用MATLAB画这个小图

合集下载

matlab绘图课件

matlab绘图课件

柱状图
总结词
用于比较不同类别数据的数值大小。
详细描述
柱状图是一种常用的数据可视化工具,它通过在垂直或水平方向上绘制一系列的柱子,每个柱子代表一个数据类 别,高度或长度表示该类别的数值大小。柱状图可以清晰地展示不同类别之间的数值差异和比较。
饼图
总结词
用于表示各部分在总体中所占的比例。
VS
详细描述
饼图是一种圆形图表,它将一个完整的圆 分割成若干个扇形,每个扇形代表一个数 据类别,扇形的面积或角度表示该类别的 比例大小。饼图可以清晰地展示各部分在 总体中所占的比例和比较。
动画制作
帧动画
通过在连续的帧上绘制图形或改 变图形属性来创建动画效果。
交互式动画
使用鼠标或键盘控制动画的播放 暂停和停止等操作。
运动轨迹
绘制物体在运动过程中的轨迹, 以展示物体的运动规律和特点。
三维图形
三维曲线
在三维空间中绘制曲线,可以展 示不同变量之间的关系和变化趋
势。
三维曲面
通过绘制三维曲面来展示两个或多 个变量之间的关系和分布情况。
函数调用与执行
在主程序中调用自定义函数,执行绘图操作,实现特定图形的绘 制。
数据导入和导
1 2
数据导入
将外部数据文件(如Excel、CSV等格式)导入 Matlab中,用于后续的绘图分析。
数据处理
对导入的数据进行必要的预处理和清洗,以满足 绘图需求。
3
数据导出
将绘制好的图形和数据导出为特定格式(如PNG 、JPEG、PDF等),方便分享和保存。
三维体图
绘制三维体图来展示数据的空间分 布和密度变化,如云图、等高线图 等。
04
实例分析
绘制正弦函数图像

Matlab绘制图像

Matlab绘制图像
Matlab绘制图像
第一种方法 在Workspace中绘制
绘图基本线型和颜色
符号 y m c r g b w k 颜色 黄色 紫红 青色 红色 绿色 蓝色 白色 黑色 符号 . 。 x + * : -. -线型 点 圆圈 x 标记 加号 星号 实线 点线 点划线 虚线
绘图命令
绘图命令plot 主要是在数值计算中绘制函数图像。 绘制反函数图像非常容易。
绘图命令plot
调用格式1:plot(x,y)
1. 首先定义自变量X的取值向量(横坐标) 2. 再定义函数Y的取值向量(纵坐标) 3. 用plot(x,y)命令给出平面曲线图。 在绘图参数中可以给出绘制图形的线型和颜 色的参数。例:plot(x,y,’r*’) 就是用红色的 ****线型绘图。
技巧
x=0:0.1:2*pi; y1=sin(x); y2=exp(-x); plot(x,y1,'--*',x,y2,':o'); xlabel('t=0 to 2\pi'); ylabel('value of sin(t) and e^{-x}') title('Function sin(t) and e^{-x}'); legend('sin(t)','e^{-x}') 后期的制作
ቤተ መጻሕፍቲ ባይዱ
绘出下面函数及其反函数的图像
1 1 y (x ) 2 x (1 x )
程序如下: x=1:0.001:5; %定义横坐标 y=1/2*(x+1./x); %定义纵坐标 plot(x,y,'r',y,x,'b') %红色画f(x) 蓝色画f(y).

使用matlab绘制三维图形的方法

使用matlab绘制三维图形的方法

使用matlab 绘制三维图形的方法三维曲线plot3函数与plot 函数用法十分相似,其调用格式为: plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n),其中每一组x,y,z 组成一组曲线的坐标参数,选项的定义和plot 函数相同。

当x,y,z 是同维向量时,则x,y,z 对应元素构成一条三维曲线。

当x,y,z 是同维矩阵时,则以x,y,z 对应列元素绘制三维曲线,曲线条数等于矩阵列数。

例 绘制三维曲线。

程序如下: t=0:pi/100:20*pi; x=sin(t); y=cos(t);z=t.*sin(t).*cos(t); plot3(x,y,z);gridtitle('Line in 3-D Space');xlabel('X');ylabel('Y');zlabel('Z'); 如下图:XLine in 3-D SpaceYZ三维曲面1.产生三维数据在MATLAB 中,利用meshgrid 函数产生平面区域内的网格坐标矩阵。

其格式为: x=a:d1:b; y=c:d2:d; [X,Y]=meshgrid(x,y);语句执行后,矩阵X 的每一行都是向量x ,行数等于向量y 的元素的个数,矩阵Y 的每一列都是向量y ,列数等于向量x 的元素的个数。

2.绘制三维曲面的函数surf 函数和mesh 函数的调用格式为:mesh(x,y,z,c):画网格曲面,将数据点在空间中描出,并连成网格。

surf(x,y,z,c):画完整曲面,将数据点所表示曲面画出。

一般情况下,x,y,z 是维数相同的矩阵。

x,y 是网格坐标矩阵,z 是网格点上的高度矩阵,c 用于指定在不同高度下的颜色范围。

例 绘制三维曲面图z=sin(x+sin(y))-x/10。

程序如下:[x,y]=meshgrid(0:0.25:4*pi); %在[0,4pi]×[0,4pi]区域生成网格坐标 z=sin(x+sin(y))-x/10; mesh(x,y,z);axis([0 4*pi 0 4*pi -2.5 1]); 如下图:-2.5-2-1.5-1-0.500.51此外,还有带等高线的三维网格曲面函数meshc 和带底座的三维网格曲面函数meshz 。

利用MATLAB 绘制二维图形

利用MATLAB 绘制二维图形
经济数学
利用MATLAB 绘制二维图形
1. 显函数的图形绘制
MATLAB 中二维显函数的调用格式为: (1)plot (x,y,s) x为自变量,y为函数,两者均为同长度的向量,分别表示点的横坐标 和纵坐标. (2)plot (x1,y1,s1,x2,y2,s2 , ,xn,yn,sn) s1,s2 , ,sn是颜色、标记点和线型参数, 可叠加使用. 若不设置参数s ,则默认画实线.常用参数见表8-5所示 .
例2

x linspace0 ,2 pi ,50; %设置自变量的范围 y1 sin x; y2 cos x;
plot(x ,y1,k ,x,y2 ,m ) %取不同参数画两条曲线 运行结果如图8-5所示 .
图8-5
利用MATLAB 绘制二维图形
2. 隐函数的图形绘制
MATLAB中二维隐函数的调用格式为 : (1)ezplot(fun,[a ,b]) fun为隐函数表达式,需用单引号界定 . [a ,b]用来指定自变
利用MATLAB 绘制二维图形
表8-5
利用MATLAB 绘制二维图形
例1

x 2 :0 . 01:2 ; %定义数组变量x ,从 2开始到2为止 ,步长 0.01 y x.2 1; %计算对应的函数值 plot (x ,y) 运行结果如图8-4所示 .
图8-4
利用MATLAB 绘制二维图形
量的取值范围,默认范围为2π ,2π .
(2)ezplot(funx ,funy,[a ,b])funx ,funy是用单引号界定的x(t)和y(t)的表达
式 ,[a ,b]为参数的取值范围,默认范围为0 ,2π .
利用MATLAB 绘制二维图形
例3

MATLAB画图之自定义图片大小

MATLAB画图之自定义图片大小

MATLAB画图之⾃定义图⽚⼤⼩解决问题:使⽤MATLAB的plot函数画图时弹出图⽚的⼤⼩和位置修改。

MATLAB画图的⼏个概念:screen: 屏幕;figure: 弹出来的对话框;figure变化,screen不会变化;screen变化,figure不会变化;axes: figure 中的图像,axes的⼤⼩取决于figure,figure⼤⼩变化,axes⼤⼩也会变化;set(gcf, ……): 对figure⼤⼩和位置进⾏设置;set(gca, ……): 对axes⼤⼩和位置进⾏设置;⼀、⾃定义figure的⼤⼩和位置程序:clear;clc;close all;t = 0:0.001:10;y1 = sin(t);figure(1);plot(t,y1);程序运⾏结果:默认情况下,figure⼤致在screen的正中间,⼤致为⼀个⽅形(具体参数没有深究),如果我们想要⾃定义figure在screen的位置和⼤⼩,有两种⽅法可以实现。

