人教版九上数学:《二次函数-商品利润最大问题》教案设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时商品利润最大问题
1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.
3.能应用二次函数的性质解决商品销售过程中的最大利润问题.
一、情境导入
红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?
二、合作探究
探究点一:最大利润问题
【类型一】利用解析式确定获利最大的条件
为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.
解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的
建议.
解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x -1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)
【类型二】利用图象解析式确定最大利润
某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,
这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图①所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数关系式y 2=mx 2-8mx +n ,其变化趋势如图②所示.
(1)求y 2的解析式;
(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?
解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎨⎧9m -24m +n =6,49m -56m +n =7,
解得⎩⎪⎨⎪⎧m =18,n =638.
∴y 2
的解析式为y 2
=18x 2
-x +63
8(1≤x ≤12).
(2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎨
⎧4k +b =11,
8k +b =10,
解得⎩⎨⎧k =-14,b =12.
∴y 1
的解析式为y 1
=-14
x +12(1≤x ≤12).设这种水果每千克所
获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +33
8
,
∴w=-1
8
(x-3)2+
21
4
(1≤x≤12),∴当x=3时,w取最大值
21
4
,∴第3月销售
这种水果,每千克所获的利润最大,最大利润是21
4
元/千克.
三、板书设计
教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.
基础导练
1.如图所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( )
5 m 12
m A
B
C D
A.424 m
B.6 m
C.15 m
D.25 m
2.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为( )
A.1
B.3
C.4
D.6
3.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( ) A.y=25x+15 B.y=2.5x+1.5 C.y=2.5x+15 D.y=25x+1.5
能力提升
4.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元)满足关系:m =140-2x .
(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
5.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.
(1)要使鸡场面积最大,鸡场的长度应为多少m?
(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?
x
参考答案
1.D
2.B
3.C
4.解:(1)y=-2x2+180x-2800.
(2)y=-2x2+180x-2800
=-2(x2-90x)-2800
=-2(x-45)2+1250.
当x=45时,y
=1250.
最大
∴每件商品售价定为45元最合适,此销售利润最大,为1250元.