完整word版中考专题复习几何题用旋转构造手拉手模型

合集下载

中考数学专题训练旋转模型几何变换的三种模型手拉手半角对角互补

中考数学专题训练旋转模型几何变换的三种模型手拉手半角对角互补

中考数学专题训练旋转模型几何变换的三种模型手拉手半角对角互补Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998几何变换的三种模型手拉手、半角、对角互补⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎪⎪⎩等腰三角形手拉手模型等腰直角三角形(包含正方形)等边三角形(包含费马点)特殊角旋转变换对角互补模型一般角特殊角角含半角模型一般角等线段变换(与圆相关)【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出ABD ∠的大小(用含α的式子表示);(2)如图2,15060BCE ABE ∠=︒∠=︒,,判断ABE △的形状并加以证明; (3)在(2)的条件下,连结DE ,若45DEC ∠=︒,求α的值.真题演练知识关联图【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=,,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.例题精讲考点1:手拉手模型:全等和相似包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)【例1】(14年海淀期末)已知四边形ABCD和四边形CEFG都是正方形,且AB CE>.(1)如图1,连接BG、DG.求证:BG DE=;(2)如图2,如果正方形ABCD的边长为2,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG BD∥,BG BD=.①求BDE∠的度数;②请直接写出正方形CEFG的边长的值.【题型总结】手拉手模型是中考中最常见的模型,突破口常见的有哪些信息常见的考试方法有哪些【例2】 (2014年西城一模) 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。

(完整word版)手拉手模型

(完整word版)手拉手模型

手拉手模型手拉手模型特点:由两个顶角相等的等腰三角形所组成,并且顶角的顶点为公共顶点 结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°(3)OA 平分∠BOC变形:例1.如图,B 是线段AC 上一点,分别以AB 和BC 为边长,在直线AC 的同一侧作两个等边三角形,△ABD 和△ECB ,连接AE 和CD ,AE 与DC 交于点H ,与BD 与BE 交于点G ,F .(1)求证:△B CD ≌△BEA ;(2)探究△BFG 的形状,并证明你的结论.HF GED思考:的数量关系。

与DC AE(2)AE 与DC 之间的夹角为︒60(3)DFB AGB ∆≅∆(4)CFB EGB ∆≅∆(5)BH 平分AHC ∠(6)AC GF //变式精练1:如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明:(1)AE 与DC 的夹角为60°;(2)AE 与DC 的交点设为H ,BH 平分∠AHC .思考:DC AE =;AE 与DC 之间的夹角为︒60试一试继续旋转结论是否成立。

变式精练2.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1)试判断BD、CE的数量关系,并说明理由;(2)延长BD交CE于点F,试求∠BFC的度数;(3)把两个等腰直角三角形按如图2放置,(1)中的结论是否仍成立?请说明理由.练习:已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为2.如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?(如果你知道勾股定理的话,请问线段AC、GE、AE、CG有什么数量关系?)。

(完整word版)用旋转构造“手拉手”模型

(完整word版)用旋转构造“手拉手”模型

中考专题复习——几何题用旋转构造“手拉手”模型一、教学目标:1.了解并熟悉“手拉手模型”,归纳掌握其基本特征.2.借助“手拉手模型”,利用旋转构造全等解决相关问题.3.举一反三,解决求定值,定角,最值等一类问题.二、教学重难点:1.挖掘和构造“手拉手模型”,学会用旋转构造全等.2.用旋转构造全等的解题方法最优化选择.三、教学过程:1.复习旧知师:如图,△ABD ,△BCE 为等边三角形,从中你能得出哪些结论?生:(1)△ABE ≌△DBC (2)△ABG ≌△DBF (3)△CFB ≌△EGB (4)△BFG 为等边三角形(5)△AGB ∽△DGH (6)∠DHA =60°(7)H ,G ,F ,B 四点共圆 (8)BH 平分∠AHC …… 师:我们再来重点研究△ABE 与△DBC ,这两个全等的三角形除了对应边相等,对应角相等外,还有什么共同特征呢?生:它们有同一个字母B ,即同一个顶点B .师:我们也可以把△DBC 看作由△ABE 经过怎样的图形运动得到? 生:绕点B 顺时针旋转60°得到.2.引入新课师:其实我们可以给这两个全等的三角形赋予一个模型,叫“手拉手模型”,谁可以将这个模型的特征再做进一步的简化归纳呢? 生:对应边相等.师:我们可以称之为“等线段”. 生:有同一个顶点.师:我们可以称之为“共顶点”.师:等线段,共顶点的两个全等三角形,我们一般可以考虑哪一种图形运动? 生:旋转.师: “手拉手模型”可以归纳为:等线段,共顶点,一般用旋转.H GF E DCBA3.小题热身图1 图2 图31.如图1,△BAD中,∠BAD=45°,AB=AD,AE⊥BD于E,BC⊥AD于C,则AF=____BE.2.如图2,△ABC和△BED均为等边三角形,ADE三点共线,若BE=2,CE=4,则AE=______.3.如图3,正方形ABCD中,∠EAF=45°,BE=3,DF=5,则EF=_______.师:我们来看第1,第2题,这里面有“手拉手模型”吗?请你找出其中的“等线段,共顶点”.生:题1中,等线段是AC,BC,共顶点是C,△ACF绕点C逆时针旋转90°得△BCD.题2中,等线段是AB,BC,共顶点是B,△ABD绕点D顺时针旋转60°得△CBE.师:我们再来看第3题,这里有“手拉手模型”吗?生:没有.师:那其中有没有“等线段,共顶点”呢?生:等线段是AD,AB,共顶点是A.师:我们可否利用旋转来构造“手拉手模型”呢?生:将AE旋转,绕点A逆时针旋转90°.师:为什么是逆时针旋转90°,你是如何思考的?生:我准备构造一个和△ABE全等的三角形,AB绕点A逆时针旋转90°即为AD,那么将AE逆时针旋转90°可得AG,连接GD,证明全等.师:说的不错,谁能再来归纳一下,借助“手拉手模型”,用旋转构造全等的方法吗?生:先找有没有“等线段,共顶点”,再找其中一条“共顶点”的线段,将其旋转.师:旋转角度如何确定,方向怎么选择?生:选择其中一个三角形,将“共顶点”的线段旋转.旋转角为两条“等线段”间的夹角.方向应与所选择的起始“等线段”旋转到另一条“等线段”时的方向一致.师:非常棒,可以说,你已经掌握了这节课的精髓.但是,很多题目中只是隐含了“手拉手模型”的一些条件,剩余的需要我们自己去构造,可以如何构造呢?步骤1:先找有没有“等线段,共顶点”.步骤2:选择其中一个三角形,将其中经过“共顶点”的线段旋转.步骤3:旋转方向与这个三角形的“等线段”旋转到另一条“等线段”的方向一致,旋转角为“等线段”间的夹角.师:这道题还有一个要注意的地方,你发现了吗?生:连接GD后,要证明G,D,F三点共线.4.例题精讲例1:等边△ABC中,AD=4,DC=3,BD=5,求∠ADC度数.师:这里有没有隐含的“手拉手模型”?要构造全等,该怎样旋转?生:将△ADC绕点A顺时针旋转60°.师:你是怎么想的,还有其他做法吗?生:我发现AB=AC,A为“共顶点”,我选择的旋转线段是AD,因为AC绕点A顺时针旋转60°到AB,所以△ADC也要绕点A顺时针旋转60°.也可将△ADB绕点A逆时针旋转60°.【解答】将AD绕点A顺时针旋转60°到AE,连接BE,DE.则△ADE也为等边三角形.易证△AEB≌△ADC,∴BE=DC=4,根据勾股定理逆定理,可证∠BED=90°,则∠AEB=∠ADC=150°例2:如图,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90︒.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.师:由于线段分散,如何通过图形变换,使这些线段能构成一个三角形?生:将OD绕点O逆时针旋转90°至OE,即可使OC,OD共线,再通过证明确定△BCE即是以AD、BC、OC+OD的长度为三边长的三角形.【解答】如图,将OD绕点O逆时针旋转90°至OE,连接BE.易证△OAD≌△OBE,AD=BE,∴△BCE即是以AD、BC、OC+OD 长度为三边长的三角形.又∵OC=OE,∴S△BCE=2S△BOC=2.EAOBCDDC BOABBDCBA5.自主练习1.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则BD 的长为 _________. 师:请找出隐含的“手拉手模型”,并写出解决方法.生:“等线段”是CA 和BA ,“共顶点”是A .方法是将AD 绕点A 顺时针旋转90°.2.如图,在△ABC 中,BC =2,AB =2,以AC 为边,向外做正方形ACDE ,连接BE ,则BE 最大值为_________. 师:请找出隐含的“手拉手模型”,并写出解决方法.生:“等线段”是CA 和EA ,“共顶点”是A . 方法是将AB 绕点A 逆时针旋转90°.师:你为何要逆时针旋转,你准备旋转哪个三角形?生:△ABC ,因为AC 是逆时针旋转90°到AE ,所以AB 也绕点A 逆时针旋转90°. 3.如图,点A 在⊙B 上,AB =1,BC =2,△ACD 是等边三角形,求△BCD 面积的最大值.师:请找出隐含的“手拉手模型”,并写出解决方法. 生:“等线段”是CA 和CD ,“共顶点”是C . 方法是将CA 绕点C 逆时针旋转60°.附:自主练习解答1. 如图,将AD 绕点A 顺时针旋转90°至AE ,易证△EAC ≌△DAB ,可得CE =BD ,又∵∠EDA =45°,∴∠CDE =90°,CD =3,DE =42,则Rt △CDE 中,CE 2=CD 2+DE 2=32+ (42)2=41∴CE =41,∴DB =412.如图,将AB 绕点A 逆时针旋转90°至AF ,易证△EAF ≌△CAB ,可得EF =BC =2.Rt △BAF 中,AF =AB =2,∴BF =2.由三角形三边关系易知,BE ≤EF +BF ,∴BE 最小值为4.EDCBAADC BDFEBCDA3.如图,将CB绕点C逆时针旋转60°至CE,连接DE,过点E作EF⊥CB 于F,过点D作DG⊥CB于G.易证△CBA≌CED,则DE=1,EF=3,过E作DG边上的高,可证DG<DE+EF.当D,E,F三点共线时,DG=DE+EF.即高的最大值为1+3,S△BCDmax=12×2×(1+3)=1+ 3FEDCBAGEFABCD。

【中考专题】『手拉手模型』,经典结论大总结

【中考专题】『手拉手模型』,经典结论大总结

手拉手模型大家都非常熟悉了,从七年级下册全等三角形开始,便一直陪伴我们左右,14-19年这五年的河南中考22题也都一直在考察这个模型,所以对于河南的考生,手拉手模型的重要性不言而喻。

该模型基本结论很多,这里不再一一赘述。

这里主要讲一下手拉手模型的构造(即我们之前更新过的 “ 鸡爪模型 ” ),16年中考22题的第三问曾对构造进行过考察,而今年也有不少名校的模拟考试也都涉及到了这个问题。

