7=0,所以方程f (x )=|cos πx |在⎣⎢⎡⎦⎥⎤-52,12上的所有实数解的和为-4-2-1+0=-7,故选A. (3)由f (x )=0⇔a (e x -1+e-x +1)=-x 2+2x .ex -1+e-x +1≥2ex -1·e-x +1=2,当且仅当x =1时等号成立.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时等号成立. 若a >0,则a (ex -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.[答案] (1)C (2)A (3)C[方法技巧]1.判断函数零点个数的方法 直接法 直接求零点,令f (x )=0,则方程解的个数即为函数零点的个数 定理法 利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点 数形 结合法 对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.[演练冲关]1.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -22,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )A .2B .3C .4D .5解析:选A 由已知条件得g (x )=3-f (2-x )=⎩⎪⎨⎪⎧|x -2|+1,x ≥0,3-x 2,x <0,函数y =f (x )-g (x )的零点个数即为函数y =f (x )与y =g (x )图象交点的个数,分别画出函数y =f (x ),y =g (x )的草图,观察发现有2个交点.故选A.2.(2017·洛阳统考)已知函数f (x )=ln x -ax 2+x 有两个零点,则实数a 的取值范围是( )A .(-∞,1)B .(0,1)C.⎝⎛⎭⎪⎫-∞,1+e e 2D.⎝⎛⎭⎪⎫0,1+e e 2解析:选B 依题意,关于x 的方程ax -1=ln x x有两个不等的正实数根.记g (x )=ln xx,则g ′(x )=1-ln x x2,当0<x <e 时,g ′(x )>0,g (x )在区间(0,e)上单调递增;当x >e 时,g ′(x )<0,g (x )在区间(e ,+∞)上单调递减,且g (e)=1e,当0<x <1时,g (x )<0.设直线y =a 1x -1与函数g (x )的图象相切于点(x 0,y 0),则有⎩⎪⎨⎪⎧a 1=1-ln xx 2,a 1x 0-1=ln x 0x,由此解得x 0=1,a 1=1.在坐标平面内画出直线y =ax -1与函数g (x )的大致图象,结合图象可知,要使直线y =ax -1与函数g (x )的图象有两个不同的交点,则a 的取值范围是(0,1),故选B.3.(2017·山东高考)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0, 2 ]∪[23,+∞)D .(0, 2 ]∪[3,+∞)解析:选B 在同一直角坐标系中,分别作出函数f (x )=(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2与g (x )=x +m 的大致图象.分两种情形:(1)当0<m ≤1时,1m≥1,如图①,当x ∈[0,1]时,f (x )与g (x )的图象有一个交点,符合题意;(2)当m>1时,0<1m<1,如图②,要使f(x)与g(x)的图象在[0,1]上只有一个交点,只需g(1)≤f(1),即1+m≤(m-1)2,解得m≥3或m≤0(舍去).综上所述,m∈(0,1]∪[3,+∞).[必备知能·自主补缺](一) 主干知识要记牢1.指数函数与对数函数的对比表解析式y=a x(a>0与a≠1)y=log a x(a>0与a≠1)图象定义域R(0,+∞)值域(0,+∞)R单调性0<a<1时,在R上是减函数;a>1时,在R上是增函数0<a<1时,在(0,+∞)上是减函数;a>1时,在(0,+∞)上是增函数两图象的对称性关于直线y=x对称2.方程的根与函数的零点(1)方程的根与函数零点的关系由函数零点的定义,可知函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(2)函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的实数根.[针对练1] 在下列区间中,函数f(x)=e x+4x-3的零点所在的区间为( )A.⎝ ⎛⎭⎪⎫-14,0B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫14,12 D.⎝ ⎛⎭⎪⎫12,34 解析:选C 因为f ⎝ ⎛⎭⎪⎫14=e 14+4×14-3=e 14-2<0,f ⎝ ⎛⎭⎪⎫12=e 12+4×12-3=e 12-1>0,f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,所以f (x )=e x+4x -3的零点所在的区间为⎝ ⎛⎭⎪⎫14,12.