七年级数学系列复习总结试卷6(共8份-含答案)

合集下载

部编版七年级数学上册期末复习测试题(八套)(含答案)

部编版七年级数学上册期末复习测试题(八套)(含答案)

七年级数学上册期末复习考(一)一、选择题(本题有10个小题,每小题3分,满分30分,下面每小愿给出的四个选项中,只有一个是正确的.)1.﹣的相反数是()A.B.﹣C.2 D.﹣22.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.43.下列各式中,正确的是()A.3a+b=3ab B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.﹣2(x﹣4)=﹣2x﹣44.若代数式x+4的值是2,则x等于()A.2 B.﹣2 C.6 D.﹣65.太阳中心的温度可达15500000℃,这个数用科学记数法表示正确的是()A.0.155×108B.15.5×106C.1.55×107D.1.55×1056.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个7.下列各等式的变形中,等式的性质运用正确的是()A.由=0,得x=2 B.若a=b则=C.由﹣2a=﹣3,得a=D.由x﹣1=4,得x=58.将一张长方形纸片按如图所示的方式折叠,EC,ED为折痕,折叠后点A',B′,E在同一直线上,则∠CED的度数为()A.75°B.95°C.90°D.60°9.下列说法正确的是()A.单项式的系数是3B.3x2﹣y+5xy2是三次三项式C.单项式﹣22a4b的次数是7D.单项式b的系数是1,次数是010.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是()A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c二、填空题(本题有6个小题,每小题3分,共18分,)11.﹣9的绝对值是.12.如果∠α=35°,那么∠α的余角为.13.已知有理数x,y满足:x﹣2y﹣3=﹣5,则整式2y﹣x的值为.14.已知2x6y2和﹣x3m y n是同类项,则2m+n的值是.15.观察下列图形:它们是按一定规律排列的,依照此规律,第19个图形共有个★.16.观察下列式子:1⊕3=1×2+3=5,3⊕1=3×2+1=7,5⊕4=5×2+4=14.请你想一想:(a﹣b)⊕(a+b)=.(用含a,b的代数式表示)三、解答题(本大题有9小题,共72分,解答要求写出文字说明,证明过程或计算步骤,)17.(8分)计算:(1)6×(﹣2)+27÷(﹣9)(2)(﹣1)9×3﹣(﹣2)4÷(8)18.(10分)解方程:(1)5x=3(x﹣2)(2)﹣=119.(8分)先化简,再求值:2(3a2b﹣ab2+1)﹣(a2b﹣2ab2),其中a=﹣2,b=﹣1 20.(8分)如图1,已知线段a,b,其中a>b(1)用圆规和直尺作线段AB,使AB=2a+b(不写作法,保留作图痕迹);(2)如图2,点A、B、C在同一条直线上,AB=6cm,BC=2cm,若点D是线段AC的中点,求线段BD的长.21.(8分)某车间每天能制作甲种零件300只,或者制作乙种零件200只,1只甲种零件需要配2只乙种零件.(1)若制作甲种零件2天,则需要制作乙种零件只,才能刚好配成套.(2)现要在20天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?22.(10分)如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°(1)若∠AOC=40°,求∠BOE和∠DOE的度数;(2)若∠AOC=α,求∠DOE的度数(用含α的代数式表示).23.(10分)已知:代数式A=2x2﹣2x﹣1,代数式B=﹣x2+xy+1,代数式M=4A﹣(3A﹣2B)(1)当(x+1)2+|y﹣2|=0时,求代数式M的值;(2)若代数式M的值与x的取值无关,求y的值;(3)当代数式M的值等于5时,求整数x、y的值.24.(10分)为了更好的宣传低碳环保理念,天河区工会计划开展全民“绿道健步行”活动,甲、乙两人积极响应,相约在一条东西走向的笔直绿道上锻炼.两人从同一个地点同时出发,甲向东行进,乙向西行进,行进10分钟后,甲到达A处,乙到达B处,A、B两处相距1400米.已知甲、乙两人的速度之比是4:3.(1)求甲、乙两人的行进速度;(2)若甲、乙两人分别从A、B两处各自选择一个方向再次同时行进,行进速度保持不变,问:经过多少分钟后,甲、乙两人相距700米?参考答案及解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小愿给出的四个选项中,只有一个是正确的.)1.【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选:D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.3.【分析】根据合并同类项的法则即可求出答案.【解答】解:(A)原式=3a+b,故A错误;(B)原式=a,故B错误;(D)原式=﹣2x+8,故D错误;故选:C.【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.4.【分析】根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.【解答】解:依题意,得x+4=2移项,得x=﹣2故选:B.【点评】题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.5.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:15500000=1.55×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【分析】分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.【解答】解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故选:D.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.7.【分析】利用等式的基本性质判断即可.【解答】解:A、由=0,得x=0,不符合题意;B、由a=b,c≠0,得=,不符合题意;C、由﹣2a=﹣3,得a=,不符合题意;D、由x﹣1=4,得x=5,符合题意,故选:D.【点评】此题考查了等式的性质,熟练掌握等式的基本性质是解本题的关键.8.【分析】根据折叠的性质和角平分线的定义即可得到结论.【解答】解:由题意知∠AEC=∠CEA′,∠DEB=∠DEB′,则∠A′EC=∠AEA′,∠B′DE=∠B′EB,所以∠CED=∠AEB=×180°=90°,故选:C.【点评】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.9.【分析】直接利用单项式的次数与系数以及多项式的次数确定方法分别判断得出答案.【解答】解:A、单项式的系数是:,故此选项错误;B、3x2﹣y+5xy2是三次三项式,正确;C、单项式﹣22a4b的次数是5,故此选项错误;D、单项式b的系数是1,次数是1,故此选项错误;故选:B.【点评】此题主要考查了单项式和多项式,正确把握多项式与单项式的次数确定方法是解题关键.10.【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【解答】解:依题意,得:b=a+1,c=a+7,d=a+8.A、∵a﹣d=a﹣(a+8)=﹣8,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+8)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+8)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+8)=2a+8,b+c=a+1+(a+7)=2a+8,∴a+d=b+c,选项D不符合题意.故选:A.【点评】本题考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.二、填空题(本题有6个小题,每小题3分,共18分,)11.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣9的绝对值是9,故答案为:9.【点评】本题考查了绝对值,负数的绝对值是它的相反数.12.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠α=35°,∴∠α的余角=90°﹣35°=55°.故答案为:55°.【点评】本题考查了余角,熟记互为余角的两个角的和等于90°是解题的关键.13.【分析】由x﹣2y﹣3=﹣5知x﹣2y=﹣2,从而得﹣(x﹣2y)=2,即2y﹣x=2.【解答】解:∵x﹣2y﹣3=﹣5,∴x﹣2y=﹣2,则﹣(x﹣2y)=2,即2y﹣x=2,故答案为:2.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握等式的性质.14.【分析】根据同类项是字母相同且相同字母的指数也相同,可得m,n的值,根据代数式求值,可得答案.【解答】解:根据题意得6=3m,n=2,解得m=n=2,则2m+n=4+2=6.故答案为:6【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.15.【分析】将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中★的个数的关系式,然后把n=19代入进行计算即可求解.【解答】解:观察发现,第1个图形★的个数是,1+3=4,第2个图形★的个数是,1+3×2=7,第3个图形★的个数是,1+3×3=10,第4个图形★的个数是,1+3×4=13,…依此类推,第n个图形★的个数是,1+3×n=3n+1,故当n=19时,3×19+1=58,故答案为:58.【点评】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n个图形★的个数的表达式是解题的关键.16.【分析】将第1个数乘以2,再加上第2个数,据此列出算式,再计算可得.【解答】解:(a﹣b)⊕(a+b)=2(a﹣b)+(a+b)=2a﹣2b+a+b=3a﹣b,故答案为:3a﹣b.【点评】本题主要考查有理数的混合运算和整式的运算,解题的关键是熟练掌握有理数和整式的混合运算顺序和运算法则.三、解答题(本大题有9小题,共72分,解答要求写出文字说明,证明过程或计算步骤,)17.【分析】(1)先计算乘法和除法,再计算加减可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣12﹣3=﹣15;(2)原式=﹣1×3﹣16÷(﹣8)=﹣3+2=﹣1.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:5x=3x﹣6,移项得:5x﹣3x=﹣6,合并同类项得:2x=﹣6,系数化为1得:x=﹣3,(2)方程两边同时乘以6得:3(x﹣1)﹣2(3﹣x)=6,去括号得:3x﹣3﹣6+2x=6,移项得:3x+2x=6+6+3,合并同类项得:5x=15,系数化为1得:x=3.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=6a2b﹣2ab2+2﹣a2b+2ab2=5a2b+2,当a=﹣2,b=﹣1时,原式=5×4×(﹣1)+2=﹣20+2=﹣18.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】(1)作射线AP,在射线AP上依次截取AM=MN=a,NB=b,据此可得;(2)先求出线段AC的长,再由中点得出DC的长,依据DB=DC﹣BC可得.【解答】解:(1)如图所示,线段AB即为所求.(2)∵AB=6cm,BC=2cm,∴AC=AB+BC=8cm,∵点D是线段AC的中点,∴DC=AC=4cm,∴DB=DC﹣BC=2cm.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握作一线段等于已知线段的尺规作图和线段的和差计算.21.【分析】(1)由需生产乙种零件的数量=每天生产甲种零件的数量×生产甲种零件的时间×2,即可求出结论;(2)设应制作甲种零件x天,则应制作乙种零件(20﹣x)天,根据生产零件的总量=每天生产的数量×生产天数结合要生产的乙种零件数量是甲种零件数量的2倍,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)300×2×2=1200(只).故答案为:1200.(2)设应制作甲种零件x天,则应制作乙种零件(20﹣x)天,依题意,得:2×300x=200(20﹣x),解得:x=5,∴20﹣x=15.答:应制作甲种零件5天,乙种零件15天.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量之间的关系,列式计算;(2)找准等量关系,正确列出一元一次方程.22.【分析】(1)先由邻补角定义求出∠BOC=180°﹣∠AOC=140°,再根据角平分线定义得到∠COD=∠BOC=70°,那么∠DOE=∠COE﹣∠COD=20°;(2)先由邻补角定义求出∠BOC=180°﹣∠AOC=180°﹣α,再根据角平分线定义得到∠COD=∠BOC,于是得到结论.【解答】解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=40°,∵∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=50°,∴∠BOC=140°,∵OD平分∠BOC,∴∠COD=∠BOC=70°,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣70°=20°;(2)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=α,∴∠BOC=180°﹣α,∵OD平分∠BOC,∴∠COD=∠BOC=(180°﹣α)=90°﹣α,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣(90°﹣α)=α.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.23.【分析】先化简代数式M(1)利用绝对值与平方的非负性求出x、y的值,代入代数式即可求解.(2)要取值与x的取值无关,只要含x项的系数为0,即可以求出y值.(3)要使代数式的值等于5,只要使得M=5,再根据x,y均为整数即可求解.【解答】解:先化简,依题意得:M=4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,将A、B分别代入得:A+2B=2x2﹣2x﹣1+2(﹣x2+xy+1)=2x2﹣2x﹣1﹣2x2+2xy+2=﹣2x+2xy+1(1)∵(x+1)2+|y﹣2|=0∴x+1=0,y﹣2=0,得x=﹣1,y=2将x=﹣1,y=2代入原式,则M=﹣2×(﹣1)+2×(﹣1)×2+1=2﹣4+1=﹣1(2)∵M=﹣2x+2xy+1=﹣2x(1﹣y)+1的值与x无关,∴1﹣y=0∴y=1(3)当代数式M=5时,即﹣2x+2xy+1=5整理得﹣2x+2xy﹣4=x﹣xy+2=0 即x(1﹣y)=﹣2∵x,y为整数∴或或或∴或或或【点评】此题考查代数式的值,绝对值和平方的非负性,做此类题型,只要找到代数式的值和非负性突破口即可解答.但在要注意运算是符号的变化24.【分析】(1)由题意可知A、B两处相距1400米.且甲、乙两人的速度之比是4:3,故可设甲的速度为4x米/分钟,则乙的速度为3x米/分钟.根据s=vt即可解得甲乙两人的速度分别为80米/分钟,60米/分钟(2)由题意可知,这是相遇问题.A、B两处相距1400米,甲、乙两人的行进速度分别为80米/分钟,60米/分钟,设经过t分钟,甲乙相距700米.即可列方程(60+80)×t=1400﹣700解得t=5【解答】解:(1)设甲的速度为4x米/分钟,则乙的速度为3x米/分钟依题意列方程:(3x+4x)×10=700解得:x=20所以:3x=604x=80故:甲、乙两人的行进速度分别为80米/分钟,60米/分钟(2)设经过x分钟后,甲、乙两人相距700米依题意列方程:(60+80)×t=1400﹣700解得:t=5故经过5分钟后,甲、乙两人相距700米【点评】本题是典型的相向而行和相背而行的典型例题.清楚速度,时间和路程各自的表示方式,即可根据s=vt列方程.七年级数学上册期末复习考(二)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题意的)1.(3分)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy 2.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3.(3分)为了解某市参加中考的32000名学生的体重情况,抽查了其中1500名学生的体重进行统计分析,下列叙述正确的是()A.32000名学生是总体B.每名学生是总体的一个个体C.1500名学生的体重是总体的一个样本D.以上调查是普查4.(3分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣25.(3分)如图,直线a,b被直线c所截,且a∥b,下列结论不正确的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠2=∠3 6.(3分)二元一次方程组的解是()A.B.C.D.7.(3分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.8.(3分)坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为何()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)9.(3分)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1).30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)10.(3分)如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第35秒时质点所在位置的坐标是()A.(4,0)B.(0,5)C.(5,0)D.(5,5)二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)4的平方根是.12.(3分)如图所示,直线AB、CD相交于点O,且∠AOD+∠BOC=100°,则∠AOC的度数是.13.(3分)64的立方根为.14.(3分)如图,点C在直线AB上,∠ACD的度数比∠BCD的度数的3倍少20°,设∠ACD的度数为x°,∠BCD的度数为y°,那么可列出关于x、y的方程组是.15.(3分)不等式组的解集是.16.(3分)如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=4,则BE的长度是.17.(3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的条形统计图,则参加绘画兴趣小组的频率是.18.(3分)某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,则甲种票买了张.19.(3分)矩形ABCD中放置了6个形状、大小都相同的小矩形,所标尺寸如图所示,则图中阴影部分的面积是cm2.20.(3分)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.如果[a]=﹣2,则a的取值范围是.三、解答题(满分60分)21.(6分)AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE∥DF.∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.又∵∠1+∠2=90°,且∠2=∠3,∴=.理由是:.∴BE∥DF.理由是:.22.(8分)计算:(1)2+++|﹣2|(2)+﹣.23.(8分)解方程组:①;②.24.(8分)(1)解不等式≤.(2)解不等式组并将它的解集在数轴上表示出来.25.(6分)如图所示,某校七年级有学生400人,现抽取部分学生做引体向上的测试,成绩进行整理后分成五组,并画出频数分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:(1)第五小组频率是多少?(2)参加本次测试的学生总数是多少?(3)如果做20次以上为及格(含20次),估计全校七年级有多少名学生合格?26.(8分)某大型快递公司使用机器人进行包裹分拣,若甲机器人工作2h,乙机器人工作4h,一共可以分拣700件包裹;若甲机器人工作3h,乙机器人工作2h,一共可以分拣650件包裹.(1)求甲、乙两机器人每小时各分拣多少件包裹;(2)“双十一”期间,快递公司的业务量猛增,要让甲、乙两机器人每天分拣包裹的总数量不低于2250件,它们每天至少要一起工作多少小时?27.(8分)已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.28.(8分)我市在一项市政工程招标时,接到甲、乙工程队的投标书:每施工一天,需付甲工程队工程款为1.5万元,付乙工程队1.1万元.工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案1:甲队单独施工完成此项工程刚好如期完工;方案2:乙队单独施工完成此项工程要比规定工期多用5天;方案3:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)你认为哪一种施工方案最节省工程款?请说明理由.(2)如果工程领导小组希望能够提前4天完成此项工程,请问该如何设计施工方案,需要工程款多少万元?(要求用二元一次方程组解答,天数必须为整数)参考答案及解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题意的)1.【解答】解:A、是一元一次方程,故错误;B、正确;C、未知数的项的最高次数是2,故错误;D、未知数的项的最高次数是2,故错误.故选:B.2.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选:D.3.【解答】解:某市参加中考的32000名学生的体重情况是总体,故A错误;每名学生的体重情况是总体的一个个体,故B错误;1500名学生的体重情况是一个样本,故C正确;该调查属于抽样调查,故D错误;故选:C.4.【解答】解:,0,﹣2是有理数,是无理数,故选:A.5.【解答】解:∵a∥b,∴∠1=∠3,故A正确∵∠3=∠4,∴∠1=∠4,故C正确,∵∠2+∠1=180°,∴∠2+∠4=180°,故B正确,故选:D.6.【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选:B.7.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.8.【解答】解:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0;又∵P到x轴的距离是4,到y轴的距离是5,∴点P的纵坐标是4,横坐标是﹣5;故点P的坐标为(﹣5,4),故选:A.9.【解答】解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.10.【解答】解:由题意可知质点移动的速度是1个单位长度/每秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(5,0)用25+10=35秒.故第35秒时质点到达的位置为(5,0),故选:C.二、填空题(本大题共10小题,每小题3分,共30分)11.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.12.【解答】解:∵∠AOD与∠BOC是对顶角,∴∠AOD=∠BOC,又已知∠AOD+∠BOC=100°,∴∠AOD=50°.∵∠AOD与∠AOC互为邻补角,∴∠AOC=180°﹣∠AOD=180°﹣50°=130°.故答案是:130°.13.【解答】解:64的立方根是4.故答案为:4.14.【解答】解:设∠ACD的度数为x°,∠BCD的度数为y°,依题意,得:.故答案为:.15.【解答】解:由(1)得,x>2由(2)得,x>3所以解集是:x>3.16.【解答】解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=(BF﹣EC),∵BF=14,EC=4,∴BE=(14﹣4)=5.故答案为:517.【解答】解:∵根据条形统计图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.3.故答案为0.3.18.【解答】解:设甲种票买了x张,则乙种票买了(36﹣x)张,依题意得:30x+20(36﹣x)=860,解方程得:x=14.即甲种票买了14张.故答案是:14.19.【解答】解:设小长方形的长、宽分别为xcm,ycm,依题意得,解得:,∴小长方形的长、宽分别为7cm,2cm,∴S阴影部分=S四边形ABCD﹣6×S小长方形=13×9﹣6×2×7=33cm2.故答案为:33.20.【解答】解:∵[a]=﹣2,∴a的取值范围是﹣2≤a<﹣1;故答案为:﹣2≤a<﹣1.三、解答题(满分60分)21.【解答】解:BE∥DF,∵AB⊥BC,∴∠ABC=90°,即∠3+∠4=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠4,理由是:等角的余角相等,∴BE∥DF.理由是:同位角相等,两直线平行.故答案为:90;90;∠1,∠4;等角的余角相等;同位角相等,两直线平行.22.【解答】解:(1)2+++|﹣2|=2+3﹣2+2﹣=+3;(2)+﹣=﹣3+4﹣=1﹣=﹣.23.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.24.【解答】解:(1)去分母,得:3(x﹣2)≤2(7﹣x),去括号,得:3x﹣6≤14﹣2x,移项,得:3x+2x≤14+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式<,得:x>﹣7,则不等式组的解集为﹣7<x≤1,将解集表示在数轴上如下:25.【解答】解:(1)第五小组频率=1﹣0.05﹣0.15﹣0.25﹣0.30=0.25.(2)参加本次测试的学生总数=25÷0.25=100(人).(3)第三小组的频数为25,第四小组的频数为30,第五小组人数为25,估计全校七年级有,400×=320名学生合格.26.【解答】解:(1)设甲、乙两机器人每小时各分拣x件、y件包裹,根据题意得,解得,答:甲、乙两机器人每小时各分拣150件、100件包裹;(2)设它们每天要一起工作t小时,根据题意得(150+100)t≥2250,解得t≥9.答:它们每天至少要一起工作9小时.27.【解答】解:(1)如图所示:(2)过点C向x、y轴作垂线,垂足为D、E.∴四边形DOEC的面积=3×4=12,△BCD的面积==3,△ACE的面积==4,△AOB的面积==1.∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积=12﹣3﹣4﹣1=4.当点p在x轴上时,△ABP的面积==4,即:,解得:BP=8,所点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积==4,即,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).所以点P的坐标为(0,5)或(0,﹣3)或(10,0)或(﹣6,0).28.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得:++=1,解得:x=20.经检验:x=20是原分式方程的解.∴(x+5)=25这三种施工方案需要的工程款为:方案1:1.5×20=30(万元);方案2:1.1×(20+5)=27.5(万元);方案3:1.5×4+1.1×20=28(万元).∵30>28>27.5,∴第二种施工方案最节省工程款;(2)设甲乙合作a天后再由甲队独做b天完成或由乙独b天完成,由题意,得或a=5或,∵不是整数舍去,∴a=5.∴需要的工程款为:1.5×16+1.1×5=29.5万元.答:需要的工程款为:29.5万元.七年级数学上册期末复习考(三)一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5 B.5 C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1 B.﹣2 C.﹣3 D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6 B.60%x﹣x=6C.(1+60%)x﹣x=6 D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2 B.4 C.8 D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE (1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.。

