2013 中考原题 一元一次方程与应用
2013年福建省福州市中考数学试卷及答案
福建省福州市2013年中考数学试卷一.选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2013福州)2的倒数是()A.B.﹣ C.2 D.﹣2考点:倒数.分析:根据倒数的概念求解.解答:解:2的倒数是.故选A.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2013福州)如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°考点:余角和补角.分析:根据互余两角之和为90°即可求解.解答:解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.点评:本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键.3.(2013福州)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.解答:解:7 000 000=7×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(2013福州)下列立体图形中,俯视图是正方形的是()A.B. C.D.考点:简单几何体的三视图.分析:俯视图是从上面看所得到的视图,结合选项进行判断即可.解答:解:A.俯视图是带圆心的圆,故本选项错误;B.俯视图是一个圆,故本选项错误;C.俯视图是一个圆,故本选项错误;D.俯视图是一个正方形,故本选项正确;故选D.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.5.(2013福州)下列一元二次方程有两个相等实数根的是()A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x﹣1)=0考点:根的判别式.专题:计算题.分析:根据计算根的判别式,根据判别式的意义可对A、B、C进行判断;由于D的两根可直接得到,则可对D进行判断.解答:解:A.△=0﹣4×3=﹣12<0,则方程没有实数根,所以A选项错误;B.△=4﹣4×0=4>0,则方程有两个不相等的实数根,所以B选项错误;C.x2+2x+1=0,△=4﹣4×1=0,则方程有两个相等的实数根,所以C选项正确;D.x1=﹣3,x2=1,则方程有两个不相等的实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(2013福州)不等式1+x<0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:求出不等式的解集,即可作出判断.解答:解:1+x<0,解得:x<﹣1,表示在数轴上,如图所示:故选A点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(2013福州)下列运算正确的是()A.a•a2=a3B.(a2)3=a5C. D.a3÷a3=a考点:分式的乘除法;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.专题:计算题.分析:A.原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B.原式利用幂的乘方运算法则计算得到结果,即可作出判断;C.原式分子分母分别乘方得到结果,即可作出判断;D.原式利用同底数幂的除法法则计算得到结果,即可作出判断.解答:解:A.a•a2=a3,本选项正确;B.(a2)3=a6,本选项错误;C.()2=,本选项错误;D.a3÷a3=1,本选项错误,故选A点评:此题考查了分式的乘除法,同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.(2013福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB 长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为()A.2.5cm B.3.0cm C.3.5cm D.4.0cm考点:平行四边形的判定与性质;作图—复杂作图.分析:首先根据题意画出图形,知四边形ABCD是平行四边形,则平行四边形ABCD的对角线相等,即AD=BC.再利用刻度尺进行测量即可.解答:解:如图所示,连接BD、BC、AD.∵AC=BD,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.测量可得BC=AD=3.0cm,故选:B.点评:此题主要考查了复杂作图,关键是正确理解题意,画出图形.9.(2013福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上考点:可能性的大小.分析:根据取到白球的可能性交大可以判断出白球的数量大于红球的数量,从而得解.解答:解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.点评:本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.(2013福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0 B.a<0 C.b=0 D.ab<0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.解答:解:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确,故选B.点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力.二.填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.(2013福州)计算:= .考点:分式的加减法.专题:计算题.分析:因为分式的分母相同,所以分母不变,分子相减即可得出答案.解答:解:原式==.故答案为.点评:本题比较容易,考查分式的减法运算.12.(2013福州)矩形的外角和等于度.考点:多边形内角与外角.分析:根据多边形的外角和定理解答即可.解答:解:矩形的外角和等于360度.故答案为:360.点评:本题考查了多边形的外角和,多边形的外角和与边数无关,任何多边形的外角和都是360°.13.(2013福州)某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.考点:加权平均数.分析:根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.解答:解:根据题意得:(13×4+14×7+15×4)÷15=14(岁),故答案为:14.点评:此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.14.(2013福州)已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3(a﹣b)3的值是.考点:幂的乘方与积的乘方.专题:计算题.分析:所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值.解答:解:∵a+b=2,a﹣b=5,∴原式=[(a+b)(a﹣b)]3=103=1000.故答案为:1000点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.15.(2013福州)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.考点:正多边形和圆.分析:延长AB,然后作出C所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.解答:解:延长AB,然后作出C所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,相邻的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.点评:本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.三.解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(2013福州)(1)计算:;(2)化简:(a+3)2+a(4﹣a)考点:整式的混合运算;实数的运算;零指数幂.分析:(1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项化为最简二次根式,计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算即可得到结果.解答:解:(1)原式=1+4﹣2=5﹣2;(2)原式=a2+6a+9+4a﹣a2=10a+9.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.(2013福州)(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?考点:全等三角形的判定与性质;一元一次方程的应用.分析:(1)求出∠CAB=∠DAB,根据SAS推出△ABC≌△ABD即可;(2)设这个班有x名学生,根据题意得出方程3x+20=4x﹣25,求出即可.解答:(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名小学生.点评:本题考查了全等三角形的性质和判定,一元一次方程的应用,主要考查学生的推理能力和列方程的能力.18.(2013福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图;中位数;众数.专题:图表型.分析:(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.解答:解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)400×+380×(25%+15%)=180+152=332(人).答:估计该校身高在160≤x<170之间的学生约有332人.故答案为(1)B,C;(2)2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(2013福州)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD 关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.考点:旋转的性质;等边三角形的性质;轴对称的性质;平移的性质.专题:计算题.分析:(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.解答:解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为2;y轴;120.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.20.(2013福州)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB 于点E,且ME=1,AM=2,AE=(1)求证:BC是⊙O的切线;(2)求的长.考点:切线的判定;勾股定理的逆定理;弧长的计算;解直角三角形.分析:(1)欲证明BC是⊙O的切线,只需证明OB⊥BC即可;(2)首先,在Rt△AEM中,根据特殊角的三角函数值求得∠A=30°;其次,利用圆心角、弧、弦间的关系、圆周角定理求得∠BON=2∠A=60°,由三角形函数的定义求得ON==;最后,由弧长公式l=计算的长.解答:(1)证明:如图,∵ME=1,AM=2,AE=,∴ME2+AE2=AM2=4,∴△AME是直角三角形,且∠AEM=90°.又∵MN∥BC,∴∠ABC=∠AEM=90°,即OB⊥BC.又∵OB是⊙O的半径,∴BC是⊙O的切线;(2)解:如图,连接ON.在Rt△AEM中,sinA==,∴∠A=30°.∵AB⊥MN,∴=,EN=EM=1,∴∠BON=2∠A=60°.在Rt△OEN中,sin∠EON=,∴ON==,∴的长度是:•=.点评:本题综合考查了切线的判定与性质、勾股定理的逆定理,弧长的计算,解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21.(2013福州)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD 的面积为,设AB=x,AD=y(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB•PC的值;(3)若∠APD=90°,求y的最小值.考点:相似形综合题.专题:综合题.分析:(1)如图1,过A作AE垂直于BC,在直角三角形ABE中,由∠B=45°,AB=x,利用锐角三角函数定义表示出AE,三角形PAD的面积以AD为底,AE为高,利用三角形面积公式表示出,根据已知的面积即可列出y与x的函数关系式;(2)根据∠APC=∠APD+∠CPD,以及∠APC为三角形ABP的外角,利用外角性质得到关系式,等量代换得到∠BAP=∠CPD,再由四边形ABCD为等腰梯形,得到一对底角相等及AB=CD,可得出三角形ABP与三角形PDC相似,由相似得比例,将CD换为AB,由y的值求出x的值,即为AB的值,即可求出PB•PC的值;(3)取AD的中点F,过P作PH垂直于AD,由直角三角形PF大于等于PH,当PF=PH时,PF最小,此时F与H重合,由三角形APD为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于AD的一半,表示出PF即为PH,三角形APD面积以AD为底,PH为高,利用三角形面积公式表示出三角形APD面积,由已知的面积求出y的值,即为最小值.解答:解:(1)如图1,过A作AE⊥BC于点E,在Rt△ABE中,∠B=45°,AB=x,∴AE=AB•sinB=x,∵S△APD=AD•AE=,∴•y•x=,则y=;(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP,∠APD=∠B=45°,∴∠BAP=∠CPD,∵四边形ABCD为等腰梯形,∴∠B=∠C,AB=CD,∴△ABP∽△PCD,∴=,∴PB•PC=AB•DC=AB2,当y=1时,x=,即AB=,则PB•PC=()2=2;(3)如图2,取AD的中点F,连接PF,过P作PH⊥AD,可得PF≥PH,当PF=PH时,PF有最小值,∵∠APD=90°,∴PF=AD=y,∴PH=y,∵S△APD=•AD•PH=,∴•y•y=,即y2=2,∵y>0,∴y=,则y的最小值为.点评:此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013福州)我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a= ;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.考点:二次函数综合题.分析:(1)利用顶点坐标公式(﹣,)填空;(2)首先,利用配方法得到抛物线的解析式y=a(x+)2﹣,则易求该抛物线的顶点坐标(﹣,﹣);然后,把该顶点坐标代入直线方程y=kx(k≠0),即可求得用含k的代数式表示b;(3)根据题意可设可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.所以由正方形的性质推知点D n的坐标是(2n,n),则把点D n的坐标代入抛物线解析式即可求得4n=3t.然后由n、t的取值范围来求点A n的坐标,即该正方形的边长.解答:解:(1)∵顶点坐标为(1,1),∴,解得,,即当顶点坐标为(1,1)时,a=1;当顶点坐标为(m,m),m≠0时,,解得,则a与m之间的关系式是:a=﹣或am+1=0.故答案是:﹣1;a=﹣或am+1=0.(2)∵a≠0,∴y=ax2+bx=a(x+)2﹣,∴顶点坐标是(﹣,﹣).又∵该顶点在直线y=kx(k≠0)上,∴k(﹣)=﹣.∵b≠0,∴b=2k;(3)∵顶点A1,A2,…,A n在直线y=x上,∴可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.∵四边形A n B n C n D n是正方形,∴点D n的坐标是(2n,n),∴﹣(2n)2+22n=n,∴4n=3t.∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9.∴满足条件的正方形边长是3,6或9.点评:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答(3)题时,要注意n的取值范围.。
与《一元一次方程》有关的中考真题展示
4 ( 西 ) 程 02 x l 解 是 。江 方 .5 = 的
5( . 安徽 ) 甲志 愿者 计划 用 若干 个 工作 日完 成社 区的某 项 工作 , 第 三个 工作 日起 , 从 乙志 愿 者如
盟 此项 工 作 , 甲 、 且 乙两人 工效 相 同 , 结果 提 前 3天 完成 任务 , 甲志愿 者计 划 完成 此 项工 干 则 {
2 解 析 : 心 里 所 想 的 数 是 x 计 算 的结 果 是 a 根 据 陶 玲 提 . 没 , ,
出的 计 算 步 骤 . 可得 一 个 方 程
[O 1 0 +1 ( 一 + o 一 O = 0 , 3 ( +3%) ] 丢 l ) 3x 2 0
解 得 *=6 . 0
[ + ( )・ 一2 ] =8 x) ÷ ,
的天数是 (
A. 8
) .