(二) 易错易混要明了1.不能准确理解基本初等函数的定义和性质.如讨论函数y =a x(a >0,a ≠1)的单调性时忽视字母a 的取值范围,忽视a x>0;研究对数函数y =log a x (a >0,a ≠1)时忽视真数与底数的限制条件.2.易混淆函数的零点和函数图象与x 轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.3.函数f (x )=ax 2+bx +c 有且只有一个零点,要注意讨论a 是否为零.[针对练2] 函数f (x )=mx 2-2x +1有且仅有一个正实数零点,则实数m 的取值范围为________.解析:当m =0时,f (x )=-2x +1,则x =12为函数的零点.当m ≠0时,若Δ=4-4m =0,即当m =1时,x =1是函数唯一的零点. 若Δ=4-4m ≠0,即m ≠1时,显然x =0不是函数的零点.这样函数有且仅有一个正实数零点等价于方程f (x )=mx 2-2x +1有一个正根一个负根. 因此1m<0.则m <0.综上知实数m 的取值范围是(-∞,0]∪{1}.答案:(-∞,0]∪{1}[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·沈阳质检)函数f (x )=ln(x 2+1)的图象大致是( )解析:选A 函数f (x )的定义域为R ,由f (-x )=ln[(-x )2+1]=ln(x 2+1)=f (x )知函数f (x )是偶函数,则其图象关于y 轴对称,排除C ;又由f (0)=ln 1=0,可排除B ,D.故选A.2.(2016·全国卷Ⅲ)已知a =243,b =323,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b解析:选A a =243=423,b =323,c =2513=523.∵y =x 23在第一象限内为增函数,又5>4>3,∴c >a >b .3.(2017·陕西质检)已知a =2-13,b =(2log 23)-12,c =14⎠⎛0πsin x d x ,则实数a ,b ,c 的大小关系是( )A .a>c>bB .b>a>cC .a>b>cD .c>b>a解析:选C 依题意得,a =2-13,b =3-12,c =-14cos x π0=12,所以a 6=2-2=14,b 6=3-3=127,c 6=⎝ ⎛⎭⎪⎫126=164,则a 6>b 6>c 6,即a>b>c ,故选C . 4.函数f(x)=e x+x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)解析:选C ∵f(0)=e 0+0-2=-1<0,f(1)=e 1+1-2=e -1>0,∴f(0)·f(1)<0,故函数f(x)=e x+x -2的零点所在的一个区间是(0,1),故选C .5.某公司为激励创新,计划逐年加大研发资金投入,若该公司2017年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A .2020年B .2021年C .2022年D .2023年解析:选B 设2017年后的第n 年该公司投入的研发资金开始超过200万元.由130(1+12%)n>200,得1.12n>2013,两边取常用对数,得n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2021年开始,该公司投入的研发资金开始超过200万元.6.函数f(x)=⎩⎪⎨⎪⎧x 2-2,x≤0,2x -6+ln x ,x>0的零点个数是( )A .0B .1C .2D .4解析:选C 当x≤0时,f(x)=x 2-2,令x 2-2=0,得x =2(舍去)或x =-2,即在区间(-∞,0]上,函数只有一个零点.当x>0时,f(x)=2x -6+ln x ,f′(x)=2+1x ,由x>0知f′(x)>0,∴f(x)在(0,+∞)上单调递增,而f(1)=-4<0,f(e )=2e -5>0,f(1)·f(e )<0,从而f(x)在(0,+∞)上只有一个零点.故函数f(x)的零点个数是2.7.(2017·全国卷Ⅰ)已知函数f(x)=ln x +ln (2-x),则( )A .f(x)在(0,2)单调递增B .f(x)在(0,2)单调递减C .y =f(x)的图象关于直线x =1对称D .y =f(x)的图象关于点(1,0)对称解析:选C 由题易知,f(x)=ln x +ln (2-x)的定义域为(0,2),f(x)=ln [x(2-x)]=ln [-(x -1)2+1],由复合函数的单调性知,函数f(x)=ln x +ln (2-x)在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝ ⎛⎭⎪⎫2-32=ln 34, 所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D .