2020-2021学年人教版数学七年级下册全册单元、期中、期末测试题及答案解析(共8套)

2020-2021学年人教版数学七年级下册全册单元、期中、期末测试题及答案解析(共8套)

人教版数学七年级下册全册单元、期中、期末测试题第五章单元测试题一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对2.(3分)下图中,∠1和∠2是同位角的是()A. B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36° D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A. B.C.D.【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【考点】J2:对顶角、邻补角.【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36° D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD 所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.【考点】JA:平行线的性质.【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【解答】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.【点评】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=70度.【考点】JA:平行线的性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:由题意得:直线a∥b,则∠2=∠1=70°【点评】本题应用的知识点为:两直线平行,内错角相等.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】JA:平行线的性质;K8:三角形的外角性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70度.(易拉罐的上下底面互相平行)【考点】JA:平行线的性质;J2:对顶角、邻补角.【专题】12 :应用题.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.【解答】解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.【点评】考查了平行线的性质及对顶角相等.11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【考点】K7:三角形内角和定理;JA:平行线的性质.【专题】11 :计算题.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.12.(3分)如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【考点】J9:平行线的判定.【专题】26 :开放型.【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.(3分)如图,已知AB∥CD,∠α=85°.【考点】JA:平行线的性质.【分析】过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.【解答】解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠2=∠A,再根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是互余.【考点】J3:垂线.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故答案是:互余.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.【考点】JB:平行线的判定与性质.【分析】先利用平行线的判定证明a∥b,再利用平行线的性质求∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴∠1=∠2,∴a∥b,∴∠3=∠4.又∠3=60°,∴∠4=60°.【点评】本题主要考查了平行线的判定和性质.重点考查了平行线的判定中同位角相等,两直线平行,及平行线的性质中两直线平行,内错角相等.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;K7:三角形内角和定理.【专题】11 :计算题.【分析】先根据∠CDE=150°求出∠1的度数,再由平行线的性质及角平分线的性质求出∠2的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠CDE=150°,∴∠1=180°﹣∠CDE=180°﹣150°=30°,∵AB∥CD,∴∠1=∠3=30°,∵BE平分∠ABC,∴∠1=∠3=∠2=30°,∴∠C=180°﹣∠1﹣∠2=180°﹣30°﹣30°=120°.【点评】本题考查的是平行线及角平分线的性质,三角形内角和定理,属较简单题目.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【考点】JB:平行线的判定与性质.【专题】17 :推理填空题.【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】JB:平行线的判定与性质.【专题】11 :计算题.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.【点评】综合运用了平行线的性质和判定,难度不大.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.【考点】JA:平行线的性质.【专题】14 :证明题.【分析】根据两直线平行,内错角相等的性质以及角的和差关系可证明.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【点评】重点考查了两直线平行,内错角相等的这一性质.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.【考点】JA:平行线的性质.【分析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【解答】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵∠AOP+∠POC=90°,∴∠1+∠2=90°.【点评】本题考查了平行线的性质.平行线性质定理:定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【考点】JA:平行线的性质.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD 的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.【点评】此题考查了平行线的性质与角平分线的定义.注意掌握两直线平行,内错角相等,同位角相等是解此题的关键.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;J3:垂线.【专题】11 :计算题.【分析】根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°.【点评】本题利用平行线的性质和角平分线的定义求解,比较简单.人教版数学七年级下册第六章单元测试题一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣162.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.14.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.75.若,则2a+b﹣c等于()A.0 B.1 C.2 D.36.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.18.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题11.的相反数是,的绝对值是,的倒数是.12.已知:,则x+17的算术平方根为.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=.16.如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,,则点C对应的实数是.三、解答题17.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.18.求下列各等式中的x:(1)27x3﹣125=0(2)(3)(x﹣2)3=﹣0.125.19.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.20.国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,问这个足球长是否能用作国际比赛吗?21.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个,(1)当2m﹣6=m﹣2,解得m=4.(2)所以这个数为(2m﹣6)=(2×4﹣6)=2.(3)当2m﹣6=﹣(m﹣2)时,解得m=.(4)所以这个数为(2m﹣6)=(2×﹣6)=﹣.(5)综上可得,这个数为2或﹣.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.22.已知:=0,求实数a,b的值,并求出的整数部分和小数部分.23.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.已知实数a、b与c的大小关系如图,化简:﹣+.25.先阅读然后解答提出的问题:设a、b是有理数,且满足,求b a的值.解:由题意得,因为a、b都是有理数,所以a﹣3,b+2也是有理数,由于是无理数,所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以b a=(﹣2)3=﹣8.问题:设x、y都是有理数,且满足,求x+y的值.参考答案与试题解析一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣16【考点】22:算术平方根.【专题】1 :常规题型.【分析】先求出被开方数,再根据算术平方根的定义进行解答.【解答】解:=﹣=﹣4.故选B.【点评】本题主要考查了算术平方根的计算,先求出被开方数是解题的关键.2.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个【考点】26:无理数.【专题】1 :常规题型.【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.1【考点】21:平方根.【分析】根据1的平方根是±1确定出b=1,然后根据有理数的乘方进行计算即可得解.【解答】解:∵±1是b的平方根,∴b=1,∴b2013=12013=1.故选D.【点评】本题考查了平方根的定义,有理数的乘方,是基础题,确定出b的值是解题的关键.4.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.7【考点】24:立方根.【分析】根据被开方数小数点移动3位,立方根的小数点移动1位解答.【解答】解:==1.147×10=11.47.故选C.【点评】本题考查了立方根的应用,要注意被开方数与立方根的小数点的移动变化规律.5.若,则2a+b﹣c等于()A.0 B.1 C.2 D.3【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出a、b、c的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则2a+b﹣c=﹣4+1+3=0.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲【考点】2A:实数大小比较.【分析】由4<<5<<<6,可得10<6+<11,7<2+<8,则可求得答案.【解答】解:∵4<<5<<<6,∴10<6+<11,7<2+<8,∴丙<乙<甲.故选D.【点评】此题考查了实数的大小比较.此题难度不大,解题的关键是确定各数在哪两个整数之间.7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.1【考点】24:立方根;22:算术平方根.【分析】如果一个数的立方等于a,那么这个数叫做a的立方根,如果一个数的平方等于a,那么这个数叫做a的平方根.【解答】解:=,故①正确.=4,故⑥正确.其他②③④⑤是正确的.故选A.【点评】本题考查立方根和平方根的概念,然后根据概念求解.8.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个【考点】27:实数.【分析】根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.【解答】解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故判断错误;②实数包括无理数和有理数,故判断正确;③是3的立方根,故判断正确;④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故判断错误;⑤2的算术平方根是,故判断正确.故选B.【点评】本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c【考点】29:实数与数轴.【专题】21 :阅读型.【分析】首先从数轴上a、b、c的位置关系可知:a<b,则b﹣a>0,c>b,则b﹣c<0.【解答】解:根据题意可知:a<b,则b﹣a>0,c>b,则b﹣c<0,原式=a+(b﹣c)+(c﹣b)=a+b﹣a+c﹣b=c.故选A.【点评】本题考查了实数与数轴的对应关系和利用绝对值的性质化简.10.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.【考点】29:实数与数轴.【分析】点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,即可求得c 的值.【解答】解:点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,解得:c=6﹣.故选C.【点评】本题考查了实数与数轴的对应关系,正确理解c与3和之间的关系是关键.二、填空题11.的相反数是﹣1,的绝对值是3,的倒数是﹣.【考点】28:实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答;根据立方根的定义和绝对值的性质解答;根据立方根的定义和倒数的定义解答.【解答】解:1﹣的相反数是﹣1;∵=﹣3,∴的绝对值是3;∵=﹣4,∴的倒数是﹣.故答案为:﹣1,3,﹣.【点评】本题考查了实数的性质,主要利用了相反数的定义,立方根的定义,绝对值的性质和倒数的定义,熟记概念和性质是解题的关键.12.已知:,则x+17的算术平方根为3.【考点】24:立方根;22:算术平方根.【分析】首先利用求得x的值,然后在求x+17的算术平方根即可.【解答】解:∵,∴5x+32=﹣8,解得:x=﹣8,∴x+17=﹣8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为3.【点评】本题考查了立方根及算术平方根的意义,解题的关键是首先求得x的值,然后求x+17的算术平方根.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是4或100.【考点】21:平方根.【分析】2a﹣4、3a﹣1是同一个正数的平方根,则它们互为相反数或相等,即可列出关于a的方程,解方程即可解决问题.【解答】解:∵2a﹣4、3a﹣1是同一个正数的平方根,则这两个式子一定互为相反数或相等.即:(2a﹣4)+(3a﹣1)=0或2a﹣4=3a﹣1,解得:a=1或a=﹣3,则这个数是:(2a﹣4)2=4或(2a﹣4)2=100故答案为:4或100.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.14.一个负数a的倒数等于它本身,则=1;若一个数a的相反数等于它本身,则﹣5+2=﹣9.【考点】2C:实数的运算.【分析】因为一个负数a的倒数等于它本身,所以a=﹣1,由此即可求出的值;因为一个数a的相反数等于它本身,所以a=0,由此即可求出﹣5+2的值.【解答】解:∵一个负数a的倒数等于它本身,∴a=﹣1,∴==1;∵一个数a的相反数等于它本身,∴a=0,∴﹣5+2=0﹣5﹣4=﹣9.故答案为:1,﹣9.【点评】此题主要考查了实数的运算和学生的分析能力,解题的关键是根据已知条件找到a的值.15.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=1或3.【考点】2C:实数的运算.【分析】先根据平方根、立方根的定义解已知的两个方程求出x、y的值,然后再代值求解.【解答】解:方程(x﹣15)2=169两边开平方得x﹣15=±13,解得:x1=28,x2=2,方程(y﹣1)3=﹣0.125两边开立方得y﹣1=﹣0.5,解得y=0.5,当x=28,y=0.5时,=3;当x=2,y=0.5时,=1.故答案为:1或3.【点评】本题主要考查了直接开平方法,直接开立方法的运用,也考查了实数的运算,注意两种开方的结果的不同.16.如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,,则点C对应的实数是3﹣2.【考点】29:实数与数轴.【分析】根据数轴的特点表示出AB的长,在表示出BC的长,然后用点B表示的数加上BC的长度计算即可.【解答】解:∵点A,B对应的实数分别为1,,∴AB=﹣1,∴BC=2AB=2(﹣1)=2﹣2,∴点C对应的数是+2﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了实数与数轴,主要利用了数轴上两点间的距离的表示,是基础题.三、解答题17.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.【考点】2C:实数的运算.【专题】11 :计算题.【分析】①原式利用绝对值的代数意义化简,计算即可得到结果;②原式利用乘方的意义,平方根及立方根定义计算即可得到结果;③原式利用平方根,立方根,以及绝对值的代数意义化简,计算即可得到结果;④原式利用平方根,绝对值,以及乘方的意义计算即可得到结果.【解答】解:①原式=﹣1+﹣+2﹣+﹣2=﹣1;②原式=﹣8×4﹣4×﹣3=﹣32﹣1﹣3=﹣36;③原式=﹣+2.5﹣﹣1=;④原式=﹣1+﹣5+﹣=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.求下列各等式中的x:(1)27x3﹣125=0(2)(3)(x﹣2)3=﹣0.125.【考点】24:立方根.【分析】(1)先移项,然后将三次项的系数化为1,开立方即可得出x的值;(2)先开立方、开平方,然后移项合并,再开立方,可得出x的值;(3)直接开立方得出(x﹣2)的值,继而可得出x的值.【解答】解:(1):移项得:27x3=125,系数化为1得:x3=,开立方得:;(2)原方程可化为:x3=﹣8,开立方得:x=﹣2;(3)开立方得:x﹣2=﹣0.5,移项得:x=1.5.【点评】本题考查了立方根的知识,解答本题的关键是掌握开立方的运算,属于基础题.19.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.【考点】2C:实数的运算.【专题】11 :计算题.【分析】根据题意填写表格即可.【解答】解:根据题意得:【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,问这个足球长是否能用作国际比赛吗?。

北师大版七年级下册数学知识点归纳附全册单元测试卷及参考答案

北师大版七年级下册数学知识点归纳附全册单元测试卷及参考答案

北师大版七年级下册数学知识点归纳附全册单元测试卷及参考答案@考点归纳1. 单项式一、整式2. 多项式1. 同底数幂的乘法2. 幂的乘方3. 积的乘方二、幂运算 4. 同底数幂的除法5. 零指数幂6. 负指数幂1. 整式的加减(1).单项式与单项式相乘(2).单项式与多项式相乘2. 整式的乘法(3).多项式与多项式相乘三、整式运算(4).平方差公式(5).完全平方公式(1).单项式除以单项式3.整式的除法(2).多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或-1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

人教版七年级上册数学期末复习单元小结与归纳(含章节检测试卷及答案)

人教版七年级上册数学期末复习单元小结与归纳(含章节检测试卷及答案)
单项式的个数是( A ) A.3 B.4 C.5 D.6
【解析】 -2mn, p, 0 是单项式.故选 A.
针对训练
1.代数式-πx32y的系数是____π3____,次数是__3______ .
考点二 同类项 例2 若3xm+5y2与x3yn的和是单项式,求mn的值. 【解析】由题意可知 3xm+5y2与x3yn是同类项, 所以x的指数和y的指数分别相等.
a 幂
n 指数
底数
6.有理数的混合运算 (1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行; (3)如有括号,先做括号内的运算,按小括号、
中括号、大括号依次进行.
四、科学记数法 把大于10的数记成a×10n的形式,其中 1.1≤a<10 2.n为原数的整数位减去1
五、近似数 1.按照要求取近似数
针对训练
3.下列各项中,去括号正确的是( C ) A.x2-(2x-y+2)=x2-2x+y+2 B.-(m+n)-mn=-m+n-mn C.x-(5x-3y)+(2x-y)=-2x+2y D.ab-(-ab+3)=3
例4 若A是一个三次多项式,B是一个四次多
项式,则A+B一定是( B ) A.三次多项式 B.四次多项式或单项式
【解析】 把A,B所指的式子分别代入计算.
解:(1)A+B=(x3+2y3-xy2)+(-y3+x3+2xy2) =x3+2y3-xy2-y3+x3+2xy2 =2x3+y3+xy2.
(2)2B-2A=2(-y3+x3+2xy2)-2(x3+2y3-xy2) =-2y3+2x3+4xy2-2x3-4y3+2xy2 =6xy2-6y3.
0.25
(2)
( 7 12
3 4
5 5 ) (36) 6 18

初一数学下册复习题及答案

初一数学下册复习题及答案

初一数学下册复习题及答案初一数学下册复习题及答案数学作为一门基础学科,对于学生的学习和发展起着重要的作用。

初中数学下册是初中数学学习的重要阶段,是巩固和扩展初中数学知识的关键时期。

为了帮助同学们更好地复习数学下册内容,我整理了一些复习题及答案,供大家参考。

一、选择题1. 下列哪个数是无理数?A. 1/4B. 0.6C. √3D. 2/3答案:C2. 已知函数 y = 2x + 3,求 x = 4 时 y 的值。

A. 5B. 7C. 11D. 15答案:B3. 小明参加了一个马拉松比赛,他以每小时10公里的速度跑了3小时。

他跑了多少公里?A. 20B. 25C. 30D. 35答案:C4. 一个正方形的周长是16cm,求它的面积。

A. 16cm²B. 32cm²C. 64cm²D. 128cm²答案:B5. 一个长方体的长、宽、高分别是3cm、4cm和5cm,求它的体积。

A. 12cm³B. 20cm³C. 60cm³D. 120cm³答案:C二、填空题1. 用最简分数表示,0.75 = ______。

答案:3/42. 用最简分数表示,1.2 = ______。

答案:6/53. 一个圆的半径是5cm,求它的周长。

答案:10π cm4. 一个长方形的长是8cm,宽是3cm,求它的面积。

答案:24 cm²5. 一个正方体的体积是64cm³,求它的边长。

答案:4 cm三、解答题1. 某商店举行打折促销活动,原价100元的商品打8折出售。

小明购买了这个商品,他需要支付多少钱?答案:80元解析:打8折意味着打折后价格为原价的80%,即100元 * 0.8 = 80元。

2. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后停下来加油,然后以每小时50公里的速度行驶。

求汽车行驶的总路程。

答案:240公里解析:汽车在行驶4小时后停下来加油,行驶的距离为60公里/小时 * 4小时= 240公里。

人教版七年级数学下册总复习专项测试题 (答案)

人教版七年级数学下册总复习专项测试题 (答案)