今天我们为大家整理归类常见的手拉手模型的构造及相关结论;无需记忆,需要会推理哦~关于“手拉手模型”:入门篇:【中考专题】全等之手拉手模型,入门必看!【中考专题】手拉手模型的12个结论,你知道几个?精讲篇:【中考专题】手拉手模型(一)—等腰旋转,全等出现【中考专题】手拉手模型(二)—旋缩变换,相似成双培优篇:【中考专题】“鸡爪”模型—构造手拉手旋转【中考专题】手拉手旋转,从特殊到一般的几点思考典例篇:【中考专题】河南中考 类比探究(五年真题+五年B卷)【中考专题】类比探究,考法浅析【中考专题】类比探究问题 (2015·烟台)【中考专题】手拉手模型的构造——以19·枫杨·三模·22题为例1.左右手的判别:顶点朝上,左边顶点为左手,右边顶点为右手两个顶点相等且共顶点的等腰三角形手拉手(左手拉左手,右手拉右手)3.手拉手经典结论①△ABD≌△ACE②BD=CE,且夹角等于∠BAC(或其补 角)③AO平分∠BOE(或其外角)证明:①∵AB=AC,AD=AE且∠BAD=∠BAC+∠DAC=∠EAD+∠DAC=∠CAE∴ △ABD≌△ACE(SAS)②∵△ABD≌△ACE(SAS)∴BD=CE,∠BDA =∠CEA∵∠BDA +∠DOE =∠CEA+∠DAE∴∠DOE=∠DAE=∠BAC③∵△ABD≌△ACE(SAS)∴底边BD=CE, △ABD与△ACE 面积相等; ∴高:A到BD距离=A到CE的距离∴AO平分∠BOE怎么样,坚持看到了这里相信你已经完全掌握了吧接下来,一道亮点颇多的题目送给你们希望大家做的开心愉快模型一△ABC为等边三角形,∠BPC=120°证明方法图:证明:延长PC至D,使得CD=BP可得△ABP≌△ACD则△APD为等边三角形则PC+PB=PC+CD=PA模型二△ABC为等腰直角三角形,∠BPC=90°结论:PB+PC=√2PA 证明方法图:(证明过程略)△ABC为顶角为120°的等腰三角形,∠BPC=60°结论:PB+PC=√3PA 证明方法图:(证明过程略)△ABC为等腰直角三角形,∠BPC=90°结论:PB-PC=√2PA 证明方法图:(证明过程略)△ABC为等边三角形,∠BPC=150°结论:PB^2+PC^2=PA^2 证明方法图:(证明过程略)△ABC为等腰直角三角形,∠BPC=135°结论:PB^2+2PC^2=PA^2 证明方法图:(证明过程略)看完了这些是不是蠢蠢欲动了让我们一起创造手拉手拯救“单身狗”吧例题:(1)如图1,点P是等边三角形ABC内的一点,PA=4,PB=3,PC=5,求∠BPA.(2)如图2,点P是正方形ABCD内的一点,PA=3,PB=2√2,PC=5,求∠BPA.今天的分享就到此结束了继续关注我们哦会有更多的干货等着你!。

【中考复习】三大变换之旋转—手拉手模型

【中考复习】三大变换之旋转—手拉手模型

【中考复习】三大变换之旋转—手拉手模型上一篇我们了解了关于旋转的基本性质,本文继续旋转之手拉手模型.【中考复习】三大变换之旋转(上)不知是哪一年,手拉手模型横空出世,从此江湖上都是它的传说,那关于手拉手,我们需要了解什么?我觉得有三点:(1)构成模型的必要条件;(2)条件与结论的设计;(3)如何构造手拉手.01构造手拉手的必要条件当对一个几何图形记忆并不深刻的时候,可以尝试用文字去总结要点,比如手拉手:四点共线,两两相等,夹角相等.条件:如图,OA=OB,OC=OD(四线共点,两两相等),∠AOB=∠COD(夹角相等)结论:△OAC≌△OBD(SAS)证明无需赘述,关于条件中的OA=OB,OC=OD,有时候会直接以特殊几何图形的形式给出,比如我们都很熟悉的等边三角形和正方形.等边三角形手拉手(1)如图,B、C、D三点共线,△ABC和△CDE是等边三角形,连接AD、BE,交于点P:结论一:△ACD≌△BCE(2)记AC、BE交点为M,AD、CE交点为N:结论二:△ACN≌△BCM;△MCE≌△NCD(3)连接MN:结论三:△MNC是等边三角形.(4)记AD、BE交点为P,连接PC:结论四:PC平分∠BPD(5)结论五:∠APB=∠BPC=∠CPD=∠DPE=60°.(6)连接AE:结论六:P点是△ACE的费马点(PA+PC+PE值最小)正方形手拉手如图,四边形ABCD和四边形CEFG均为正方形,连接BE、DG:结论一:△BCE≌△DCG结论二:BE=DG,BE⊥DG(旋转角都相等)【小结】手拉手模型是一种基本的旋转型全等,与其说看图找模型,不如是“找条件、定模型”.2017南充中考-正方形手拉手02条件与结论的设计如果是在复习阶段,我相信手拉手模型的结论肯定都知道,并且我也相信命题老师也知道我们都知道,所以不要盯着模型和结论本身,多想想题可以怎么出.设计一:我们可以给出手拉手模型条件,得到一组全等来解决问题,就像问题一中所得出的结论那样;设计二:如果题目已知△ABC≌△ADE外,则还可得△ABD和△ACE 均为等腰三角形,且有△ABD∽△ACE.2019天津中考2017沈阳中考2017苏州中考【小结】以上例子解题关键皆在于利用那一组等腰三角形相似,有些问题常有变式,因其条件与结论可以互换.03如何构造手拉手如何构造手拉手?换句话说,如何构造旋转?当我们在思考这个问题的时候,不妨先问一句,旋转能带来什么?图形位置的改变,这一点就够了,因为,若有数量关系,则先有位置关系.2018德州中考【小结】所谓全等,实际就是将△ODB绕点O旋转到△OEC的位置.等等,好像和某个图有点神似,如下:当然这个图形还可以简化一下,毕竟和D点及F点并没有什么关系.结论与证明不多赘述,题型可以换,但旋转是一样的旋转.2017贵港中考2019巴中中考【小结】如果说第一个题是给出了辅助线,那么下一个题便是完全自行构造旋转,这个图形也是一个固定搭配.搭配一:若PA²+PB²=PC²,则可任意旋转,得等边+直角.且两条较短边夹角(∠APB)为150°.搭配二:若∠APB=150°,则有PA²+PB²=PC².2018淄博中考【思考】如果放在正方形里,条件与结论又该如何搭配?作旋转之后,可得△AEP是等腰直角三角形,若使△PEB也为直角三角形,则原∠APD=135°,而线段PA、PB、PD之间的关系为:2PA²+PD²=PB².搭配一:若∠APD=135°,则2PA²+PD²=PB²;搭配二:若2PA²+PD²=PB²,则∠APD=135°.另外,其实这个图和点C并没有什么关系,所以也可以将正方形换成等腰直角三角形.大概如下图:抓主要条件,舍弃无用条件,也是理解几何图形的一种方式.网题-旋转与瓜豆原理按照从确定到不确定的思路,将条件重新梳理,可能发现好像换了一个题目,但一定会变得比之前简单.当然,问题到此并没有终结,还可继续说说费马点的事,这篇已经说得够多了,下回再说吧.。

(完整word版)三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结(可

(完整word版)三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结(可

(3)OA 平分∠BOC变形:一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC(2)∠α+∠BOC=180°例1.如图在直线ABC 的同一侧作两个等边三角形∆ABD 与∆BCE ,连结AE 与CD ,证明(1)∆ABE ≅∆DBC(2)AE =DC(3)AE 与DC 之间的夹角为60︒(4)∆AGB ≅∆DFB(5)∆EGB ≅∆CFB(6)BH 平分∠AHC(7)GF // AC变式精练1:如图两个等边三角形∆ABD 与∆BCE ,连结AE 与CD ,证明(1)∆ABE ≅∆DBC(2)AE =DC(3)AE 与DC 之间的夹角为60︒(4)AE 与DC 的交点设为H , BH 平分∠AHC变式精练2:如图两个等边三角形∆ABD 与∆BCE ,连结AE 与CD ,证明(1)∆ABE ≅∆DBC(2)AE =DC(3)AE 与DC 之间的夹角为60︒(4)AE 与DC 的交点设为H , BH 平分∠AHC例2:如图,两个正方形ABCD 与DEFG ,连结AG, CE ,二者相交于点H问:(1)∆ADG ≅∆CDE 是否成立?(2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分∠AHE ?例3:如图两个等腰直角三角形ADC 与EDG ,连结AG, CE ,二者相交于点H问:(1)∆ADG ≅∆CDE 是否成立?(2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分∠AHE ?例4:两个等腰三角形∆ABD 与∆BCE ,其中AB =BD , CB =EB, ∠ABD =∠CBE =,连结AE 与CD ,问:(1)∆ABE ≅∆DBC 是否成立?(2)AE 是否与CD 相等?(3)AE 与CD 之间的夹角为多少度?(4)HB 是否平分∠AHC ?倍长中线类二、倍长与中点有关的线段☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。

中考数学常见几何模型手拉手模型(从全等到相似)

中考数学常见几何模型手拉手模型(从全等到相似)

专题03 手拉手模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就手拉手模型进行梳理及对应试题分析,方便掌握。