故选C .8.(2017·贵阳检测)已知函数f(x)=ln (x 2-4x -a),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞)解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域包含(0,+∞),因此对于方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞),故选D.9.(2018届高三·河北五校联考)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n的最小值为( )A .2 2B .4 C.52D.92解析:选D 由函数y =log a (x +3)-1(a >0,且a ≠1)知,当x =-2时,y =-1,所以A 点的坐标为(-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,所以2m +1n =2m +n m +2m +n 2n =2+n m +m n +12≥52+2n m ·m n =92,当且仅当m =n =23时等号成立.所以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 不等式考情分析1.利用不等式性质比较大小,利用基本不等式求最值及线性规划问题是高考的热点. 2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数的取值范围. 3.利用不等式解决实际问题. 热点分类突破 热点一 不等式的解法 1.一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. 2.简单分式不等式的解法 (1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.例1 (1)(2017届湖南衡阳八中月考)设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为( )A .(1,2)∪(3,+∞)B .(10,+∞)C .(1,2)∪(10,+∞)D .(1,2)答案 C解析 令2e x -1>2(x <2),解得1<x <2.令log 3(x 2-1)>2(x ≥2),解得x >10,则不等式f (x )>2的解集为(1,2)∪(10,+∞),故选C. (2)(2017届安徽师大附中期中)已知不等式ax 2-5x +b >0的解集为{x |-3<x <2},则不等式bx 2-5x +a >0的解集为______________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x >12 解析 根据题意可得5a =-1,ba=-6,∴a =-5,b =30,∴bx 2-5x +a >0可化为6x 2-x -1>0⇔(3x +1)(2x -1)>0,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x >12.思维升华 (1)对于和函数有关的不等式,可先利用函数的单调性进行转化.(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.(3)含参数的不等式的求解,要对参数进行分类讨论.跟踪演练1 (1)(2017届安徽淮北一中模拟)不等式5-xx -1≥0的解集是__________.答案 {x |1<x ≤5}解析 原不等式化为-x +5x -1≥0,即x -5x -1≤0,等价于⎩⎪⎨⎪⎧(x -5)(x -1)≤0,x -1≠0,解得1<x ≤5,即不等式5-x x -1≥0的解集是{x |1<x ≤5}.(2)已知函数f (x )=ln|x |,则f (x )>1的解集为________________. 答案 (-∞,-e)∪(e ,+∞)解析 函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧ln (-x ),x <0,ln x ,x >0.当x >0时,解f (x )=ln x >1,得x >e ,即x 的取值范围是(e ,+∞);当x <0时,解f (x )=ln(-x )>1,得x <-e ,即x 的取值范围是(-∞,-e). 综上可得f (x )>1的解集为(-∞,-e)∪(e ,+∞). 热点二 基本不等式的应用利用基本不等式求最大值、最小值,其基本法则是:(1)如果x >0,y >0,xy =p (定值),当x =y 时,x +y 有最小值2p (简记为:积定,和有最小值);(2)如果x >0,y >0,x +y =s (定值),当x =y 时,xy 有最大值14s 2(简记为:和定,积有最大值).例2 (1)若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A .2 B .4 C .6 D .8 答案 B解析 由题意,得lg a +lg b =lg(a +b ), 即ab =a +b ⇒1a +1b=1.