人教版七年级数学下册总复习专项测试题一、单项选择题(本大题共有15小题,每小题3分,共45分)1、已知一个正数的两个平方根分别是和,则这个正数的立方根是()A.B.C.D.【答案】A【解析】解:根据一个正数的两个平方根互为相反数,则,解得:..的立方根是.故答案为:.2、下列各式中,正确的是( )A.B.C.D.【答案】C【解析】解:;故此选项错误;;故此选项正确;;故此选项错误;;故此选项错误.故正确答案为:3、有一个不透明的盒子里,装有个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球次,其中次摸到黑球,则可估计盒子中大约有白球()A. 个B. 个C. 个D. 个【答案】D【解析】解:共摸了次,其中次摸到黑球,有次摸到白球,摸到黑球与摸到白球的次数之比为,口袋中黑球和白球个数之比为,(个).故答案为:个.4、下列说法正确的个数为()(1)过两点有且只有一条直线 (2)连接两点的线段叫做两点间的距离(3)两点之间的所有连线中,线段最短(4)直线和直线表示同一条直线A.B.C.D.【答案】C【解析】解:(1)过两点有且只有一条直线,正确;(2)应为连接两点的线段的长度叫做两点间的距离,故本选项错误;(3)两点之间的所有连线中,线段最短,正确;(4)直线和直线表示同一条直线,正确.综上所述,说法正确的有个.故答案应选:.5、多项式的次数是( )A.B.C.D.【答案】C【解析】解:根据多项式次数的定义,多项式的次数等于的次数,即为: .故答案为: .6、如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.【答案】C【解析】解:由对顶角相等可知,;;,,;.综上所述,不正确的结论为.7、若,则的值为()A.B.C.D.【答案】B【解析】解:根据题意得解得则.8、下表中有两种移动电话计费方式:(比如选用方式一,每月固定交费元,当主动打出电话费月累计时间不超过分钟,不再额外交费;当超过分钟,超过部分每分钟收元.)某用户一个月内用移动电话主叫了分钟(是正整数,且大于).根据上表,若选择方式二的计费方式,则该用户应交付的费用为()元.A.B.C.D.【答案】B【解析】解:由题意可得,则如下表所以该用户应交的费用为$88+0.19(t-350)$元.9、已知、为有理数,且,则的值是()A.B.C.D. 或【答案】D【解析】解:,当时,,,当时,,,综上,的值是或.10、如图,在数轴上有、、、四个整数点(即各点均表示整数),且,若、两点表示的数的分别为和,点为的中点,那么该数轴上上述五个点所表示的整数中,离线段的中点最近的整数是()A.B.C.D.【答案】D【解析】解:,,,,,,,,,点所表示的数是:.离线段的中点最近的整数是.11、设、两镇相距千米,甲从镇、乙从镇同时出发,相向而行,甲、乙行驶的速度分别为千米/小时、千米/小时,并有:①出发后分钟相遇;②甲到镇后立即返回,追上乙时又经过了分钟;③当甲追上乙时他俩离镇还有千米.求、、.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.B.C.D.【答案】A【解析】根据甲走的路程差千米不到千米,得或.根据乙走的路程差千米不到千米,则或、.因此只有是错误的.12、若方程的解是非正数,则的取值范围是()A.B.C.D.【答案】A【解析】解方程,得,方程的解是非正数,,即,.13、某商品的标价比成本价高,根据市场需要,该商品需降价出售,为了不亏本,应满足()A.B.C.D.【答案】B【解析】解:设成本为元,由题意可得,则,去括号,得,整理,得,故.14、警方抓获一个由甲、乙、丙、丁四人组成的盗窃团伙,其中有一人是主谋,经过审讯,,,三名警察各自得出结论,:主谋只有可能是甲或乙;:甲不可能是主谋;:乙和丙都不可能是主谋、已知三名警察中只有一人推测正确,则主谋是()A. 甲B. 乙C. 丙D. 丁【答案】C【解析】假设判断正确:主谋只有可能是甲或乙正确,则错误:甲不可能是主谋,故甲有可能是主谋,错误:乙和丙都不可能是主谋,这样乙和丙可能是主谋,这样无法确定主谋;假设判断正确,则甲不可能是主谋;故错误:主谋只有可能是甲或乙,则甲、乙不是主谋,也错误,乙和丙都不可能是主谋,故乙和丙可能是主谋,则丙是主谋;假设判断正确,则乙和丙都不可能是主谋;故错误:主谋只有可能是甲或乙,则甲、乙不是主谋,而错误的话,即甲是主谋,故出现矛盾.15、如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 三条线段中,最短C. 线段的长是点到直线的距离D. 线段的长是点到直线的距离【答案】C【解析】解:线段的长是点到直线的距离,根据点到直线的距离的定义:即点到这一直线的垂线段的长度、故此选项正确;三条线段中,最短,根据垂线段最短可知此选项正确;线段的长是点到直线的距离,线段的长是点到直线的距离,故选项错误;线段的长是点到直线的距离,根据点到直线的距离即点到这一直线的垂线段的长度、故此选项正确.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,已知,,则,.【答案】60、30【解析】解:,,,,,,即,,,故正确答案为:,.17、幼儿园把新购进的一批玩具分给小朋友.若每人件,那么还剩余件;若每人件,那么最后一个小朋友分到玩具,但不足件,这批玩具共有件.【答案】152【解析】解:设共有个小朋友,则玩具有个.最后一个小朋友不足件,,最后一个小朋友最少件,,解得,.取正整数,则玩具数为件.故答案为:.18、如图,、是直线上的两点,、是直线上的两点,且,.(1)点到直线的距离是_______的长;(2)点到点的距离是________的长;(3)点到直线的距离是______的长;(4)点到点的距离是_______的长.【答案】;;;.【解析】解:(1)点到直线的距离是的长;(2)点到点的距离是的长;(3)点到直线的距离是的长;(4)点到点的距离是的长.故答案为:;;;.19、某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为米,则荷塘周长为米.【答案】200【解析】解:荷塘中小桥的总长为米,根据图形可知,荷塘周长为.20、若,为实数,且满足,则的值是.【答案】1【解析】解:由题意得,,,解得,,所以.故答案为:.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,,,那么吗?请说明理由【解析】解:.理由:,.,,.22、如图,已知,,,求证:.【解析】证明:过点作,则,又∵,∴.∵,,∴,∴,又∵,∴,∵,∴,即,∴.23、已知,求的算术平方根.【解析】解:由题意得,,,,此时,.的算术平方根是,故的算术平方根是.人教版七年级数学下册总复习专项测试题一、单项选择题(本大题共有15小题,每小题3分,共45分)1、是一个由四舍五入得到的近似数,它是( )A. 精确到十万位B. 精确到万位C. 精确到十分位D. 精确到百分位【答案】B【解析】解:,精确到了万位,故正确答案为:精确到万位.2、如图,为了做一个试管架,在长为的木板上钻了个小孔,每个小孔的直径为,则等于()。

北师大版七年级数学下册期末总复习专项检测卷8份及答案解析

北师大版七年级数学下册期末总复习专项检测卷8份及答案解析

七年级数学下册期末总复习专项检测题一姓名学号一、单项选择题(本大题共有15小题,每小题3分,共45分)1、在下图所示的水解环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是()A. B. C. D.2、某音乐行出售三种音乐,即古典音乐,流行音乐,民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用()A.扇形统计图B.折线统计图C.条形统计图D.以上都可以3、含有_____的等式叫做方程。

A.数字B.数字和字母C.未知数D.字母4、下列说法中,不正确的是()A.棱柱的所有侧棱长都相等B.正方体的所有棱长都相等C.棱柱的侧面可能是三角形D.直棱柱的侧面都是长方形或正方形5、“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件6、将样本容量为的样本编制成组号①~⑧的八个组,简况如表所示:那么第⑤组的频率是()A. B. C. D.7、下列各组的两项是同类项的为()A.与B.与C.与D.与8、如图:若,且,则的长为()A. B. C. D.9、下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A.个B.个C.个D.个10、计算的结果为()A. B. C. D.11、下面哪个式子可以用来验证小明的计算是否正确?()A. B. C. D.12、在中,负有理数共有()A.个B.个C.个D.个13、甲、乙、丙、丁四个学生在判断时钟的分针和时针互相垂直的时刻,每个人说两个时刻,说对的是()A.甲说点和点半B.乙说点刻和点刻C.丙说点和点刻D.丁说点和点14、若,,则与的关系是()A.以上都不对B.C.D.15、中,,,则()A. B. C. D.二、填空题(本大题共有5小题,每小题5分,共25分)16、绝对值是的有理数是()17、有一些事情我们事先能肯定它一定不会发生,这些事件称为.18、。

北师大版七年级数学下册总复习试题及答案

北师大版七年级数学下册总复习试题及答案

北师大版七年级数学下册总复习试题及答

这份文档包含北师大版七年级数学下册总复试题及答案。

本文档分为多个章节,每一章节为该册书的每一个单元。

第一单元
课前预
一、选择题
1. 自然数 1、2、3、4、5、6、…… 中,是 3 的倍数的是
()
A. 1
B. 2
C. 4
D. 5
2. 下图中各圆的直径相等,若三角形 ABC 等边,那么 DE 是等于()
[图略]
A. AB/3
B. AB/2
C. AB
D. 2AB
二、填空题
1. 消去 13,在每个数字前后各加 24,得到的数是
____________.
三、应用题
1. 下图是一个矩形 ABCD,$AD=10$,$AE=9$,请问 $EF$ 的长是多少?
[图略]
课后作业
一、选择题
1. 三个自然数组成等差数列,这三个数一定是()
A. 三个奇数
B. 三个偶数
C. 两个奇数一个偶数
D. 两个偶数一个奇数
2. 除以 $0.8$ 的效果等于()
A. 乘以 $0.2$
B. 除以 $5$
C. 乘以 $1.25$
D. 除以 $1.25$
二、填空题
1. 置换
$(\frac{1}{5}\,\,\,\frac{2}{5}\,\,\,\frac{3}{5}\,\,\,\frac{4}{5})$ 的逆置换是 ____________.
三、应用题
1. 鲁班要把一个木板锯成若干等长度的小木块,若每个小木块长 $20$ 厘米,这个木板最短要长多少厘米,才能锯成 $15$ 个小木块?
第二单元
……。

七年级数学下综合复习总结卷(8套)

七年级数学下综合复习总结卷(8套)

七年级数学(下)综合复习题一一.精心选一选1.下列各式计算结果正确的是( )A .2a a a =+B .()2263a a =C .()1122+=+a a D .2a a a =⋅ 2.某种细菌的直径是,把用科学计数法表示为( )A .710125⨯cmB .71025.1⨯cmC .8-1025.1⨯cmD .8-1025.1-⨯cm 3.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个 ,4.下列说法正确的是( )A.设A ,B 关于直线MN 对称,则AB 垂直平分MN 。

B.如果△ABC ≌△DEF,则一定存在一条直线MN ,使△ABC 与△DEF 关于MN 对称。

C.如果一个三角形是轴对称图形,且对称轴不止一条,则它是等边三角形。

D.两个图形关于MN 对称,则这两个图形分别在MN 的两侧。

5.如图,已知AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠EFG=40°,则∠EGF 的度数是( )A .60°B .70°C .80°D .90°6.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,1l .2l 分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是( ) ]A .骑车的同学比步行的同学晚出发30分钟,B .步行的速度是6千米/时,C .骑车的同学从出发到追上步行的同学用了20分钟,D .骑车的同学和步行的同学同时达到目的地l 23060545006y(千米)x(分)l 1FEDC BA7.如图,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE ,(2)BC =EF ,(3)AC =DF ,(4)∠A =∠D ,(5)∠B =∠E ,(6)∠C =∠F ,以其中三个作为已知条件,不能..判断△ABC 与△DEF 全等的是( ) A .(1)(5)(2) B .(1)(2)(3) C .(2)(3)(4) D .(4)(6)(1) 8.下列图形中,不一定是轴对称图形的是( ) 《A.等腰三角形B.线段C.钝角D.直角三角形9.一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是( )二、作图题10.如图,两条公路OA 和OB 相交于O 点,在∠AOB 的 内部有工厂C 和D ,现要修建一个货站P ,使货站P 到 两条公路OA 、OB 的距离相等,且到两工厂C 、D 的距 离相等,用尺规作出货站P 的位置。

数学七年级试卷总结【含答案】

数学七年级试卷总结【含答案】

数学七年级试卷总结【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 37C. 39D. 402. 如果 a = 3 和 b = -3,那么 a + b 的值是?A. 0B. 6C. -6D. 33. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是无理数?A. √9B. √16C. √25D. √265. 下列哪个数是负数?A. -5B. 5C. 0D. 15二、判断题(每题1分,共5分)1. 2是偶数。

()2. 负数乘以负数等于正数。

()3. 0除以任何数都等于0。

()4. 1是质数。

()5. 任何数乘以1都等于它本身。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 2的平方是______。

3. 5的立方是______。

4. 1千米等于______米。

5. 1吨等于______千克。

四、简答题(每题2分,共10分)1. 请写出三个质数。

2. 请写出三个偶数。

3. 请写出三个奇数。

4. 请写出三个无理数。

5. 请写出三个负数。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算它的面积。

2. 一个正方形的边长是8厘米,请计算它的周长。

3. 一个数加上它的两倍等于30,请计算这个数。

4. 一个数减去它的三分之一等于20,请计算这个数。

5. 一个数乘以4再减去10等于26,请计算这个数。

六、分析题(每题5分,共10分)1. 请解释什么是质数,并给出三个例子。

2. 请解释什么是偶数,并给出三个例子。

七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为10厘米的正方形。

2. 请用直尺和圆规画一个半径为5厘米的圆。

八、专业设计题(每题2分,共10分)1. 设计一个实验,验证“两个负数相乘等于正数”的数学原理。

2. 设计一个教学活动,帮助学生理解“无理数”的概念。

初中7年级必刷试卷数学【含答案】

初中7年级必刷试卷数学【含答案】

初中7年级必刷试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 30答案:B2. 一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的周长是多少厘米?A. 16厘米B. 26厘米C. 36厘米D. 28厘米答案:C3. 下列哪个数是偶数?A. 123B. 125C. 127D. 130答案:D4. 下列哪个图形是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形答案:A5. 下列哪个数是合数?A. 31B. 33C. 37D. 39答案:D二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定是合数。

(正确)2. 一个等边三角形的三个角都是60度。

(正确)3. 1是质数。

(错误)4. 两个负数相乘,其结果一定是正数。

(正确)5. 一个数的平方根只有一个。

(错误)三、填空题(每题1分,共5分)1. 2的平方是______。

(4)2. 一个等腰三角形的底边长为6厘米,腰长为8厘米,那么这个三角形的周长是______厘米。

(22)3. 下列哪个数是奇数?______。

(13)4. 下列哪个图形是正方形?______。

(正方形)5. 下列哪个数是偶数?______。

(28)四、简答题(每题2分,共10分)1. 请简述质数的定义。

答案:质数是一个大于1的自然数,除了1和它本身以外不再有其他因数。

2. 请简述偶数的定义。

答案:偶数是一个整数,可以被2整除,即能被2整除的数。

3. 请简述平行四边形的定义。

答案:平行四边形是一个四边形,其中对边是平行的。

4. 请简述等边三角形的定义。

答案:等边三角形是一个三角形,其中三个边长相等。

5. 请简述合数的定义。

答案:合数是一个大于1的自然数,除了1和它本身以外还有其他因数。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是多少厘米?答案:34厘米2. 下列哪个数是质数?A. 41B. 43C. 47D. 49答案:C3. 下列哪个图形是矩形?A. 矩形B. 菱形C. 梯形D. 正方形答案:A4. 下列哪个数是偶数?A. 35B. 37C. 39D. 41答案:C5. 下列哪个数是合数?A. 29B. 31C. 33D. 37答案:C六、分析题(每题5分,共10分)1. 请分析并解释为什么两个质数相乘,其结果一定是合数。

