8-1_微分方程基本概念

合集下载

偏微分方程总复习和课后习题答案

偏微分方程总复习和课后习题答案
复习课
一、基本概念
1. 偏微分方程的定义P1 2. 偏微分方程的阶数,线性、拟线性、完全非线性 偏微分方程的定义P10 3. 偏微分方程的适定性P23
二、方程的导出,分类与化简
三、公式的直接应用题
1. 2. 3. 4. 5. 达朗贝尔公式P36 公式P42 傅里叶(逆)变换P106 P110例 4.1.7结论 泊松公式P112
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d 2 2a x at x a ( t ) 1 t d f ( , )d x a ( t ) 2a 0
1 2 u ( x t ) 3t xt 2
1 1 xa t C f1 ( x at ) ( x at ) ( )d 2 2a x0 2 1 1 xa t C f 2 ( x at ) ( x at ) ( )d 2 2 a x0 2
1 1 xat u [ ( x at ) ( x at )] ( )d 2 2a x a t
1 u ( x t ) x (1 a )t cos x sin at a
2 2 2
1 ( 7)
解:
2
1 22 1 x at x at x u ( x t ) 5 x t a t 2 (e e 2e ) 3 2a
1 ( 6)
解:
2 2u u 2 1 a f ( x , t ), x R ,t 0 2 2 t x u ( x, 0) ( x), u ( x, 0) ( x), x R1. t
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d 2 2a x at x a ( t ) 1 t d f ( , )d x a ( t ) 2a 0

研究生数学考试科目:微积分、线性代数、概率论与数理统计

研究生数学考试科目:微积分、线性代数、概率论与数理统计

研究生数学考试科目:微积分、线性代数、概率论与数理统计考研考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单项选择题选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立(考研|教育网编辑)数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值(考研|教育网编辑)考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.(考研|教育网编辑)5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散、收敛级数的和的概念.2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解,,,及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组(考研|教育网编辑)考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克拉默法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数()的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容(考研|教育网编辑)切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。