第⼀种⽅法:在声明figure时定义⼤⼩,将上述程序修改为:clear;clc;close all;t = 0:0.001:10;y1 = sin(t);figure('Units','centimeter','Position',[5 5 7 3.5]);plot(t,y1);其中'Units','centimeter' ⽤来定义单位;'Position',[5 5 7 3.5]⽤来定义位置。

[5 5 7 3.5]表⽰为[x0 y0 width height]X0, y0: 表⽰figure左下⾓在screen中的位置,参考位置是screen左下⾓;Width, height: 表⽰figure的宽和⾼的⼤⼩。

程序运⾏结果:第⼆种⽅法:使⽤set(gcf, ……)命令,将上述程序修改为:clear;clc;close all;t = 0:0.001:10;y1 = sin(t);figure(1);set(gcf,'Units','centimeter','Position',[5 5 7 3.5]);plot(t,y1);单位和位置的定义⽅式同第⼀种⽅法,程序运⾏结果为:⼆、⾃定义figure中图像的⼤⼩和位置使⽤set(gca, ……)指令,该指令设置的是图的坐标线axes的位置及⼤⼩,并不是坐标线标注的位置。

如何在Matlab中进行二维和三维绘图

如何在Matlab中进行二维和三维绘图

如何在Matlab中进行二维和三维绘图在科学研究和工程领域,数据可视化是一项十分重要的任务,而Matlab作为一种功能强大的数值计算和数据分析软件,自然也提供了丰富的绘图功能。

本文将介绍如何在Matlab中进行二维和三维绘图,并探讨一些常见的绘图技巧和应用。

一、二维绘图Matlab中的二维绘图是最常见和基础的绘图任务之一。

在绘制二维图形时,我们通常会用到plot函数。

这个函数可以接受单个向量作为输入,将这个向量的值作为y轴上的数据点,自动生成与该向量长度相同的x轴坐标。

例如,我们可以用以下代码绘制一个简单的二维折线图:```x = 0:0.1:2*pi;y = sin(x);plot(x, y);```上述代码中,x参量取从0到2π的均匀间隔的值,而y则是根据x计算得到的sin函数值。

plot函数会自动根据输入绘制折线图,并添加相应的轴标签和图例。

在实际应用中,我们经常需要绘制多条曲线在同一个坐标系中进行对比分析。

可以通过在plot函数中传入多个x和y向量实现这一功能。

例如,我们可以通过以下代码绘制一个简单的双曲线图:```x = 0:0.1:2*pi;y1 = sin(x);y2 = cos(x);plot(x, y1, x, y2);```这样,就会在同一个坐标系中同时绘制sin曲线和cos曲线。

除了折线图,Matlab还支持其他常见的二维绘图类型,如散点图、柱状图和面积图等。

这些绘图类型可以通过不同的函数实现,例如scatter、bar和area等。

这里不再一一赘述,读者可以通过Matlab的帮助文档或官方网站了解更多的用法和示例。

二、三维绘图除了二维绘图,Matlab也提供了丰富的三维绘图功能,用于可视化更为复杂的数据和模型。

在绘制三维图形时,我们通常会用到surf函数。

这个函数可以接受两个二维矩阵作为输入,将这两个矩阵的值分别作为x、y轴上的坐标,而将第三个二维矩阵的值作为z轴上的数据点。

MATLAB 中图形的绘制

MATLAB 中图形的绘制
则画出依次连接这些点的曲线。用法:
plot3(x,y,z) %画出连接点列的蓝色实心线(默认)
plot3(x,y,z, ‘r-’)
%画出连接点列的红色实线
例 画出螺旋线:x=sin(t),y=cos(t),z=t,
t [0,10 ]
上一段曲线。
► t=0:pi/50:10*pi; %生成参数t数组
%保持第二个子窗中绘图
► plot(x,y,'bo',x,z,'k+') %用'o'和'+'标记曲线上分点
► hold off 结果如图
%取消图形保持
二维绘图命令plot的图形效果
例2: 画出 [0,2 ]上正弦、余弦曲线并对线型加粗、 点型加大,重新定置坐标系。
► x=0:0.1*pi:2*pi;
1) 对投影域进行划分:
► x=a:p1:b ► y=c:p2:d
%按步长p1对 [a,b]区间进行划分并生成向量 %按步长p2 对[c,d]区间进行划分并生成向量
2) 按上述划分生成投影域上全部网格节点的坐标矩阵: ► [X,Y]=meshgrid(x,y)
3) 根据函数表达式生成全部网格节点处对应的函数值 (坐标z)矩阵Z:
实现在同一个窗口中同时显示多个图像的命令 subplot。 使用格式为:
subplot(m,n,i) 其含义为 :把图形窗口分割为 m 行 n 列子窗口, 然后选定第 i 个窗口为当前窗口。 subplot 命令不仅用于二维图形,对三维图形一样 适用。其本质是将 figure 窗口分为几个区域,再 在每个区域内分别绘图。
画出顺次连接这些点的曲线。用法: plot(x,y) %画出连接点列的蓝色实心线(默认)