数学七年级试卷总结【含答案】

数学七年级试卷总结【含答案】

数学七年级试卷总结【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 46厘米D. 52厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个数是奇数?A. 151B. 152C. 153D. 154二、判断题(每题1分,共5分)1. 任何一个大于1的自然数,要么是质数,要么可以分解成几个质数的乘积。

()2. 等腰三角形的两腰相等,底角也相等。

()3. 一个数的平方根有两个,它们互为相反数。

()4. 两个负数相乘,结果是正数。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 2的平方根是______。

2. 一个三角形的内角和等于______。

3. 两个质数相乘,它们的积是______。

4. 如果一个数是9的倍数,那么这个数也是______的倍数。

5. 两个负数相除,结果是______。

四、简答题(每题2分,共10分)1. 请简述质数的定义。

2. 请简述偶数和奇数的定义。

3. 请简述等腰三角形的定义。

4. 请简述因数分解的定义。

5. 请简述平方根的定义。

五、应用题(每题2分,共10分)1. 请找出50以内的所有质数。

2. 请计算一个等腰三角形的周长,已知底边长为12厘米,腰长为15厘米。

3. 请将84分解成质因数。

4. 请找出一个数的平方根,这个数是49。

5. 请计算两个负数相乘的结果,这两个数分别是-3和-4。

六、分析题(每题5分,共10分)1. 请分析为什么质数在数学中很重要。

2. 请分析为什么等腰三角形的两腰相等,底角也相等。

数学七年级试卷总结【含答案】

数学七年级试卷总结【含答案】

数学七年级试卷总结【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 一个等差数列的前三项分别是2、5、8,那么第四项是?A. 7B. 10C. 11D. 123. 下列哪个选项是正确的?A. 1千米 = 1000米B. 1千克 = 1000克C. 1小时 = 60分钟D. 以上都对4. 如果一个三角形的两个内角分别是45度和90度,那么第三个内角是多少度?A. 45度B. 35度C. 55度D. 90度5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104二、判断题(每题1分,共5分)1. 2的平方根是2。