因为a >0,b >0,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2b a ·ab=4,当且仅当a =b 时取等号,故选B.(2)(2017届甘肃肃南裕固族自治县一中月考)已知a >b ,且ab =1,则a 2+b 2a -b 的最小值是________. 答案 2 2解析 a 2+b 2a -b =(a -b )2+2ab a -b =a -b +2a -b ≥22,当且仅当a -b =2a -b时取得等号.思维升华 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号成立的条件)的条件,否则会出现错误.跟踪演练2 (1)(2017届昆明摸底统测)已知a >1,b >1,且ab +2=2(a +b ),则ab 的最小值为________. 答案 6+4 2解析 因为ab +2=2(a +b )≥4ab ,当且仅当a =b 时取等号,所以(ab -2)2≥2. 因为a >1,b >1,所以ab ≥2+2,ab ≥6+4 2. 即ab 的最小值为6+4 2.(2)(2017届无锡市普通高中期中)已知正实数a ,b 满足a +3b =7,则11+a +42+b 的最小值为______. 答案 13+4314解析11+a +42+b =114[(a +1)+3(2+b )]⎝⎛⎭⎫11+a +42+b=114⎣⎢⎡⎦⎥⎤13+3(2+b )a +1+4(a +1)2+b ≥13+4314,当且仅当3(2+b )a +1=4(a +1)2+b 时取等号. 热点三 简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.例3 (1)(2017·全国Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0, 则z =2x +y 的最小值是( )A .-15B .-9C .1D .9 答案 A解析 不等式组表示的可行域如图中阴影部分所示.将目标函数z =2x +y 化为y =-2x +z ,作出直线y =-2x ,并平移该直线知,当直线y =-2x +z 经过点A (-6,-3)时,z 有最小值,且z min =2×(-6)-3=-15.故选A. (2)若x ,y 满足⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,且z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( ) A .(-1,2) B .(-2,4) C .(-4,0] D .(-4,2)答案 D解析 作出不等式组对应的平面区域如图,当a =0时,显然成立;当a >0时,直线ax +2y -z =0的斜率k =-a 2>k AC =-1,计算得出a <2,即0<a <2;当a <0时,k =-a2<k AB =2,计算得出a >-4,即-4<a <0. 综上得-4<a <2,故选D.思维升华 (1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得. 跟踪演练3 (1)(2017·全国Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________. 答案 -5解析 作出可行域如图阴影部分所示.由z =3x -2y ,得y =32x -z2.作出直线l 0:y =32x ,并平移l 0知,当直线y =32x -z2过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x +2y -1=0,2x +y +1=0, 得A (-1,1),∴z min =3×(-1)-2×1=-5.(2)(2017届重庆市第一中学模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,3x -y -5≥0,则z =y +12x的最大值为________. 答案 56解析 画出约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,3x -y -5≥0表示的可行域,如图,y +1x就是可行域内的点P (x ,y )与点A (0,-1)连线的斜率,由⎩⎪⎨⎪⎧x -y +1=0,3x -y -5=0,得直线交点为(3,4),当P 在点(3,4)时,y +1x 有最大值4+13=53,则y +12x 的最大值为56.真题体验1.(2017·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为________.答案 9解析 作出可行域如图阴影部分所示.设z =x +2y ,则y =-12x +12z .作出直线l 0:y =-12x ,并平移该直线,可知当直线y =-12x +12z 过点C 时,z 取得最大值.