怎样用Matlab绘图

怎样用Matlab绘图

help plothelp axisa1=plot();hlod ona2=plot();legend([a1 a2],'图1 名',‘图2 名')hold offx1=-pi:pi/12:pi;x2=-pi:pi/12:pi;y1=sin(x1);y2=cos(x2);plot(x1,y1,x2,y2);axis([-2*pi 2*pi -2 2]);xlabel('x');ylabel('y');title('sin(x) & cos(x)');MATLAB受到控制界广泛接受的一个重要原因是因为它提供了方便的绘图功能.这里主要介绍2 维图形对象的生成函数及图形控制函数的使用方法,还将简单地介绍一些图形的修饰与标注函数及操作和控制MATLAB 各种图形对象的方法.第一节图形窗口与坐标系一.图形窗口1.MATLAB 在图形窗口中绘制或输出图形,因此图形窗口就像一张绘图纸.2.在MATLAB 下,每一个图形窗口有唯一的一个序号h,称为该图形窗口的句柄.MATLAB 通过管理图形窗口的句柄来管理图形窗口;3.当前窗口句柄可以由MATLAB 函数gcf 获得;4. 在任何时刻, 只有唯一的一个窗口是当前的图形窗口( 活跃窗口);figure(h)----将句柄为h 的窗口设置为当前窗口;5.打开图形窗口的方法有三种:1)调用绘图函数时自动打开;2)用File---New---Figure 新建;3)figure 命令打开,close 命令关闭.在运行绘图程序前若已打开图形窗口,则绘图函数不再打开,而直接利用已打开的图形窗口;若运行程序前已存在多个图形窗口,并且没有指定哪个窗口为当前窗口时,则以最后使用过的窗口为当前窗口输出图形.6.窗口中的图形打印:用图形窗口的File 菜单中的Print 项.7.可以在图形窗口中设置图形对象的参数.具体方法是在图形窗口的Edit 菜单中选择Properties 项,打开图形对象的参数设置窗口,可以设置对象的属性.二.坐标系1.一个图形必须有其定位系统,即坐标系;2.在一个图形窗口中可以有多个坐标系,但只有一个当前的坐标系;3.每个坐标系都有唯一的标识符,即句柄值;4.当前坐标系句柄可以由MATLAB 函数gca 获得;5.使某个句柄标识的坐标系成为当前坐标系,可用如下函数:axes(h) h 为指定坐标系句柄值.6.一些有关坐标轴的函数:1)定义坐标范围:一般MATLAB 自动定义坐标范围,如用户认为设定的不合适,可用:axis([Xmin, Xmax, Ymin, Ymax])重新设定;2)坐标轴控制:MATLAB 的缺省方式是在绘图时,将所在的坐标系也画出来,为隐去坐标系,可用axis off;axis on 则显示坐标轴(缺省值).3)通常MATLAB 的坐标系是长方形,长宽比例大约是4:3,为了得到一个正方形的坐标系可用:axis square4)坐标系横纵轴的比例是自动设置的,比例可能不一样,要得到相同比例的坐标系,可用:axis equal第二节二维图形的绘制一. plot 函数plot 函数是最基本的绘图函数,其基本的调用格式为:1.plot(y)------绘制向量y 对应于其元素序数的二维曲线图,如果y 为复数向量,则绘制虚部对于实部的二维曲线图.例:绘制单矢量曲线图.y=[0 0.6 2.3 5 8.3 11.7 15 17.7 19.4 20];plot(y)由于y 矢量有10 个元素,x 坐标自动定义为[1 2 3 4 5 6 7 8 9 10].2.plot(x,y)------绘制由x,y 所确定的曲线.1)x,y 是两组向量,且它们的长度相等,则plot(x,y)可以直观地绘出以x 为横坐标,y 为纵坐标的图形.如:画正弦曲线:t=0:0.1:2*pi;y=sin(t);plot(t,y)2)当plot(x,y)中,x 是向量,y 是矩阵时,则绘制y 矩阵中各行或列对应于向量x的曲线.如果y 阵中行的长度与x 向量的长度相同,则以y 的行数据作为一组绘图数据;如果y 阵中列的长度与x 向量的长度相同,则以y 的列数据作为一组绘图数据;如果y 阵中行,列均与x 向量的长度相同,则以y 的每列数据作为一组绘图数据.例:下面的程序可同时绘出三条曲线.MATLAB 在绘制多条曲线时,会按照一定的规律自动变化每条曲线的的颜色.x=0:pi/50:2*pi;y(1,:)=sin(x);y(2,:)=0.6*sin(x);y(2,:)=0.3*sin(x);plot(x,y)或者还可以这样用:x=0:pi/50:2*pi;y=[ sin(x); 0.6*sin(x); 0.3*sin(x)];plot(x,y)3) 如果x,y 是同样大小的矩阵,则plot(x,y)绘出y 中各列相应于x 中各列的图形.例:x(1,:)=0:pi/50:2*pi;x(2,:)=pi/4:pi/50:2*pi+pi/4;x(3,:)=pi/2:pi/50:2*pi+pi/2;y(1,:)=sin(x(1,:));y(2,:)=0.6*sin(x(2,:));y(3,:)=0.3*sin(x(3,:));plot(x,y)x=x';y=y';figureplot(x,y)在这个例子中,x------3x101,y------3x101,所以第一个plot 按列画出101 条曲线,每条3 个点;而x'------101x3,y'------101x3,所以第二个plot 按列画出3 条曲线,每条101 个点.3.多组变量绘图:plot(x1, y1, 选项1, x2, y2, 选项2, ……)上面的plot 格式中,选项是指为了区分多条画出曲线的颜色,线型及标记点而设定的曲线的属性.MATLAB 在多组变量绘图时,可将曲线以不同的颜色,不同的线型及标记点表示出来.这些选项如下表所示:各种颜色属性选项'r' 红色'm' 粉红'g' 绿色'c' 青色'b' 兰色'w' 白色'y' 黄色'k' 黑色各种线型属性选项'-' 实线'--' 虚线':' 点线'-.' 点划线各种标记点属性选项'.' 用点号绘制各数据点'^' 用上三角绘制各数据点'+' 用'+'号绘制各数据点'v' 用下三角绘制各数据点'*' 用'*'号绘制各数据点'>' 用右三角绘制各数据点' .' 用'.'号绘制各数据点'<' 用左三角绘制各数据点's'或squar 用正方形绘制各数据点'p' 用五角星绘制各数据点'd'或diamond 用菱形绘制各数据点'h' 用六角星绘制各数据点这些选项可以连在一起用,如:'-.g'表示绘制绿色的点划线,'g+'表示用绿色的'+'号绘制曲线.注意:1)表示属性的符号必须放在同一个字符串中;2)可同时指定2~3 个属性;3)与先后顺序无关;4)指定的属性中,同一种属性不能有两个以上.例:t=0:0.1:2*pi;y1=sin(t);y2=cos(t);y3=sin(t).*cos(t);plot(t,y1, '-r',t,y2, ':g',t,y3, '*b')该程序还可以按下面的方式写:t=0:0.1:2*pi;y1=sin(t);y2=cos(t);y3=sin(t).*cos(t);plot(t,y1, '-r')hold onplot(t,y2, ':g')plot(t,y3, '*b')hold off注:在MATLAB 中,如画图前已有打开的图形窗口,则再画图系统将自动擦掉坐标系中已有的图形对象,但设置了hold on 后,可以保持坐标系中已绘出的图形.还可以进一步设置包括线的宽度(LineWidth), 标记点的边缘颜色(MarkerEdgeColor),填充颜色(MarkerFaceColor)及标记点的大小(MarkerSize)等其它绘图属性.例:设置绘图线的线型,颜色,宽度,标记点的颜色及大小.t=0:pi/20:pi;y=sin(4*t).*sin(t)/2;plot(t,y,'-bs','LineWidth',2,... %设置线的宽度为2'MarkerEdgeColor','k',... %设置标记点边缘颜色为黑色'MarkerFaceColor','y',... %设置标记点填充颜色为黄色'MarkerSize',10) %设置标记点的尺寸为104.双Y 轴绘图:plotyy()函数.其调用格式为: plotyy(x1,y1,x2,y2)------绘制由x1,y1 和x2,y2 确定的两组曲线,其中x1,y1 的坐标轴在图形窗口的左侧,x2,y2 的坐标轴在图形窗口的右侧.Plotyy(x1,y1,x2,y2, 'function1','function2')------功能同上,function 是指那些绘图函数如:plot,semilogx,loglog 等.例如:在一个图形窗口中绘制双Y 轴曲线.x=0:0.3:12;y=exp(-0.3*x).*sin(x)+0.5;plotyy(x,y,x,y,'plot','stem')stem:绘制stem 形式的曲线(上端带圈的竖线).绘图结果:两条图线自动用不同的颜色区分,两个坐标的颜色与图线的颜色相对应,左边的Y 轴坐标对应的是plot 形式的曲线,右边的Y 坐标对应的是stem 形式的曲线.二.对数坐标图绘制函数:在对数坐标图的绘制中,有三种绘图函数:semilogx,semilogy 和loglog 函数.1)semilogx( )------绘制以X 轴为对数坐标轴的对数坐标图. 其调用格式为:semilogx(x,y,'属性选项')其中属性选项同plot 函数.该函数只对横坐标进行对数变换,纵坐标仍为线性坐标.2)semilogy( )------绘制以Y 轴为对数坐标轴的对数坐标图. 其调用格式为:semilogy(x,y,'属性选项')该函数只对纵坐标进行对数变换,横坐标仍为线性坐标.3)loglog( )------ 绘制X,Y 轴均为对数坐标轴的图形.其调用格式为:loglog(x,y,'属性选项')该函数分别对横,纵坐标都进行对数变换.例:x=0:0.1:6*pi;y=cos(x/3)+1/9;subplot(221), semilogx(x,y);subplot(222), semilogy(x,y);subplot(223), loglog(x,y);4)MATLAB 还提供了一个实用的函数:logspace( )函数,可按对数等间距地分布来产生一个向量,其调用格式为:x=logspace(x1,x2,n)这里,x1 表示向量的起点;x2 表示向量的终点;n 表示需要产生向量点的个数(一般可以不给出,采用默认值50).在控制系统分析中一般采用这种方法来构成频率向量w.关于它的应用后面还要讲到.三.极坐标图的绘制函数:绘极坐标图可用polar( )函数.其调用格式如下:polar(theta, rho,'属性选项')------theta:角度向量,rho:幅值向量,属性内容与plot 函数基本一致.例如:极坐标模型为:3145/)/)cos((+ =θρ, ],[πθ80∈则绘出极坐标图的程序为:theta=0:0.1:8*pi;p=cos((5*theta)/4)+1/3;polar(theta,p)四.绘制多个子图:subplot( )函数MATLAB 允许在一个图形窗口上绘制多个子图(如对于多变量系统的输出),允许将窗口分成nxm 个部分.分割图形窗口用subplot 函数来实现,其调用格式为:subplot(n,m,k)或subplot(nmk)------n,m 分别表示将窗口分割的行数和列数,k 表示要画图部分的代号,表示第几个图形,nmk 三个数可以连写,中间不用符号分开.例如:将窗口划分成2x2=4 个部分,可以这样写:subplot(2,2,1),plot(……)subplot(2,2,2),……subplot(2,2,3),……subplot(2,2,4),……注:subplot 函数没有画图功能,只是将窗口分割.第三节图形的修饰与标注MATLAB 提供了一些特殊的函数修饰画出的图形,这些函数如下: 1)坐标轴的标题:title 函数其调用格式为:title('字符串')------字符串可以写中文如:title('My own plot')2)坐标轴的说明:xlabel 和ylabel 函数格式:xlabel('字符串')ylabel('字符串')如:xlabel('This is my X axis') ylabel('My Y axis')3)图形说明文字:text 和gtext 函数A.text 函数:按指定位置在坐标系中写出说明文字.格式为:text(x1, y1, '字符串', '选项') x1,y1 为指定点的坐标;'字符串'为要标注的文字;'选项'决定x1,y1 的坐标单位,如没有选项,则x1,y1 的坐标单位和图中一致;如选项为'sc', 则x1,y1 表示规范化窗口的相对坐标,其范围为0到1.如:text(1,2, '正弦曲线')B.gtext 函数:按照鼠标点按位置写出说明文字.格式为:gtext('字符串')当调用这个函数时,在图形窗口中出现一个随鼠标移动的大十字交叉线,移动鼠标将十字线的交叉点移动到适当的位置,点击鼠标左键,gtext 参数中的字符串就标注在该位置上.4)给图形加网格:grid 函数在调用时直接写grid 即可.上面的函数的应用实例:例:在图形中加注坐标轴标识和标题及在图形中的任意位置加入文本.t=0:pi/100:2*pi;y=sin(t);plot(t,y),grid,axis([0 2*pi -1 1])xlabel('0 leq itt rm leq pi','FontSize',16)ylabel('sin(t)','FontSize',20)title('正弦函数图形','FontName','隶书' ,'FontSize',20) text(pi,sin(pi),'leftarrowsin(t)=0','FontSize',16)text(3*pi/4,sin(3*pi/4),'leftarrowsin(t)=0.707','FontSize',16)text(5*pi/4,sin(5*pi/4),' sin(t)=-0.707rightarrow',... 'FontSize',16,'HorizontalAlignment','right')5)在图形中添加图例框:legend 函数其调用格式为:A.legend('字符串1', '字符串2', ……)------以字符串1,字符串2……作为图形标注的图例.B.legend('字符串1', '字符串2', ……, pos)------pos 指定图例框显示的位置.图例框被预定了6 个显示位置:0------取最佳位置;1------右上角(缺省值);2------左上角;3------左下角;4------右下角;-1------图的右侧.例:在图形中添加图例.x=0:pi/10:2*pi;y1=sin(x);y2=0.6*sin(x);y3=0.3*sin(x);plot(x,y1,x,y2,'-o',x,y3,'-*')legend('曲线1','曲线2','曲线3')6)用鼠标点选屏幕上的点:ginput 函数格式为:[x, y, button]=ginput(n)其中:n 为所选择点的个数;x,y 均为向量,x 为所选n 个点的横坐标;y 为所选n个点的纵坐标.button 为n 维向量,是所选n 个点所对应的鼠标键的标号:1------左键;2------中键;3------右键.可用不同的鼠标键来选点,以区别所选的点.此语句可以放在绘图语句之后,它可在绘出的图形上操作,选择你所感兴趣的点,如峰值点,达到稳态值的点等,给出点的坐标,可求出系统的性能指标.第四节MATLAB 下图形对象的修改MATLAB 图形对象是指图形系统中最基本,最底层的单元,这些对象包括:屏幕(Root), 图形窗口(Figures), 坐标轴(Axes), 控件(Uicontrol), 菜单(Uimenu),线(Lines),块(Patches),面(Surface),图像(Images),文本(Text)等等.根据各对象的相互关系,可以构成如下所示的树状层次:RootFiguresAxes Uicontrol Uimenu Uicontextmenu (对象菜单)Images Line Patch Surface Text对各种图形对象进行修改和控制,要使用MATLAB 的图形对象句柄(Handle).在MATLAB 中,每个图形对象创立时,就被赋予了唯一的标识,这个标识就是该对象的句柄.句柄的值可以是一个数,也可以是一个矢量.如每个计算机的根对象只有一个,它的句柄总是0,图形窗口的句柄总是正整数,它标识了图形窗口的序号等.利用句柄可以操纵一个已经存在的图形对象的属性,特别是对指定图形对象句柄的操作不会影响同时存在的其它图形对象,这一点是非常重要的.一.对图形对象的修改可以用下面函数:1)set 函数:用于设置句柄所指的图形对象的属性.Set 函数的格式为:set(句柄, 属性名1, 属性值1, 属性名2, 属性值2, ……) 例:h=plot(x,y)set(h, 'Color', [1,0,0])------将句柄所指曲线的颜色设为红色.2)get 函数:获取指定句柄的图形对象指定属性的当前值.格式为:get(句柄, '属性名')如: get(gca, 'Xcolor')------获得X 轴的当前颜色属性值. 执行后可返回X 轴的当前颜色属性值[0,0,0](黑色).3)如果没有设置句柄,则可以使用下列函数获得:gcf:获得当前图形窗口的句柄;gca:获得当前坐标轴对象的句柄;gco:获得当前对象的句柄.如:A.要对图形窗口的底色进行修改,可用:set(gcf, 'Color', [1,1,1])------将图形窗口底色设为白色B.要把当前X 轴的颜色改为绿色,可用:set(gca, 'Xcolor', [0,1,0])C.还可对坐标轴的显示刻度进行定义:t=-pi:pi/20:pi;y=sin(t);plot(t,y)set(gca,'xtick',[-pi:pi/2:pi],'xticklabel',['-pi','-pi/ 2','0','pi/2','pi'])本例中用'xtick'属性设置x 轴刻度的位置(从-pi~pi,间隔pi/2,共设置5 个点),用'xticklabel'来指定刻度的值,由于通常习惯于用角度度量三角函数,因此重新设置['-pi','-pi/2','0','pi/2','pi']5 个刻度值.二.一些常用的属性如下:1)Box 属性:决定图形坐标轴是否为方框形式,选项为'on'(有方框), 'off'(无方框);2)'ColorOrder'属性:设置多条曲线的颜色顺序,默认值为:[1 1 0;1 0 1;0 1 1;1 0 0;0 1 0;0 0 1]黄色粉色天蓝红色绿色兰色颜色向量还有:[1 1 1]------白色;[0 0 0]------黑色.3)坐标轴方向属性:'Xdir','Ydir','Zdir',其选项为:'normal'------正常'reverse'------反向4)坐标轴颜色和线型属性:'Xcolor','Ycolor','Zcolor'------ 轴颜色, 值为颜色向量如何在画好曲线后再在图上标刻度就是想在一些特定的点边上标上一串30.60.90~7200递增的数据,共有96个点要标!!im = imread(url);imshow(im)然后输入:text(100,100,'\o ','Color','red');matlab,用imread 读入一个图片,我想在图上的一些坐标点上做标记。