模型1.手拉手模型(全等模型)【模型解读】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。

【常见模型及证法】(等腰)(等边)(等腰直角)公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。

对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得ABD ACE 1.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC 和ADE 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A ,D ,E 在同一条直线上,CM 为DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE ∠=︒;2AE AD DE BE CM =+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ∠∠CAE ,即可得出结论; (2)同(1)的方法判断出△BAD ∠∠CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∠ABC 和ADE 是顶角相等的等腰三角形,∠AB AC =,AD AE =,BAC DAE ∠=∠,∠BAC CAD DAE CAD ∠-∠=∠-∠,∠BAD CAE ∠=∠. 在BAD 和CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∠()BAD CAE SAS ≌△△,∠BD CE =.(2)解:90AEB =︒∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE ,∠AD BE =,ADC BEC ∠∠=,∠CDE △是等腰直角三角形,∠45CDE CED ∠=∠=︒,∠180135ADC CDE ∠=︒-∠=︒,∠135BEC ADC ∠=∠=︒,∠1354590AEB BEC CED ∠=∠-∠=︒-︒=︒.∠CD CE =,CM DE ⊥,∠DM ME =.∠90DCE ∠=︒,∠DM ME CM ==,∠2DE CM =.∠2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ∠∠BCE 是解本题的关键.2.(2022·黑龙江·中考真题)ABC 和ADE 都是等边三角形.(1)将ADE 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接P A ,猜想线段P A 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接P A ,猜想线段P A 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC +=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,P A =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明CAP BAF ≌△△(SAS ),得CAP BAF ∠=∠,AF AP =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明BAP CAF ≌△△(SAS ),得出CAF BAP ∠=∠,AP AF =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∠∠ABC 是等边三角形,∠AB =AC ,∠点P 与点A 重合,∠PB =AB ,PC =AC ,P A =0,∠PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC =+证明:在BP 上截取BF CP =,连接AF ,∠ABC 和ADE 都是等边三角形,∠AB AC =,AD AE =,60BAC DAE ∠=∠=︒∠BAC CAD DAE CAD ∠+∠=∠+∠,∠BAD CAE ∠=∠,∠BAD CAE ≌(SAS ),∠ABD ACE ∠=∠,∠AC =AB ,CP =BF , ∠CAP BAF ≌△△(SAS ),∠CAP BAF ∠=∠,AF AP =,∠CAP CAF BAF CAF ∠+∠=∠+∠,∠60FAP BAC ∠=∠=︒,∠AFP 是等边三角形,∠PF AP =,∠PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∠ABC 和ADE 都是等边三角形,∠AB AC =,AD AE =,60BAC DAE ∠=∠=︒∠BAC BAE DAE BAE ∠+∠=∠+∠,∠BAD CAE ∠=∠,∠BAD CAE ≌(SAS ),∠ABD ACE ∠=∠,∠AB =AC ,BP =CF ,∠BAP CAF ≌△△(SAS ),∠CAF BAP ∠=∠,AP AF =,∠BAF BAP BAF CAF ∠+∠=∠+∠,∠60FAP BAC ∠=∠=︒,∠AFP 是等边三角形,∠PF AP =,∠PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.3.(2022·吉林·九年级期末)如图①,在ABC 中,90C ∠=︒,6AC BC ==,点D ,E 分别在边AC ,BC 上,且2CD CE ==,此时AD BE =,AD BE ⊥成立.(1)将CDE △绕点C 逆时针旋转90︒时,在图②中补充图形,并直接写出BE 的长度;(2)当CDE △绕点C 逆时针旋转一周的过程中,AD 与BE 的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将CDE △绕点C 逆时针旋转一周的过程中,当A ,D ,E 三点在同一条直线上时,请直接写出AD 的长度.【答案】(1)补充图形见解析;22BE =;(2)AD BE =,AD BE ⊥仍然成立,证明见解析;(3)51AD =-或51=+AD .【分析】(1)根据旋转作图的方法作图,再根据勾股定理求出BE 的长即可;(2)根据SAS 证明E ACD BC ≅∆∆得AD =BE ,∠1=∠2,再根据∠1+∠3+∠4=90°得∠2∠3+∠4=90°,从而可得出结论;(3)分两种情况,运用勾股定理求解即可.【详解】解:(1)如图所示,根据题意得,点D 在BC 上,∠BCE ∆是直角三角形,且BC =6,CE =2由勾股定理得,2222(2)(6)22BE CE BC =+=+=;(2)AD BE =,AD BE ⊥仍然成立. 证明:延长AD 交BE 于点H ,∠90ACB DCE ∠=∠=︒,ACD ACB BCD ∠=∠-∠,BCE DCE BCD ∠=∠-∠,∠ACD BCE ∠=∠,又∠CD CE =,AC BC =,∠ACD BCE ≅△△,∠AD BE =,12∠=∠,在Rt ABC 中,13490∠+∠+∠=︒,∠23490∠+∠+∠=︒,∠90AHB ∠=︒,∠AD BE ⊥.(3)①当点D 在AC 上方时,如图1所示,同(2)可得ACD BCE ≅△△∠AD =BE同理可证BE AE ⊥在Rt △CDE 中,2CD CE ==∠DE =222CD CE +=在Rt △ACB 中,6AC BC ==∠2223AB AC BC =+=设AD =BE =x ,在Rt △ABE 中,222BE AE AB +=∠222(2)(23)x x ++=解得,51x =-∠ 51AD =-②当点D 在AC 下方时,如图2所示,同(2)可得ACD BCE ≅△△∠AD =BE同理可证BE AE ⊥在Rt △CDE 中,2CD CE ==∠DE =222CD CE +=在Rt △ACB 中,6AC BC ==∠2223AB AC BC =+=设AD =BE =x ,在Rt △ABE 中,222BE AE AB +=∠222(2)(23)x x +-=解得,5+1x =∠ 51=+AD .所以,AD 的值为51-或5+1【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,熟练解答本题的关键.模型2.手拉手模型(旋转相似模型)【模型解读与图示】旋转放缩变换,图中必有两对相似三角形.1.(2022·四川达州·中考真题)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC 和等腰直角三角形CDE ,按如图1的方式摆放,90ACB ECD ∠=∠=︒,随后保持ABC 不动,将CDE △绕点C 按逆时针方向旋转α(090α︒<<︒),连接AE ,BD ,延长BD 交AE 于点F ,连接CF .该数学兴趣小组进行如下探究,请你帮忙解答:(1)【初步探究】如图2,当ED BC ∥时,则α=_____;(2)【初步探究】如图3,当点E ,F 重合时,请直接写出AF ,BF ,CF 之间的数量关系:_________; (3)【深入探究】如图4,当点E ,F 不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在ABC 与CDE △中,90ACB DCE ∠=∠=︒,若BC mAC =,CD mCE =(m 为常数).保持ABC 不动,将CDE △绕点C 按逆时针方向旋转α(090α︒<<︒),连接AE ,BD ,延长BD 交AE 于点F ,连接CF ,如图6.试探究AF ,BF ,CF 之间的数量关系,并说明理由.【答案】(1)45︒(2)2BF AF CF =+(3)2BF AF CF =+仍然成立,理由见解析(4)21BF m FC mAF =++【分析】(1)根据等腰直角三角形的性质,可得AC BC ⊥,根据题意可得AC ED ⊥,根据等原三角形的性质可得AC 平分ECD ∠,即可得45ACE ∠=︒,根据旋转的性质可知ECA α∠=;(2)证明ACE ≌BCD △,可得AE DB =,根据等腰直角三角形可得2ED CE =,由BE BD ED =+,即可即可得出2BF AF CF =+;(3)同(2)可得ACE ≌BCD △,过点C ,作CH FC ⊥,交BF 于点H ,证明FEC HDC ≌,AFC △≌BHC △,可得BH AF =,即可得出2BF AF CF =+;(4)过点C 作CG CF ⊥,交BF 于点G ,证明ACE BCD △∽△,可得BG mAF =,GC mFC =,在Rt FCG 中,勾股定理可得21FG m FC =+,即可得出21BF m FC mAF =++.(1)等腰直角三角形ABC 和等腰直角三角形CDE ,90ECD ∴∠=︒,AC BC ⊥ED BC ∥ED AC ∴⊥45ACE α∴∠==︒故答案为:45︒(2)90∠=∠=︒ACB ECD ACE ACD ACD BCD ∴∠+∠=∠+∠ACE BCD ∴∠=∠ 在ACE 与BCD △中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩ ACE ≌BCD △∴AE DB =BE BD ED ∴=+ 又2ED CE =2BE AE CE ∴=+,E F 重合,2BF AF CF ∴=+故答案为:2BF AF CF =+ (3)同(2)可得ACE ≌BCD △AE DB ∴=,EAC DBC ∠=∠过点C ,作CH FC ⊥,交BF 于点H ,则90ECF FCD FCD DCH ∠+∠=∠+∠=︒,∴ECF DCH ∠=∠, 在FEC 与HDC △中,FEC HDC EC CD ECF DCH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴FEC HDC ≌, FC CH ∴=,CFH ∴是等腰直角三角形,2FH FC ∴=,CH FC =,90,90FCH ACF ACH ACB BCH ACH ∴∠=∠+∠=︒∠=∠+∠=︒,ACF BCH ∴∠=∠,在AFC △与BHC △中,FC HC ACF BCH AC BC =⎧⎪∠=∠⎨⎪=⎩,∴AFC △≌BHC △,BH AF ∴=,2BF FH BH CF AF ∴=+=+,即2BF AF CF =+,(4)过点C 作CG CF ⊥,交BF 于点G ,BC mAC =,CD mCE =,BC CDAC CE ∴=,AC BC EC DC∴=, ACE BCD α∠=∠=,ACE BCD ∴△△∽,CBG CAF ∴∠=∠,FCA ACG GCB ACG ∠+∠=∠+∠,∴FCA GCB ∠=∠,AFC BGC ∴∽,BG GC BC AF FC AC∴==m =, BG mAF ∴=,GC mFC =, Rt FCG 中,2221FG FC CG m FC =+=+,∴21BF FG GB m FC mAF =+=++,即21BF m FC mAF =++.【点睛】本题考查了等腰直角三角形的性质,旋转的性质,全等三角形的性质与判定,相似三角形的性质与判定,掌握全等三角形的性质与判定,相似三角形的性质与判定是解题的关键.2.(2022·山东烟台·中考真题)(1)【问题呈现】如图1,∠ABC 和∠ADE 都是等边三角形,连接BD ,CE .求证:BD =CE .(2)【类比探究】如图2,∠ABC 和∠ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .请直接写出BD CE的值.(3)【拓展提升】如图3,∠ABC 和∠ADE 都是直角三角形,∠ABC =∠ADE =90°,且AB BC =AD DE =34.连接BD ,CE .①求BD CE的值;②延长CE 交BD 于点F ,交AB 于点G .求sin∠BFC 的值.【答案】(1)见解析(2)22(3)①35;②45 【分析】(1)证明△BAD ∠∠CAE ,从而得出结论; (2)证明△BAD ∠∠CAE ,进而得出结果;(3)①先证明△ABC ∠∠ADE ,再证得△CAE ∠∠BAD ,进而得出结果; ②在①的基础上得出∠ACE =∠ABD ,进而∠BFC =∠BAC ,进一步得出结果. (1)证明:∠∠ABC 和△ADE 都是等边三角形, ∠AD =AE ,AB =AC ,∠DAE =∠BAC =60°, ∠∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∠∠BAD =∠CAE ,∠∠BAD ∠∠CAE (S A S ),∠BD =CE ; (2)解:∠∠ABC 和∠ADE 都是等腰直角三角形,12AB AB AE AC ∴==,∠DAE =∠BAC =45°,∠∠DAE ﹣∠BAE =∠BAC ﹣∠BAE , ∠∠BAD =∠CAE ,∠∠BAD ∠∠CAE ,1222BD AB CE AC ∴===; (3)解:①34AB AD AC DE ==,∠ABC =∠ADE =90°, ∠∠ABC ∠∠ADE ,∠∠BAC =∠DAE ,35AB AD AC AE ==, ∠∠CAE =∠BAD ,∠∠CAE ∠∠BAD ,35BD AD CE AE ∴== ; ②由①得:∠CAE ∠∠BAD ,∠∠ACE =∠ABD ,∠∠AGC =∠BGF ,∠∠BFC =∠BAC ,∠sin∠BFC 45BC AC ==. 