B. 7 C. 6 D. 5
6 ( . 吉林 ) A种饮料 比 B种 饮料 单价 少 1 , 元 小峰 买 了 2瓶 A种 饮料 和 3瓶 B种 饮料 , 一共 花 了 1 3元 , 如果 设 B种饮料 单价 为 元/ , 么下 面所列 方程 正确 的是 ( 瓶 那
对 面 的 一 个 女 生 看 你 摔 了 , 就 笑 了 , 笑 不 她 她
外 很 痛
,
事 来捡 起 饭 盒 就 往 宿舍 跑 。
要 紧 , 果 , 就 把 嘴 里 的 饭 菜 都 喷 到 我 衣 结 她
故
小 前 进 舍老 后 跟 进 。 服 … ’ 光 脚 宿 ,三 脚 着 来 一 上了 … ’
可 是 再 一 看 . 觉 得 不 对 : 三 哥 , 今 天 就 “ 我 打的不是这个 菜啊 ! 老 三 尴 尬 地 说 : 是 是
中考数学专题《一元一次方程的应用》专题讲练原卷
专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。
1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。
在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。
我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。
我么把这类数量关系称为基本数量关系。
单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。
3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。
中考数学《一元一次方程》专题练习(附带答案)
中考数学《一元一次方程》专题练习(附带答案)一、单选题1.方程x ﹣3=2x ﹣4的解为( )A .1B .﹣1C .7D .﹣72.下列等式变形正确的是( ) A .如果s=12ab ,那么b=s2aB .如果12x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y3.某种商品,若单价降低110,要保持销售收入不变,那么销售量应增加( )A .110B .19C .18D .174.一个长方形的周长为 26cm ,若这个长方形的长减少 2cm ,宽增加 3cm ,就可以成一个正方形.设长方形的长为 xcm ,可列方程( ) A .x +2=(13−x)−3 B .x +2=(26−x)−3 C .x −2=(26−x)+3D .x −2=(13−x)+35.某超市将两件商品都以84元售出,一件提价 40% ,一件降价 20% ,则最后是( )A .无法确定B .亏本3元C .盈利3元D .不赢不亏6.下列方程变形中,正确的是( )A .方程3x +4=4x −5,移项得3x −4x =5−4B .方程−32x =4,系数化为1得x =4×(−32)C .方程3−2(x +1)=5,去括号得3−2x −2=5D .方程x−12−1=3x+13,去分母得3(x −1)−1=2(3x +1) 7.已知关于x 的一元一次方程 12020x +3=2x +b 的解为x=-3,那么关于y 的一元一次方程 12020(y +1)+3=2(y +1)+b 的解为( ) A .y=1B .y=-1C .y=-3D .y=-48.若(m ﹣2)x |2m ﹣3|=6是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数9.若关于x 的方程(k+1)x 2﹣ √2−k x+ 14=0有实数根,则k 的取值范围是( )A .k≤2且k≠﹣1B .k≤ 12且k≠﹣1C .k≤ 12D .k≥ 1210.下面是一个被墨水污染过的方程 12(1-2ax)=x+a ,答案显示此方程的解是x=-2,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .−52C .52D .−1211.把方程x2﹣x−16=1去分母,正确的是( )A .3x ﹣(x ﹣1)=1B .3x ﹣x ﹣1=1C .3x ﹣x ﹣1=6D .3x ﹣(x ﹣1)=612.解方程 2x−13+3x−44=0 时,去分母正确的是( ) A .4(2x −1)+9x −4=12 B .4(2x −1)+3(3x −4)=12 C .8x −1+9x +12=0D .4(2x −1)+3(3x −4)=0二、填空题13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程 .14.如表所示,已知a ,b 满足表格中的条件,则b 的值是 .x ﹣1 ax ﹣1 ax 2+b415.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m = .16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则为可列方程为 .17.将方程 2x +3y =6 写成用含x 的代数式表示y ,则y= .18.在①2x ﹣1②2x+1=3x ③|π﹣3|=π﹣3④t+1=3中,等式有 方程有 (填入式子的序号)三、综合题19.在习近平主席提出的“一带一路”战略构想下,甲、乙两城市决定开通动车组高速列车,如图, AD是从乙城开往甲城的第一列动车组列车距甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象, BC 是一列从甲城开往乙城的普通快车离开甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象,它比第一列动车组动车晚出发 1 小时,请根据图中的信息,解答下列问题:(1)填空:甲、乙两城市之间的距离为千米(2)若普通快车的速度为100km/ℎ,①用待定系数法求BC的函数表达式,并写出自变量的取值范围:②若普通快车与第一列动车组列车相遇后0.4小时与第二列动车组列车相遇,请直接写出相邻两列动车组列车间隔的时间③在②的条件下,请直接写出第二列动车组列车与第一列动车组列车和普通快车距离相等时的t值.20.某超市购进甲、乙两种节能灯共1200只,这两种商品的进价、售价如下表进价(元|只)售价(元|只)甲2530乙4560(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21.根据下列条件列出方程(1)x比它的78大15(2)2xy与5的差的3倍等于24(3)y的13与5的差等于y与1的差.22.“双11”期间,某市各大商场掀起促销狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示商场优惠活动甲全场按标价的6折销售乙实行“每满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“每满100元减50元的优惠”(如某顾客购物220元,他只需付款120元)(1)三个商场同时出售某种标价为370元的破壁机和某种标价为350元的空气炸锅,若赵阿姨想买这两样厨房电器,她选择哪家商场最实惠?(2)黄先生发现在甲、乙商场同时购买一件标价为280元的上衣和一条标价为200多元的裤子,最后付款额一样,请问这条裤子的标价是多少元?(3)如果某品牌的巴西大豆在三所商场的标价都是5元/kg,请探究是否存在分别在三个商场付同样多的100多元,并且都能够购买同样质量同品牌的该大豆?如果存在,请求出在乙商场购买该大豆的方案(并指出在三个商场购买大豆的质量是多少千克,支付的费用是多少元)如果不存在,请直接回答“不存在”.23.如图,点A、B、C是数轴上三点,点A、B、C表示的数分别为-10、2、6,我们规定数铀上两点之间的距离用字母表示.例如点A与点B之间的距离,可记为AB(1)写出AB= ,BC=,AC=(2)点P是A、C之间的点,点P在数轴上对应的数为x①若PB=5时,则x=②PA =,PC=(用含x的式子表示)(3)动点M、N同时从点A、C出发,点M以每秒2个单位长度的速度沿数轴向右运动,点N以每秒2个单位长度的速度沿数向左运动,设运动时间为t(t>0)秒,求当t为何值时,点M、N之间相距2个单位长度?24.某商场将进货价为35元台灯以50元销售价售出,平均每月能售出500个,市场调研表明当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空涨价后,每个台灯的销售价为元,每台利润为元,商场的台灯平均每月的销售量为台,共可获利元.(2)如果商场要想销售利润平均每月至少达到10000元,现有三种方案.方案一“在原售价每台50元的基础上再上涨25元”方案二“在原售价每台50元的基础上在上涨15元”方案三“在原售价每台50元的基础上在上涨8元”.若为了减少库存,应该采用哪一种方案?并说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】A9.【答案】C 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】8x+38=50 14.【答案】3 15.【答案】−316.【答案】20%(108+x )=54﹣x 17.【答案】6−2x 3 (或 2−23x )18.【答案】②③④②④ 19.【答案】(1)600(2)解①设BC 的解析式为s=kt+b , 由题意B (1,0),C (7,600),则有 {k +b =07k +b =600 ,解得 {k =100b =−100 .∴s=100t − 100(1≤t≤7)②设普通快车与第一列动车组列车x 小时后相遇,则100(x -1)+150x=600 解得x=145(小时) 设第二列动车组列车行驶了y 小时与普通快车相遇,则150y+100×(0.4+ 145-1)=600 解得y=3815∴相邻两列动车组列车间隔的时间= 145 − ( 3815 − 0.4)= 23(小时)③当t= 145小时时,普通快车与第一列动车组列车相遇,此时第二列动车组列车与第一列动车组列车和普通快车距离相等.当 100(t −1)+150(t −23)−600=23×150 时,第二列动车组列车与第一列动车组列车和普通快车距离相等.∴100(t −1)+150(t −23)−600=23×150解得 t =185答第二列动车组列车与第一列动车组列车和普通快车距离相等时,t 的值是 145 或 185 .20.【答案】(1)解设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x )只由题意,得25x+45(1200-x )=46000 解得x=400购进乙型节能灯1200-x=1200-400=800只.答购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元(2)解设乙型节能灯需打a折0.1×60a-45=45×20%解得a=9答乙型节能灯需打9折.21.【答案】(1)解根据题意可得x﹣78x=15(2)解根据题意可得3(2xy﹣5)=24(3)解根据题意可得13y﹣5=y﹣122.【答案】(1)解选甲商场需付(370+350)×0.6=432(元)选乙商场需付370+(350−3×100)=420(元)选丙商场需付370+350−7×50=370(元)因为370<420<432,故答案为丙商场最实惠.(2)解设这条裤子的标价为x元.根据题意,得(280+x)×0.6=280+x−2×100解得x=220.故这条裤子的标价为220元.(3)解设在乙商场先购买ykg大豆,需付100多元,再用100元的购物券再在乙商场购买100÷5=20kg 大豆.根据题意,得5(y+20)×0.6=5y,解得y=30.此时,在甲商场和乙商场都购买了30+20=50kg大豆,都需付30×5=150元.在丙商场购买50kg需付5×50−2×50=150元.所以存在分别在三个商场付同样多的100多元,并且都能买到同样质量同样品牌的该大豆.所以在乙商场的购买方案为先购买30kg大豆付150元,再用100元的购物券再在乙商场购买20kg大豆,共付了150元,购买了50kg大豆.23.【答案】(1)12416(2)解-3x+106-x(3)解相遇前,(6-2t)-(-10+2t) =2,解得t= 3.5相遇后(-10+2t)-(6-2t) = 2,解得t= 4.5.答当t=3.5或t=4.5时,点M、N之间相距2个单位长度.24.【答案】(1)(50+a)(15+a)(500-10a)(15+a)(500-10a)(2)解方案一当a=25时,(15+25)(500-10×25)=10000(元).方案二当a=15时,(15+15)(500-10×15)=10500(元).方案三当a=8时,(15+8)(500-10×8)=9660(元)<10000元,故舍去该方案.因为要减少库存,所以应采用方案二.。