matlab学习笔记之五种常见的图形绘制功能

matlab学习笔记之五种常见的图形绘制功能

matlab学习笔记之五种常见的图形绘制功能分类:离散数据图形绘制函数图形绘制⽹格图形绘制曲⾯图形绘制特殊图形绘制本⽂重点介绍matlab五种图形绘制⽅法的后三种。

⼀、⽹格图形绘制以绘制函数z=f(x,y)三维⽹格图为例,下⾯为绘制步骤:1. 确定⾃变量x和y的取值范围和取值间隔 x = x1:dx:x2; y = y1:dy:y2; 2.构成xoy平⾯上的⾃变量采样格点矩阵 1)利⽤“格点”矩阵⽣成原理⽣成矩阵 X = ones(size(y))*x; Y = y*ones(size(x)); 2)利⽤meshgrid命令⽣成“格点”矩阵 [X,Y] = meshgrid(x,y); 3.计算在⾃变量采样“格点”上的函数值 1) mesh(X,Y,X) 2) mesh(Z) 3) mesh(X,Y,Z,C) 4) mesh(X,Y,Z,’PropertyName’,PropertyValue,...)实例:绘制的图像,并作定义域的裁剪。

clear,clf,a = -1;b = 1;c = -15;d = 15;n = 20;eps1 = 0.01;x = linspace(a,b,n);y = linspace(c,d,n);[X,Y] = meshgrid(x,y);% 计算函数值z,并做函数的定义域剪裁for i = 1:nfor j = 1:nif(1-X(i,j))<eps1 || X(i,j) - Y(i,j) < eps1Z(i,j) = NaN;elseZ(i,j) = 1000*sqrt(1 - X(i,j))^-1.*log(X(i,j)-Y(i,j));endendend% 画定义域边界线zz = -20*ones(1,n);plot3(x,x,zz),grid on,hold onview([-56.538]);xlabel('x'),ylabel('y'),zlabel('z'),box on结果:⼆、曲⾯图形绘制曲⾯图形的绘制使⽤surf函数完成,与mesh函数类似。