【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型及其变形. 3.(2022·山东·东营市一模)【提出问题】(1)如图1,在等边∠ABC 中,点M 是BC 上的任意一点(不含端点B 、C ),连结AM ,以AM 为边作等边∠AMN ,连结CN .求证:∠ABC =∠ACN .【类比探究】(2)如图2,在等边∠ABC 中,点M 是BC 延长线上的任意一点(不含端点C ),其它条件不变,(1)中结论∠ABC =∠ACN 还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰∠ABC 中,BA =BC ,点M 是BC 上的任意一点(不含端点B 、C ),连结AM ,以AM 为边作等腰∠AMN ,使顶角∠AMN =∠ABC .连结CN .试探究∠ABC 与∠ACN 的数量关系,并说明理由.【答案】(1)证明见解析;(2)成立,理由见解析;(3)∠ABC=∠CAN,理由见解析.【分析】(1)利用SAS可证明∠BAM∠∠CAN,继而得出结论.(2)也可以通过证明∠BAM∠∠CAN,得出结论,和(1)的思路完全一样.(3)首先得出∠BAC=∠MAN,从而判定∠ABC∠∠AMN,得到AB ACAM AN=,根据∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,从而判定∠BAM∠∠CAN,得出结论.【详解】解:(1)证明:∠∠ABC、∠AMN是等边三角形,∠AB=AC,AM=AN,∠BAC=∠MAN=60°.∠∠BAM=∠CAN.∠在∠BAM和∠CAN中,AB ACBAM CANAM AN=⎧⎪∠=∠⎨⎪=⎩,∠∠BAM∠∠CAN(SAS).∠∠ABC=∠ACN.(2)结论∠ABC=∠ACN仍成立.理由如下:∠∠ABC、∠AMN是等边三角形,∠AB=AC,AM=AN,∠BAC=∠MAN=60°.∠∠BAM=∠CAN.∠在∠BAM和∠CAN中,AB ACBAM CANAM AN=⎧⎪∠=∠⎨⎪=⎩,∠∠BAM∠∠CAN(SAS),∠∠ABC=∠ACN.(3)∠ABC=∠ACN.理由如下:∠BA=BC,MA=MN,顶角∠ABC=∠AMN,∠底角∠BAC=∠MAN,∠∠ABC∠∠AMN,∠AB ACAM AN=,又∠∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∠∠BAM=∠CAN,∠∠BAM∠∠CAN,∠∠ABC=∠ACN.4.(2022·山西长治·九年级期末)问题情境:如图1,在∠ABC中,AB=6,AC=5,点D,E 分别在边AB,AC上,且∥DE BC.数学思考:(1)在图1中,BDCE的值为 ;(2)图1中∠ABC 保持不动,将∠ADE 绕点A 按逆时针方向旋转到图2的位置,其它条件不变,连接BD ,CE ,则(1)中的结论是否仍然成立?并说明理由;(3)拓展探究:在图2中,延长BD ,分别交AC ,CE 于点F ,P ,连接AP ,得到图3,探究∠APE 与∠ABC 之间有何数量关系,并说明理由;(4)若将∠ADE 绕点A 按逆时针方向旋转到图4的位置,连接BD ,CE ,延长BD 交CE 的延长线于点P ,BP 交AC 于点F ,则(3)中的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠APE 与∠ABC 之间的数量关系.【答案】(1)65(2)(1)中结论仍然成立,理由见解析(3)∠APE =∠ABC ,理由见解析(4)结论不成立,∠APE +∠ABC =180°,理由见解析 【分析】(1)根据平行线分线段成比例定理求解即可;(2)根据旋转的性质得到∠BAD =∠CAE ,由(1)可证明∠BAD ∠∠CAE ,从而可证∠APE +∠ABC得到65BD AB CE AC ==;(3)由(2)可证∠ABD =∠ACE ,证明∠AFB ∠∠PFC 和∠AFP ∠∠BFC 即可得到结论;(4)证明∠ABD =∠ACE ,推出A 、B 、C 、P 四点共圆即可得到结论;(1)解:∠∥DE BC ,∠BD CE AB AC=,∠65BD AB CE AC ==;(2)解:中结论仍然成立,理由如下: ∠旋转的性质,∠∠ADE =∠ABC ,∠AED =∠ACB , ∠∠ADE ∠∠ABC ,∠AD AE AB AC=,在图2中,由旋转的性质可知,∠BAC =∠DAE ,∠∠BAD =∠CAE ,∠∠BAD ∠∠CAE ,∠65BD AB CE AC ==; (3)解:∠APE =∠ABC ,理由如下: 由(2)得∠BAD ∠∠CAE ,∠∠ABD =∠ACE , 又∠∠AFB =∠PFC ,∠∠AFB ∠∠PFC ,∠AF BFBAC BPC PF CF ==,∠∠,∠AF PF BF CF=,又∠∠AFP =∠BFC ,∠∠AFP ∠∠BFC ,∠∠CBF =∠P AF ,∠∠APE =∠ACE +∠P AF ,∠ABC =∠ABF +∠CBF ,∠∠APE =∠ABC ; (4)解:(3)结论不成立,∠APE +∠ABC =180°,理由如下: 由(2)知,∠BAD ∠∠CAE ,∠∠ABD =∠ACE , ∠A 、B 、C 、P 四点共圆,∠∠APE +∠ABC =180°.【点睛】本题主要考查了平行线分线段成比例,旋转的性质,相似三角形的性质与判定,圆内接四边形的性质等等,熟练掌握相关三角形的性质与判定是解题的关键.课后专项训练:1.(2022·湖南·中考真题)如图,点O 是等边三角形ABC 内一点,2OA =,1OB =,3OC =,则AOB ∆与BOC ∆的面积之和为( )A .34B .32C .334D .3【答案】C【分析】将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,得到BOD 是等边三角形,再利用勾股定理的逆定理可得90COD ∠=︒,从而求解.【详解】解:将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,OB OD ∴=,60BOD ∠=︒,2CD OA ==,BOD ∴∆是等边三角形, 1OD OB ∴==,∵()2222134OD OC +=+=,2224CD==,222OD OC CD ∴+=,90DOC ∴∠=︒, AOB ∴∆与BOC ∆的面积之和为23133113424BOC BCD BOD CODSSSS+=+=⨯+⨯⨯=.故选:C .【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将AOB ∆与BOC ∆的面积之和转化为BOCBCDSS+,是解题的关键.2.(2022·四川宜宾·中考真题)如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④【答案】B【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④. 【详解】解:ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆, CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒ 90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan 2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a ==则32GD GC DC a a a =-=-= FC AH ∥1tan 2GD H GH ∴==22GH GD a ∴==325AH AG GH a a a ∴=+=+= AH ∠CE ,FAH FCE ∴∽CF CE AF AH ∴=4455CF a AF a ∴==则45CF AF =;故③正确 如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值, 此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒, 360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '==,AP AP '=,APC AP B ''∠=∠, AP B APC ''∴≌, PC P B PB ''∴==, 60APP DPC '∠=∠=︒,DP ∴平分BPC ∠, PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌, AE EC AD DC ∴===,则四边形ADCE 是菱形, 又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒,30PCD ∠=︒,3DC PD ∴=,DC AD =,2AP =,则()312AP AD DP DP =-=-=,23131DP ∴==+-, 2AP =,33CE AD AP PD ∴==+=+,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键. 3.(2022·湖北·襄阳市樊城区青泥湾中学九年级阶段练习)如图,已知AOB 和MON 都是等腰直角三角形(22OA <OM =ON ),∠AOB =∠MON =90°.(1)如图①,连接AM,BN,求证:AOM∠BON;(2)若将MON绕点O顺时针旋转,①如图②,当点N恰好在AB边上时,求证:22220BN AN N+=;②当点A,M,N在同一条直线上时,若OB=4,ON =3,请直接写出线段BN的长.【答案】(1)见解析;(2)①见解析;②46322+或46322-.【分析】(1)利用SAS定理证明AOM BON≌即可;(2)①连接AM,证明AOM BON≌,即可证2222BN AN ON=+;②当点N在线段AM上时,连接BN,在Rt ANB中构造勾股定理的等量关系;当点M在线段AN上时,同理即可求得.(1)证明:90AOB MON︒∠=∠=,MON AON AOB AON∴∠+∠=∠+∠,即AOM BON∠=∠.MON和AOB是等腰直角三角形,,OM ON OA OB∴==,AOM BON∴≌(SAS) .(2)解:①证明:如图,连接AM.90AOB MON︒∠=∠=,MON AON AOB AON∴∠-∠=∠-∠,即AOM BON∠=∠.MON和AOB是等腰直角三角形,,,45OM ON OA OB OAB OBA︒∴==∠=∠=,.()AOM BON SAS∴≌45,MAO OBA AM BN︒∴∠=∠==,90MAN︒∴∠=,222AM AN MN∴+=.MON是等腰直角三角形,222MN ON∴=,2222BN AN ON=∴+.②46322+或46322-.∠△AOB和△MON都是等腰直角三角形,OB=4,ON =3,∠42,32AB MN==.当点N在线段AM上时,如图,连接BN,设BN x=,由(1)可知AOM BON≌.∠OAM OBN∠=∠,AM BN x==.∠NAB ABN OAM OAB ABN OBN ABN OAB∠+∠=∠+∠+∠=∠+∠+∠18090OBA OAB AOB =∠+∠=︒-∠=︒,∠()18090ANB NAB ABN ∠=︒-∠+∠=︒,∠ANB 是直角三角形,222+=AN BN AB . 又∠32AN AM MN BN MN x =-=-=-,∠222(32)(42)x x -+=, 解得:1246324632,22x x +-+==(舍去)∠46322BN +=;当点M 在线段AN 上时,如图,连接BN ,设BN x =,由(2)①可知AOM BON ≌. ∠OAM OBN ∠=∠,AM BN x ==.∠NAB ABN OAM OAB ABN OBN ABN OAB ∠+∠=∠+∠+∠=∠+∠+∠18090OBA OAB AOB =∠+∠=︒-∠=︒,∠()18090ANB NAB ABN ∠=︒-∠+∠=︒,∠ANB 是直角三角形,222+=AN BN AB . 又∠32AN AM MN BN MN x =+=+=+,∠222(32)(42)x x ++=, 解得: 1246324632,22x x ---==(舍去)∠46322BN -=综上所述:BN 的长为46322+或46322-.【点睛】本题主要考查全等三角形的判定与性质、等腰直角三角形的性质,三点共线分类讨论,对几何题目的综合把握是解题关键. 4.(2022·山西朔州·九年级期末)综合与实践问题情境:在数学课上老师出了这样一道题:如图1,在ABC 中6AB AC ==,30BAC ∠=︒,求BC 的长.(1)探究发现:如图2,勤奋小组经过思考后,发现:把ABC 绕点A 顺时针旋转90︒得到ADE ,连接BD ,BE ,利用直角三角形的性质即可求解,请你根据勤奋小组的思路,求BC 的长; (2)探究拓展:如图3,缜密小组的同学在勤奋小组的启发下,把ABC 绕点A 顺时针旋转120︒后得到ADE ,连接BD ,CE 交于点F ,交AB 于点G ,请你判断四边形ADFC 的形状并证明;(3)奇异小组的同学把图3中的BGF 绕点B 顺时针旋转,在旋转过程中,连接AF ,发现AF 的长度在不断变化,直接写出AF 的最大值和最小值.【答案】(1)BC 的长是3632-,见解析;(2)四边形ADFC 是菱形,见解析; (3)AF 的最大值是63,AF 的最小值是1263-,见解析.【分析】(1)过点B 作BH DE ⊥交DE 的延长线于点H .由旋转性质进一步得AEB △是等边三角形, EBH △是等腰直角三角形,ABD △是等腰直角三角形,45BDA ∠=︒,在Rt EBH △中由勾股定理,1832HE HB ===,在Rt BDH 中,62BD =.在Rt BDH 中,求得36=DH ,进而得解;(2)利用旋转的性质得到相关结论,进一步证明四边形ADFC 是平行四边形.又有AD AC =,得证四边形ADFC 是菱形;(3)作AH ∠BD 于点H ,则90AHB ∠=︒,利用解直角三角形求得BF 的长,分两种情况进行分析,即可得解. (1)解:如图4,延长CB 、DE 交于点H .