中考数学专项练习一元一次方程的实际应用几何问题(含解析)
中考数学专项练习一元一次方程的实际应用几何问题(含解析)【一】单项选择题1.一个圆柱的底面半径为Rcm,高为8cm,假设它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,那么R=〔〕A.4cmB.5cmC.6cmD.7cm2.一个长方形的周长是26cm,假设这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,那么长方形的长是〔〕A.5cmB.7cmC.8cmD.9cm3.如图〔1〕,把一个长为m,宽为n的长方形〔m>n〕沿虚线剪开,拼接成图〔2〕,成为在一角去掉一个小正方形后的一个大正方形,那么去掉的小正方形的边长为〔〕A.B.m﹣nC.D.4.一个角比它的余角大25°,那么这个角的补角是〔〕A.67.5°B.22.5°C.57.5°D.122.5°5.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60c m,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离〔即在圆周上两人之间的圆弧的长〕相等.设每人向后挪动的距离为x,根据题意,可列方程〔〕A.=B.=C.2π〔60+10〕×6=2π〔60+π〕×8 D.2π〔60-x〕×8=2π〔6 0+x〕×66.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框〔如下图〕.铺这个框恰好用了504块边长为0.5米的正方向花岗岩〔接缝忽略不计〕.假设设此标志性建筑底面长方形的宽为x米,给出以下方程:①4×3〔2x+3〕=0.5×0.5×504;②2×3〔2x+6〕+2×3x=0.5×0.5×504;③〔x+6〕〔2x+6〕﹣2x•x=0.5×0.5×504,其中正确的选项是〔〕A.②B.③C.②③D.①②③7.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,那么需直径为4厘米的圆钢柱长〔〕A.10厘米B.20厘米C.30厘米D.40厘米8.一只方形水箱,其底面是边长为5米的正方形,箱内盛水,水深4米,现把一个棱长为3米的正方体沉入箱底,水面的高度将是〔〕A. 5.4米B.7米C. 5.08米D. 6.67米9.用A、B两种规格的长方形纸板〔如图1〕无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,A种长方形的宽为1cm,那么B种长方形的面积是〔〕A.10cm2B.12cm2C.14cm2D.16cm210.钟表的时针与分针在运行过程中每隔一定时间就相遇一次,相遇间隔的时间是〔〕A.1小时B.小时C. 1.2小时D. 1.1小时11.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为〔〕A.10和2B.8和4C.7和5D.9和312.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的选项是〔〕A.2〔x﹣10〕=120B.2[x+〔x﹣10〕]=120C.2〔x+10〕=120D.2[x+〔x+10〕]=12013.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.3cm,5cmB. 3.5c m,4.5cmC.4cm,6cm D.10cm,6cm 【二】填空题14.线段AB=30cm,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点 B 向点 A 以3cm/s 的速度运动,那么________秒钟后,P、Q 两点相距10cm.16.如图,长方形MNPQ 是某市民健身广场的平面示意图,它是由6 个正方形拼成的长方形,中间最小的正方形 A 的边长是1,观察图形特点可知长方形相对的两边是相等的〔如图中MN=PQ〕,请根据这个等量关系,计算长方形MNPQ 的面积,结果为________.17.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2c m,就可成为一个正方形,设长方形的长为xcm,可列方程________.18.在同一条数轴上,点B位于有理数—8处,点C位于有理数16处,假设点B每秒向右匀速运动6个单位长度,同时点C每秒向左匀速运动2个单位长度,当运动________秒时,BC的长度为8个单位长度.19.假设一个角的余角比它的补角的还多1°,那么这个角的大小是_ _______.【三】解答题20.一艘载重480吨的船,容积是1050立方米,现有甲种货物450立方米,乙种货物350吨,而甲种货物每吨体积2.5立方米,乙种货物每立方米0.5吨.问是否都能装上船?如果不能,请说明理由;并求出为了最大限度的利用船的载重量和容积,两种货物应各装多少吨?22.一艘载重480吨的船,容积是1050立方米,现有甲种货物450立方米,乙种货物350吨,而甲种货物每吨体积2.5立方米,乙种货物每立方米0.5吨.问是否都能装上船?如果不能,请说明理由;并求出为了最大限度的利用船的载重量和容积,两种货物应各装多少吨?【四】综合题23.某校开展爱心义卖活动,同学们纷纷推销自己的手工制品并将获得的利润捐给贫困结对学校,小明以3元/张的价格买了400张金属板,其长和宽分别为30厘米,12厘米,现将金属板按图1方式剪去四个相同的小正方形,制成无盖形状的桌面收纳盒.并使其底面长与宽之比为4:1〔金属板厚度略去不计,粘合损耗不计〕.〔1〕求制成的无盖收纳盒的高.〔2〕现小明将360张金属板按图1方式裁剪,40张金属板按图2方式裁剪后给部分盒子配上盖子,现定价无盖收纳盒5元/个,有盖收纳盒8元/个,那么全部销售后能获利多少元?24.数轴上有A,B,C三点,分别代表﹣30,﹣10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.〔1〕甲,乙在数轴上的哪个点相遇?〔2〕多少秒后,甲到A,B,C的距离和为48个单位?〔3〕在甲到A,B,C的距离和为48个单位时,假设甲调头并保持速度不变,那么甲,乙还能在数轴上相遇吗?假设能,求出相遇点;假设不能,请说明理由.【一】单项选择题1.一个圆柱的底面半径为Rcm,高为8cm,假设它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,那么R=〔〕A.4cmB.5cmC.6cmD.7cm【解析】【解答】解:依题意得:8π〔R+2〕2﹣8πR2=192,解得r=5.应选:B、【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.2.一个长方形的周长是26cm,假设这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,那么长方形的长是〔〕A.5cmB.7cmC.8cmD.9cm【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设长方形的长为x cm,∵长方形的周长是26cm,∴长方形的宽为〔-x〕cm,∵长方形的长减少1cm为〔x-1〕cm,宽增加2c m为〔-x+2〕cm,根据题意得:x-1=-x+2,解得:x=8,应选C.【分析】周长除以2减去长方形的长即为长方形的宽,等量关系为:长-1=宽+2. 得到长方形的宽是解决此题的突破点.3.如图〔1〕,把一个长为m,宽为n的长方形〔m>n〕沿虚线剪开,拼接成图〔2〕,成为在一角去掉一个小正方形后的一个大正方形,那么去掉的小正方形的边长为〔〕A.B.m﹣nC.D.【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设去掉的小正方形的边长为x,那么:〔n+x〕2=mn+x2 ,解得:x= .应选A、【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.4.一个角比它的余角大25°,那么这个角的补角是〔〕A.67.5°B.22.5°C.57.5°D.122.5°【考点】一元一次方程的实际应用-几何问题【解析】【解答】设这个角的度数为x°,根据题意得:x-(90-x)=25,解得x=57.5,所以这个角为57.5°,所以这个角的补角为180°-57.5°=12 2.5°.【分析】先根据题意利用一元一次方程求的这个角,再根据补角的定义求这个角的补角.5.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60c m,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离〔即在圆周上两人之间的圆弧的长〕相等.设每人向后挪动的距离为x,根据题意,可列方程〔〕A.=B.=C.2π〔60+10〕×6=2π〔60+π〕×8 D.2π〔60-x〕×8=2π〔6 0+x〕×6【解析】【解答】设每人向后挪动的距离为x,那么这8个人之间的距离是:,6人之间的距离是:,根据等量关系列方程得:=.应选A、【分析】首先理解题意找出题中存在的等量关系:8人之间的距离=原来6人之间的距离,根据等量关系列方程即可.列方程解应用题的关键是找出题目中的相等关系.6.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框〔如下图〕.铺这个框恰好用了504块边长为0.5米的正方向花岗岩〔接缝忽略不计〕.假设设此标志性建筑底面长方形的宽为x米,给出以下方程:①4×3〔2x+3〕=0.5×0.5×504;②2×3〔2x+6〕+2×3x=0.5×0.5×504;③〔x+6〕〔2x+6〕﹣2x•x=0.5×0.5×504,其中正确的选项是〔〕A.②B.③C.②③D.①②③【考点】一元一次方程的实际应用-几何问题7.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,那么需直径为4厘米的圆钢柱长〔〕A.10厘米B.20厘米C.30厘米D.40厘米【解析】【解答】解:设应截取直径4厘米的圆钢x厘米,由题意得:π×〔〕2×16×10=π×〔〕2•x解得:x=40.应选:D、【分析】根据题意可知,圆柱形毛坯与圆钢的体积相等,利用此相等关系列方程,求解.8.一只方形水箱,其底面是边长为5米的正方形,箱内盛水,水深4米,现把一个棱长为3米的正方体沉入箱底,水面的高度将是〔〕A. 5.4米B.7米C. 5.08米D. 6.67米【解析】【解答】水箱上升3×3×3÷〔5×5〕=1.08〔米〕水面的高度将是:4+1.08=5.08〔米〕.应选C、【分析】此题的关键是把握小正方形的体积,它相当于底面是边长为5米的正方形的水箱上升x米的体积,求出x ,再加上4米即可.9.用A、B两种规格的长方形纸板〔如图1〕无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,A种长方形的宽为1cm,那么B种长方形的面积是〔〕A.10cm2B.12cm2C.14cm2D.16cm2【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设A长方形的长是xcm,那么B长方形的宽是〔4﹣x〕cm,B长方形的长是〔8﹣x〕cm,依题意有4[〔4﹣x〕+〔8﹣x〕]=32,解得x=4,〔4﹣x〕〔8﹣x〕=〔4﹣2〕×〔8﹣2〕=2×6=12.故B种长方形的面积是12cm2 .应选:B、【分析】可设A长方形的长是xcm,那么B长方形的宽是〔4﹣x〕cm,B长方形的长是〔8﹣x〕cm,根据大正方形周长为32cm,列出方程求解即可.10.钟表的时针与分针在运行过程中每隔一定时间就相遇一次,相遇间隔的时间是〔〕A.1小时B.