()2. 0是最小的自然数。

()3. 1是最大的质数。

()4. 任何数乘以0都等于0。

()5. 1千米等于1000克。

()三、填空题(每题1分,共5分)1. 2的立方是______。

2. 1小时等于______分钟。

3. 如果一个等差数列的公差是3,那么第10项和第1项的差是______。

4. 最大的两位数是______。

5. 0除以任何不为0的数都等于______。

四、简答题(每题2分,共10分)1. 请简述等差数列的定义。

2. 请简述质数的定义。

3. 请简述平行线的定义。

4. 请简述因数分解的定义。

5. 请简述绝对值的定义。

五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2、5、8,求这个数列的第10项。

2. 如果一个三角形的两个内角分别是45度和90度,求这个三角形的周长。

3. 一个数加上它的2倍再加上它的3倍等于120,求这个数。

4. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

5. 一个数除以5再乘以2等于10,求这个数。

六、分析题(每题5分,共10分)1. 分析并解答:一个等差数列的前三项分别是2、5、8,求这个数列的第10项。

2. 分析并解答:如果一个三角形的两个内角分别是45度和90度,求这个三角形的周长。

(完整版)苏教七年级下册期末复习数学必考知识点试卷经典套题及答案解析

(完整版)苏教七年级下册期末复习数学必考知识点试卷经典套题及答案解析

(完整版)苏教七年级下册期末复习数学必考知识点试卷经典套题及答案解析一、选择题1.下列计算正确的是( )A .a 2+a 2=a 4B .30=3C .x 6÷x 2=x 4D .(a 3)2=a 52.如图,图中的内错角的对数是( )A .3对B .4对C .5对D .6对3.已知关于x 的不等式(1)2a x ->的解集为21x a <-,则a 的取值范围是( ) A .0a > B .1a > C .0a < D .1a <4.已知关于x 的不等式(a ﹣1)x >1,可化为x <11a -,试化简|1﹣a|﹣|a ﹣2|,正确的结果是( )A .﹣2a ﹣1B .﹣1C .﹣2a+3D .15.若关于x 的不等式组3112122x x a x -⎧≤+⎪⎪⎨⎪+≥⎪⎩有解,且关于x 的分式方程122a x x x -+=---a 的解为正整数,则满足条件的所有整数a 的个数为( )A .2B .3C .4D .56.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③如果a <0、b <0,那么a +b <0;④平方等于4的数是2.A .1个B .2个C .3个D .4个7.定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为35n +;②当n 为偶数时,结果为2k n ;(其中k 是使2kn 为奇数的正整数),并且运算可以重复进行,例如,取26n =.则:若49n =,则第2021次“F 运算”的结果是( )A .68B .78C .88D .988.如图,在长方形 ABCD 中,E 为 AB 中点,以 BE 为边作正方形 BEFG ,边 EF 交 CD 于点H ,在边 BE 上取点 M 使BM=BC ,作 MN ∥BG 交 CD 于点 L ,交 FG 于点 N .欧几里得在《几何原本》中利用该图解释了22()()a b a b a b +-=-,连结AC ,记△ABC 的面积为1S ,图中阴影部分的面积为2S .若3a b =,则12S S 的值为 ( )A .32B .718C .34D .54二、填空题9.计算:223x x ________.10.已知三条不同的直线a 、b 、c 在同一平面内,下列四条命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥c .其中假命题的是___.(填写序号) 11.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为______.12.若22(91)(111)81012k--=⨯⨯,则k =___________. 13.关于x 、y 的二元一次方程组33123x y m x y +=+⎧⎨+=⎩的解满足不等式21x y -<,则m 的取值范围是_______.14.如图,一块长AB 为20m ,宽BC 为10m 的长方形草地ABCD 被两条宽都为1m 的小路分成四部分,每条小路的两边都互相平行,则分成的四部分绿地面积之和为__m 2.15.三角形的三边分别为3,1,8a -,则a 的取值范围是___________.16.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E ,∠EDB 的角平分线所在直线交AB 于点H ,交射线AG 于点F ,则∠B 与∠AFD 之间的数量关系是__.17.计算:(1)|﹣1|4+(﹣43)﹣2×(π﹣2021)0; (2)(2x 2y )2•(﹣7xy 2)÷(14x 4y 3);(3)20202﹣4040×2019+20192.18.因式分解:(1)2215x x +-(2)224327x y z y z -(3)()22214a a +- 19.解方程组:(1)331x y x y -=⎧⎨-=-⎩; (2)23163211x y x y +=⎧⎨-=⎩. 20.解不等式组:1(4)222323x x x ⎧+>⎪⎪⎨-+⎪≥⎪⎩. 三、解答题21.已知:如图,AE 平分∠BAD ,AB //CD ,CD 与AE 相交于点F ,∠CFE =∠E ,求证:AD //BC .证明:∵AB //CD (已知),∴∠1=∠ (两直线平行,同位角相等).∵AE 平分∠BAD (已知),∴∠1=∠2( ).∴∠2=∠CFE (等量代换).又∵∠CFE =∠E (已知),∴∠ =∠E (等量代换).∴AD //BC ( ).22.小宇骑自行车从家出发前往地铁2号线的B 站,与此同时,一列地铁从A 站开往B 站.3分钟后,地铁到达B 站,此时小宇离B 站还有2400米.已知A 、B 两站间的距离和小宇家到B 站的距离恰好相等,这列地铁的平均速度是小宇骑车的平均速度的5倍. (1)求小宇骑车的平均速度(2)如果此时另有一列地铁需10分钟到达B 站,且小宇骑车到达B 站后还需2分钟才能走到地铁站台候车,那么他要想乘上这趟地铁,骑车的平均速度至少应提高多少?(假定这两列地铁的平均速度相同)23.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组(2m,54)4(32)?T mT m m p⎩-≤->⎧⎨,恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?24.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由25.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等,例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①,若入射光线EF与反射光线GH平行,则α=________°.(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.(3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示)【参考答案】一、选择题1.C解析:C【分析】根据合并同类项、零指数幂、同底数幂的除法、幂的乘方运算法则逐一计算判断即可.【详解】解:A、a2+a2=2a2,故错误;B、30=1,故错误;C、x6÷x2=x4,故正确;D、(a3)2=a6,故错误;故选:C.【点睛】本题主要考查了合并同类项、零指数幂、同底数幂的除法、幂的乘方运算,熟记幂的运算法则是解答本题的关键.2.C解析:C【分析】利用内错角的定义分析得出答案.【详解】解:如图所示:内错角有:∠FOP与∠OPE,∠GOP与∠OPD,∠CPA与∠HOP,∠FOP与∠OPD,∠EPO与∠GOP都是内错角,故内错角一共有5对.故选:C.【点睛】此题主要考查了内错角的定义,正确把握内错角的定义是解题关键.3.B解析:B【分析】化系数为1时,不等号方向改变了,利用不等式基本性质可知1-a <0,所以可解得a 的取值范围.【详解】∵不等式(1-a )x >2的解集为21x a<-, 又∵不等号方向改变了,∴1-a <0,∴a >1;故选:B .【点睛】此题考查解一元一次不等式,解题关键在于掌握在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变. 4.B解析:B【分析】由不等式的基本性质3可得a ﹣1<0,即a <1,再利用绝对值的性质化简可得.【详解】解:∵(a ﹣1)x >1可化为x <11a -, ∴a ﹣1<0,解得a <1,则原式=1﹣a ﹣(2﹣a)=1﹣a ﹣2+a=﹣1,故选:B .【点睛】本题考查了绝对值的意义,以及不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变. 5.A解析:A【分析】解不等式组,根据“该不等式组有解”,得到关于a 的一元一次不等式,解分式方程,根据分式方程的解为正整数,找出符合条件的a 的值,从而求解.【详解】解:3112122xxa x-⎧≤+⎪⎪⎨⎪+≥⎪⎩①②,解不等式①,得:x≤3,解不等式②,得:x≥2-12 a,∵不等式组有解,∴2-12a≤3,解得:a≥-2,分式方程去分母,得:1-a+x=-a(x-2),解得:x=311aa-+,∵分式方程有正整数解,且x≠2,∴符合条件的整数a有-2;1,共2个,故选:A.【点睛】本题考查了分式方程的解,解一元一次不等式组,正确掌握解分式方程的方法和解一元一次不等式组方法是解题的关键.6.B解析:B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据两负数的和仍然为负数可对③进行判断;根据平方根的定义对④进行判断.【详解】两条平行直线被第三条直线所截,内错角相等,所以①为假命题;如果∠1和∠2是对顶角,那么∠1=∠2,所以②为真命题;如果a<0、b<0,那么a+b<0,所以③为真命题;平方等于4的数是2或−2,所以④为假命题.故选:B.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.D解析:D【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F 运算”的结果.【详解】解:本题提供的“F 运算”,需要对正整数n 分情况(奇数、偶数)循环计算,由于n =49为奇数应先进行F ①运算,即3×49+5=152(偶数),需再进行F ②运算,即152÷23=19(奇数),再进行F ①运算,得到3×19+5=62(偶数),再进行F ②运算,即62÷21=31(奇数),再进行F ①运算,得到3×31+5=98(偶数),再进行F ②运算,即98÷21=49,再进行F ①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F 运算”的结果是98.故选:D .【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.8.C解析:C【分析】结合图形,直接用含a,b的式子表示出1S ,2S ,在将3a b =代入,即可求出12S S . 【详解】解:由图可知:阴影部分的面积为222S a b , △ABC 的面积为2111(2)()22AB BC a a b a ab S =⋅=⨯⨯-=-, 又∵3a b =,∴21222936a ab b b S b =-=-=,22222298a b b b b S =-=-=, ∴21226384S b S b ==, 故选择:C.【点睛】本题主要考查了整式的运算,根据图形,正确的表示出各个图形的面积表达式是解题的关键二、填空题9.6x3【分析】根据单项式乘单项式的计算法则进行计算求解.【详解】解:原式=6x3,故答案为:6x3.【点睛】本题考查单项式乘单项式,掌握计算法则是解题基础.10.③【分析】根据两直线的位置关系一一判断即可.【详解】解:①如果a∥b,a⊥c,那么b⊥c,正确,是真命题;②如果b∥a,c∥a,那么b∥c,正确,是真命题;③如果b⊥a,c⊥a,那么b⊥c,错误,应该是b∥c,故原命题是假命题;④如果b⊥a,c⊥a,那么b∥c,正确,是真命题.假命题有③,故答案为:③.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.11.100°【分析】利用三角形的外角性质列方程计算,再根据三角形内角与外角的关系得到它的最大内角度数.【详解】解:设三角形三个外角的度数分别为2x,3x,4x.根据多边形的外角和是360度,列方程得:2x+3x+4x=360°,解得:x=40°,则最小外角为2×40°=80°,则最大内角为:180°−80°=100°.故答案为:100°.【点睛】由多边形的外角和是360°,可求得最大内角的相邻外角是80°.12.10【分析】利用平方差公式分解因式后化简可求解.