∠ABC 绕点A 顺时针旋转90︒得到ADE ∠ABC ADE △≌△,90CAE BAD ∠=∠=︒,∠H =90°, ∠AB AD ==6,AC AE ==6,DAE BAC ∠=∠,DE BC =∠6AB AC ==,30BAC ∠=︒∠∠ABC 是等腰三角形,60∠=∠-∠=︒BAE CAE BAC ∠180752-=︒∠∠=︒BAC ABC , ∠=6AE AB = ∠AEB △是等边三角形∠6BE AB ==,60ABE ∠=︒∠18045∠=︒-∠-∠=︒EBH ABE ABC ∠EBH △是等腰直角三角形∠HE HB =.∠AD AB =,90DAB ∠=︒.∠ABD △是等腰直角三角形,45BDA ∠=︒.在Rt EBH △中,由勾股定理,得222+=HE HB BE .∠2226+=HE HB =36.∠HE 2=HB 2=18∠1832HE HB ===.在BDH 中,90H ∠=︒,30∠=∠-∠=∠=︒-∠BDH EDA BDA ABC BDA .在Rt BDH 中,1322==BH BD .∠62BD =. 在Rt BDH 中,tan ∠=BH BDH DH ,∠3233=DH , ∠36=DH .∠3632=-=-DE DH EH .∠DE BC =,∠BC 的长是3632-.(2)解:四边形ADFC 是菱形.理由如下:∠ABC 绕点A 顺时针旋转120︒得到ADE ,AB AC =,30BAC ∠=︒,∠ABC ADE △≌△,120∠=∠=︒BAD CAE .∠AC AE =,AB AD =,30BAC DAE ∠=∠=︒.∠AC AE AB AD ===.∠∠ACE 是等腰三角形∠180302︒-∠=︒∠=∠=CAE ACE AEC .同理可得:30ABD ADB ∠=∠=︒.∠180752-=︒∠∠=︒BAC ACB .∠45∠=∠-∠=︒BCG ACB ACE ,105∠=∠+∠=︒FBC ABC ABF .∠在BFC △中,18030∠=︒-∠-∠=︒BFG FBC BCG .∠∠=∠BFG ACF ,∠=∠BFG ADB .∠∥DB AC ,∥FC AD .∠四边形ADFC 是平行四边形.∠AD AC =,∠四边形ADFC 是菱形.(3)如图5,作AH ∠BD 于点H ,则90AHB ∠=︒∠ABC 绕点A 顺时针旋转120︒得到ADE , ∠ABC ADE △≌△,120BAD ∠=︒∠AB AD ==6∠∠ABD 是等腰三角形∠BH =DH =12BD ∠180302BAD ABD ADB ︒-∠∠=∠==︒ .在Rt △ABH 中,∠AHB =90°,∠ABH =30°, AB =6∠cos cos30BH ABH AB==︒∠∠BH =33∠BD =2 BH =63 由(2)知四边形ADFC 是菱形∠DF =AD =6 ∠BF =BD -DF =63-6当BGF 绕点B 顺时针旋转,在旋转过程中,当旋转到A 、B 、F 第一次三点共线时,如图6,∠=BF ''BF此时AF 有最小值,此时AF =AF ''=AB -BF ''=AB -BF =6-(63-6)=12-63 当旋转到A 、B 、F 第二次三点共线时,如图7,BGF ''△≌△BGF ,∠=BF 'BF 此时AF 有最大值,此时AF =AB +BF '=AB +BF =6+63-6=63故AF 的最大值是63,AF 的最小值是1263-【点睛】本题以图形的变换——旋转为载体考查了全等三角形的性质和判定,菱形的判定,线段长度的最值问题等知识点,综合性较强,准确作出辅助线是解题的关键.5.(2022·湖北武汉·八年级期末)已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE.(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN(3)若AB∠BC,延长AB交DE于M,DB=2,如图3,则BM=_______(直接写出结果)【答案】(1)见解析(2)见解析(3)22【分析】(1)先判断出∠DBC=∠ABE,进而判断出∠DBC∠∠ABE,即可得出结论;(2)先判断出∠ADN∠∠FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出∠ABC∠∠CF A,即可得出结论;(3)先判断出∠ABC∠∠HEB(ASA),得出22=,再判断出∠ADM∠∠HEMBH AC==,AB EH(AAS),得出AM=HM,即可得出结论.(1)解:∠∠ABD和∠BCE是等边三角形,∠BD=AB,BC=BE,∠ABD=∠CBE=60°,∠∠ABD+∠ABC=∠CBE+∠ABC,∠∠DBC=∠ABE,∠∠ABE∠∠DBC(SAS),∠AE=CD;(2)解:如图,延长AN使NF=AN,连接FC,∠N为CD中点,∠DN=CN,∠∠AND=∠FNC,∠∠ADN∠∠FCN(SAS),∠CF=AD,∠NCF=∠AND,∠∠DAB=∠BAC=60°∠∠ACD +∠ADN=60°∠∠ACF=∠ACD+∠NCF=60°,∠∠BAC=∠ACF,∠∠ABD 是等边三角形,∠AB =AD ,∠AB =CF ,∠AC =CA ,∠∠ABC ∠∠CF A (SAS ),∠BC =AF ,∠∠BCE 是等边三角形,∠CE =BC =AF =2AN ;(3)解: ∠∠ABD 是等边三角形,∠2AB AD DB ===,∠BAD =60°,在Rt ∠ABC 中,∠ACB =90°-∠BAC =30°,∠222AC AB ==,如图,过点E 作EH // AD 交AM 的延长线于H ,∠∠H =∠BAD =60°,∠∠BCE 是等边三角形,∠BC =BE ,∠CBE =60°,∠∠ABC =90°,∠∠EBH =90°-∠CBE =30°=∠ACB ,∠∠BEH =180°-∠EBH -∠H =90°=∠ABC ,∠∠ABC ∠∠HEB (ASA ),∠22BH AC ==,AB EH =,∠AD =EH ,∠∠AMD =∠HME ,∠∠ADM ∠∠HEM (AAS ),∠AM =HM ,∠()()1111122222BM AM AB AH AB AB BH AB BH AB BH AB =-=-=+-=-=- ∠22BH =,2AB =,∠22BM =.故答案为:22. 【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.6.(2022·湖南·长沙市湘郡培粹实验中学八年级阶段练习)如图1,在Rt ∠ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE =2.(1)如图2,将∠BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是;(2)如图3,DE∠BC,连接AE,判断∠EAC的形状,并求出EC的长;(3)继续旋转∠BDE,当∠AEC=90°时,请直接写出EC的长.【答案】(1)EC=AD,EC∠AD(2)等腰三角形,10(3)151【分析】(1)延长CE交AD于F,交AB于O,证明∠ABD∠∠CBE(SAS),得∠BCE=∠BAD,CE=AD,再由∠AOF=∠BOC,可得∠AFC=∠ABC=90°,即可得到结论;(2)设DE与AB的交点为H,可得AB是DE的垂直平分线,利用勾股定理可求出AE的长,由(1)知CE=AD,从而得出答案;(3)分当点E在BC上方时和当点E在BC下方时,分别画图,利用勾股定理计算即可.(1)EC与AD垂直且相等,理由如下:延长CE交AD于F,交AB于O,∠∠BDE和△ABC都是等腰直角三角形,∠BD=BE,AB=BC,∠DBE=∠ABC=90°,∠∠ABD=∠CBE,∠∠ABD∠∠CBE(SAS),∠∠BCE=∠BAD,CE=AD,∠∠AOF=∠BOC,∠∠AFE=∠ABC=90°,∠AD∠CE,∠故答案为:EC=AD,EC∠AD;(2)设DE与AB的交点为H,∠DE∠BC,∠∠AHE=∠ABC=90°,∠BD=BE,∠AB是DE的垂直平分线,∠AD =AE ,由(1)知AD =CE ,∠AE =CE ,∠∠ACE 是等腰三角形, ∠BE =2,∠BH =HE =1,∠AH =AB ﹣BH =4﹣1=3,在Rt △AHE 中,由勾股定理得:AE =2210AH HE +=,∠CE =AE =10;(3)如图4,当点E 在BC 上方时,过点B 作BG ∠DE 于G ,∠∠AEC =90°,CE ∠AD ,∠A 、E 、D 三点共线,∠AG =2215AB BG -=,∠AD =AG +DG =151+,∠CE =AD =15+1;如图,当点E 在BC 下方时,同理可得CE =CG ﹣GE =15﹣1.综上:CE =15+1或15﹣1.【点睛】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,旋转的性质,勾股定理等知识,根据前面探索的结论解决新的问题是解题的关键.7.(2022·广东·惠州一中八年级期中)ABC 为等边三角形,4AB =,AD BC ⊥于点D .E 为线段AD 上一点,3AE =.以AE 为边在直线AD 右侧构造等边AEF .连结CE ,N 为CE 的中点.(1)如图1,EF 与AC 交于点G ,①连结NG ,求线段NG 的长;②连结ND ,求DNG ∠的大小.(2)如图2,将AEF 绕点A 逆时针旋转,旋转角为α.M 为线段EF 的中点.连结DN 、MN .当30120α︒<<︒时,猜想DNM ∠的大小是否为定值,并证明你的结论.【答案】(1)①72;②120︒;(2)120DNM ∠=︒,证明见解析 【分析】(1)①根据等边三角形的性质,AD BC ⊥,可得60,30AEF EAG ∠=︒∠=︒,NG 是Rt EGC △斜边EC 上的中线,勾股定理在Rt EDC 中可求得EC 的长,进而求得NG 的长;②根据①的结论可得NG NC ND ==,根据120NGC NCG NCD NDC ∠+∠+∠+∠=︒=GND ∠,即可求得GND ∠的度数; (2)连接,BE FC ,证明BAE CAF ≌,进而可得ABE ACF ∠=∠,则120EBC BCF ABC ABE ACB ACF ABC ACB ∠+∠=∠-∠+∠+∠=∠+∠=︒,进而根据D 为BC的中点,N 为EC 的中点,M 为EF 的中点,根据三角形中位线定理可得,DN BE MN CF ∥∥,进而可得MNE DNE ∠+∠=FCE DCE ∠+∠120=︒【详解】(1)①ABC 是等边三角形,4,AB AD BC =⊥222,23DB DC AD AC DC ∴===-=,60BAC ∠=︒3AE =3ED AD AE ∴=-=AEF 是等边三角形,60AEG ∴∠=︒1302DAG DAB CAB ∠=∠=∠=︒90EGC ∴∠=︒ N 为CE 的中点()22221117322222NG EC DE DC ∴==+=+= ②如图,连接DN ,11,22NG EC NC DN EC ===NG NC ND ∴== ==NGC NCG NCD NDC ∴∠∠∠∠,()2=2120NGC NCG NCD NDC NCD NCG BCA ∴∠+∠+∠+∠=∠+∠=︒NGC NCG NCD NDC GNE DNE GND ∠+∠+∠+∠=∠+∠=∠120GND ∴∠=︒;(2)120DNM ∠=︒,理由如下,如图,连接,BE FC ABC,AEF 为等边三角形,,AB AC AE AF ∴==,60BAE BAC CAE CAE ∠=∠+∠=︒+∠60CAF CAE EAF CAE ∠=∠+∠=︒+∠BAE CAF ∴∠=∠BAE CAF ∴△≌△∴ABE ACF ∠=∠则120EBC BCF ABC ABE ACB ACF ABC ACB ∠+∠=∠-∠+∠+∠=∠+∠=︒D 为BC 的中点,N 为EC 的中点,M 为EF 的中点,DN BE MN CF ∴∥∥,MNE FCE EBC NDC ∴∠=∠∠=∠END NDC NCD ∠=∠+∠∴DNM DNE MNE NDC ACB ACN ECF∠=∠+∠=∠+∠+∠+∠=∠+∠+∠=∠+∠=︒120EBC ACB ACF EBC BCFDNM∴∠=︒120【点睛】本题考查了等边三角形的性质,勾股定理,三线合一,直角三角形斜边上的中线等于斜边的,勾股定理,中位线定理,三角形全等的性质与判定,旋转的性质,综合运用以上知识是解题的关键.8.(2022•新乡中考模拟)在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD 与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D 三点共线.请直接写出CD的长.【分析】(1)根据等腰直角三角形的性质得到AB=AC=m,AE=AD=m,计算即可;(2)过点C作CH⊥AB于H,延长CD、BE交于点F,根据直角三角形的性质得到AB=AC,AE=AD,证明△CAD∽△BAE,根据相似三角形的性质解答即可;(3)分点E在线段BD上、点D在线段BE上两种情况,根据相似三角形的性质计算即可.【解答】解:(1)∵∠ACB=∠ADE=90°,CA=CB,DA=DE,∴∠A=∠B=∠DEA=45°,∴AB=AC=m,AE=AD=m,∴CD=AC﹣AD=m,BE=AB﹣AE=m,∴BE=CD,∵∠A=45°,∴直线CD与BE的夹角为45°,故答案为:BE=CD,45°;(2)不满足,BE=CD,直线CD与BE的夹角为30°,理由如下:如图2,过点C作CH⊥AB于H,延长CD、BE交于点F,∵CA=CB,∴AH=HB,∵∠ACB=∠ADE=120°,CA=CB,DA=DE,∴∠CAB=∠CBA=30°,∠DAE=∠DEA=30°,∴AC=2CH,∠CAD=∠BAE,由勾股定理得:AH=AC,∴AB=AC,同理可得:AE=AD,∴=,∵∠CAD=∠BAE,∴△CAD∽△BAE,∴==,∠ACD=ABE,∴BE=CD,∠F=∠CAB=30°,∴BE=CD,直线CD与BE的夹角为30°;(3)如图3,点E在线段BD上,∵m=2,∴AD=DE=1,AB=2,由勾股定理得:BD==,∴BE=BD﹣DE=﹣1,∴CD=BE=,如图4,点D在线段BE上,BE=BD+DE=+1,∴CD=BE=,综上所述:当B,E,D三点共线.CD的长为或.【点评】本题考查的是相似三角形的判定和性质、直角三角形的性质、等腰三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.9.(2022•虹口区期中)如图,在△ABC和△ADE中,△BAD=△CAE,△ABC=△ADE.(1)求证:△ABC△△ADE;(2)判断△ABD与△ACE是否相似?并证明.【分析】(1)由△BAD=△CAE,可得△BAC=△DAE,又有△ABC=△ADE,即可得出相似;(2)有(1)中可得对应线段成比例,又有以对应角相等,即可判定其相似.【解答】证明:(1)△△BAD=△CAE,△△BAC=△DAE,。