小时C. 1.2小时D. 1.1小时【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设相遇间隔的时间是x小时,时针的速度为x格/小时,那么分针的速度为12x格/小时,12x﹣x=12,解得:x=.答:相遇间隔的时间是小时.应选:B、【分析】由题意可知:钟表的时针每转动一大格,那么分钟就转动12个大格,也就是一周,每隔一定时间就相遇一次也就是分针比时针就多运行12个大格,设相遇间隔的时间是x小时,那么时针转了为x格,那么分针转了12x格,由此列出方程解答即可.11.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为〔〕A.10和2B.8和4C.7和5D.9和3【考点】一元一次方程的实际应用-几何问题【解析】【分析】设这个长方形的长是x,那么宽就是12-x,因为长与宽的差是4,即x-〔12-x)=4.解方程求解.【解答】设这个长方形的长是x,根据题意列方程得:x-〔12-x)=4,解得x=8,那么宽就是12-8=4.这个长方形的长宽分别为8和4.应选B、【点评】列方程解应用题的关键是正确找出题目中的相等关系,把列方程的问题转化为列代数式12.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的选项是〔〕A.2〔x﹣10〕=120B.2[x+〔x﹣10〕]=120C.2〔x+10〕=120D.2[x+〔x+10〕]=120【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:由题意可得,2[x+〔x+10〕]=120,应选D、【分析】根据题意可以列出相应的一元一次方程,此题得以解决.13.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.3cm,5cmB. 3.5c m,4.5cmC.4cm,6cm D.10cm,6cm 【考点】一元一次方程的实际应用-几何问题【解析】【分析】设长方形的宽为xcm,那么长为〔x+1〕cm,列方程得x+x+1=8或2x+2〔x+1〕=16,解得x=3.5.应选B.【二】填空题14.线段AB=30cm,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点 B 向点 A 以3cm/s 的速度运动,那么________秒钟后,P、Q 两点相距10cm.【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设经过xs,P、Q两点相距10cm,由题意得:2x+3x+10=30或2x+3x-10=30,解得:x=4或x=8.那么4秒或8秒钟后,P、Q两点的距离为10cm.【考点】一元一次方程的实际应用-几何问题16.如图,长方形MNPQ 是某市民健身广场的平面示意图,它是由6 个正方形拼成的长方形,中间最小的正方形 A 的边长是1,观察图形特点可知长方形相对的两边是相等的〔如图中MN=PQ〕,请根据这个等量关系,计算长方形MNPQ 的面积,结果为________.【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:由中间最小的正方形A的边长是1米,设图中最大正方形B的边长是x米,可得正方形F的边长x-1,E的边长x-2,C的边长x-3;根据题意得:2〔x-3〕+x-2=x+x-1.解得:x=7.所以A的面积为1,B的面积为49,F的面积为36,E的面积为25,D、C 的面积为16,所以长方形的面积为:1+49+36+25+16×2=143.【分析】此题主要考查了一元一次方程的应用,利用长方形相对的两边相等得出等式是解题关键.17.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2c m,就可成为一个正方形,设长方形的长为xcm,可列方程________.18.在同一条数轴上,点B位于有理数—8处,点C位于有理数16处,假设点B每秒向右匀速运动6个单位长度,同时点C每秒向左匀速运动2个单位长度,当运动________秒时,BC的长度为8个单位长度.【解析】【解答】设时间为t,那么运动后点B所表示的数为:-8+6t,点C所表示的数为16-2t;①、当点B在点C的左边时,16-2t-〔-8+ 6t〕=8,解得:t=2;②、当点B在点C的右边时,〔-8+6t〕-〔16-2t〕=8,解得:t=4.【分析】设时间为t,那么运动后点B所表示的数为:-8 +6t,点C所表示的数为16-2t;然后分两类讨论:①、当点B在点C的左边时,列出方程16-2t-〔-8+6t〕=8,②、当点B在点C的右边时,列出方程〔-8+6t〕-〔16-2t〕=8 ,分别解两个方程得出t的值。
一元一次方程与应用中考数学题
一元一次方程与应用中考数学题一元一次方程与应用中考数学题汇总大家对一元一次方程与应用熟悉吗?为了帮助大家更好地学会运用,店铺带来一份中考数学题的汇总,欢迎大家阅读参考!1、(绵阳市2013年).朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有多少个小朋友?( B )A.4个B.5个C.10个D.12个[解析](x个朋友,3x-3=2x+2,x=5)(2013•株洲)一元一次方程2x=4的解是( )A. x=1B. x=2C. x=3D. x=4考点:解一元一次方程.分析:方程两边都除以2即可得解.解答:解:方程两边都除以2,系数化为1得,x=2.故选B.点评:本题考查了解一元一次方程,是基础题.2、(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.60元B.80元C.120元D.180元考点:一元一次方程的应用.分析:设这款服装的进价为x元,就可以根据题意建立方程300×0.8﹣x=60,就可以求出进价,再用标价减去进价就可以求出结论.解答:解:设这款服装的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.300﹣180=120,∴这款服装每件的标价比进价多120元.故选C.点评:本题时一道销售问题.考查了列一元一次方程解实际问题的运用,利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.3、(2013台湾、16)图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为何?( )A. B. C.42 D.44考点:一元一次方程的应用.分析:设每一份为x,则图②中白色的面积为8x,灰色部分的面积为3x,根据②中的纸片的面积为33为等量关系建立方程,求出其解即可.解答:解:设每一份为x,则图②中白色的面积为8x,灰色部分的面积为3x,由题意,得8x+3x=33,解得:x=3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42.故选C.点评:本题考查了比列问题在解实际问题中的运用,一元一次方程的解法的运用,解答时根据条件建立方程求出灰色部分的面积是关键.4、(2013台湾、5)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?( )A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200﹣x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200﹣x)=24000考点:由实际问题抽象出一元一次方程.分析:由于外套卖出x件,则衬衫和裤子卖出(200﹣x)件,根据题意可得等量关系:衬衫的单价×6折×数量+衬衫和裤子的原价×8折×数量=24000元,由等量关系列出方程即可.解答:解:若外套卖出x件,则衬衫和裤子卖出(200﹣x)件,由题意得:0.6×250x+0.8×125(200﹣x)=24000,故选:B.点评:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.5、(2013达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
中考专题复习-一元一次方程(组)含答案
中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。
c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。
2013年中考数学知识点:一元一次方程——解一元一次方程
解一元一次方程学习目标:1.解一元一次方程的一般步骤及其应用.2.去分母时,等式两边都要乘以最简公分母,特别是常数项,不要漏乘. 典型例题: 1.解方程:3136521--=+-+x x x . [解]:去分母,得 ()()()1218513--=+-+x x x去括号,得 2218533+-=--+x x x 移项,得 5321823+-+=+-x x x 合并同类项,得 224=x 系数化为1,得 211=x [点拨]:解此类方程时要防止产生如下错误:①去分母时,常数项3未乘以最简公分母6,65x+-项去分母时,分子x +5漏加小括号;②去括号时,+1没有乘以3,()12--x 去括号时,-2没有变号;③移项时,x 2-没有变号,3和-2没有移项却改变了符号. 2.解方程:5.2315.13.02.0xx -=-- [分析]:此方程中的分母是小数,利用转化的思想,用分数的基本性质把方程中的分母转化为整数,然后求解.但要注意,①不要和等式的基本性质混淆,把1.5也乘以10;②5.231x-化为整数分母时,只要分子、分母同乘以2更简洁些. [解]:由原方程得:562233102xx -=-- ()()x x 62631510210-=⨯--x x 36124510020-=-- 45201236100+-=+-x x 3764=-x 6437-=x 3.95-=x 是方程()()a x x a +=-64132的解,求代数式()32182--+a 的值.[解]:根据题意,得:⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯-a a 956419532,解之得:4110-=a∴()32141108232182--⎪⎪⎭⎫ ⎝⎛+-⨯=--+a =20-基础训练: 一、选择题:1.下列变形中,错误的是( )A .方程x x =⎪⎭⎫⎝⎛-1434可化为x x =-43; B .方程13121=+-+x x 可化为62233=--+x x C .方程1312=--x x 可化为1223=+-x x D .方程()[]21213=+---x x x 可化为24-=x 答案:C点拨:C 错在常数项漏乘6. 2.方程313322xx x --=-+去分母得( ) A .x x x 223363+-=-+ B .x x x 22181863--=-+ C .x x x 22181863+-=-+ D .x x x +-=-+2181823 答案:C 3.若代数式313--x x 的值等于1-,则x 的值是( ) A .-1 B .1 C .21- D .21 答案:C 4.把方程14.0255.0=--xx 的分母化为整数后,所得到的方程为( ) A .121025510=--x x B .1042050510=--xx C .141025=--x x D .10410252=--xx 答案:A点拨:B 的错误在1也乘以10.C 、D 中也存在类似错误. 二、填空题: 5.若代数式2x与⎪⎭⎫ ⎝⎛--21213x 的值相等,则x = .答案:313=x 6.若单项式32b a x -与3133b a x +--是同类项,则x = .答案:6-=x三、解方程: 7.3412=+-x x 答案:13=x 8.()331137-=+y y 答案:1-=y 9.53731+-=--x x x 答案:7=x 10.()12361431++=--x x x 答案:4-=x 思维拓展: 四、解方程: 11.()()1231122141-=⎥⎦⎤⎢⎣⎡--x x x 答案:1611=x 12.6103.01.005.02.01.02.0=++-x x 答案:1-=x 13.已知方程组223355--+=+-+x x x a x 的解是6=x ,求代数式22692+-a a 的值. 答案:142点拨:先把6=x 代入方程,求出a 的值为4,再代入代数式中求值即可. 探究实践:14.在等式4×( )-2×( )=29中的括号中分别填入一个数,使这两个数(1)互为相反数;(2)和等于3. 答案:(1)629,629-;(2)635,617-.点拨:(1)设前一个数为x ,则另一个数为x -,得方程2924=+x x ,∴x =629. (2)设其中一个数为x ,则另一个数为3x -,得方程()29324=--x x ,则635=x ,6173-=-x .15.对方程245=+x x ,有人这样解,先给x 选定一个较简便的值,如5,于是65=+xx ,而不是245=+xx .因为6必须乘以4才是24,所以x 的正确值是5×4即20.人们称这种方法为试位法.想一想,为什么这样做是对的?试用试位法解题:“一个量,其21、31和71加起来为123,求这个量.” 答案:因为符合等式性质,所以这样做是对的。