常微分方程的求解

常微分方程的求解

18—1 常微分方程数值解法2§1 引言§2 Euler 方法§3 Runge -Kutta 方法§4 单步法的收敛性与稳定性§5 线性多步法§6 方程组与高阶方程的情况§7 边值问题的数值解法3§1 引言微分方程:关于一个未知函数的方程,方程中含有未知函数的(偏)导数,以及自变量等,其中关于未知函数导数的最高次数称为微分方程的阶数.例如:0)()(')()(''=++−x c y x b y x a x y4实际中,很多问题的数学模型都是微分方程. 常微分方程作为微分方程的基本类型之一,在理论研究与工程实际上应用很广泛. 很多问题的数学模型都可以归结为常微分方程. 很多偏微分方程问题,也可以化为常微分方程问题来近似求解.微分方程的应用情况5对于一个常微分方程:'(,) ,[,]dy y f x y x a b dx==∈为了使解存在,一般要对函数f 施加限制条件,例如要求f 对y 满足Lipschitz 条件:1212(,)(,)f x y f x y L y y −≤−6同时,一个有解的微分方程通常会有无穷多个解例如cos() sin(),dyx y x a a R dx=⇒=+∀∈为了使解唯一,需要加入一个限定条件. 通常会在端点出给出,如下面的初值问题:(,),[,]()dyf x y x a b dx y a y ⎧=∈⎪⎨⎪=⎩7常微分方程的解是一个函数,但是,只有极少数特殊的方程才能求解出来,绝大多数是不可解的.并且计算机没有办法对函数进行运算. 一般考虑其近似解法,一种是近似解析法,如逼近法、级数解法等,另一种是本章介绍的数值解法.8§2 Euler 方法92-1 Euler 公式对常微分方程初值问题:⎩⎨⎧==00')(),(y x y y x f y 数值求解的关键在于消除其中的导数项——称为离散化. 利用差商近似逼近微分是离散化的一个基本途径.10现在假设求解节点为),,1,0(m i ih a x i "=+=,其中ma b h −=为步长,这些节点相应的函数值为)(,),(1m x y x y ". 在点n x 处,已知))(,()('n n n x y x f x y =用n x 的向前差商nn n n x x x y x y −−++11)()(近似代替)('n x y ,如§1,则得到所谓的Euler 公式1(,)n n n n y y hf x y +=+——单步、显式格式11Euler 公式的局部截断误差:假设)(n n x y y =情况下,11)(++−n n y x y 称为局部截断误差.'''2311''23()()()()()2()(,()(()))2n n n n n n n n n y x y x y y x hy x h O h y x h y x f x y x h O h ++−=+++−−=+故有)(2)(''211n n n x y h y x y ≈−++. 122-2 后退的Euler 公式同样对常微分方程初值问题,在1+n x 点,已知))(,()(111'+++=n n n x y x f x y ,如果用向后差商hx y x y n n )()(1−+代替)(1'+n x y ,则得到后退的Euler 公式:111(,)n n n n y y hf x y +++=+——单步、隐式格式13相对于以上可以直接计算1+n y 的Euler 公式(显式),上式是隐式公式. 一般来讲,显式容易计算,而隐式具有更好的稳定性.求解上述公式,通常使用迭代法:对于给定的初值)0(1+n y,计算(1)()111(,)(0,1,)k k n n n n y y f x y k ++++=+=", 如果)(1lim k n k y +∞→收敛,则其极限必满足上述后退Euler 公式.14局部截断误差:假设)(n n x y y =,则),()(111++++=n n n n y x hf x y y .由于)]()[,())(,(),(1111111+++++++−+=n n n y n n n n x y y x f x y x f y x f η且''''2111(,())()()()()n n n n n f x y x y x y x hy x O h +++==++15则有'2''31111(,)[()]()()()()n y n n n n n n y hf x y y x y x hy x h y x O h η++++=−++++将此式减去式2'''31()()()()()2n n n n h y x y x hy x y x O h +=+++ 可得,2''311111()(,)[()]()()2n n y n n n n h y x y hf x y x y y x O h η+++++−=−−+16考虑到21111(,)()1(,)y n y n hf x O h hf x ηη++=++−,则有22''3''11()()()()22n n n n h h y x y y x O h y x ++−=−+≈−172-3 梯形公式由于上述两个公式的局部截断误差绝对值相等,符号相反,故求其算术平均得到梯形公式:111[(,)(,)]2n n n n n n hy y f x y f x y +++=++——单步、隐式格式18梯形法同样是隐式公式,可用下列迭代公式求解:(0)1(1)()111(,)[(,)(,)]2n n n n k k n n n n n n y y hf x y h y y f x y f x y +++++⎧=+⎪⎨=++⎪⎩局部截断误差:类似于后退Euler ,可计算出)(12)('''311n n n x y h y x y −≈−++192-4 改进的Euler 公式上述用迭代法求解梯形公式虽然提高了精度,但计算量也很大. 