中考数学压轴题-手拉手模型

中考数学压轴题-手拉手模型

学习目标:
1.理解手拉手模型。

2.会对手拉手模型改造的旋转型全等与旋转型
相似进行识别和构造,并掌握一些基本结论。

3.会利用手拉手模型解决几何问题。

手拉手模型定义
手拉手模型的主要特征就是两个形状
一样(或相似)的图形,它们有着共同
的顶点,可以旋转到任意角度,就像两
个人手拉手一样,所以被称为手拉手。

手拉手模型分类
模型1 手拉手全等模型
模型构建
顶角相等,且共顶点的两个等腰三角形,经旋转后得到的两个三角形都可根据“边角边”之间的关系进行推理判断。

(简记:双等腰,共顶角,绕共顶点旋转得全等) 模型1一基本图形.gsp
手拉手模型分类
模型2 手拉手相似模型
模型构建
两个相似的非等腰三角形对应顶点重合,经
旋转后可以产生新的相似三角形。

(简记:非等腰,共顶角,绕共顶点旋转得相似)模型2-基本图形.gsp
特殊常考题型:
手拉手模型的应用
手拉手模型的应用 习题4.gsp
习题5.gsp
课堂小结
1、手拉手模型的识别、构造、应用。

2、你运用到了哪些数学方法?
请相信数学会为你的未来带来更多的可能!。

2024年中考数学常见几何模型全归纳(全国通用)专题15 全等与相似模型-手拉手模型(解析版)

2024年中考数学常见几何模型全归纳(全国通用)专题15 全等与相似模型-手拉手模型(解析版)

专题15全等与相似模型-手拉手模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。

本专题就手拉手模型进行梳理及对应试题分析,方便掌握。

模型1.手拉手模型【模型解读】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。

1)双等边三角形型条件:如图1,△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。

图1图22)双等腰直角三角形型条件:如图2,△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。

结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。

3)双等腰三角形型条件:△ABC和△DCE均为等腰三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠ACM=∠BFM;④CF平分∠AFD。

图3图44)双正方形形型条件:△ABCFD和△CEFG都是正方形,C为公共点;连接BG,ED交于点N。

结论:①△△BCG≌△DCE;②BG=DE;③∠BCM=∠DNM=90°;④CN平分∠BNE。

例1.(2022·北京东城·九年级期末)如图,在等边三角形ABC 中,点P 为△ABC 内一点,连接AP ,BP ,CP ,将线段AP 绕点A 顺时针旋转60°得到 AP ,连接PP BP ,.(1)用等式表示BP 与CP 的数量关系,并证明;(2)当∠BPC =120°时,①直接写出P BP 的度数为;②若M 为BC 的中点,连接PM ,请用等式表示PM 与AP的数量关系,并证明.∵M 为BC 的中点,∴BM 在△PCM 和△NBM 中PMC∴CP =BN ,∠PCM =∠NBM ∵∠BPC =120°,∴∠PBC ∵∠ABC +∠ACB =120°,∴∠ABP +∠ABP '=60°.即在△PNB 和P B P 中NBP 例2.(2022·黑龙江·中考真题)ABC 和ADE 都是等边三角形.(1)将ADE 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC (或PA PC PB )成立;请证明.(2)将ADE 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析(2)图②结论:PB PA PC ,证明见解析(3)图③结论:PA PB PC【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP ,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ,再证明CAP BAF ≌△△(SAS ),得CAP BAF ,AF AP ,然后证明AFP 是等边三角形,得PF AP ,即可得出结论;(3)在CP 上截取CF BP ,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ,再证明BAP CAF ≌△△(SAS ),得出CAF BAP ,AP AF ,然后证明AFP 是等边三角形,得PF AP ,即可得出结论:PA PB PF CF PC .(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC 或PA PC PB ;(2)解:图②结论:PB PA PC证明:在BP 上截取BF CP ,连接AF ,∵ABC 和ADE 都是等边三角形,∴AB AC ,AD AE ,60BAC DAE∴BAC CAD DAE CAD ,∴BAD CAE ,∴BAD CAE ≌(SAS ),∴ABD ACE ,∵AC =AB ,CP =BF ,∴CAP BAF ≌△△(SAS ),∴CAP BAF ,AF AP ,∴CAP CAF BAF CAF ,∴60FAP BAC ,∴AFP 是等边三角形,∴PF AP ,∴PA PC PF BF PB ;(3)解:图③结论:PA PB PC ,理由:在CP 上截取CF BP ,连接AF ,∵ABC 和ADE 都是等边三角形,∴AB AC ,AD AE ,60BAC DAE∴BAC BAE DAE BAE ,∴BAD CAE ,∴BAD CAE ≌(SAS ),∴ABD ACE ,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP ,AP AF ,∴BAF BAP BAF CAF ,∴60FAP BAC ,∴AFP 是等边三角形,∴PF AP ,∴PA PB PF CF PC ,即PA PB PC .【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例3.(2022·湖北·襄阳市九年级阶段练习)如图,已知 AOB 和 MON 都是等腰直角三角形<OM =ON ),∠AOB =∠MON =90°.(1)如图①,连接AM ,BN ,求证: AOM ≌ BON ;(2)若将 MON 绕点O 顺时针旋转,①如图②,当点N 恰好在AB 边上时,求证:22220BN AN N ;②当点A ,M ,N 在同一条直线上时,若OB =4,ON =3,请直接写出线段BN 的长.②46322 或46322∵△AOB 和△MON 都是等腰直角三角形,OB =4,ON =3∴42,32AB MN .当点N 在线段AM 上时,如图,连接BN ,设BN x ,例4.(2022·重庆忠县·九年级期末)已知等腰直角ABC 与ADE 有公共顶点,90,4,6A BAC DAE AB AC AD AE .(1)如图①,当点,,B A E 在同一直线上时,点F 为DE 的中点,求BF 的长;(2)如图②,将ADE 绕点A 旋转 0360 ,点G H 、分别是AB AD 、的中点,CE 交GH 于M ,交AD于N.①猜想GH与CE的数量关系和位置关系,并证明你猜想的结论;②参考图③,若K为AC的中点,连接KM,在ADE旋转过程中,线段KM的最小值是多少(直接写出结果).例5.(2022·山西大同·九年级期中)综合与实践:已知ABC 是等腰三角形,AB AC .(1)特殊情形:如图1,当DE ∥BC 时,DB ______EC .(填“>”“<”或“=”);(2)发现结论:若将图1中的ADE 绕点A 顺时针旋转 (0180 )到图2所示的位置,则(1)中的结论还成立吗?请说明理由.(3)拓展运用:某学习小组在解答问题:“如图3,点P 是等腰直角三角形ABC 内一点,90BAC ,且1BP ,2AP ,3CP ,求BPA 的度数”时,小明发现可以利用旋转的知识,将BAP △绕点A 顺时针旋转90°得到CAE V ,连接PE ,构造新图形解决问题.请你根据小明的发现直接写出BPA 的度数.【答案】(1)=;(2)成立,理由见解析;(3)∠BPA =135°.【分析】(1)由DE ∥BC ,得到∠ADE =∠B ,∠AED =∠C ,结合AB =AC ,得到DB =EC ;(2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB =CE ;(3)由旋转构造出△APB ≌△AEC ,再用勾股定理计算出PE ,然后用勾股定理逆定理判断出△PEC 是直角三角形,在简单计算即可.【详解】解:(1)∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∵AB =AC ,∴∠B =∠C ,∴∠ADE =∠AED ,∴AD =AE ,∴DB =EC ,故答案为:=;(2)成立.证明:由①易知AD =AE ,∴由旋转性质可知∠DAB =∠EAC ,将△APB 绕点A 旋转90°∴AE =AP =2,EC =BP =1例6.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC 和ADE 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE ;(2)解决问题:如图2,若ACB △和DCE 均为等腰直角三角形,90ACB DCE ,点A ,D ,E 在同一条直线上,CM 为DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1图2【答案】(1)见解析(2)90DCE ;2AE AD DE BE CM【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC 和ADE 是顶角相等的等腰三角形,∴AB AC ,AD AE ,BAC DAE ,∴BAC CAD DAE CAD ,∴BAD CAE .在BAD 和CAE V 中,AB AC BAD CAE AD AE,∴ BAD CAE SAS ≌△△,∴BD CE .(2)解:90AEB ∠,2AE BE CM ,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE ,ADC BEC ,∵CDE △是等腰直角三角形,∴45CDE CED ,∴180135ADC CDE ,∴135BEC ADC ,∴1354590AEB BEC CED .∵CD CE ,CM DE ,∴DM ME .∵90DCE ,∴DM ME CM ,∴2DE CM .∴2AE AD DE BE CM .【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.例7.(2022·广东广州市·八年级期中)如图,两个正方形ABCD 与DEFG ,连结AG ,CE ,二者相交于点H .(1)证明:△ADG ≌△CDE ;(2)请说明AG 和CE 的位置和数量关系,并给予证明;(3)连结AE 和CG ,请问△ADE 的面积和△CDG 的面积有怎样的数量关系?并说明理由.【答案】(1)答案见解析;(2)AG=CE ,AG ⊥CE ;(3)△ADE 的面积=△CDG 的面积【分析】(1)利用SAS 证明△ADG ≌△CDE ;(2)利用△ADG ≌△CDE 得到AG=CE ,∠DAG=∠DCE ,利用∠DAG+∠AMD=90°得到∠DCE+∠CMG=90°,即可推出AG ⊥CE ;(3)△ADE 的面积=△CDG 的面积,作GP ⊥CD 于P ,EN ⊥AD 交AD 的延长线于N ,证明△DPG ≌△DNE ,得到PG=EN ,再利用三角形的面积公式分别表示出△ADE 的面积,△CDG 的面积,即可得到结论△ADE 的面积=△CDG 的面积.【详解】(1)∵四边形ABCD 与DEFG 都是正方形,∴AD=CD ,DG=DE ,∠ADC=∠EDG=90°,∴∠ADC+∠CDG=∠EDG+∠CDG ,∴∠ADG=∠CDE ,∴△ADG ≌△CDE (SAS ),(2)AG=CE ,AG ⊥CE ,∵△ADG ≌△CDE ,∴AG=CE ,∠DAG=∠DCE ,∵∠DAG+∠AMD=90°,∠AMD=∠CMG ,∴∠DCE+∠CMG=90°,∴∠CHA=90°,∴AG ⊥CE ;(3)△ADE 的面积=△CDG 的面积,作GP ⊥CD 于P ,EN ⊥AD 交AD 的延长线于N ,则∠DPG=∠DNE=90°,∵∠GDE=90°,∴∠EDN+∠GDN=90°,∵∠PDG+∠GDN=90°,∴∠EDN=∠PDG ,∵DE=DG ,∴△DPG ≌△DNE ,∴PG=EN ,∵△ADE 的面积=12AD EN ,△CDG 的面积=12CD GP ,∴△ADE 的面积=△CDG 的面积.【点睛】此题考查正方形的性质,三角形全等的判定及性质,利用三角形面积公式求解,根据图形得到三角形全等的条件是解题的关键.例8.(2023·福建福州市·九年级月考)如图,ABD 和AEC 均为等边三角形,连接BE 、CD .(1)请判断:线段BE 与CD 的大小关系是;(2)观察图,当ABD 和AEC 分别绕点A 旋转时,BE 、CD 之间的大小关系是否会改变?(3)观察如图和4,若四边形ABCD 、DEFG 都是正方形,猜想类似的结论是___________,在如图中证明你的猜想.(4)这些结论可否推广到任意正多边形(不必证明),如图,BB 1与EE 1的关系是;它们分别在哪两个全等三角形中;请在如图中标出较小的正六边形AB 1C 1D 1E 1F 1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?【答案】(1)BE=CD (2)线段BE 与CD 的大小关系不会改变(3)AE =CG ,证明见解析(4)这些结论可以推广到任意正多边形.如图5,BB 1=EE 1,它们分别在△AE 1E 和△AB 1B 中,如图6,连接FF 1,可证△AB 1B ≌△AF 1F .图形见解析.【分析】本题是变式拓展题,图形由简单到复杂,需要从简单图形中探讨解题方法,并借鉴用到复杂图形中;证明三角形全等时,用旋转变换寻找三角形全等的条件.【详解】(1)线段BE 与CD 的大小关系是BE=CD ;(2)线段BE 与CD 的大小关系不会改变;(3)AE=CG .证明:如图4,正方形ABCD 与正方形DEFG 中,∵AD=CD ,DE=DG ,∠ADC=∠GDE=90°,又∠CDG=90°+∠ADG=∠ADE ,∴△ADE ≌△CDG ,∴AE=CG .(4)这些结论可以推广到任意正多边形.如图5,BB 1=EE 1,它们分别在△AE 1E 和△AB 1B 中,如图6,连接FF 1,可证△AB 1B ≌△AF 1F .【点睛】本题综合考查全等三角形、等边三角形和多边形有关知识.注意对三角形全等的证明方法的发散.模型2.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。