由⎩⎪⎨⎪⎧ x =3,y =x ,得⎩⎪⎨⎪⎧x =3,y =3,故C (3,3). ∴z max =3+2×3=9.2.(2016·浙江改编)已知实数a ,b ,c ,则下列正确的是________.(填序号) ①若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100; ②若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100; ③若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100; ④若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100. 答案 ④解析 对①,当a =b =10,c =-110时,此式不成立; 对②,当a =10,b =-100,c =0时,此式不成立; 对③,当a =10,b =-10,c =0时,此式不成立. 故填④.3.(2016·上海)设x ∈R ,则不等式|x -3|<1的解集为__________. 答案 (2,4)解析 由-1<x -3<1,得2<x <4,故解集为(2,4).4.(2017·天津)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号.故a 4+4b 4+1ab 的最小值为4.押题预测1.已知x ,y 为正实数,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92押题依据 基本不等式在历年高考中的地位都很重要,已成为高考的重点和热点,用基本不等式求函数(和式或积式)的最值问题,有时与解析几何、数列等知识相结合. 答案 C解析 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x +y +4x +y ,当且仅当x =y 时取等号,∴(x +y )2-5(x +y )+4≤0, 解得1≤x +y ≤4,∴x +y 的最大值是4. 2.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( ) A .-12 B .-32 C.12 D.32押题依据 不等式的解法作为数学解题的一个基本工具,在高考中是必考内容.往往与函数的单调性相结合,最后转化成一元一次不等式或一元二次不等式. 答案 D解析 由定义知,不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =4x +y 的最小值为( )A .-6B .6C .7D .8押题依据 线性规划的实质是数形结合思想的应用,利用线性规划的方法求一些线性目标函数的最值是近几年高考的热点. 答案 C解析 由x ,y 满足的约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,画出可行域如图所示,当直线z =4x +y 过点C (1,3)时,z 取得最小值且最小值为4+3=7,故选C.4.若不等式x 2+2x <a b +16ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-4,2)B .(-∞,-4)∪(2,+∞)C .(-∞,-2)∪(0,+∞)D .(-2,0)押题依据 “恒成立”问题是函数和不等式交汇处的重要题型,可综合考查不等式的性质,函数的值域等知识,是高考的热点. 答案 A解析 不等式x 2+2x <a b +16ba对任意a ,b ∈(0,+∞)恒成立,等价于不等式x 2+2x <⎝⎛⎭⎫a b +16b a min .因为对任意a ,b ∈(0,+∞),a b +16b a ≥2a b ·16b a =8(当且仅当a b =16ba,即a =4b 时取等号),所以x 2+2x <8,解得-4<x <2,故选A.A 组 专题通关1.已知下列四个关系:①a >b ⇔ac 2>bc 2;②a >b ⇒1a <1b ;③a >b >0,c >d >0⇒a d >bc ;④a >b >1,c <0⇒a c <b c .其中正确的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 当c =0时,①不正确;当a >0>b 时,②不正确;由于c >d >0,所以1d >1c >0,所以a d >bc>0,③正确;由于a >b >1,当x <0时,a x <b x ,故a c <b c 正确.所以有两个正确. 2.若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +12,x ≤0,则“0<x <1”是“f (x )<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A解析 当0<x <1时,f (x )=log 2x <0, 所以“0<x <1”⇒“f (x )<0”;若f (x )<0,则⎩⎪⎨⎪⎧x >0,log 2x <0或⎩⎪⎨⎪⎧x ≤0,-2x +12<0,解得0<x <1或-1<x ≤0,所以-1<x <1, 所以“f (x )<0”⇏“0<x <1”.