【详解】解:∵22(91)(111)81012k--=⨯⨯, ∴22(91)(111)81012k --=⨯⨯ (91)(91)(111)(111)81012+-+-=⨯⨯ =810101281012⨯⨯⨯=⨯⨯ 10=故答案为10.【点睛】本题主要考查因式分解的应用,将分子分解因式是解题的关键.13.m <1【分析】将方程组中的两个方程作差,即可得到2x-y=3m-2,再根据2x-y <1,可知3m-2<1,从而可以求得m 的取值范围.【详解】解:33123x y m x y ++⎧⎨+⎩=①=②, ①-②,得2x-y=3m-2,∵2x-y <1,∴3m-2<1,解得,m <1,故答案为:m <1.【点睛】本题考查解一元一次不等式、二元一次方程的解,解答本题的关键是明确题意,明确它们各自的解答方法.14.【分析】直接利用平移道路的方法得出草地的绿地面积=(20-1)×(10-1),进而得出答案.【详解】解:由图象可得:这块草地的绿地面积为:(20﹣1)×(10﹣1)=171(m 2). 故答案为:171.【点睛】本题主要考查了生活中的平移现象,正确平移道路是解题关键.15.【分析】根据三角形三边关系解答.【详解】由题意得:8-3<a-1<8+3,解得:,故答案为:.【点睛】此题考查三角形的三边关系:三角形任意两边的和都大于第三边.解析:612a <<【分析】根据三角形三边关系解答.【详解】由题意得:8-3<a-1<8+3,解得:612a <<,故答案为:612a <<.【点睛】此题考查三角形的三边关系:三角形任意两边的和都大于第三边.16.∠AFD=90°﹣∠B【分析】利用角平分线的定义可得∠BAF =∠BAC ,∠HDB =∠EDB ,由于DE ∥AC ,则∠EDB =∠C ,可得∠HDB =∠C ;利用三角形的外角等于和它不相邻的两个内角的和可得解析:∠AFD =90°﹣12∠B【分析】利用角平分线的定义可得∠BAF =12∠BAC ,∠HDB =12∠EDB ,由于DE ∥AC ,则∠EDB =∠C ,可得∠HDB =12∠C ;利用三角形的外角等于和它不相邻的两个内角的和可得∠AHF =∠B +∠HDB ,在△AHF 中,利用三角形的内角和定理列出关系式后整理即可得出结论.【详解】解:∵AG 平分∠BAC ,∴∠HAF =12∠BAC .∵DH 平分∠EDB ,∴∠HDB =12∠EDB .∵DE ∥AC ,∴∠EDB =∠C .∴∠HDB =12∠C .∵∠AHF 为△HDB 的外角,∴∠AHF =∠B +∠HDB .在△AHF 中,由三角形的内角和定理可得:∠BAF +∠AHF +∠AFD =180°.∴12∠BAC +∠B +∠HDB +∠AFD =180°. ∴12∠BAC +∠B +12∠C +∠AFD =180°.∵在△ABC 中,∠BAC +∠B +∠C =180°, ∴12∠BAC +12∠C =90°-12∠B .∴90°-12∠B +∠B +∠AFD =180°. ∴12∠B +∠AFD =90°.∴∠AFD =90°-12∠B .故答案为:∠AFD =90°-12∠B .【点睛】本题主要考查了三角形的内角和定理及其推论,角平分线的定义,平行线的性质.充分利用三角形的内角和等于180°是解题的关键. 17.(1);(2);(3)1【分析】(1)先根据有理数的乘方,负整数指数幂,零指数幂进行计算,再求出答案即可;(2)先算乘方,再根据整式的乘除法则算乘除即可;(3)先根据平方差公式进行变形,再求解析:(1)9116;(2)2xy -;(3)1 【分析】(1)先根据有理数的乘方,负整数指数幂,零指数幂进行计算,再求出答案即可; (2)先算乘方,再根据整式的乘除法则算乘除即可;(3)先根据平方差公式进行变形,再求出答案即可.【详解】解:(1)2404|1|(2021)3π-⎛⎫-+-⨯- ⎪⎝⎭ 91116=+⨯ 9116=+ 9116=; (2)22243(2)(7)(14)x y xy x y ⋅-÷422434(7)(14)x y xy x y =⋅-÷2xy =-;(3)222020404020192019-⨯+2(20202019)=-21=1=.【点睛】本题考查了有理数的乘方,负整数指数幂,零指数幂,整式的混合运算,实数的混合运算,平方差公式等知识点,能综合运用知识点进行计算是解此题的关键.18.(1);(2);(3)【分析】(1)直接根据十字相乘法分解因式进行分解即可;(2)先提公因式,再对余下的多项式利用平方差公式继续分解即可; (3)先利用平方差公式进行分解,再对公因式利用完全平解析:(1)()()53x x +-;(2)()()2333y z x y x y +-;(3)()()2211+-a a 【分析】(1)直接根据十字相乘法分解因式进行分解即可;(2)先提公因式23y z ,再对余下的多项式利用平方差公式继续分解即可;(3)先利用平方差公式进行分解,再对公因式利用完全平方公式继续分解即可.【详解】解:(1)2215(5)(3)x x x x +-=+-;(2)224327x y z y z -2223(9)=-y z x y23(3)(3)=+-y z x y x y ;(3)()22214a a +- 22[(1)2][(1)2]=+++-a a a a22(21)(21)=++-+a a a a22(1)(1)=+-a a【点睛】本题考查了用十字相乘法、提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1),①-②得:2y=4,解得:y=2,把y=2代入①得:x-2=3,解析:(1)52xy=⎧⎨=⎩;(2)52xy=⎧⎨=⎩【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)331x yx y-=⎧⎨-=-⎩①②,①-②得:2y=4,解得:y=2,把y=2代入①得:x-2=3,解得:x=5,则方程组的解为52xy=⎧⎨=⎩;(2)2316 3211x yx y+=⎧⎨-=⎩①②,①×2+②×3得:13x=65,解得:x=5,把x=5代入①得:10+3y=16,解得:y=2,则方程组的解为52xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解不等式①得:,解不等式②得:,不等式组的解集为.【点睛】解析:12x>【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】()14222323x x x ⎧+>⎪⎪⎨-+⎪≥⎪⎩①② 解不等式①得:0x >,解不等式②得:12x >,∴不等式组的解集为12x >.【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.三、解答题21.CFE ;角平分线的定义;2;内错角相等,两直线平行;【分析】第一空,由平行线的性质:两直线平行,同位角相等可得∠1=∠CFE ;第二空,根据角平分线的定义即可得出答案;第三空,由已知条件∠CFE = 解析:CFE ;角平分线的定义;2;内错角相等,两直线平行;【分析】第一空,由平行线的性质:两直线平行,同位角相等可得∠1=∠CFE ;第二空,根据角平分线的定义即可得出答案;第三空,由已知条件∠CFE =∠E ,等量代换即可得出答案;第四空,由平行线的判定即可得出答案.【详解】证明:∵AB ∥CD (已知),∴∠1=∠CFE (两直线平行,同位角相等).∵AE 平分∠BAD (已知),∴∠1=∠2(角平分线的定义).∴∠2=∠CFE (等量代换).又∵∠CFE =∠E (已知),∴∠2=∠E (等量代换).∴AD ∥BC (内错角相等,两直线平行).故答案为:CFE ;角平分线的定义;2;内错角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,解题的关键在于能够熟知相关知识点进行证明求解.22.(1)小宇骑车的平均速度是米/分;(2)至少应提高米/分【分析】(1)设小明骑车的平均速度是x 米/分,、两站间的距离和小宇家到站的距离恰好相等,列出方程 3x+2400=3×5 x ,解方程即可得解析:(1)小宇骑车的平均速度是200米/分;(2)至少应提高100米/分【分析】(1)设小明骑车的平均速度是x 米/分,A 、B 两站间的距离和小宇家到B 站的距离恰好相等,列出方程 3x +2400=3×5 x ,解方程即可得解;(2)设小明的速度提高y 米/分,根据题意列出一元一次不等式(102)(200)2400y -⨯+≥,即可得出答案;【详解】解:(1)设小宇骑车的平均速度是x 米/分.根据题意,得3240035x x +=⨯解得200x =答:小宇骑车的平均速度是200米/分.(2)设小宇骑车的平均速度提高y 米/分.根据题意,得(102)(200)2400y -⨯+≥解得100y ≥.答:小宇骑车的平均速度至少应提高100米/分.【点睛】本题考查了一元一次方程的应用及一元一次不等式的应用,弄清题中的不等及相等关系是解本题的关键.23.(1)①a=1,b=3;②-2≤p <-;(2)a=2b .【分析】(1)①按题意的运算可得方程组,即可求得a 、b 的值;②按题意的运算可得不等式组,即可求得p 的取值范围;(2)由题意可得ax+2解析:(1)①a=1,b=3;②-2≤p <-13;(2)a=2b . 【分析】(1)①按题意的运算可得方程组212{4413a b a b --=-+-=,即可求得a 、b 的值; ②按题意的运算可得不等式组,即可求得p 的取值范围; (2)由题意可得ax+2by-1= ay+2bx-1,从而可得a="2b" ;【详解】(1)①由题意可得2124413a b a b --=-+-=⎧⎨⎩ ,解得;②由题意得,解得 ,因为原不等式组有2个整数解,所以, 所以 ;(2)T (x ,y )="ax+2by-1," T (y ,x )="ay+2bx-1" ,所以ax+2by-1= ay+2bx-1,所以(a-2ba )x-(a-2b )y=0,(a-2b )(x-y )=0,所以a=2b24.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.25.(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m 或150°【分析】(1)根据EF ∥GH ,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠解析:(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m 或150°【分析】(1)根据EF ∥GH ,得到∠FEG +∠EGH =180°,再根据∠1+∠2+∠FEG =180°,∠3+∠4+∠EGH =180°,以及∠1=∠2,∠3=∠4,可得∠2+∠3=90°,即可求出α=90°; (2)在△BEG 中,∠2+∠3+α=180°,可得∠2+∠3=180°-α,根据入射光线、反射光线与镜面所夹的角对应相等可得,∠MEG =2∠2,∠MGE =2∠3,在△MEG 中,∠MEG +∠MGE +β=180°,可得α与β的数量关系;(3)分两种情况画图讨论:①当n =3时,根据入射光线、反射光线与镜面所夹的角对应相等,及△GCH 内角和,可得γ=90°+m .②当n =2时,如果在BC 边反射后与EF 平行,则α=90°,与题意不符;则只能在CD 边反射后与EF 平行,根据三角形外角定义,可得∠G =γ-60°,由EF ∥HK ,且由(1)的结论可得,γ=150°.【详解】解:(1)在△BEG 中,∠2+∠3+α=180°,∵EF ∥GH ,∴∠FEG +∠EGH =180°,∵∠1+∠2+∠FEG =180°,∠3+∠4+∠EGH =180°,∴∠1+∠2+∠3+∠4=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴α=180°-(∠2+∠3)=90°;(2)β=2α-180°,理由如下:在△BEG 中,∠2+∠3+α=180°,∴∠2+∠3=180°-α,∵∠1=∠2,∠1=∠MEB ,∴∠2=∠MEB ,∴∠MEG=2∠2,同理可得,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,∴β=180°-(∠MEG+∠MGE)=180°-(2∠2+2∠3)=180°-2(∠2+∠3)=180°-2(180°-α)=2α-180°;(3)90°+m或150°.理由如下:①当n=3时,如下图所示:∵∠BEG=∠1=m,∴∠BGE=∠CGH=60°-m,∴∠FEG=180°-2∠1=180°-2m,∠EGH=180°-2∠BGE=180°-2(60°-m),∵EF∥HK,∴∠FEG+∠EGH+∠GHK=360°,则∠GHK=120°,则∠GHC=30°,由△GCH内角和,得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,如下图所示:根据三角形外角定义,得∠G=γ-60°,由EF∥HK,且由(1)的结论可得,∠G=γ-60°=90°,则γ=150°.综上所述:γ的度数为:90°+m或150°.【点睛】本题考查了平行线的性质、列代数式,解决本题的关键是掌握平行线的性质,注意分类讨论思想的利用.。