完整word版本初中中考专题总结复习——几何题用旋转构造手拉手模型.doc

完整word版本初中中考专题总结复习——几何题用旋转构造手拉手模型.doc

中考专题复习——几何题用旋转构造“手拉手”模型一、教学目标:1.了解并熟悉“手拉手模型”,掌握其基本特征.2.借助“手拉手模型” ,利用旋构造全等解决相关.3.一反三,解决求定,定角,最等一.二、教学重难点:1.挖掘和构造“手拉手模型”,学会用旋构造全等.2.用旋构造全等的解方法最化.三、教学过程: D1.复旧知E:如,△ ABD ,△ BCE 等三角形,从中你能得出H哪些?G F生:( 1)△ ABE≌△ DBC ( 2)△ ABG≌△ DBF A B C ( 3)△ CFB ≌△ EGB ( 4)△ BFG 等三角形( 5)△ AGB∽△ DGH ( 6)∠ DHA = 60°( 7)H,G,F ,B 四点共(8)BH 平分∠ AHC ⋯⋯:我再来重点研究△ABE 与△ DBC ,两个全等的三角形除了相等,角相等外,有什么共同特征呢?生:它有同一个字母B,即同一个点 B.:我也可以把△DBC 看作由△ ABE 怎的形运得到?生:点 B 旋60°得到.2.引入新:其我可以两个全等的三角形予一个模型,叫“手拉手模型”,可以将个模型的特征再做一步的化呢?生:相等.:我可以称之“等段”.生:有同一个点.:我可以称之“共点”.:等段,共点的两个全等三角形,我一般可以考哪一种形运?生:旋.:“手拉手模型”可以:等段,共点,一般用旋.3.小题热身图 1图2图 31.如图 1,△BAD 中,∠ BAD = 45°,AB= AD ,AE⊥ BD 于 E,BC⊥ AD 于 C,则 AF = ____BE .2.如图 2,△ ABC 和△ BED 均为等边三角形, ADE 三点共线,若 BE = 2,CE = 4,则 AE= ______.3.如图3,正方形ABCD 中,∠ EAF = 45°,BE= 3,DF = 5,则EF = _______..师:我们来看第 1,第 2 题,这里面有“手拉手模型”吗?请你找出其中的“等线段,共顶点”生:题 1 中,等线段是 AC, BC,共顶点是 C,△ ACF 绕点 C 逆时针旋转 90°得△ BCD .题2 中,等线段是 AB, BC,共顶点是 B,△ ABD 绕点 D 顺时针旋转 60°得△ CBE.师:我们再来看第 3 题,这里有“手拉手模型”吗?生:没有.师:那其中有没有“等线段,共顶点”呢?生:等线段是 AD, AB,共顶点是 A .师:我们可否利用旋转来构造“手拉手模型”呢?生:将 AE 旋转,绕点 A 逆时针旋转 90°.师:为什么是逆时针旋转 90°,你是如何思考的?生:我准备构造一个和△ABE 全等的三角形,AB 绕点 A 逆时针旋转90°即为 AD ,那么将 AE 逆时针旋转90°可得 AG ,连接 GD,证明全等.师:说的不错,谁能再来归纳一下,借助“手拉手模型” ,用旋转构造全等的方法吗?生:先找有没有“等线段,共顶点” ,再找其中一条“共顶点”的线段,将其旋转.师:旋转角度如何确定,方向怎么选择?生:选择其中一个三角形,将“共顶点”的线段旋转.旋转角为两条“等线段”间的夹角.方向应与所选择的起始“等线段”旋转到另一条“等线段”时的方向一致.师:非常棒,可以说,你已经掌握了这节课的精髓.但是,很多题目中只是隐含了“手拉手模型”的一些条件,剩余的需要我们自己去构造,可以如何构造呢?步骤 1:先找有没有“等线段,共顶点”.步骤 2:选择其中一个三角形,将其中经过“共顶点”的线段旋转.步骤 3:旋转方向与这个三角形的“等线段”旋转到另一条“等线段”的方向一致,旋转角为“等线段”间的夹角.师:这道题还有一个要注意的地方,你发现了吗?生:连接 GD 后,要证明G, D, F 三点共线.4.例题精讲 A例 1:等边△ ABC 中, AD= 4, DC= 3, BD = 5,求∠ ADC 度数.师:这里有没有隐含的“手拉手模型”?D 要构造全等,该怎样旋转?B C 生:将△ ADC 绕点 A 顺时针旋转 60°.师:你是怎么想的,还有其他做法吗? A生:我发现 AB=AC, A 为“共顶点” ,我选择的旋转线段E D是 AD ,因为 AC 绕点 A 顺时针旋转 60°到 AB,所以△ ADC 也要绕点 A 顺时针旋转 60°.也可将△ ADB 绕点 A 逆时针旋转 60°.B C 【解答】将 AD 绕点 A 顺时针旋转 60°到 AE,连接 BE,DE .则△ ADE 也为等边三角形.易证△ AEB≌△ADC ,∴ BE = DC= 4,根据勾股定理逆定理,可证∠BED= 90°,则∠ AEB=∠ ADC =150°例 2:如图,△ ABO 和△ CDO 均为等腰直角三角形,AOB= COD DA= 90 .若△ BOC 的面积为 1,试求以 AD、BC、OC+ OD 的长度为三边长的三角形的面积.O师:由于线段分散,如何通过图形变换,使这些线段能构成一个三角C B 形?生:将 OD 绕点 O 逆时针旋转90°至 OE,即可使 OC,OD 共线,再通过证明确定△BCE 即是以AD 、BC、 OC+ OD 的长度为三边长的三角形.【解答】如图,将 OD 绕点 O 逆时针旋转 90°至 OE,连接 BE.易证 DA△ OAD ≌△ OBE ,AD= BE,∴△ BCE 即是以 AD 、BC、OC+ OD E长度为三边长的三角形.又∵OC= OE,∴ S△BCE=2S△BOC=2.OC B5.自主练习1.如图,在四边形 ABCD 中, AD = 4,CD = 3,∠ ABC=∠ ACB D A=∠ ADC =45°,则 BD 的长为 _________.师:请找出隐含的“手拉手模型” ,并写出解决方法. C B 生:“等线段”是 CA 和 BA,“共顶点”是 A .方法是将 AD 绕点A 顺时针旋转 90°.2.如图,在△ ABC 中, BC= 2,AB= 2,以 AC 为边,向外做正方E 形 ACDE ,连接 BE ,则 BE 最大值为 _________. D师:请找出隐含的“手拉手模型” ,并写出解决方法.A生:“等线段”是 CA 和 EA,“共顶点”是 A .方法是将 AB 绕点 A 逆时针旋转 90°. B C师:你为何要逆时针旋转,你准备旋转哪个三角形?生:△ ABC,因为 AC 是逆时针旋转 90°到 AE,所以 AB 也绕点 A 逆时针旋转 90°.3.如图,点 A 在⊙ B 上, AB= 1, BC= 2,△ ACD 是等边三角形, D求△ BCD 面积的最大值.师:请找出隐含的“手拉手模型”,并写出解决方法.A 生:“等线段”是CA 和 CD,“共顶点”是C.方法是将 CA 绕点 C 逆时针旋转60°.附:自主练习解答1.如图,将 AD 绕点 A 顺时针旋转 90°至 AE,易证△ EAC≌△DAB ,可得 CE=BD ,又∵∠ EDA = 45°,∴∠ CDE = 90°,C BECD= 3, DE = 4 2,则 Rt△ CDE 中, CE2= CD 2+ DE2= 32DA +(4 2) 2= 41∴ CE=41,∴ DB= 41 C B2.如图,将 AB 绕点 A 逆时针旋转 90°至 AF ,易证△ EAF ≌△ CAB, E可得 EF= BC= 2. Rt △BAF 中, AF = AB= 2,∴ BF = 2.由三D 角形三边关系易知, BE≤ EF+ BF ,∴ BE 最小值为 4.FAB C3.如图,将 CB 绕点 C 逆时针旋转60°至 CE,连接 DE ,过点 E 作 EF ⊥CB 于 F ,过点 D 作 DG⊥ CB 于 G.易证△ CBA≌ CED ,则 DE =1,EF =3,过 E 作 DG 边上的高,可证 DG< DE+ EF .当D ,E,F 三点共线时, DG = DE +EF .即高的最大值为 1+ 3, S△BCDmax=12× 2×( 1+ 3)= 1+ 3DEAC G F BDECFAB。

初三数学专题——旋转模型(手拉手模型)

初三数学专题——旋转模型(手拉手模型)

M D N E C BF A 初三专题练习——旋转问题 姓名______________ 学号_____________一、手拉手模型(特点——公共点是等腰三角形的顶点)如图,易证:'ABB ∆≌'ACC ∆这就是传说中的“旋转一施二”,又称为“手拉手模型”1、已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:∠AFM=60°2、如图,在等腰ABC Rt ∆中,BC BA =,︒=∠90ABC ,点D 在AC 上,将ABD ∆绕点B 顺时针方向旋转︒90后,得到CBE ∆(1)求DCE ∠的度数;(2)若4=AB ,AD CD 3=,求DE 的长。

3、等边ABC ∆中,4=AD ,3=DC ,5=BD ,求ADC ∠的度数。

A B C D4、如图,在凸四边形ABCD 中,30BCD ∠=︒,60DAB AD AB ∠=︒=,.求证:222AC CD BC =+5、已知ABC ∆,以AC 为边在ABC ∆外作等腰ACD ∆,其中AC AD =。

⑴如图①,若2DAC ABC ∠=∠,AC BC =,四边形ABCD 是平行四边形,则_____ABC ∠= ⑵如图②,若30ABC ∠=︒,ACD ∆是等边三角形,3AB =,4BC =,求BD 的长;6、已知在ABC ∆中,AC AB =,D 是BC 边上一点,连接AD ,在直线AD 右侧作等腰ADE ∆,AE AD =(1)如图1,︒=∠=∠90DAE BAC ,连接CE ,求证:ABD ∆≌ACE ∆(2)如图2,︒=∠=∠120DAE BAC ,2==AC AB ,取AC 边的中点F ,连接EF ,当点D 从B 点运动到C 点过程中,求线段EF 长度的最小值。

(3)如图3,四边形ABCD 中,︒=∠=∠90BCD BAD ,AD AB =,1=DC ,连接AC ,已知2230+=AC ,求AB 的长。

中考数学专题训练 旋转模型几何变换三种模型手拉手 半角 对角互补

中考数学专题训练 旋转模型几何变换三种模型手拉手 半角 对角互补

几何变换的三种模型手拉手、半角、对角互补【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出ABD ∠的大小(用含α的式子表示);(2)如图2,15060BCE ABE ∠=︒∠=︒,,判断ABE △的形状并加以证明; (3)在(2)的条件下,连结DE ,若45DEC ∠=︒,求α的值.【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=,,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.真题演练知识关联图例题精讲考点1:手拉手模型:全等和相似包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)>.【例1】(14年海淀期末)已知四边形ABCD和四边形CEFG都是正方形,且AB CE (1)如图1,连接BG、DG.求证:BG DE=;(2)如图2,如果正方形ABCD,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG BD=.∥,BG BD①求BDE∠的度数;②请直接写出正方形CEFG的边长的值.【例2】 (2014年西城一模) 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。

初中几何专项——手拉手模型

初中几何专项——手拉手模型

初中几何专项——手拉手模型手拉手模型手拉手模型常常与旋转结合出现在几何综合题目中。

这种模型的实例包括以下几个题目:1.在等腰直角三角形△ABC中,AB=AC,∠ABC=90°,F 为AB延长线上一点,点E在BC上,且AE=CF。

证明BE=BF,若∠CAE=30°,求∠ACF的度数。

2.在等边三角形△ABD和△BCE中,连接AE与CD,延长AE交CD于点H。

证明AE=DC,∠AHD=60°,HB平分∠AHC。

3.将等腰直角三角形△ABC和△ADE按图①方式放置,∠A=90°,AD边与AB边重合,AB=2AD=4.将△ADE绕点A 逆时针方向旋转一个角度α(°<α<180°),BD的延长线交CE 于P。