一元一次方程应用题解析
一元一次方程应用题解析1.甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?【答案】37.5千米【解析】]追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追击问题。
狗跑的总路程=它的速度×时间,而它用的总时间就是甲追上乙的时间设甲用X小时追上乙,根据题意列方程5X=3X+5 解得X=2.5,狗的总路程:15×2.5=37.5答:狗的总路程是37.5千米。
2.列方程解应用题:小明和小东两人练习跑步,都从甲地出发跑到乙地,小明每分钟跑250米,小东每分钟跑200米,小明让小东先出发3分钟之后再出发,结果两人同时到达乙地,求甲、乙两地之间的路程是多少米?【答案】3000.【解析】试题分析:可以分两种方法求解,一是设小明经过x分钟追上小东,依据题意列方程求解,再计算甲、乙两地的路程;二是直接设甲乙两地的路程为y米,列方程求解即可.方法一:设小明经过x分钟追上小东,可列方程为:250x=3×200+200x,解得:x=12 ,路程:250×12=3000米;方法二:设甲乙两地的路程为y米,可列方程为:解得:y=3000,故甲、乙两地之间的路程是3000米.考点:一元一次方程的应用.3.一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?【答案】40 9【解析】甲独作10天完成,说明的他的工作效率是1/10,乙的工作效率是1/8等量关系是:甲乙合作的效率×合作的时间=1设合作X天完成(1/10+1/8)X=1 解得X=40 9答:两人合作409天完成4.某车间原计划每周装配36台机床,预计若干周完成任务,在装配了三分之一后,改进操作技术,功效提高了一倍,结果提前一周半...完成任务.求这次任务需装配的机床总台数.【答案】这次任务需装配的机床总数为162台.试题分析:解:设这次任务需装配的机床总数为x 台,则∴这次任务需装配的机床总数为162台.考点:一元一次方程点评:本题难度中等,主要考查学生对一元一次方程解决生产问题实际应用能力,为中考常考题型,要求学生牢固掌握。
超经典一元一次方程中考应用题专练(含答案)
第六章一元一次方程(应用题)专练1.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.2.京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米解:3.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场4.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元(2)如不使用分时电价结算,5月份小明家将多支付电费多少元6.一件商品按成本价提高20%后标价,又以9折销售,售价为270元,则这件商品的成本价是多少7. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m,则应收水费______元;(2)若该户居民3、4月份共用水315m(4月份用水量超过3月份),共交水费8. 2007年5月19日起,中国人民银行上调存款利率.人民币存款利率调整表储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%.(1)小明于2007年5月19日把3500元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率%计息,本金与实得利息收益的和为元,问他这笔存款的本金是多少元(3)小明爸爸有一张在2007年5月19日前存人的10000元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存请说明理由.约定:①存款天数按整数天计算,一年按360天计算利息.②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).9.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元10. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元11. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元12. 列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次13. 目前我省小学和初中在校生共136万人,其中小学在校生人数比初中在校生人数的2倍少2万人,问目前我省小学和初中在校生各有多少万人16. 为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶17. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天(2)甲队施工一天,需付工程款万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱还是由甲乙两队全程合作完成该工程省钱19. 某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得1-分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.参考答案1、解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1)(15)114x+-=+%%.5分解得:1205x==%.答:这个月的石油价格相对上个月的增长率为20%.8分2.解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(40)x+千米.1分依题意,得3061(40)602x x+=+.3分解得200x=.4分答:这次试车时,由北京到天津的平均速度是每小时200千米.5分3、解:设这个队胜了x场,依题意得:3(145)19x x+--=(4分)解得:5x=(6分)答:这个队胜了5场.(7分)4、(1)设原销售电价为每千瓦时x元,根据题意得: ……………………………1分40(0.03)60(0.25)42.73x x⨯++⨯-=………………………………3分40 1.2601542.73x x ++-= 10042.7313.8x =+0.5653x =. ………………………………4分∴当0.5653x =时,0.030.5953x +=;0.250.3153x -=.答:小明家该月支付平段电价为每千瓦时元、谷段电价每千瓦时元.……6分 (2) 1000.565342.7313.8⨯-=(元)答:如不使用分时电价结算,小明家5月份将多支付元. ……………………8分 5、解:(1)1533(h)45604⨯==(分钟),4542>Q , ∴不能在限定时间内到达考场. 4分(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场. 5分先将4人用车送到考场所需时间为150.25(h)1560==(分钟). 小时另外4人步行了1.25km ,此时他们与考场的距离为15 1.2513.75-=(km )7分设汽车返回(h)t 后先步行的4人相遇,56013.75t t +=,解得 2.7513t =.汽车由相遇点再去考场所需时间也是2.75h 13.9分所以用这一方案送这8人到考场共需 2.751526040.44213+⨯⨯≈<.所以这8个个能在截止进考场的时刻前赶到. 10分方案2:8人同时出发,4人步行,先将4人用车送到离出发点km x 的A 处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场. 6分由A 处步行前考场需15(h)5x -,汽车从出发点到A 处需(h)60x 先步行的4人走了5(km)60x⨯,设汽车返回t (h )后与先步行的4人相遇,则有605560x t t x +=-⨯,解得11780xt =,8分所以相遇点与考场的距离为112156015(km)78013x xx -+⨯=-. 由相遇点坐车到考场需1(h)4390x ⎛⎫-⎪⎝⎭. 所以先步行的4人到考场的总时间为111(h)607804390x x x ⎛⎫++-⎪⎝⎭, 先坐车的4人到考场的总时间为15(h)605x x -⎛⎫+ ⎪⎝⎭,他们同时到达,则有11115607804390605x x x x x-++-=+,解得13x =. 将13x =代入上式,可得他们赶到考场所需时间为1326037605⎛⎫+⨯= ⎪⎝⎭(分钟). 3742<Q .∴他们能在截止进考场的时刻前到达考场. 10分其他方案没有计算说明可行性的不给分.6、解:设这种商品的成本价为x 元,依题意得,270%90%)201(=⨯+x , (4分)解以上方程,得250=x . (5分) 答:这种商品的成本价是250元. (6分)7、(1)应收水费264(106)8(12.510)48⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则226448(1510)44x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则264(6)26448(1510)44x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .8、解:(1)3500×%×80%=(元),∴到期时他实得利息收益是85.68元. 2分 (2)设他这笔存款的本金是x 元, 则x (1+%×80%)=, 4分 解得x =2500,∴这笔存款的本金是2500元.6分(3)设小明爸爸的这笔存款转存前已存了x 天,由题意得l0000×360x ×%+10000×360360x -×%>10000×%, 8分 解得x <41713,9分当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存. 10分 9、(1)设2007职业中专的在校生为x 万 人根据题意得:1500× -1500x =600 ………………………………………3分解得:2x = ………………………………5分所以.()2 1.2 2.4⨯=万人()2.415003600⨯=万元 ……………………………7分答:略. …………………………………8分10、解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台).(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000.解得x =88.∴31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部. ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.11、解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台).(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000.解得x =88.