教你如何用matlab绘图(全面)

教你如何用matlab绘图(全面)

强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。

此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。

这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。

本章介绍绘制二维和三维图形的高层绘图函数以及其他图形控制函数的使用方法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。

一.二维绘图二维图形是将平面坐标上的数据点连接起来的平面图形。

可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。

二维图形的绘制是其他绘图操作的基础。

一.绘制二维曲线的基本函数在Matlab中,最基本而且应用最为广泛的绘图函数为plot,利用它可以在二维平面上绘制出不同的曲线。

1.plot函数的基本用法plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。

plot函数的应用格式plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。

例51 在[0 , 2pi]区间,绘制曲线程序如下:在命令窗口中输入以下命令>> x=0:pi/100:2*pi;>> y=2*exp(-0.5*x).*sin(2*pi*x);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线注意:指数函数和正弦函数之间要用点乘运算,因为二者是向量。

例52 绘制曲线这是以参数形式给出的曲线方程,只要给定参数向量,再分别求出x,y向量即可输出曲线:>> t=-pi:pi/100:pi;>> x=t.*cos(3*t);>> y=t.*sin(t).*sin(t);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线以上提到plot函数的自变量x,y为长度相同的向量,这是最常见、最基本的用法。

matlab画直角坐标图

matlab画直角坐标图

Matlab画直角坐标图直角坐标图(又称笛卡尔坐标图)是用来表示平面上点的坐标的一种图形表示方法。

Matlab是一个强大的数值计算和数据可视化工具,它提供了丰富的绘图函数和工具箱,使得绘制直角坐标图变得非常简便。

下面将介绍如何使用Matlab画出直角坐标图的步骤。

步骤一:准备数据在绘制直角坐标图之前,我们首先需要准备要绘制的数据。

假设我们要绘制以下函数的图像:y = sin(x)这里可以选择任意的x值范围,以及步长。

为了简化,我们选择绘制x从0到2π的函数曲线。

步骤二:创建坐标系在Matlab中,我们可以使用figure函数创建一个新的绘图窗口。

然后使用plot函数绘制函数曲线,同时可以使用xlabel和ylabel函数为坐标轴添加标签,使用title函数为图像添加标题。

figure; % 创建新的绘图窗口x = 0:0.01:2*pi; % 定义x的取值范围,步长为0.01y = sin(x); % 计算对应的y值plot(x, y); % 绘制函数曲线xlabel('x'); % 添加x轴标签ylabel('y'); % 添加y轴标签title('y = sin(x)'); % 添加标题步骤三:设置坐标轴范围通过axis函数可以设置坐标轴的范围。

对于直角坐标图,一般设置x轴和y轴的范围相同,以保证图像是按比例绘制的。

axis([02*pi -11]); % 设置x轴范围为0到2π,y轴范围为-1到1步骤四:添加图例如果在同一张图上绘制了多个函数曲线,可以使用legend函数添加图例,以区分不同的曲线。

legend('y = sin(x)'); % 添加图例,标注函数曲线的名称步骤五:美化图像Matlab提供了丰富的绘图样式设置,可以通过修改绘图参数来美化图像。

例如,可以使用grid函数添加背景网格线,使用linewidth设置曲线的线宽等。

用MatLab画图(最小二乘法做曲线拟合)

用MatLab画图(最小二乘法做曲线拟合)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用MatLab画图(最小二乘法做曲线拟合) 用 MatLab 画图(最小二乘法做曲线拟合) 帮朋友利用实验数据画图时,发现 MatLab 的确是画图的好工具,用它画的图比Excel光滑、精确。