(完整版)苏教七年级下册期末复习数学必考知识点试卷经典及答案解析

(完整版)苏教七年级下册期末复习数学必考知识点试卷经典及答案解析

(完整版)苏教七年级下册期末复习数学必考知识点试卷经典及答案解析一、选择题1.下列运算正确的是( )A .()211a a a +=+B .()325a a = C .()222a b a b +=+D .523a a a ÷=2.如图所示,下列说法正确的是( )A .1∠和2∠是内错角B .1∠和2∠是同旁内角C .1∠和5∠是同位角D .1∠和4∠是内错角 3.不等式250x -≤的正整数解有( )A .4个B .3个C .2个D .1个 4.下列式子中,能用平方差公式运算的是( )A .()()x y x y -+B .()()x y y x -+-C .()()x y x y +--D .()()x y x y --+ 5.若不等式组14802x x x m +>-⎧⎪⎨->⎪⎩无解,则m 取值范围是( ) A .3m ≥ B .3m > C .3m ≤ D .3m < 6.给出下列4个命题:①垂线段最短;②互补的两个角中一定是一个为锐角,另一个为钝角;③同旁内角相等,两直线平行;④同旁内角的两个角的平分线互相垂直.其中真命题的个数为( )A .1B .2C .3D .47.观察下列等式:①32﹣12=2×4②52﹣32=2×8③72﹣52=2×12……那么第n (n 为正整数)个等式为( )A .n 2﹣(n ﹣2)2=2×(2n ﹣2)B .(n +1)2﹣(n ﹣1)2=2×2nC .(2n )2﹣(2n ﹣2)2=2×(4n ﹣2)D .(2n +1)2﹣(2n ﹣1)2=2×4n8.如图,在△ABC 中,∠C =90°,沿DE 翻折使得A 与B 重合,∠CBD =26°,则∠ADE 的度数是( )A .57°B .58°C .59°D .60°二、填空题9.计算(﹣2x 3y 2)3•4xy 2=_____.10.用一组数a ,b ,c 说明命题“若a b <,则ac bc <”是假命题,则a ,b ,c 可以______.11.若一个多边形的内角和与外角和的比为7:2,则这个多边形是_________边形; 12.若20182019a x =+,20182020b x =+,20182021c x =+,则多项式222a b c ab ac bc ++---的值为______________.13.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m n -的值为________. 14.如图,等腰△ABC 中,AB =AC =10,BC =12,点P 是底边BC 上一点,则AP 的最小值是________15.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是__________.16.如图,在△ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分∠CAD ,交BC 于点E .过点E 作EF ∥AC 分别交,AB AD 于点,F G ,则下列结论:①90BAC ∠=︒;②∠AEF =∠BEF ;③∠BAE =∠BEA ;④2B AEF ∠=∠;⑤∠CAD =2∠AEC ﹣180°.其中正确的有 ___.17.计算或化简:(1)103(2021)(2)12-⎛⎫-++- ⎪⎝⎭ (2)()341422102a a a a a +÷-⋅ 18.因式分解:(1)2484x y xy y -+ (2)22214a a19.解方程组 (1)29y x x y =⎧⎨+=⎩(2)34423 x yx y+=⎧⎨-=⎩20.解关于x的不等式1132(1)5 xxx+⎧->⎪⎨⎪-≤⎩三、解答题21.完成下面的证明过程.已知:如图,点E、F分别在AB、CD上,AD分别交EC、BF于点H、G,∠1=∠2,∠B=∠C.求证∠A=∠D.证明:∵∠1=∠2(已知),∠2=∠AGB(),∴∠1=.∴EC∥BF().∴∠B=∠AEC().又∵∠B=∠C(已知),∴∠AEC=.∴().∴∠A=∠D().22.某共享单车运营公司准备采购一批共享单车投入市场,而共享单车安装公司由于抽调不出足够熟练工人,准备招聘一批新工人.已知1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)共享单车安装公司原有熟练工a人,现招聘n名新工人(a>n),由于时间紧急,工人们安装的共享单车中不能正常投入运营的占5%,若要求必须在30天内交付运营公司5700辆合格品投入市场,求a 、n 的所有可能结果.23.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值. 三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值; 乙同学:将原方程组中的两个方程相加,再求k 的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值. (1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.24.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,(1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________(3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其反向延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO 的度数.25.模型规律:如图1,延长CO 交AB 于点D ,则1BOC B A C B ∠=∠+∠=∠+∠+∠.因为凹四边形ABOC 形似箭头,其四角具有“BOC A B C ∠=∠+∠+∠”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,60,20,30A B C ∠=︒∠=︒∠=︒,则BOC ∠=__________︒;②如图3,A B C D E F ∠+∠+∠+∠+∠+∠=__________︒;(2)拓展应用:①如图4,ABO ∠、ACO ∠的2等分线(即角平分线)1BO 、1CO 交于点1O ,已知120BOC ∠=︒,50BAC ∠=︒,则1BO C ∠=__________︒;②如图5,BO 、CO 分别为ABO ∠、ACO ∠的10等分线1,2,3,,(,)89i =⋯.它们的交点从上到下依次为1O 、2O 、3O 、…、9O .已知120BOC ∠=︒,50BAC ∠=︒,则7BO C ∠=__________︒;③如图6,ABO ∠、BAC ∠的角平分线BD 、AD 交于点D ,已知120,44BOC C ∠=︒∠=︒,则ADB =∠__________︒;④如图7,BAC ∠、BOC ∠的角平分线AD 、OD 交于点D ,则B 、C ∠、D ∠之同的数量关系为__________.【参考答案】一、选择题1.D解析:D【分析】根据单项式乘多项式、幂的乘方运算法则、完全平方公式以及同底数幂的除法运算法则计算得出答案.【详解】解:A、a(a+1)=a2+a,故此选项错误;B、(a2)3=a6,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、a5÷a2=a3,故此选项正确;故选:D.【点睛】此题主要考查了单项式乘多项式、幂的乘方运算法则、完全平方公式以及同底数幂的除法,正确掌握运算法则是解题关键.2.B解析:B【分析】利用“三线八角”的定义分别判断后即可确定正确的选项.【详解】解:A、∠1和∠2是同旁内角,故错误;B、∠1和∠2是同旁内角,正确;C、∠1和∠5不是同位角,故错误;D、∠1和∠4不是同旁内角,故错误,故选:B.【点睛】本题考查了同位角、内错角及同旁内角的定义,解题的关键是了解三类角的定义,难度不大.3.C解析:C【分析】根据解一元一次不等式的方法可以解答本题.【详解】解:250x-≤,解得x<5 2∴正整数解为1、2,故选:C.【点睛】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法,利用不等式的性质解答.4.A解析:A【分析】根据平方差公式(a+b)(a-b)=a2-b2判断,左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;右边是相同项的平方减去相反项的平方.【详解】解:A选项,原式=x2-y2,符合题意;B选项,没有相反项,不符合题意;C选项,没有相同项,不符合题意;D选项,没有相同的项,不符合题意;故选:A.【点睛】本题考查了平方差公式,掌握平方差公式的结构特点是解题的关键.5.A解析:A【分析】首先解第一个不等式,再将第二个不等式解出,然后根据不等式组无解确定m的范围.【详解】解:1482x xx m+>-⎧⎪⎨->⎪⎩①②解不等式①,得:3x<解不等式②,得:x m>,因为不等式组无解,所以3m≥,故选:A.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.A解析:A【分析】①根据垂线段的性质即可判断,②如果两个都是直角则可判断,③根据平行线的判定定理可判断,④因为没说明两直线平行,所以不能得出.【详解】①应该是连接直线为一点与直线上的所有线段,垂线段最短,所以错误;②如果两个都是直角则可判断“互补的两个角中一定是一个为锐角,另一个为钝角”错误; ③根据平行线的判定定理可判断同旁内角相等,两直线平行正确;④因为没说明两直线平行,所以不能得出,故错误.故选A【点睛】本题考查垂线段的性质、平行线的判定,解题的关键是掌握垂线段的性质、平行线的判定. 7.D解析:D【分析】根据前3个等式归纳类推出一般规律即可得.【详解】解:①223124-=⨯可改写成22(211)(211)2(41)⨯+-⨯-=⨯⨯,②225328-=⨯可改写成22(221)(221)2(42)⨯+-⨯-=⨯⨯,③2275212-=⨯可改写成22(231)(231)2(43)⨯+-⨯-=⨯⨯,归纳类推得:第n (n 为正整数)个等式为22(21)(21)24n n n +--=⨯,故选:D .【点睛】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.8.B解析:B【分析】求出∠CDB 的度数,再根据翻折求出∠ADE 的度数即可.【详解】解:∵∠C =90°,∠CBD =26°,∴∠CDB =90°-∠CBD =64°,∴∠ADB =116°,由翻折可知,∠ADE=∠BDE=58°;故选:B .【点睛】本题考查了轴对称和三角形内角和,解题关键是明确翻折角相等的性质,熟练运用三角形内角和解决问题.二、填空题9.﹣32x 10y 8【详解】试题分析:分析:先算乘方,再算乘法(﹣2x 3y 2)3=(﹣2)3(x 3)3(y 2)3=﹣8x 9y 6,所以(﹣2x 3y 2)3•4xy 2=(﹣8x 9y 6)•4xy 2=﹣32x 10y 8.解:(﹣2x 3y 2)3•4xy 2=(﹣8x 9y 6)•4xy 2=﹣32x 10y 8点评:本题考查整式的乘法混合运算,按照运算顺序先算乘方再算乘法.10.例如1,2,1-(符合条件即可)【分析】由不等式的基本性质进行判断,即可得到答案.【详解】解:当a b <,0c >时,∴ac bc <是真命题;当a b <,0c ≤时,∴ac bc <是假命题;∴a ,b ,c 可以为:1、2、1-.故答案为:例如1,2,1-(符合条件即可).【点睛】本题考查了不等式的基本性质,以及判断命题的真假,解题的关键是掌握不懂呢过是的基本性质进行判断.11.九【分析】根据多边形的内角和公式(n ﹣2)•180°,外角和等于360°,列式求解即可.【详解】解:设多边形的边数是n ,则:(n ﹣2)•180°:360°=7:2,整理得:n ﹣2=7,解得:n =9.故答案为九.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理并列出比例式是解题的关键.12.3【分析】将多项式多项式a 2+b 2+c 2﹣ab ﹣bc ﹣ac 分解成12[(a ﹣b )2+(a ﹣c )2+(b ﹣c )2],再把a ,b ,c 代入可求.【详解】解:20182019201820201a b x x -=+--=-; 20182020201820211b c x x -=+--=-;20182019201820212a c x x -=+--=-;∵a 2+b 2+c 2﹣ab ﹣bc ﹣ac =12(2a 2+2b 2+2c 2﹣2ab ﹣2ac ﹣2bc )=12[(a ﹣b )2+(a ﹣c )2+(b ﹣c )2],∴a 2+b 2+c 2﹣ab ﹣bc ﹣ac =12(1+4+1)=3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是将多项式配成完全平方形式.13.2【分析】根据题意,将21x y =⎧⎨=⎩代入二元一次方程组81mx ny nx my +=⎧⎨-=⎩,得到关于m 、n 的二元一次方程组,求出后代入即可.【详解】将21x y =⎧⎨=⎩代入二元一次方程组81mx ny nx my +=⎧⎨-=⎩, 得2821m n n m +=⎧⎨-=⎩, 解得32m n =⎧⎨=⎩,=2,故答案为:2.【点睛】本题主要考查了解二元一次方程组,算术平方根,解题关键是熟练掌握二元一次方程组的解法.14.B解析:8【分析】根据等腰三角形三线合一性质及垂线段最短性质,可得当点P 是底边BC 的中点时,AP 的值最小,在利用勾股定理解题即可.【详解】解:等腰△ABC 中,AB =AC =10,根据垂线段最短得,当点P 是底边BC 的中点时,AP 的值最小根据三线合一性质得,1112622BP BC ==⨯= AP BP ⊥8AP ∴故答案为:8.【点睛】本题考查等腰三角形、三线合一性质、垂线段最短、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.1<x <6【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边之差小于第三边可得8-5<1+2x <5+8,解不等式组即可.【详解】根据三角形的三边关系可得:8-5<1+2解析:1<x <6【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边之差小于第三边可得8-5<1+2x <5+8,解不等式组即可.【详解】根据三角形的三边关系可得:8-5<1+2x <5+8,解得:1<x <6.故答案为:1<x <6.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知两边的差,而小于已知两边的和.16.①③④⑤【分析】证明即可判断①,根据平行线的性质,可得,判断与的大小关系即可判断②,根据三角形的外角性质可以判断③,根据平行线的性质以及角度的和差关系,证明即可判断④,根据三角形的外角性质可判断解析:①③④⑤【分析】证明90CAD BAD ∠+∠=︒即可判断①,根据平行线的性质,可得,AEF CAE FEB ACB ∠=∠∠=∠,判断CAE ∠与ACB ∠的大小关系即可判断②,根据三角形的外角性质可以判断③,根据平行线的性质以及角度的和差关系,证明CAD B ∠=∠即可判断④,根据三角形的外角性质可判断⑤.【详解】 ①AD 是BC 边上的高,90ADC ADB ∴∠=∠=︒90ACB CAD ∴∠+∠=︒,ACB BAD ∠=∠,90CAD BAD ∴∠+∠=︒即90BAC ∠=︒故①正确;②//AC EF,AEF CAE FEB ACB ∴∠=∠∠=∠CAE ∠与ACB ∠无法判断大小,故②不正确; ③ AE 平分∠CAD ,CAE DAE ∴∠=∠,ACB BAD ∠=∠,BAE BAD DAE ACB CAE ∴∠=∠+∠=∠+∠,BEA ACE CAE ∠=∠+∠,BAE BEA ∴∠∠=,④//AC EF ,CAE AEF ,2CAD CAE ∠=∠,2CAD AEF ∴∠=∠,90BAC ∠=︒,90ADC ∠=︒,9090CAD C B ∠=︒-∠=︒-∠,CAD B ∴∠=∠,∴2B AEF ∠=∠,故④正确; ⑤1902AEC EAD ADC CAD ∠=∠+∠=∠+︒, 2180AEC CAD ∴∠=∠+︒,即2180CAD AEC ∠=∠-︒,故⑤正确.综上所述,正确的有①③④⑤.故答案为:①③④⑤.【点睛】本题考查了平行线的性质,三角形外角性质,角平分线的定义,灵活运用以上知识是解题的关键.17.(1)-5;(2)【分析】(1)根据零次幂的性质、负整数指数幂的性质、乘方的意义计算,再计算加减即可;(2)根据幂的乘方运算法则计算,再计算同底数幂的乘、除法,最后合并.【详解】解:(1)解析:(1)-5;(2)122a【分析】(1)根据零次幂的性质、负整数指数幂的性质、乘方的意义计算,再计算加减即可; (2)根据幂的乘方运算法则计算,再计算同底数幂的乘、除法,最后合并.【详解】解:(1)103(2021)(2)12-⎛⎫-++- ⎪⎝⎭ =128+-=-5;(2)()341422102a a a a a +÷-⋅ =2121122a a a +-=122a【点睛】此题主要考查了整式的混合运算,有理数的混合运算,关键是掌握各运算法则. 18.(1);(2)【分析】(1)先提出公因式,再利用完全平方公式,即可求解;(2)先利用平方差公式,再利用完全平方公式,即可求解.【详解】解:(1);(2).【点睛】本题主要解析:(1)()241y x -;(2)()()2211a a -+【分析】(1)先提出公因式,再利用完全平方公式,即可求解;(2)先利用平方差公式,再利用完全平方公式,即可求解.【详解】解:(1)2484x y xy y -+()2421y x x =-+()241y x =- ;(2)22214a a 221212a a a a 2211a a .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的各种因式分解的方法,并根据多项式的特征选用合适的方法是解题的关键.19.(1);(2)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【详解】解:(1),将①代入②,得:,解得:,代入①中,解得:,所以方程组的解为;(2),①+解析:(1)36x y =⎧⎨=⎩;(2)212x y =⎧⎪⎨=-⎪⎩【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【详解】解:(1)29y x x y =⎧⎨+=⎩①②, 将①代入②,得:29x x +=,解得:3x =,代入①中,解得:6y =,所以方程组的解为36x y =⎧⎨=⎩;(2)34423x y x y +=⎧⎨-=⎩①②, ①+②×2,得:510x =,解得:2x =,代入②中, 解得:12y , 所以方程组的解为212x y =⎧⎪⎨=-⎪⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】先求出每个不等式解集,再求出不等式组的解集即可.【详解】解:解不等式,得:解不等式,得:所以不等式组的解集为.【点睛】 本题考查解一元一次不等式组,正确求出每一个不等式解集是基解析:312x -≤<-【分析】先求出每个不等式解集,再求出不等式组的解集即可. 【详解】解:解不等式113x x +->,得:1x <- 解不等式2(1)5x -≤,得:32x ≥- 所以不等式组的解集为312x -≤<-. 【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.三、解答题21.对顶角相等;;同位角相等,两直线平行;两直线平行,同位角相等;;;内错角相等,两直线平行;两直线平行,内错角相等【分析】求出∠1=∠AGB ,根据平行线的判定得出EC ∥BF ,根据平行线的性质得出∠解析:对顶角相等;AGB∠;同位角相等,两直线平行;两直线平行,同位角相等;C∠;//AB CD;内错角相等,两直线平行;两直线平行,内错角相等【分析】求出∠1=∠AGB,根据平行线的判定得出EC∥BF,根据平行线的性质得出∠B=∠AEC,求出∠AEC=∠C,根据平行线的判定得出AB∥CD即可证明.【详解】证明:∵∠1=∠2(已知),∠2=∠AGB( 对顶角相等 ),∴∠1=∠AGB.∴EC∥BF( 同位角相等,两直线平行 ).∴∠B=∠AEC( 两直线平行,同位角相等 ).又∵∠B=∠C(已知),∴∠AEC=∠C.∴ AB∥CD ( 内错角相等,两直线平行 ).∴∠A=∠D( 两直线平行,内错角相等 ).【点睛】考查平行线的判定与性质,掌握平行线的判定定理与性质定理是解题的关键.22.(1)每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2),,【分析】(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y 辆共享单车,根据“1名熟解析:(1)每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2)116na=⎧⎨=⎩,414na=⎧⎨=⎩,712na=⎧⎨=⎩【分析】(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据“1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多”列方程组求解即可;(2)根据“在30天内交付运营公司5700辆合格共享单车”得出含有n和a的方程,整理得出n和a的关系,由a>n解得a的范围,再根据n、a均为正整数可得答案.【详解】解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意,得:22823x yx y+=⎧⎨=⎩解得128xy=⎧⎨=⎩,答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车; (2)根据题意,得:30×(8n +12a )×(1-5%)=5700, 整理,得:3252n a =-,∵a >n , ∴3252a a >-, 解得a >10,∵n 、a 均为正整数,∴116n a =⎧⎨=⎩,414n a =⎧⎨=⎩,712n a =⎧⎨=⎩ 【点睛】本题主要考查二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系.23.(1)见解析;(2)a 和b 的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,,①解析:(1)见解析;(2)a 和b 的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙,3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(1)∠AEB 的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN 与直线PQ 垂直相交于O ,得到∠AOB =90°,根据三角形的外角的性质得到∠解析:(1)∠AEB 的大小不会发生变化,∠ACB =45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN 与直线PQ 垂直相交于O ,得到∠AOB =90°,根据三角形的外角的性质得到∠PAB +∠ABM =270°,根据角平分线的定义得到∠BAC =12∠PAB ,∠ABC =12∠ABM ,于是得到结论;(2)由于将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,得到∠CAB =∠BAQ ,由角平分线的定义得到∠PAC =∠CAB ,即可得到结论;根据将△ABC 沿直线AB 折叠,若点C 落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.25.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0 【分析】(1)①根据题干中的等式直接计算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根据题干中的等式直接计算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入计算即可;(2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入计算可得;②同理可得∠BO7C=∠BOC-17(∠BOC-∠A),代入计算即可;③利用∠ADB=180°-(∠ABD+∠BAD)=180°-12(∠BOC-∠C)计算可得;④根据两个凹四边形ABOD和ABOC得到两个等式,联立可得结论.【详解】解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1 =∠BOC-12(∠ABO+∠ACO)=∠BOC-12(∠BOC-∠A)=∠BOC-12(120°-50°)=120°-35°=85°;②∠BO7C=∠BOC-17(∠BOC-∠A)=120°-17(120°-50°)=120°-10°=110°;③∠ADB=180°-(∠ABD+∠BAD)=180°-12(∠BOC-∠C)=180°-12(120°-44°)=142°;④∠BOD=12∠BOC=∠B+∠D+12∠BAC,∠BOC=∠B+∠C+∠BAC,联立得:∠B-∠C+2∠D=0.【点睛】本题主要考查了新定义—箭头四角形,利用了三角形外角的性质,还考查了角平分线的定义,图形类规律,解题的关键是理解箭头四角形,并能熟练运用其性质.。