∴ 31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部. ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.12、解法一:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为(469)x -万人次.依题意,得(469)1696x x +-=. 解得353x =.4694353691343x -=⨯-=.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次.解法二:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次. 依题意,得1696469.x y y x +=⎧⎨=-⎩,解得3531343.x y =⎧⎨=⎩,答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次.13、解:设初中在校生为x 万人,依题意得(22)136x x +-=解得46x =于是22246290x -=⨯-=(万人).答:目前我省小学在校生为90万人,初中在校生为46万人.14、解:设该公司今年到台湾采购苹果的成本价格为x 元/公斤根据题意列方程得100000100000200002x x += 解得 2.5x =经检验 2.5x =是原方程的根. 当 2.5x =时,25x =答:实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤.15、解:设每个中国结的原价为x 元,根据题意得16016020.8x x-= 解得 20x =.经检验,20x =是原方程的根.答:每个中国结的原价为20元.16、(1)解法一:设甲种消毒液购买x 瓶,则乙种消毒液购买(100)x -瓶.依题意,得69(100)780x x +-=.解得:40x =.∴1001004060x -=-=(瓶).答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.解法二:设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶.依题意,得10069780x y x y +=⎧⎨+=⎩,.解得:4060x y =⎧⎨=⎩,.答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.(2)设再次购买甲种消毒液y 瓶,刚购买乙种消毒液2y 瓶. 依题意,得6921200y y +⨯≤. 解得:50y ≤.答:甲种消毒液最多再购买50瓶.17、解:(1)设乙队单独完成需x 天根据题意,得11120()2416060x ⨯++⨯= 解这个方程,得x =90经检验,x =90是原方程的解∴乙队单独完成需90天(2)设甲、乙合作完成需y 天,则有11()16090y += 解得36y =(天)甲单独完成需付工程款为60×=210(万元)乙单独完成超过计划天数不符题意(若不写此行不扣分). 甲、乙合作完成需付工程款为36(+2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.18、解:(1)设试销时这种苹果的进货价是每千克x 元,依题意,得)11000500020.5x x =⨯+解之,得 x =5经检验,x =5是原方程的解. (2)试销时进苹果的数量为:500010005= 第二次进苹果的数量为:2×=(千克)盈利为: 2600×7+400×7×-5000-=0(元)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.19、解: (1)设该班胜x 场,则该班负)10(x -场.依题意得: 14)10(3=--x x解之得: 6=x所以该班胜6场,负4场.(2)设甲班胜了x 场,乙班胜了y 场,依题意有: )]10(3[3)10(3y y x x --=--化简得:53+=x y 即35+=x y 由于y x , 是非负整数,且05x ≤≤,y x > ∴4=x ,3=y .所以甲班胜4场,乙班胜3场. 答:(1)该班胜6场,负4场.(2)甲班胜4场,乙班胜3场.。
备考2023年中考数学一轮复习-一元一次方程的实际应用-销售问题-综合题专训及答案
备考2023年中考数学一轮复习-一元一次方程的实际应用-销售问题-综合题专训及答案一元一次方程的实际应用-销售问题综合题专训1、(2013盐城.中考真卷) 水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)2、(2018沧州.中考模拟) “创卫工作人人参与,环境卫生人人受益”,我区创卫工作已进入攻坚阶段.某校拟整修学校食堂,现需购买A、B两种型号的防滑地砖共60块,已知A型号地砖每块40元,B型号地砖每块20元.(1)若采购地砖的费用不超过1600元,那么,最多能购买A型号地砖多少块?(2)某地砖供应商为了支持创卫工作,现将A、B两种型号的地砖单价都降低a%,这样,该校花费了1280元就购得所需地砖,其中A型号地砖a块,求a的值.3、(2017淮安.中考模拟) 水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)4、(2019温岭.中考模拟) 某水果店计划购进甲、乙两种新出产的水果共140千克,进价(元/千克)售价(元/千克)甲种5 8乙种9 13(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?5、(2017西湖.中考模拟) 一服装批发店出售星星童装,每件进价120元,批发价200元,多买优惠;凡是一次买10件以上的,每多买一件,所买的全部服装每件就降低1元,但是最低价为为每件160元,(1)求一次至少买多少件,才能以最低价购买?(2)写出服装店一次销售x件时,能获利润y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲批发了46件,乙批发了50件,店主却发现卖46件赚的钱反而比卖50件赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每件160元至少提高到多少?6、(2017平邑.中考模拟) 某商场计划购进A,B两种新型节能台灯共100盏,这两类型价格进价(元/盏)售价(元/盏)A型30 45B型50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?7、(2017开封.中考模拟) 某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.8、(2018南山.中考模拟) 某公司经市场调查发现,该公司生产的某商品在第x天的售价(1≤x≤100)为(x+30)元/件,而该商品每天的销售量y(件)满足关系式:y=220-2x,如果该商品第15天的售价按8折出售,仍然可以获得20%的利润.(1)求该公司生产每件商品的成本为多少元;(2)问销售该商品第几天时,每天的利润最大?最大利润是多少?(3)该公司每天需要控制人工、水电和房租支出共计a元,若考虑这一因素后公司对最大利润要控制在4000元至4500元之间(包含4000和4500),且保证至少有90天的盈利,请直接写出a的取值范围.9、(2019百色.中考模拟) 某书店购进甲、乙两种图书共100本,甲、乙两种图书的进价分别为每本15元、35元,甲、乙两种图书的售价分别为每本20元、45元.(1)若书店购书恰好用了2300元,求购进的甲、乙图书各多少本?(2)销售时,甲图书打8.5折,乙图书不打折.若甲、乙两种图书全部销售完后共获利,求购进的甲、乙图书各多少本?10、(2020珠海.中考模拟) 国内猪肉价格不断上涨,已知今年10月的猪肉价格比今年年初上涨了80%,李奶奶10月在某超市购买1千克猪肉花了72元钱.(1)今年年初猪肉的价格为每千克多少元?(2)某超市将进货价为每千克55元的猪肉按10月价格出售,平均一天能销售出100千克,随着国家对猪肉价格的调控,超市发现猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1800元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?11、(2020安顺.中考真卷) 第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?12、(2020潢川.中考模拟) “六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.13、(2020五峰土家族自治.中考模拟) 今年受新冠病毒疫情的影响,王大伯家的两种水果“沃柑”和“夏橙”存在销售困难,这一情况被住村干部得知后,决定帮助王大伯提供线上(网上销售)和线下(批发给店铺)两种形式销售.通过一个星期的销售,其中通过线上销售1600斤,且通过线上销售的斤数比线下销售的斤数多60%.(1)求王大伯的一星期线上线下销售“沃柑”和“夏橙”一共多少斤?(2)如果销售的这些水果中“沃柑”比“夏橙”的2倍少700斤,而通过线上销售的“夏橙”的斤数不小于线下销售“夏橙”的2倍,则通过线下销售的“沃柑”至少多少斤?14、(2021·厦门模拟) 新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这10000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?15、猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:类别A款玩偶B款玩偶价格进货价(元/个)40 30销售价(元/个)56 45(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?一元一次方程的实际应用-销售问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析
中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。
人教版九年级数学中考一元一次方程及其应用专项练习及参考答案
人教版九年级数学中考一元一次方程及其应用专项练习专题知识回顾知识点1:一元一次方程的概念1.一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。
2.方程的解:判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等.知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
2.解一元一次方程的一般步骤:(1)去分母在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。
(2)去括号一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。
(3)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。
(4)合并同类项把方程化成ax =b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。
(5)系数化为1在方程两边都除以未知数的系数a ,得到方程的解x =b/a ,依据等式基本性质2,计算要仔细,分子分母勿颠倒。
要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a≠0时,方程有唯一解x =b/a ; ②a=0,b=0时,方程有无数个解; ③a=0,b≠0时,方程无解。
知识点3:列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。
一元一次方程应用题
市场经济问题(1)利润=售价-成本价利润=成本价×利润率(2)利润率=商品利润商品成本价×100%(3)销售额=销售价×销售量(4)总利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.例1.某商店先在广州以每件15元的价格购进某种商品10件,后来又到深圳以每件12.5元的价格购进同样商品40件。