利用一组数据要计算出这组数据对应的函数表达式从而得到相应图像,MatLab 的程序如下:x=[1 5 10 20 30 40 60 80] y=[15. 4 33. 9 42. 2 50. 556 62. 7 72 81. 1] plot(x, y, ‘ r*’ ) ; legend(‘ 实验数据(xi, yi) ‘ ) xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 数据点(xi, yi) 的散点图’ ) syms a1 a2 a3 x=[15 10 20 30 40 60 80]; fi=a1. *x. +a2. *x+a3 y=[15. 4 33.9 42. 2 50. 5 56 62. 7 72 81. 1] fi =[a1+a2+a3,25*a1+5*a2+a2+(400*a1+20*a2+a3-101/2) +(900*a1+30*a2+a3-56) +(1600*a1+40*a2+a3-627/10) +(3600*a1+60*a2+a3-72)+(6400*a1+80*a2+a3-811/10) ; Ja1=diff(J, a1) ;Ja2=diff(J, a2) ; Ja3=diff(J, a3) ; Ja11=simple(Ja1) ,Ja21=simple(Ja2) , Ja31=simple(Ja3) A=[114921252, 1656252, 26052; 1656252, 26052, 492; 26052, 492, 16]; B=[9542429/5, 166129/5, 4138/5]; C=B/A, f=poly2sym(C) xi=[1 5 10 20 3040 60 80] ; y=[15. 4 33. 9 42. 2 50. 5 56 62. 7 72 81. 1]; n=length(xi) ; f=-0. 0086. *xi. +1. 3876. *xi+23. 1078;1 / 6x=1: 1/10: 80; F=-0. 0086. *x. +1. 3876. *x+23. 1078; fy=abs(f-y) ; fy2=fy. ; Ew=max(fy) , E1=sum(fy) /n,E2=sqrt((sum(fy2) ) /n) plot(xi, y, ‘ r*’ ) , hold on, plot(x, F, ‘ b-’ ) , hold off legend(‘ 数据点(xi, yi) ‘ , ‘ 拟合曲线f(x) = -0. 0086x +1. 3876x+23. 1078’ ) , xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 实验数据点(xi, yi) 及拟合曲线f(x) ‘ ) 下图是程序运行后得到的:Su7Tw8VxaW ybXAcZB d#Cf!Eg%FhGj*Ik(Jl-Kn+M o0Np2Or3Ps4R t6Sv7Tw8VxaWzbXAcZBe#Cf! Eg%Fi Gj*Ik)Jl-Kn+Mo1Np2Or3Qs4Rt6Sv7 Uw8Vx aWzbYAc ZBe#Df!Eg%FiHj*Ik) Jm-Kn +Mo1Nq2Or3Qs 5Rt6Sv7Uw9VxaWzbYAdZBe#D f$Eg%F iHj(I k) Jm-Ln+Mo1Nq2Pr3Qs5Ru6S v7Uw9V yaWzbY AdZCe#Df$Eh%FiHj(Il) Jm-Ln0Mo1Nq2Pr4 Qs5Ru6Tv8Uw9VyaXzbYAdZCe !Df$Eh %GiHj (Il) Km-Ln0Mp1Nq2Pr4Qt5Ru 6Tv8U x9VyaXz cYAdZCe! Dg$Eh%Gi*Hj(Il) Km+Ln0M p1Oq2P r4Qt5Su6Tv8Ux9WyaXzcYBdZ Ce!Dg$Fh%Gi* Hk(Il) Km+Lo0Mp1Oq3Pr4Qt5 Su7Tv8Ux9Wyb XzcYBd#Ce!Dg$FhGi*Hk(Jl ) Km+L o0Np1Oq 3Ps4Rt 5Su7Tw8Ux9WybXAcY Bd#Cf!Dg$FhGj*Hk(Jl-Km+Lo0Np2Oq3Ps4 Rt6Su7Tw8Vx9 WybXAcZBd#Cf!Eg$FhGj*Ik (Jl-Kn +Lo0Np2Or3Ps4Rt6Sv7Tw8VxaWybXA cZBe#Cf!Eg%F hGj*Ik) Jl-K n+Mo0Np2Or3Q s4Rt6Sv 7Uw8V xaWzbXAcZBe# D f! Eg%FiGj* Ik) Jm- Kn+Mo1 Nq2Or3Qs5Rt6Sv7Uw9VxaWzb YAcZBe#Df$Eg %FiHj*Ik)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Jm-Ln+Mo1Nq2Pr 3Qs5Ru 6Sv7Uw 9VyaWzbYAdZBe#Df$Eh%FiH j(Ik) J m-Ln0M o1Nq2Pr4Qs5Ru6Tv7Uw9VyaX zbYAdZC e#Df$ Eh%GiHj(Il) Jm-Ln0Mp1Nq2 Pr4Qt5Ru6Tv8 Uw9VyaXzcYAdZCe!Df$Eh%Gi *Hj(Il) Km+Ln 0Mp1Oq2Pr4Qt5Su6Tv8Ux9Vy aXzcYB dZCe!D g$Eh%Gi*Hk(Il) Km+Lo0Mp1O q3Pr4Qt5Su7Tv8Ux9WyaXzc Y Bd#Ce!Dg$Fh %Gi*Hk( Jl) Km +Lo0Np1Oq3Ps 4 Qt5Su7Tw8Ux 9WybXzcYBd#C f!Dg$FhGi*H k (Jl-Km+Lo0N p2Oq3Ps4Rt5S u7Tw8Vx9WybX AcYBd#Cf! Eg$ FhGj*Ik (Jl- Kn+Lo0Np2Or3 P s4Rt6Su7Tw8 VxaWybXA cZBd #Cf!Eg%FhGj * Ik) Jl-Kn+Mo 0Np2Or3Qs4Rt 6Sv7Tw8VxaWz bXAcZBe#Cf!E g%FiGj*Ik) J m-Kn+Mo1Np2O r 3Qs5Rt6Sv7U w8VxaWzbYAcZ Be#Df! Eg%Fi H j*Ik) Jm-Ln+ Mo1Nq2O r3Qs5 Ru6Sv7Uw9Vxa W zbYAdZBe#Df $Eh%Fi Hj(Ik ) Jm-Ln0Mo1Nq 2Pr3Qs5Ru6Tv 7Uw9Vya WzbYA dZCe#Df$Eh%G iHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9V ya XzbYAdZCe! Df$Eh%Gi*Hj( Il) Km-Ln0Mp1 Oq 2Pr4 Qt5Ru6Tv8Ux9Vy aXz cYAdZCe!Dg$E h%G i*Hk(Il) K m+Ln0Mp1O q3P r4Qt5Su6Tv8U x9WyaXzcYBd# Ce!Dg$Fh% Gi* Hk(Jl) Km+Lo0 Mp1Oq3Ps4Qt5 Su7Tv8Ux9Wyb XzcYBd#Cf! Dg $F hGi*Hk(Jl -Km+Lo0N p1Oq 3Ps4Rt5Su7Tw 8U x9WybXAcYB d#Cf!Eg$F hG j*Hk(Jl-Kn+Lo0Np2O q3Ps4Rt 6Su7Tw8Vx9WybXAcZBd#Cf!E g%FhGj*Ik(J l-Kn+Mo0Np2O r3Ps4Rt6Sv7T w8Vxa WzbXAcZ Be#Cf! Eg%Fi Gj*Ik) Jl-Kn+ Mo1Np2Or3Qs4 Rt6Sv7Uw8VxaWzbYAcZBe#Df !Eg%FiHj*Ik )3 / 6Jm-Kn+Mo1Nq2Or3Qs5Rt6Sv 7Uw9Vx aWzbYA dZBe#Df$Eg%FiHj(Ik) Jm-L n+Mo1Nq2Pr3Q s5Ru6Sv7Uw9VyaWzbYAdZCe# Df$Eh %FiHj( Il) Jm-Ln0Mo1Nq2Pr4Qs5Ru6 Tv8Uw9VyaXzb YAdZCe!Df$Eh%GiHj(Il) Km -Ln0Mp 1Nq2Pr 4Qt5Ru6Tv8Ux9VyaXzcYAdZC e!Dg$E h%Gi*H j(Il) Km+Ln0Mp1Oq2Pr4Qt5S u6Tv8U x9WyaX zcYBdZCe! Dg$Fh%Gi*Hk(Il) Km+Lo0Mp1Oq3 Pr4Qt5Su7Tv8Ux9WybXzcYBd #Ce!D g$FhGi *Hk(Jl ) Km+Lo0Np1Oq3Ps4R t5Su7Tw8Ux9T v7Uw9VyaXzbYAdZCe#Df$Eh% GiHj( Il) Jm- Ln0Mp1Nq2Pr4Qs5Ru6Tv8Uw9 VyaXzcY AdZCe !Df$Eh%Gi*Hj(Il) Km-Ln0Mp 1Oq2Pr 4Qt5Ru 6Tv8Ux9VyaXzcYBdZCe! Dg$E h%Gi*Hk(Il) K m+Ln0Mp1Oq3Pr4Qt5Su6Tv8U x9WyaX zcYBd# Ce!Dg$Fh%Gi*Hk(Jl) Km+Lo0 Mp1Oq3P s4Qt5 Su7Tw8Ux9Wyb X zcYBd#Cf!Dg $FhGi*Hk(Jl -Km+Lo0Np1Oq3Ps4Rt5Su7Tw 8Vx9Wy bXAcYB d#Cf! Eg$FhGj*Hk(Jl-Kn+L o0Np2O q3Ps4R t6Su7Tw8VxaWybXAcZBd#Cf! Eg%Fh Gj*Ik( Jl-Kn+Mo0Np2Or3Ps4Rt6Sv7 Tw8Vxa WzbXAc ZBe#Cf!Eg%FiGj*Ik) Jl-Kn +Mo1Np2Or3Qs 5Rt6Sv7Uw8Vx a WzbYAcZBe#D f! Eg%FiHj*Ik) Jm-Kn+Mo1 Nq 2Or3Qs5Ru6 Sv7Uw9Vx aWzb YAdZBe#Df$Eg %F iHj(Ik) Jm -Ln+Mo1N q2Pr 3Qs5Ru6Tv7Uw 9VyaWzbYAdZC e#Df$Eh%FiH j(Il) Jm-Ln0M o1Nq2Pr4Qs5R u6Tv8Uw9VyaX zbYAdZCe! Df$ E h%GiHj(Il) Km-Ln0Mp 1Oq2 Pr4Qt5Ru6Tv8 U x9VyaXzcYAd ZCe!Dg$E h%Gi *Hj(Il) Km+Ln 0Mp1Oq3Pr4Qt 5Su6Tv8Ux9Wy aXzcYBdZCe!D g $Fh%Gi*Hk(I l)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Km+Lo0Mp1O q3Ps4Qt5Su7T v 8Ux9WybXzcY Bd#Ce! D g$Fh Gi*Hk(Jl) Km+ L o0Np1Oq3Ps4 Rt5Su7T w8Ux9 WybXAcYBd#Cf !Dg$FhGj*Hk (Jl-Km+ Lo0Np 2Oq3Ps4Rt6Su 7Tw8Vx9WybXA cZBd#Cf ! Eg$F hGj*Ik(Jl-K n+Mo0Np2Or3P s4Rt6Sv 7Tw8V xaWybXAcZBe# C f!Eg% FhGj*Ik) Jl-K n+Mo 1Np2Or3Qs4Rt 6Sv 7Uw8VxaWz bXAcZBe#D f!E g%FiGj*Ik) J m- Kn+Mo1Nq2O r3Qs5Rt6Sv7U w9VxaWzbYAcZ Be#Df$Eg%Fi Hj*Ik) Jm-Ln+ Mo1Nq2Pr3Qs5 Ru6Sv7Uw9Vya WzbYAdZBe#Df $Eh%FiHj(Il ) Jm -Ln0Mo1Nq 2Pr4Qs5Ru 6Tv 7Uw9VyaXzbYA dZCe#Df$Bd#C f! Eg%FhGj*I k(Jl-Kn+Mo0Np2O r3Qs4Rt 6Sv7Tw8VxaWzbXAcZBe#Cf!E g%FiGj*Ik) J l-Kn+Mo1Np2O r3Qs5Rt6Sv7U w8Vxa WzbYAcZ Be#Df! Eg%Fi Hj*Ik) Jm-Kn+ Mo1Nq2Or3Qs5 Ru6Sv7Uw9VxaWzbYAdZBe#Df $Eg%FiHj(Ik ) Jm-Ln0Mo1Nq2Pr3Qs5Ru6Tv 7Uw9Vy aWzbYA dZCe#Df$Eh%FiHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9VyaXzbYAdZCe! Df$Eh %GiHj( Il) Km-Ln0Mp1Oq2Pr4Qt5Ru6 Tv8Ux9VyaXzc YAdZCe!Dg$Eh%Gi*Hj(Il) Km +Ln0Mp 1Oq3Pr 4Qt5Su6Tv8Ux9WyaXzcYBdZC e!Dg$F h%Gi*H k(Jl) Km+Lo0Mp1Oq3Ps4Qt5S u7Ts5R u6Sv7U w9VyaWzbYAdZBe#Df$Eh%Fi Hj(Ik)Jm-Ln0 Mo1Nq2Pr4Qs5Ru6Tv7Uw9Vya XzbYA dZCe#Df $Eh%Gi Hj(Il) Jm-Ln0Mp1N q2Pr4Qt5Ru6T v8Uw9VyaXzcYAdZCe!Df$Eh% Gi*Hj( Il) Km- Ln0Mp1Oq2Pr4Qt5Su6Tv8Ux9 VyaXzcY BdZCe !Dg$Eh%Gi*Hk(Il) Km+Ln0Mp 1Oq3Pr4Qt5Su5 / 67Tv8Ux9WyaXzcYBd#Ce! Dg$F h%Gi*Hk (Jl) K m+Lo0Np1Oq3Ps4Qt5Su7Tw8U x9WybX zcYBd# Cf!Dg$FhGi*Hk(Jl-Km+Lo0 Np2Oq3Ps4Rt5 Su7Tw8Vx9WybXAcYBd#Cf!Eg $FhGj*Hk(Jl -Kn+Lo0Np2Or3Ps4Rt6Su7Tw 8VxaWy bXAcZB d#Cf! Eg%FhG j*Ik(Jl-Kn+M o0Np2O r3Qs4R t6Sr4Qt5Su6Tv8Ux9WyaXzcY BdZCe!Dg$Fh% Gi*Hk(Il) Km+Lo0Mp1Oq3Pr4 Qt5Su7Tv8Ux9 WybXzcYBd#Ce! Dg$FhGi*Hk (Jl) Km +Lo0Np 1Oq3Ps4Rt5Su7Tw8Ux9WybXA cYBd#Cf!Dg$FhGj*Hk(Jl- K m+Lo0Np2Oq3 Ps4Rt6Su7Tw8 Vx9WybXAcZBd # Cf!Eg$FhGj *Ik(Jl- Kn+Lo 0Np2Or3Ps4Rt 6Sv7Tw8VxaWy bXAcZBe#Cf!E g%FhGj*Ik) J l-Kn+Mo0Np2O r3Qs4Rt6Sv7U w8VxaWzbXAcZ B e#Df!Eg%Fi Gj*Ik) J m-Kn+ Mo1Nq2Or3Qs5 R t6Sv7Uw9Vxa WzbYAcZB e#Df $Eg%Ff! Dg$Fh Gi*Hk(Jl-Km +Lo0Np1Oq3Ps 4Rt5Su7Tw8Vx 9W ybXAcYBd#C f!Eg$Fh Gj*H k(Jl-Kn+Lo0N p2Oq3Ps4Rt6S u7Tw8Vxa WybX AcZBd#Cf!Eg% F hGj*Ik(Jl- Kn+Mo0N p2Or3 Ps4Rt6Sv7Tw8 V xaWzbXAcZBe #Cf!Eg% FiGj *Ik) Jl-Kn+Mo 1Np2Or3Qs5Rt 6Sv7Uw8V xaWz bYAcZBe#Df!E g%FiHj*Ik) J m-Kn+Mo1Nq2O r3Qs5Ru6Sv7U w9VxaW zbYAdZBe#Df$Eg %Fi Hj(Ik) Jm-Ln +M o1Nq2Pr3Qs 5Ru6Tv7U w9Vy aWzbYAdZCe#D f$Eh%FiHj(I l) Jm-Ln0Mo1N q2Pr4Qs5Or3P s4Rt6Su7Tw8V xaWybXAcZ Be# Cf! Eg%FhGj* I。