证明BD=CE,BD⊥CE,当AD⊥BD时,求出CP的长度。

4.直线AB的同一侧作等边三角形△ABD和△BCE,连接AE、CD,二者交点为H。

证明△ABE≌△DBC,AE=DC,∠DHA=60°,△AGB≌△DFB,△EGB≌△CFB,GF∥AC,HB平分∠AHC。

这些题目都可以用手拉手模型来解决。

例如,在第一个题目中,我们可以通过连接BE和BF来构建△BEF和△BFC,然后通过手拉手模型证明△BEF≌△BFC,从而得出BE=BF。

在第二个题目中,我们可以通过连接HB来构建△AHB和△CHB,然后通过手拉手模型证明AE=DC,∠AHD=60°,HB平分∠AHC。

在第三个题目中,我们可以通过连接BD和CE来构建△BPD和△CPE,然后通过手拉手模型证明BD=CE,BD⊥CE。

最后,在第四个题目中,我们可以通过连接AE和DC来构建△ABE和△DBC,然后通过手拉手模型证明△ABE≌△DBC,AE=DC。

(完整word版)中考数学专题训练 旋转模型几何变换的三种模型手拉手、半角、对角互补

(完整word版)中考数学专题训练 旋转模型几何变换的三种模型手拉手、半角、对角互补

几何变换的三种模型手拉手、半角、对角互补⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎪⎪⎩等腰三角形手拉手模型等腰直角三角形(包含正方形)等边三角形(包含费马点)特殊角旋转变换对角互补模型一般角特殊角角含半角模型一般角等线段变换(与圆相关)【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出ABD ∠的大小(用含α的式子表示);(2)如图2,15060BCE ABE ∠=︒∠=︒,,判断ABE △的形状并加以证明; (3)在(2)的条件下,连结DE ,若45DEC ∠=︒,求α的值.知识关联图真题演练【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=,,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.例题精讲考点1:手拉手模型:全等和相似包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)>.【例1】(14年海淀期末)已知四边形ABCD和四边形CEFG都是正方形,且AB CE(1)如图1,连接BG、DG.求证:BG DE=;(2)如图2,如果正方形ABCD 的边长为2,将正方形CEFG绕着点C旋转到某一位置时恰好使得=.∥,BG BDCG BD①求BDE∠的度数;②请直接写出正方形CEFG的边长的值.【题型总结】手拉手模型是中考中最常见的模型,突破口常见的有哪些信息?常见的考试方法有哪些?【例2】 (2014年西城一模) 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。

完整word版)手拉手模型

完整word版)手拉手模型

完整word版)手拉手模型手拉手模型是由两个顶角相等的等腰三角形组成,公共顶点为顶角。

根据该模型,可以得出以下结论:(1)△ABD≌△AEC;(2)∠α+∠BOC=180°;(3)OA平分∠BOC。

例1中,以B点为线段AC上的一点,分别构建等边三角形△ABD和△ECB。

连接AE和CD,AE与DC交于点H,与BD与BE交于点G和F。

需要证明的是:(1)△BCD≌△BEA;(2)探究△BFG的形状,并证明结论。

根据手拉手模型,可以得出AE与DC之间的夹角为60°,且BH平分∠AHC。

同时,根据三角形的相似性质,可以得出△AGB≌△DFB,△EGB≌△___。

此外,还有BH平分∠AHC,___。

因此,可以得出结论:(1)AE与DC的夹角为60°;(2)AE与DC的交点H,BH平分∠AHC。

在变式精练2中,以点A为顶点构建等腰直角三角形△ABC和△ADE,其中∠BAC=∠DAE=90°,一直角边重合,连接BD和CE。

需要判断BD和CE的数量关系,并说明理由;求出∠___的度数;并判断结论在两个等腰直角三角形按不同方式放置时是否仍成立。

在练中,已知△AOB和△COD中OA=OB,OC=OD,∠AOB=∠COD=50°,需要证明:①AC=BD;②∠APB=50°。

根据手拉手模型,可以得出结论:AC=BD,且∠APB=50°。

在问题2中,给定两个正方形ABCD和DEFG,连接AG与CE,二者相交于H。

需要判断△ADG≌△CDE是否成立,AG是否与CE相等,AG与CE之间的夹角为多少度,以及HD是否平分∠AHE。

2023中考数学---中考数学手拉手旋转相似模型

2023中考数学---中考数学手拉手旋转相似模型
旋转相似--手拉手模型
手拉手模型的特点
如下图所示,手拉手模型是由两个具有公共顶点的相似三角形( △ABB'∽△ACC'),分别连接两个左手顶点(点B和点C)和右手顶点(点B'和 点C')所组成的图形(左手拉左手,右手拉右手)。
手拉手模型的重要结论
证明:▲BAC全等于是以公共顶点为顶点
旋转到A、D、E三点共线的时候
等腰三角形时,得到旋转全等形
▲共顶点的两个三角形为等腰三角形
证明:▲BAC相似于▲B'AC'
结论2: 当两个三角形不是等腰三角
形时,得到旋转相似形
▲共顶点的两个三角形为相似的非等腰三角形
证明:∠BOB'=∠BAB'
结论3: 拉手两条线的夹角等于旋转
相似三角形的顶角。
共顶点等边三角形中的六大结论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题复习——几何题用旋转构造“手拉手”模型一、教学目标:,归纳掌握其基本特征.1.了解并熟悉“手拉手模型”,利用旋转构造全等解决相关问题.2.借助“手拉手模型”举一反三,解决求定值,定角,最值等一类问题.3.二、教学重难点:,学会用旋转构造全等.1.挖掘和构造“手拉手模型”用旋转构造全等的解题方法最优化选择.2.
三、教学过程:D 1.复习旧知EH为等边三角形,从中你能得出师:如图,△ABD,△BCE GF哪
(1)△ABE CAB 4)△BFG为等边三角形CFB (3)些结论?DBFDBC≌△(2)△ABG≌△生:
△≌△EGB (……)BH平分∠AHCB,F,四点共圆(8G7=6DGH)(5△AGB∽△()∠DHA60°()H,,这两个全等的三角形除了对应边相等,对应角相等外,与△DBC师:我们再来重点研究△ABE 还有什么共同特征呢?.B,即同一个顶点B生:它们有同一个字母经过怎样的图形运动得到?看作由△ABE师:我们也可以把△DBC 60°得到.生:绕点B顺时针旋转
2.引入新课,谁可以将这个模型的师:其实我们可以给这两个全等的三角形赋予一个模型,叫“手拉手模型”特征再做进一步的简化归纳呢?生:对应边相等.师:我们可以称之为“等线段”.生:有同一个顶点..师:我们可以称之为“共顶点”师:等线段,共顶点的两个全等三角形,我们一般可以考虑哪一种图形运动?生:旋转.“手拉手模型”可以归纳为:等线段,共顶点,一般用旋转.师:
3.小题热身
3
图1
图2

.=____BECAD于,则AF°,AB=AD,AE⊥BD于E,BC⊥4511.如图,△BAD中,∠BAD=.=______AECE=4,则ABC△和△BED均为等边三角形,ADE三点共线,若BE=2,2.如图2,.=_______=5,则EFBEEAF=45°,=3,DF,正方形3.如图3ABCD中,∠题,这里面有“手拉手模型”吗?请你找出其中的“等线段,共顶点”.2师:我们来看第1,第BCD.C逆时针旋转90°得△AC,BC,共顶点是C,△ACF绕点生:题1中,等线段是.60°得△CBEB,△ABD绕点D顺时针旋转,共顶点是题2中,等线段是AB,BC 题,这里有“手拉手模型”吗?师:我们再来看第3 生:没有.师:那其中有没有“等线段,共顶点”呢?.,共顶点是A生:等线段是AD,AB 师:我们可否利用旋转来构造“手拉手模型”呢?
90°.AE旋转,绕点A逆时针旋转生:将90°,你是如何思考的?师:为什么是逆时针旋转逆AE,那么将ADAB绕点A逆时针旋转90°即为全等的三角形,生:我准备构造一个和△ABE GD,证明全等.AG时针旋转90°可得,连接师:说的不错,谁能再来归纳一下,借助“手拉手模型”,用旋转构造全等的方法吗?“共顶点”的线段,将其旋转.生:先找有没有“等线段,共顶点”,再找其中一条
师:旋转角度如何确定,方向怎么选择?生:选择其中一个三角形,将“共顶点”的线段旋转.旋转角为两条“等线段”间的夹角.方向应与所选择的起始“等线段”旋转到另一条“等线段”时的方向一致.师:非常棒,可以说,你已经掌握了这节课的精髓.但是,很多题目中只是隐含了“手拉手模型”的一些条件,剩余的需要我们自己去构造,可以如何构造呢?.步骤1:先找有没有“等线段,共顶点”“共顶点”的线段旋转.:选择其中一个三角形,将其中经过2步骤.
:旋转方向与这个三角形的“等线段”旋转到另一条“等线段”的方向一致,旋转角为“等步骤3 线段”间的夹角.师:这道题还有一个要注意的地方,你发现了吗?F三点共线.G,D,生:连接GD后,要证明
4.例题精讲A度数.,求∠ADC,DC=3,BD=5:等边△例1ABC中,AD =4 师:这里有没有隐含的“手拉手模型”?D要构造全等,该怎样旋转?CB生:将△ADC绕
点A顺时针旋转60°.师:你是怎么想的,还有其他做法吗?A,A为“共顶点”,我选择的旋转线段生:我发现AB=AC E也要绕,所以△ADC60是AD,因为AC绕点A顺时针旋转°到AB D°.点A顺时针旋转60°.也可将△ADB绕点A逆时针旋转60BC【解答】≌△也为等边三角形.易证△AEBBE,DE.则△ADE绕点将ADA顺时针旋转60°到AE,连接°AEB=∠ADC=150BE=DC=4,根据勾股定理逆定理,可证∠BED=90°,则∠,∴ADC
COD=?AOB?2:如图,△ABO和△CDO均为等腰直角三角形,例DA的长度为OD BC试求以AD、、OC+BOC=90?.若△的面积为1,三边长的三角形的面积.
O师:由于线段分散,如何通过图形变换,使这些线段能构成一个三角CB形?
即是以△BCE,即可使OC,OD共线,再通过证明确定O生:将OD绕点逆时针旋转90°至OE 的长度为三边长的三角形.、BCOC+ODAD、【解答】D.易证OE,连接BE如图,将OD 绕点O逆时针旋转90°至A OD+、OCBCBCEADOAD△≌△OBE,=BE,∴△即是以AD、E.=22=SOEOC长度为三边长的三角形.又∵=,∴S BOC△BCE△O CB
5.自主练习DA ACBABC=∠,CD=3,∠1.如图,在四边形ABCD中,AD=4 .45°,则BD的长为_________=∠ADC=,并写出解决方法.师:请找出隐含的“手拉手模型”BC绕点ADA.方法是将CA生:“等线段”是和BA,“共顶点”是°.顺时针旋转90A E为边,向外做正方,以ABC2.如图,在△中,BC=2,ABAC=2 .BE形ACDE,连接,则BE最大值为_________D师:请找出隐含的“手拉手模型”,并写出解决方法.A.EA,“共顶点”是A生:“等线段”是CA和C A逆时针旋转90°.方法是将AB绕点B师:你为何要逆时针旋转,你准备旋转哪个三角形?°.也绕点生:△ABC,因为AC是逆时针旋转90°到AE,所以ABA
逆时针旋转90是等边三角形,BCB上,AB=1,=2,△ACDA3.如图,点在⊙D面积的最大值.求△BCD ,并写出解决方法.师:请找出隐含的“手拉手模型”A C.CA和CD,“共顶点”是“等线段”是生:BC°.C逆时针旋转60方法是将CA绕点
附:自主练习解答
E≌△EACAD1.如图,将绕点A顺时针旋转90°至AE,易证△°,DAB,可得CE=BD,又∵∠=90=45°,∴∠CDEEDA DA2222+3CDCDEDECD=3,=24,则Rt△中,CE=+DE=241 =(42)CB41 DB,∴=41∴CE=
,≌△EAFCAB,易证△°至绕点如图,将2.ABA逆时针旋转90AF E.由三,∴ABAFBAFRt2BCEF 可得==.△中,==2BF2=D4. BEBF+EFBE角形三边关系易知,≤,∴最小值为F A
BC.
CBDE,过点E作EF⊥C3.如图,将CB绕点逆时针旋转60°至CE,连接D,=3,CBA≌CED 则DE=1,EF△于作F于,过点DDG⊥CBG.易证E
边上的高,可证作DGDG<DE+EF.过E A S,.=,当D,EF三点共线时,DGDE+EF即高的最大值为1+3BCDmax△ GCBF13 3×(×=21+)=+12D
EABFC.。

相关文档
最新文档