如果商店销售这种商品时,要获利12%,那么这种商品的销售价应定多少?讲评:设销售价每件x 元,销售收入则为(10+40)x元,而成本(进价)为(5×10+40×12.5),利润率为12%,利润为(5×10+40×12.5)×12%。
由关系式①有(10+40)x-(5×10+40×12.5)=(5×10+40×12.5)×12%∴x=14.56例2.某种商品因换季准备打折出售,如果按定价七五折出售,则赔25元,而按定价的九折出售将赚20元。
问这种商品的定价是多少?讲评:设定价为x元,七五折售价为75%x,利润为-25元,进价则为75%x-(-25)=75%x+25;九折销售售价为90%x,利润为20元,进价为90%x-20。
由进价一定,有75%x+25=90%x-20 ∴ x = 3001.妈妈带小明到文具店买书包和文具盒,经过讨价还价,原价42元的书包打九折,原价18元的文具盒打八折。
他们一共要付元2. 某件商品9折降价销售后每件商品售价为元,则该商品每件原价为( )元。
一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。
3. 某商店在某一时间以每件80元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?4、某商品的标价为165元,若降价以9折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少?5、某种商品进价为1600元,按标价的8折出售,利润率为10%,问它的标价是多少?6、甲种运动器械进价1200元,按标价1800元的9折出售,乙种跑步器,进价2000元,按标价3200元的8折出售,哪种商品的利润率更高些?7、某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元?8、一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,那么彩电的标价是多少元?9、商品进价为400元,标价为600元,商店要求以利润率不低于5%的售价打折出售,最低可以打几折出售此商品?10、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?11.某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?.12、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10(相对于进价),问这种商品的进价为多少元?13.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为多少元?14.如果某商品进价降低5%,而售价不变,利润率可提高15个百分点,求此商品的原来的利润率15.某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折售给某山区学校,结果每件盈利0.20元。
列方程解应用题(分式方程)
2013中考全国100份试卷分类汇编列方程解应用题(分式方程)1、(2013泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( ) A . B .C .D .2、(2013•铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )B3、(2013•钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x 天.则可列方程为( ) A .+=1.+8(+)=1 ﹣爸爸立即去追小朱,且在距离学校60米的地方追上了他。
已知爸爸比小朱的速度快100米/分,求小朱的速度。
若设小朱速度是x 米/分,则根据题意所列方程正确的是( ) A.1014401001440=--x x B. 1010014401440++=x xC.1010014401440+-=x x D. 1014401001440=-+xx 5、(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为 6、(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产 台机器.7、(2013•湘西州)吉首城区某中学组织学生到距学校20km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.8、(2013安顺)某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?9、列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务。
(完整版)山东省潍坊市2013年中考数学真题试题(解析版)
2013年潍坊市初中学业水平考试数学试题一、选择题(本题共 12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确 的选项选出来•每小题选对得3分,选错、不选或选出的答案超过一个均记 0分.)1.实数0.5的算术平方根等于()•A.2B. 2C. —D. 12 2答案:C.考点:算术平方根。
点评:理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键 2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()答案:A.考点:轴对称图形与中心对称图形的特征。
点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。
. 3.2012年,我国财政性教育经费支出实现了占国内生产总值比例达 务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达 “865.4亿元”用科学记数法可表示为()元.答案:B.考点:根据实物原型画出三视图。
点评:本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同 . 其中的一名学生想要知道自己能否进入前 5名,不仅要了解自己的成绩, 还要了解这9名学 生成绩的(). A.众数 B.方差 C. 平均数 D. 中位数 答案:D.D.4%的目标.其中在促进义865.4亿元.数据89A. 865 10B. 8.65 10C. 8.65 101011D. 0.865 10答案:C.考点:科学记数法的表示。
点评:此题考查了科学记数法的表示方法•科学记数法的表示形式为 1w |a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.4.如图是常用的一种圆顶螺杆,它的俯视图正确的是().a x 10n 的形式,其中B.考点:统计量数的含义•点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用 ,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑 •与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度 k6.设点A x 1, y 1和B x 2, y 2是反比例函数y图象上的两个点,当x 1 v x 2 v 0时,y 1 vxy ,则一次函数y 2x k 的图象不经过的象限是()考点:变量间的关系,函数及其图象 •点评:容器上粗下细,杯子里水面的高度上升应是先快后慢。
2013年中考数学真题
2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。
2013年全国各地中考模拟卷分类汇编:一元一次方程(含答案)
2013年全国各地中考模拟卷分类汇编一元一次方程一、选择题1、若x =3是方程x 错误!不能通过编辑域代码创建对象。
-3mx +6m =0的一个根,则m 的值为 ( )A .1B . 2C .3D .42、(2013凤阳县县直义教教研中心)凤阳县对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是 ( ).A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=二、填空题1.(2013盐城市景山中学模拟题)青年路两旁原有路灯212盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型高效节能灯,且相邻两盏灯的距离变为54米,则需更换新型节能灯 ◆ 盏.答案:142;2、一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原价的8折销售,售价为120元,则这款羊毛衫的原销售价为 150 元.3.(2013江西饶鹰中考模拟)已知一元一次方程0342=+-x kx 有实数根,则k 的取值范围是 . 答案:034≠≤k k 且4、(2013温州模拟)15.某地按以下规定收取每月电费:用电量如果不超过60度,按每度电0.8元收费;如果超过60度则超过部分按1.2元收费。
已知某用户3月份交电费66元。
那么3月份该用户用电量为 ▲ 度.【答案】3三、解答题1、(2013年安徽凤阳模拟题三)为鼓励学生积极参加体育锻炼,学校计划拿出不超过2 400元的资金再购买一批篮球和气排球.已知篮球和气排球的单价比为5∶1.单价和为90元.(1)篮球和气排球的单价分别是多少元?(2)若要求购买的篮球和气排球共40个,且购买的篮球数量多于27个,有哪几种购买方案?解:(1)设篮球的单价为x 元,则气排球的单价为15x 元,根据题意,得 x +15x =90. …………………………………………………………………2分 解得x =75. …………………………………………………………………3分∴15x =15. 答:篮球和气排球的单价分别是75元和15元.………………………………4分(2)设购买的篮球数量为n 个,则购买的气排球数量为(40-n )个,则有27,7515(40)2400.n n n ⎧⎨+-⎩>≤ 解得 27<n ≤30.…………………………………………………………………6分 而n 为整数,所以其取值为28,29,30,对应的40-n 的值为12,11,10. 所以共有三种购买方案:方案一:购买篮球28个,气排球12个;方案二:购买篮球29个,气排球11个;方案三:购买篮球30个,气排球10个.………………………………………8分2、(2013凤阳县县直义教教研中心)(本小题满分10分)黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s 和渔船离开港口的时间t 之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s 和它离开港口的时间t 的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?解:(1) 当0≤t ≤5时 s =30t … (1分)当5<t ≤8时 s =150 …………………………………………… (2分)当8<t ≤13时 s =-30t +390 ………………………………………(3分)(2) 渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s =kt +b ⎪⎩⎪⎨⎧+=+=b k b k 33415080 ………………………………………………(4分) 解得: k =45 b =-360∴s =45t -360 ………………………………………………(5分) ⎩⎨⎧+-=-=3903036045t s t s解得 t =10 s =90 渔船离黄岩岛距离为 150-90=60 (海里) ……………………………(6分)(3) S 渔=-30t +390S 渔政=45t -360分两种情况:① S 渔-S 渔政=30-30t +390-(45t -360)=30解得t =485(或9.6) -……………………………………………… (8分) ② S 渔政-S 渔=3045t -360-(-30t +390)=30解得 t =525(或10.4) ∴当渔船离开港口9.6小时或10.4小时时,两船相距30海里. ………(10分)B。