matlab绘制双纵坐标图

matlab绘制双纵坐标图

MATLAB画双纵坐标具有两个纵坐标标度的图形在MATLAB中,如果需要绘制出具有不同纵坐标标度的两个图形,可以使用plotyy绘图函数。

调用格式为:plotyy(x1,y1,x2,y2)其中x1,y1对应一条曲线,x2,y2对应另一条曲线。

横坐标的标度相同,纵坐标有两个,左纵坐标用于x1,y1数据对,右纵坐标用于x2,y2数据对。

双y轴坐标可以用plotyy(x,y1,x,y2)来实现双x坐标可以用set(gca,'xaxislocation','bottom','xticklabel',{'0','1','2','3','4'}) (假设x轴的标注为1,2,3,4)set(gca,'xaxislocation','top','xticklabel',{'0','1','2','3','4'})进行相应的设置实现双纵坐标画图,其中一个为对数坐标,另一个为正常坐标。

而且两个坐标的范围差别很大举例如下:t = 0:900; A = 1000; a = 0.005; b = 0.005;z1 = A*exp(-a*t);z2 = sin(b*t);[haxes,hline1,hline2] = plotyy(t,z1,t,z2,'semilogy','plot');/archiver/tid-738830.htmlmatlab作图里面如何分别设置双纵坐标的刻度?工作遇到如下问题:需要设置双y轴的刻度,用到以下函数,set(gca,'XTick',[0:5:100])set(gca,'yTick',[0:10:350])只是设置左边的y轴刻度,请问各位高手,右边y轴怎么设置刻度标注?双纵坐标的标注已实现[AX]=plotyy(x1,y1,x1,y2);set(get(AX(1),'Ylabel'),'string','left Y-axis‘);set(get(AX(2),'Ylabel'),'string','right y-axis');了解plotyy的返回值[AX]=plotyy(x1,y1,x1,y2);得到两个axes句柄,AX(1)和AX(2)set(AX(1),'yTick',[0:10:350]) 设置左边Y轴的刻度set(AX(2),'yTick',[0:10:350]) 设置右边Y轴的刻度/thread-42331-1-1.html 双y坐标实例close all hiddenclear allclc% w=boxcar(nfft);fni1=input('请输入时间序列文件: ','s');fid1=fopen(fni1,'r');s=fscanf(fid1,'%s',1);if same(s,'Curve')for i=1:61tline=fgetl(fid1);endelsefid1=fopen(fni1,'r');enda1=fscanf(fid1,'%f');status=fclose(fid1);n=length(a1);n2=n/2;a2=reshape(a1,2,n2);x1=a2(1,:);y1=a2(2,:);fni2=input('输入速度曲线文件','s');fid2=fopen(fni2,'r');b=fscanf(fid2,'%f');n3=length(b);n4=n3/2;b2=reshape(b,2,n4);x2=b2(1,:);y2=b2(2,:);p=polyfit(x2,y2,3);y3=polyval(p,x2);% plot(x2,y2)[AX,H1,H2]=plotyy(x1,y1,x2,y3);grid on;xlabel('时间/s');set(get(AX(1),'Ylabel'),'string','加速度/g');set(get(AX(2),'Ylabel'),'string','速度km/h');set(AX(1),'yTick',[-2:0.5:2]);% % axes1 = axes('Position',[0.08 0.73 0.38 0.25],'Parent',figure1); % axis(axes1,[0 xtime(end) -0.5 0.5]);% set(AX(2),'YTick',[300:5:350]);yticks2 = linspace(300,360,9);set(AX(2),'YLim',[300 360],'YTick',yticks2);set(H2,'linewidth',3);x = 0:0.01:20;y1 = 200*exp(-0.05*x).*sin(x);y2 = 0.8*exp(-0.5*x).*sin(10*x);[AX,H1,H2] = plotyy(x,y1,x,y2,'plot');set(AX(1),'XColor','k','YColor','b');set(AX(2),'XColor','k','YColor','r');HH1=get(AX(1),'Ylabel');set(HH1,'String','Left Y-axis');set(HH1,'color','b');HH2=get(AX(2),'Ylabel');set(HH2,'String','Right Y-axis');set(HH2,'color','r');set(H1,'LineStyle','-');set(H1,'color','b');set(H2,'LineStyle',':');set(H2,'color','r');legend([H1,H2],{'y1 = 200*exp(-0.05*x).*sin(x)';'y2 = 0.8*exp(-0.5*x).*sin(10*x)'});xlabel('Zero to 20 \musec.');title('Labeling plotyy');MATLAB作图:plotyy使用方法。

matlab画图

matlab画图

1.平面作图函数:plot,其基本调用形式:plot(x,y,s)以x作为横坐标,y作为纵坐标.s是图形显示属性的设置选项.例如:x=-pi:pi/10:pi;y=sin(x);plot(x,y,'--rh','linewidth',2,'markeredgecolor','b','markerfacecolor','g')在使用函数plot时,应当注意到当两个输入量同为向量时,向量x与y必须维数相同,而且必须同是行向量或者同是列向量.绘图时,可以制定标记的颜色和大小,也可以用图形属性制定其他线条特征,这些属性包括:linewidth指定线条的粗细.markeredgecolor指定标记的边缘色markerfacecolor指定标记表面的颜色.markersize指定标记的大小.若在一个坐标系中画几个函数,则plot的调用格式如下:plot(x1,y1,s1,x2,y2,s2,……)4.双纵坐标函数plotyy在Matlab中,如果需要绘制出具有不同纵坐标标度的两个图形,可以使用plotyy函数,它能把具有不同量纲,不同数量级的两个函数绘制在同一个坐标中,有利于图形数据的对比分析。