故选A.3.(2017届江西赣州十三县市十四校联考)对于使f (x )≤M 恒成立的所有常数M 中,我们把M 的最小值叫做f (x )的上确界,若a >0,b >0且a +b =1,则-12a -2b 的上确界为( )A.92 B .-92 C.14 D .-4 答案 B解析 -12a -2b =-⎝⎛⎭⎫12a +2b (a +b )=-⎝⎛⎭⎫52+b 2a +2a b ≤-⎝⎛⎭⎫52+2 b 2a ×2a b =-92, 当且仅当b 2a =2a b ,即b =2a =23时取等,所以原式的上确界为-92,故选B.4.(2017届山东菏泽一中月考)已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)答案 D解析 ∵2x +1y =1,∴x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +x y ≥4+24=8,当且仅当4y x =xy 时取等号. ∵x +2y >m 2+2m 恒成立,∴m 2+2m <8,求得-4<m <2,故选D. 5.已知实数x ,y 满足⎩⎪⎨⎪⎧x >0,y ≥x ,2x +y -6≤0,则2x +y +2x的最小值为( )A .1B .3C .4D .6 答案 C解析 画出可行域如图所示,由图可知目标函数2x +y +2x =2+y -(-2)x -0在点A (2,2)处取得最小值4.6.(2017届河南南阳一中月考)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x ≤1,x -y +m 2≥0,x +y -1≥0,若目标函数z=-2x +y 的最大值不超过4,则实数m 的取值范围是( ) A .(-3,3) B .[0,3] C .[-3,0] D .[-3,3] 答案 D解析 作出不等式组表示的平面区域如图所示,目标函数z =-2x +y 可变形为y =2x +z ,解方程组⎩⎪⎨⎪⎧x -y +m 2=0,x +y -1=0,可得⎩⎨⎧x =1-m 22,y =1+m 22,平移目标直线到经过点A ⎝⎛⎭⎫1-m 22,1+m 22时,目标函数z =-2x +y 取得最大值,所以(-2)×1-m 22+1+m 22≤4,解得m ∈[-3,3],故选D.7.(2017·武汉市武昌区调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a 等于( )A .-5B .3C .-5或3D .5或-3 答案 B解析 根据约束条件画出可行域如图所示.可知可行域为向上开口的V 字型,即在顶点处z 有最小值,顶点为⎝⎛⎭⎫a -12,a +12,代入z =a -12+a ⎝⎛⎭⎫a +12=7,解得a =3或a =-5.当a =-5时,如图,虚线向上移动时z 减小,故z 可以取无穷小,没有最小值,故只有a =3满足题意.8.(2017届唐山期末)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -5≤0,x +y -4≤0,3x +y -10≥0,则z =x 2+y 2的最小值为( )A.10 B .10 C .8 D .5 答案 B解析 作出不等式组表示的平面区域,如图所示,因为z =x 2+y 2表示区域内的点到原点距离的平方,由图知,当区域内的点与原点的连线与直线3x +y -10=0垂直时z =x 2+y 2取得最小值,此时垂直正好在平面区域内.所以z min =⎝⎛⎭⎪⎫|3×0+0-10|32+122=10,故选B.9.(2017届吉林市普通中学调研)已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上一个动点,则OA →·OM →的取值范围是________.答案 [0,2]解析 作出不等式组表示的平面区域,如图所示.由题意得OA →·OM →=-x +y ,令z =-x +y ,将其化为y =x +z ,作出可行域和目标函数基准直线y =x ,当直线y =x +z 向左上方平移时,直线y =x +z 在y 轴上的截距z 增大.由图象得当直线y =x +z 过点B (1,1)时,z 取得最小值0,当直线y =x +z 过点D (0,2)时,z 取得最大值2,即OA →·OM →的取值范围是[0,2].10.(2017·北京)已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是________. 答案 ⎣⎡⎦⎤12,1解析 方法一 由x +y =1,得y =1-x .又x ≥0,y ≥0,所以0≤x ≤1,x 2+y 2=x 2+(1-x )2=2x 2-2x +1=2⎝⎛⎭⎫x -122+12.由0≤x ≤1,得0≤⎝⎛⎭⎫x -122≤14, 即12≤x 2+y 2≤1.所以x 2+y 2∈⎣⎡⎦⎤12,1. 方法二 x 2+y 2=(x +y )2-2xy , 已知x ≥0,y ≥0,x +y =1, 所以x 2+y 2=1-2xy .