中考数学专项练习一元一次方程的实际应用计费问题(含解析)
中考数学专项练习一元一次方程的实际应用计费问题(含解析)【一】单项选择题1.某城市按以下规定收取每月煤气费:每月所用煤气按整立方米数计算;假设每月用煤气不超过60立方米,按每立方米0.8元收费;假设超过60立方米,超过部分按每立方米1.2元收费.某户人家某月的煤气费平均每立方米0.88元,那么这户人家需要交煤气费〔〕A.60元B.66元C.75元D.78元2.某商场在〝五一〞期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,那么不予优惠;②如果超过500元,但不超过800元,那么按购物总额给予8折优惠;③如果超过800元,那么其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,假设各自单独付款,那么应分别付款480元和520元;假设合并付款,那么她们总共只需付款多少元〔〕A.838B.924C.924或838D.838或9103.某市为提倡节约用水,采取分段收费.假设每户每月用水不超过20 m3 ,每立方米收费2元;假设用水超过20m3 ,超过部分每立方米加收1元.小明家5月份交水费64元,那么他家该月用水〔〕m3 .A.38B.34C.28D.444.某超市推出如下优惠方案:〔1〕购物款不超过200元不享受优惠;〔2〕购物款超过200元但不超过600元一律享受九折优惠;〔3〕购物款超过600元一律享受八折优惠.小明的妈妈两次购物分别付款168元、423元.如果小明的妈妈在超市一次性购买与上两次价值相同的商品,那么小明的妈妈应付款〔〕元.A.522.8B.560.4C.510.4D.472.805.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km 加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是xkm,那么x的最大值是()A.11B.8C.7D.56.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,那么超过部分按每立方米2.4元收费。
2013全国中考数学试题分类汇编----一元一次方程
(2013,永州)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额; 二.个人所得税纳税税率如下表所示 不超过1500元的部分超过1500元至4500元的部分 (1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?考点:一元一次方程的应用. 专题:经济问题.分析:等量关系为:打九折的售价﹣打八折的售价=2.根据这个等量关系,可列出方程,再求解.解答:解:设原价为x 元, 由题意得:0.9x ﹣0.8x=2 解得x=20.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.(2013•绵阳)朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还3个,如果每人2个又多2个,请问共有多少个小朋友?()A .4个B .5个C .10个D .12个(2013•潜江)某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的45倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?(2013•宜昌)【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花元的标准支付雇工工资,雇工每天工作8小时. 【问题解决】(1) 一个雇工手工采摘棉花,一天..能采摘多少公斤? (2) 一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求的值; (3) 在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?(2013•苏州)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?a a 3231(2013山东滨州,3,3分)把方程12x=1变形为x=2,其依据是A.等式的性质1 B.等式的性质2C.分式的基本性质D.不等式的性质1【答案】B.(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.60元B.80元C.120元D.180元考点:一元一次方程的应用.分析:设这款服装的进价为x元,就可以根据题意建立方程300×0.8﹣x=60,就可以求出进价,再用标价减去进价就可以求出结论.解答:解:设这款服装的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.300﹣180=120,∴这款服装每件的标价比进价多120元.故选C.点评:本题时一道销售问题.考查了列一元一次方程解实际问题的运用,利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.(2013济宁)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有盏灯.考点:一元一次方程的应用.分析:根据题意,假设顶层的红灯有x盏,则第二层有2x盏,依次第三层有4x盏,第四层有8x盏,第五层有16x盏,第六层有32x盏,第七层有64x盏,总共381盏,列出等式,解方程,即可得解.解答:解:假设尖头的红灯有x盏,由题意得:x+2x+4x+8x+16x+32x+64x=381,127x=381,x=3(盏);答:塔的顶层是3盏灯.故答案为:3.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.(2013•日照)甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是A.8B.7C.6D.5答案:A解析:假设每天工作量是1,甲单独工作x天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程与应用
一.选择、填空题
2.(2013山东滨州,3,3分)把方程
2
x=1变形为x=2,其依据是 A .等式的性质1 B .等式的性质2 C .分式的基本性质 D .不等式的性质1
3.(2013• 潍坊)对于有理数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,
[]33=,[]35.2-=-,若5104=⎥⎦
⎤
⎢⎣⎡+x ,则x 的取值可以是( ).
A.40
B.45
C.51
D.56 4、(绵阳市2013年).朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有多少个小朋友?( ) A .4个 B .5个 C .10个 D .12个
5.(2013• 日照)甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是
A.8
B.7
C.6
D.5
6.(2013• 枣庄)某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为
A.240元
B.250元
C.280元
D.300元 7.(2013• 淄博)把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为 (A )70cm (B )65cm
(C )35cm
(D )35cm 或65cm
8、(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( ) A .60元 B .80元 C .120元 D .180元 9、(2013台湾、16)图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为何?( )
A .
B .
C .42
D .44
10、(2013台湾、5)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x 件,则依题意可列出下列哪一个一元一次方程式?( )
A .0.6×250x+0.8×125(200+x )=24000
B .0.6×250x+0.8×125(200﹣x )=24000
C .0.8×125x+0.6×250(200+x )=24000
D .0.8×125x+0.6×250(200﹣x )=24000 11、(2013达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
那么顾客到哪家超市购买这种商品更合算( )
A .甲
B .乙
C .丙
D .一样 12、(13凉山州)购买一本书,打八折比打九折少花2元钱,那么这本书的原价是 元. 13、(2013•牡丹江)小明星期天到体育用品商店购买一个篮球花了120元,已知篮球按标价打八折,那么篮球的标价是 元.
14、(2013年深圳市)某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价________________元。
15.(2013济宁)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有 盏灯. 二、解答题:
16.(2013•红河)一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件
外衣的标价为多少元?(注:=
100% 售价-进价
利润率进价
)
17.(2013•泰州)某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道. 18、(2013福省福州17)(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生? 19、(2013•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/
吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?
20.(2013•潜江)某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的4
5
倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?
(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?
21.(2013,永州)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:
一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额; 元的部分元,请分别求出甲、乙两人的每月应缴纳的个人所得税;
(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少? 22、(2013•宜昌)[背景资料]
一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a 元的标准支付雇工工钱,雇工每天工作8小时. [问题解决]
(1)一个雇工手工采摘棉花,一天能采摘多少公斤?
(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a 的值; (3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇佣的人数是张家的2倍,张家雇人手工采摘,王家所雇的人中有的人自带彩棉机采摘,的人手工采摘,两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元,王家这次采摘棉花的总重量是多少?。