使用格式为:plotyy(x1,y1,x2,y2)x1,y1对应一条曲线,x2,y2对应另一条曲线。

横坐标的标度相同,纵坐标有两个,左边的对应x1,y1数据对,右边的对应x2,y2。

二.绘制图形的辅助操作绘制完图形以后,可能还需要对图形进行一些辅助操作,以使图形意义更加明确,可读性更强。

1.图形标注在绘制图形时,可以对图形加上一些说明,如图形的名称、坐标轴说明以及图形某一部分的含义等,这些操作称为添加图形标注。

有关图形标注函数的调用格式为:title(’图形名称’)(都放在单引号内)xlabel(’x轴说明’)ylabel(’y轴说明’)text(x,y,’图形说明’)legend(’图例1’,’图例2’,…) P190其中,title、xlabel和ylabel函数分别用于说明图形和坐标轴的名称。

matlab绘图教学课件

matlab绘图教学课件

坐标轴范围
使用xlim和ylim命令控制坐标轴的范围。
坐标轴比例
使用axis命令设置坐标轴的比例,如axis equal确保x轴和y轴比例 一致。
坐标轴标签字体和颜色
使用set命令设置坐标轴标签的字体和颜色等属性。
CHAPTER
02
绘制二维图形
绘制线形图
总结词
展示数据变化趋势
详细描述
线形图用于展示数据随时间或其他变量的变化趋势,通过连接数据点形成线条 ,可以直观地展示数据的走势。
绘制三维柱状图
总结词
三维柱状图是一种展示三维空间中数据分布的图表类型,可以清晰地展示各个数据点在 三个维度上的差异。
详细描述
在Matlab中,可以使用bar3函数绘制三维柱状图。该函数可以接受三个维度的数据, 并按照指定的样式绘制三维柱状图。可以通过调整柱子的颜色、透明度、大小等属性,
来增强三维柱状图的视觉效果。
CHAPTER
05
Matlab绘图应用实例
绘制股票价格走势图
总结词
展示股票价格随时间变化的趋势
详细描述
使用Matlab绘制股票价格走势图,可以清晰地展示股票 价格随时间的变化趋势。通过将股价数据导入Matlab中 ,并使用绘图函数进行绘制,可以方便地观察股票价格 的波动情况。
绘制雷达图
总结词
展示多维数据的综合表现
Matlab绘图教学课件
CONTENTS
目录
• Matlab绘图基础 • 绘制二维图形 • 绘制三维图形 • 图形的高级处理 • Matlab绘图应用实例
CHAPTER
01
Matlab绘图基础
基础绘图函数
01 plot函数:用于绘制二维线图,是最常用 的绘图函数。

matlab画三维散点图

matlab画三维散点图

matlab画三维散点图MATLAB是一种非常强大的数值计算和可视化软件,广泛用于科学、工程、统计学等领域的数据分析和可视化。

其中之一的功能是绘制三维散点图,这种图形能够帮助我们直观地观察和理解数据的分布情况。

本文将介绍如何使用MATLAB绘制三维散点图。

一、准备数据在绘制三维散点图之前,我们首先需要准备数据。

在MATLAB中,数据可以以不同的形式输入,如矩阵、向量或数据文件。

这里,我们假设我们已经有了一个包含三个列的矩阵,每一列代表一个维度的数据。

例如,我们有一个矩阵A,其中第一列代表x坐标,第二列代表y坐标,第三列代表z坐标。

二、绘制三维散点图在MATLAB中,我们可以使用scatter3函数来绘制三维散点图。

该函数的语法如下:scatter3(x, y, z)其中,x、y和z分别是包含数据的向量或矩阵。

例如,我们可以使用下面的代码来绘制散点图:scatter3(A(:,1), A(:,2), A(:,3))三、设置图形属性除了绘制三维散点图,我们还可以通过设置不同的属性来适应数据的特点和需求。

下面是一些常用的属性设置:1. 颜色:可以使用Color参数来定义散点的颜色。

例如,可以使用'b'来表示蓝色散点、'r'表示红色散点。

如果想要为每个散点指定不同的颜色,可以使用RGB值或提供一个与数据大小相同的向量来表示颜色。

2. 标记:可以使用Marker参数来指定散点的标记。

例如,可以使用'o'表示圆形标记、'+'表示十字标记。

3. 大小:可以使用Size参数来调整散点的大小。

默认情况下,散点的大小是基于数据的相对大小确定的。

4. 标签:可以使用Text参数来为散点添加文本标签。

使用Text中的文本来指定标签的内容。

下面是一个例子,演示如何使用属性设置:scatter3(A(:,1), A(:,2), A(:,3), 'Marker', 'o', 'Size', 50, 'Color', 'b')四、添加标题和坐标轴标签为了进一步提高图形的可读性,我们还可以添加标题和坐标轴标签。

如何在matlab中绘制图形

如何在matlab中绘制图形

4.1 二维图形
二、subplot函数 函数
重新绘制上例4个图形,程序变动后如下:
x=linspace(0,2*pi,60); y=sin(x); z=cos(x); t=sin(x)./(cos(x)+eps); ct=cos(x)./(sin(x)+eps); axis ([0 2*pi -1 1]); H3=figure; 同上 plot(x,t); title('tangent(x)'); axis ([0 2*pi -40 40]); H4=figure; 同上 plot(x,ct); title('cotangent(x)'); axis ([0 2*pi -40 40]);
H1=figure;
%创建新窗口并返回句柄到变量H1
plot(x,y); %绘制图形并设置有关属性 title('sin(x)'); axis ([0 2*pi -1 1]);
H2=figure;
%创建第二个窗口并返回句柄到变量H2
plot(x,z); %绘制图形并设置有关属性 title('cos(x)')
grid on; title 'semilogy-logy=x^3';
4.2特殊坐标图形
(二)单对数坐标
以X轴为对数重新绘制上述曲线,程序为:
semilogx(x,y); 单对数X轴绘图命令
同样,可以以Y轴为对数重新绘制上述曲线,程序为:
semilogy(x,y); 单对数Y轴绘图命令
4.2特殊坐标图形
阅读如下程序:
x=linspace(0,2*pi,60); y=sin(x); z=cos(x); plot(x,y,'b');

用matlab的plot画图的几种用法

用matlab的plot画图的几种用法

用matlab的plot画图的几种用法1、设置图线宽度set( haxis, 'LineWidth', 1.0 ); ----这是 set函数, 'LineWidth'就是axis的线宽度属性,其值默认为0.5,这里可以改成1.0了。

2、调整坐标轴上下限set( haxis, 'XLim', [ 2 20 ] ); set( haxis, 'YLim', [ 2 20 ] );---调整坐标轴上下限的。

Z轴,那同理set( haxis, 'ZLim', [ Zmin, %% Zmax ] )3、调整坐标轴上的标注数字set( haxis, 'XTick', 2:1:20 ); set( haxis, 'YTick', 2:1:20 );----是调整坐标轴上那些标注出来的数字了,2:1:20意思是从2开始,每隔1标注一次,直到20为止。

注意这里的2, 20最好和上面相应的XLim, YLim最大最小值一致。

4、MATLAB中提供的线型及颜色属性:如:plot(x1,y1,'r-'),表示,用红色实线画出图形5、图形标题、轴标注、图形说明的设置图名标注可用:title('xx关系图')axis([0,22,0,3]);---显示范围为:X轴从0-22, Y轴从0-3显示。

xlabel('电压(V)'),ylabel('电流(A)') 分别表示在X轴下标示电压(V),Y轴旁标示“电流(A)”legend('A曲线 ','B曲线','C曲线') 用于说明图中的曲线的说明,顺序和plot(x1,y1,x2,y2,x3,y3)的曲线1、2、3相同即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档