因为1=x +y ≥2xy ,当且仅当x =y 时取等号, 所以0≤xy ≤14,所以12≤1-2xy ≤1,即x 2+y 2∈⎣⎡⎦⎤12,1.方法三 依题意,x 2+y 2可视为原点与线段x +y -1=0(x ≥0,y ≥0)上的点的距离的平方,如图所示,故(x 2+y 2)min =⎝ ⎛⎭⎪⎫|-1|22=12,(x 2+y 2)max =|OA |2=|OB |2=1, 故x 2+y 2∈⎣⎡⎦⎤12,1.11.(2017·江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 的值是_______. 答案 30解析 一年的总运费为6×600x =3 600x(万元), 一年的总存储费用为4x 万元,总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元. 因为3 600x+4x ≥23 600x·4x =240, 当且仅当3 600x=4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.12.(2016·全国Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 答案 216 000解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *,目标函数z =2 100x +900y .作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).B 组 能力提高13.(2017·山东)若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1b C .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b2a答案 B解析 方法一 ∵a >b >0,ab =1, ∴log 2(a +b )>log 2(2ab )=1. ∵b 2a =1a 2a =a -1·2-a ,令f (a )=a -1·2-a , 又∵b =1a ,a >b >0,∴a >1a ,解得a >1.∴f ′(a )=-a -2·2-a -a -1·2-a ·ln 2=-a -2·2-a (1+a ln 2)<0,∴f (a )在(1,+∞)上单调递减. ∴f (a )<f (1),即b 2a <12.∵a +1b =a +a =2a >a +b >log 2(a +b ),∴b 2a <log 2(a +b )<a +1b . 故选B.方法二 ∵a >b >0,ab =1,∴取a =2,b =12,此时a +1b =4,b 2a =18,log 2(a +b )=log 25-1≈1.3,∴b 2a <log 2(a +b )<a +1b . 故选B.14.(2017届安徽淮北一中模拟)若直线l :y =ax 将不等式组⎩⎪⎨⎪⎧x -y +2≥0,x +y -6≤0,x ≥0,y ≥0表示的平面区域的面积分为相等的两部分,则实数a 的值为( ) A.711 B.911 C.713 D.513 答案 A解析 画出可行域如图所示,由图可知,阴影部分总面积为14,要使S △ABC =7, 只需12·AC ·h =7,即h =146.将h =146代入x +y -6=0,解得x =113,即a =146113=711.15.已知正数a ,b 满足1a +9b =ab -5,则ab 的最小值为________.答案 36 解析1a +9b=ab -5⇒ab -5≥2 9ab⇒(ab )2-5ab -6≥0⇒ab ≥6⇒ab ≥36,当且仅当b =9a 时取等号,因此ab 的最小值为36.16.已知a >b ,二次三项式ax 2+2x +b ≥0对于一切实数x 恒成立,又∃x 0∈R ,使ax 20+2x 0+b =0成立,则a 2+b 2a -b 的最小值为________.答案 2 2解析 由题意,得a >b ,二次三项式ax 2+2x +b ≥0对于一切实数x 恒成立,所以a >0,且Δ=4-4ab ≤0,所以ab ≥1.由∃x 0∈R ,使ax 20+2x 0+b =0成立,可得Δ=0,所以ab =1,所以a >1,所以a 2+b2a -b=a 2+1a 2a -1a=a 4+1a 3-a >0,所以⎝ ⎛⎭⎪⎫a 4+1a 3-a 2=a 8+1+2a 4a 6+a 2-2a 4=a 4+1a 4+2a 2+1a 2-2=⎝⎛⎭⎫a 2+1a 22⎝⎛⎭⎫a 2+1a 2-2=⎝⎛⎭⎫a 2+1a 2-22+4⎝⎛⎭⎫a 2+1a 2-4⎝⎛⎭⎫a 2+1a 2-2, 令a 2+1a2=t >2,则⎝ ⎛⎭⎪⎫a 4+1a 3-a 2=(t -2)2+4(t -2)+4t -2 =(t -2)+4t -2+4≥4+4=8,当且仅当t =4时取等号,所以⎝ ⎛⎭⎪⎫a 4+1a 3-a 2的最小值为8, 所以a 2+b 2a -b的最小值为2 2.。