七年级数学总复习试卷与答案

七年级数学总复习试卷与答案

七年级数学(满分:150分时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入答题纸中表格相应的空格内)1.把方程20.3120.30.7x x+--=的分母化为整数,结果应为(▲)A.231237x x+--= B.10203102037x x+--= C.1020310237x x+--= D.2312037x x+--=2.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短。

正确的有( ▲)3.下列运算中,正确的是( ▲)A.bababa2222=+- B.22=-aaC.422523aaa=+ D.abba22=+4.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( ▲)5.下列各数是无理数的是(A.-2 B.227C.0.010010001 D.π6.如图,AD⊥BC,ED⊥AB,表示点D到直线AB距离的是(▲)A.线段AD的长度B.线段AE的长度C.线段BE的长度D.线段DE的长度7.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高( ▲)A.-3℃B. 7℃C. 3℃D.-7℃A.1个 B.2个 C.3个 D.4个ABED C8.如图,由白色小正方形和黑色小正方形组成的图形.则第6个图形中白色小正方形和黑 色小正方形的个数总和等于( ▲ ) A.60 B.58 C.45 D.40二、填空题(每题3分,计30分,请把你的正确答案填入答题纸中相应的横线上) 9.据统计,全球每分钟约有8500000吨污水排入江河湖海,则每分钟的排污量用科学记数法表示应是 吨. 10.单项式34a b π-的次数是 次.11.如果A 2618'∠=︒,那么A ∠的余角为 °(结果化成度).12.已知3x y -=,则()()12+-+-x y y x 的值为___________ .13.用边长为1的正方形,做了一套七巧板,拼成如图(1)所示的图形,则图②中阴影部14.EF ,如果∠DFE =36°,15.20%,后又降价10%;。

数学七年级试卷总结【含答案】

数学七年级试卷总结【含答案】

数学七年级试卷总结【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 0C. 3D. 82. 如果 a > b,那么下列哪个选项是正确的?()A. a b > 0B. a + b < 0C. a b > 0D. a / b > 03. 下列哪个数是偶数?()A. 21B. 34C. 47D. 504. 下列哪个数是质数?()A. 22B. 23C. 28D. 305. 下列哪个数是无理数?()A. √9B. √16C. √25D. √2二、判断题1. 0 是正数。

()2. 所有的偶数都是2的倍数。

()3. 所有的质数都是奇数。

()4. 两个负数相乘的结果是正数。

()5. 1 是最小的正整数。

()三、填空题1. 一个数加上它的相反数等于______。

2. 两个负数相乘的结果是______。

3. 3 的平方根是______。

4. 12 是______和______的公倍数。

5. 两个奇数相加的结果是______。

四、简答题1. 请解释什么是相反数。

2. 请解释什么是质数。

3. 请解释什么是无理数。

4. 请解释什么是因数。

5. 请解释什么是公倍数。

五、应用题1. 一个数比另一个数少3,这两个数的和是15,请找出这两个数。

2. 一个数加上它的3倍等于20,请找出这个数。

3. 一个数乘以4再减去5等于35,请找出这个数。

4. 一个数除以5等于6,请找出这个数。

5. 一个数加上它的平方等于30,请找出这个数。

六、分析题1. 请分析下列数列的规律:2, 4, 8, 16, 32,2. 请分析下列数列的规律:1, 4, 9, 16, 25,七、实践操作题1. 请用直尺和圆规画出边长为5cm的正方形。

2. 请用直尺和圆规画出半径为3cm的圆。

八、专业设计题1. 设计一个实验来验证物体的自由落体运动与物体的质量无关。

2. 设计一个电路,使其在开关关闭时灯泡亮起,开关打开时灯泡熄灭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学系列学习6
一、填空题(每小题2分,共20分) 1、=-22 ,=-0
)3(
2、PM 2.5是指大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为
3、一个等腰三角形的边长分别是4cm 和9cm ,则它的周长是 cm
4、一个多边形的每个外角都等于24°,则它是 边形,它的内角和是 度。

5、已知 ,3,6==n m
a a
则=+n
m a
,=-n m a 2 6、如右图,把一个长方形纸条ABCD 沿EF 折叠,若∠1=56°,
则∠AEG= °
7、若用完全平方公式计算如下结果,a x x m x ++=-4)(2
2
,则m= ,a= 。

8、若=+-==-2
2
3a ,1,3b ab ab b a 则
9、如图,△ABC 中,点D 、E 、F 分别为边BC 、AD 、CE 的中点,且△的面积是4,则△BEF 的面积是 。

10、已知:,7293,2433,813,273,93,336
5
4
3
2
1
======……,设
1)13)(13)(13)(13)(13(216842++++++=A ,则A 的个位数字是
二、选择题(每题3分,共18分)
11、如果三角形的两边长分别为3和5,第三边的长是整数,而且是偶数,则第三边的长可以是----------------------------------------------------------------------------------【 】 A 、2 B 、3 C 、4 D 、8
12、一个多边形的内角和是外角和的2倍,这个多边形是-------------【 】 A 、三角形 B 、四边形 C 、五边形 D 、六边形
13、下列计算:(1)n
n
n
a a a 2=⋅,(2)12
6
6
a a a =+,(3)5
5
c c c =⋅,(4)7
66222=+,
(5)9
3339)3(y x xy =中正确的个数为------------------------------------【 】 A 、0个 B 、1个 C 、2个 D 、3个
14、下列各式能用平方差公式计算的是-------------------------------------【 】 A 、))(3(b a b a -+ B 、)3)(3(b a b a +--- C 、)3)(3(b a b a --+ D 、)3)(3(b a b a -+-
15、将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为---------------------------------【 】
A、45°
B、60°
C、75°
D、85°
16、若项,则
的乘积中不含2
2x
)
)(
3
(q
x
px
x-
+
----------------【】
A、p=q
B、p=±q
C、p=-q
D、无法确定
三、计算(每小题4分,共16分)
17、x
x
x
x
x
x⋅
-
-
+

⋅2
4
3
3
4
3
2)
2
(
)
(18、)2
(
)
2
1
(
)1
(
)
2(3
3
0-
÷
-
+
-
+-
π
19、2)
2(
)
2
)(
2(y
x
y
x
y
x-
-
-
+20、)
2
)(
2(c
b
a
c
b
a+
-
+
+
四、因式分解(每小题4分,共16分)
21、ab
b
a
a2
6
32
2+
-22、9
)
(6
)
(2+
+
+
+b
a
b
a
23、)
(
6
)
(
3a
b
y
b
a
x-
-
-24、2
2
216
)4
(x
x-
+
五、解答题(共30分,其中25题5分,26题6分,27题6分,28题7分,29题6分)
25、在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示。

现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点。

(1)请画出平移后的△DEF ,并求△DEF 的面积。

(2)若连接AD 、CF ,则这两条线段之间的关系是
26、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=37°,求∠D 的度数。

27、如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F (1)CD 与EF 平行吗?请说明理由
(2)如果∠1=∠2,且∠3=115°,求∠ACB 的度数。

28、如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”,如:
2222225724,3516,138-=-=-=,……因此8、16、24这三个数都是奇特数。

(1)56、112是奇特数吗?为什么?
(2)设两个连续奇数为1n 212+-和n (其中n 取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?
3
12G
F E
D
C B A
29、(1)如图,小明画了一个角∠MON =80°,点A 、B 分别在射线OM 、ON 上移动,△AOB 的角平分线AC 和BD 交与点P ,小明通过测量,发现不论怎样变换点A 、B 的位置,∠APB 的度数不发生改变,一直都是130°,请你解释其中的原因。

P
N
M
O
D C
B
A
(2)小明想明白后,又开始考虑下图中的问题:△AOB 的内角平分线AC 和外角平分线BD 所构成的∠C 是不是也与∠AOB 有特殊的关系呢?如果∠AOB =n °,那么∠C 是多少度呢?请说明理由。

O
Y
X
D
C
B
A。

相关文档
最新文档