实际上常采用的方法是,用Euler 公式求得初始值(预测),然后迭代法仅施行一次(校正)——改进的Euler 公式:1111(,)[(,)(,)]2n n n n n n n n n n y y f x y hy y f x y f x y ++++⎧=+⎪⎨=++⎪⎩20估计上式中第二式当1+n y 为准确值时的局部截断误差:''11113(3)()()(()[()()])2()12n n n n n n n hy x y y x y x y x y x hy x ++++−=−++≈−212-5 Euler 两步公式如果用中心差商hx y x y n n 2)()(11−+−代替)('n x y ,则得Euler 两步公式112(,)n n n n y y hf x y +−=+——两步、显式格式22假设1−n y 及n y 均为准确值,利用Taylor 展式容易计算Euler 两步公式的局部截断误差为:11113(3)()()(()2(,()))()3n n n n n n n y x y y x y x hf x y x h y x +++−−=−+≈23此式与梯形公式相结合,得到如下的预测-校正公式:111112(,)[(,)(,)]2n n n n n n n n n n y y hf x y hy y f x y f x y −++++⎧=+⎪⎨=++⎪⎩假设第一式中的1−n y 及n y ,以及第二式中的n y 及1+n y 均是准确值,则有,2441)()(1111−≈−−++++n n n n y x y y x y 从而可得以下的事后估计式,111111114()()51()()5n n n n n n n n y x y y y y x y y y ++++++++⎧−≈−−⎪⎪⎨⎪−≈−⎪⎩25可以期望,以上式估计的误差作为计算结果的补偿,可以提高计算精度.以n p 及n c 分别表示第n 步的预测值和校正值,则有以下的“预测-改进-校正-改进”方案(其中在1+n p 与1+n c 尚未计算出来的前提下,以n n c p −代替11++−n n c p :26预测:'112n n n hy y p +=−+预测的改进:)(5411n n n n c p p m −−=++计算:),(11'1+++=n n n m x f m校正:)(2'1'1++++=n n n n m y hy c校正的改进:)(511111++++−+=n n n n c p c y计算:),(11'1+++=n n n y x f y27例 用Euler 方法求解初值问题2'[0,0.6](0)1y y xy x y ⎧=−−∈⎨=⎩取0.2h =,要求保留六位小数. 解:Euler 迭代格式为2210.2()0.80.2k k k k k k k k y y y x y y x y +=+−−=−因此2821000(0.2)0.80.20.8y y y x y ≈=−= 22111(0.4)0.80.20.6144y y y x y ≈=−=23222(0.6)0.80.20.461321y y y x y ≈=−=29例 用改进的Euler 方法求解初值问题2'sin 0[0,0.6](0)1y y y x x y ⎧++=∈⎨=⎩取0.2h =,求(0.2),(0.4)y y 的近似值,要求保留六位小数.解:改进的Euler 格式为212211110.2(sin )0.2(sin sin )2k k k k k k k k k k k k k y y y y x y y y y x y y x +++++⎧=+−−⎪⎨=+−−−−⎪⎩30即,222110.820.08sin 0.1(0.80.2sin )sin k k k k k k k k y y y x y y x x ++=−−−则有1(0.2)0.807285y y ≈=,2(0.4)0.636650y y ≈=31§3 Runge -Kutta 方法Def.1如果一种方法的局部截断误差为)(1+p h O ,则称该方法具有p 阶精度. 323-2 Runge —Kutta 方法的基本思想上述的Taylor 级数法虽然可得到较高精度的近似公式,但计算导数比较麻烦. 这里介绍不用计算导数的方法.))(,()()()('1h x y h x f h x y hx y x y n n n n n θθθ++=+=−+——平均斜率.33如果粗略地以),(n n y x f 作为平均斜率,则得Euler 公式;如果以221K K +作为平均斜率,其中),(1n n y x f K =,),(112hK y x f K n n +=+,则得改进的Euler 公式.343-3 二阶的Runge -Kutta 方法对点n x 和)10(≤<+=+p ph x x n p n ,用这两点斜率的线性组合近似代替平均斜率,则得计算公式:11122121()(,)(,)n n n n n p n y y h K K K f x y K f x y phK λλ++⎧=++⎪=⎨⎪=+⎩35现确定系数p ,,21λλ,使得公式具有二阶精度. 因为,取n y 为()n y x ,则'1(,)(,())'()n n n n n nK f x y f x y x y x y === 再把2K 在),(n n y x 处展开,有36'21(,)(,)n p n n n n K f x y phK f x ph y phy +=+=++代入可得,'2''31122()()n n n n y y hy ph y O h λλλ+=++++'2(,)(,)(,)()n n x n n y n n n f x y f x y ph f x y phy O h =+⋅+⋅+'2(')(,)()n x y n n y ph f f y x y O h =+⋅+⋅+'''2()n n y ph y O h =+⋅+37相比较二阶Taylor 展开''2'12n n n n y h hy y y ++=+,有,⎪⎩⎪⎨⎧==+211221p λλλ满足此条件的公式称为二阶Runge -Kutta 公式.38可以验证改进的Euler 公式属于二阶Runge -Kutta 公式. 下列变形的Euler 公式也是二阶Runge -Kutta 公式:12121(,)(,)22n n n n n n y y hK K f x y h h K f x y K +⎧⎪=+⎪=⎨⎪⎪=++⎩393-4 三阶Runge -Kutta 公式同二阶Runge -Kutta 公式,考虑三点,,(01)n n p n q x x x p q ++≤≤≤试图用它们的斜率321,,K K K 的线性组合近似代替平均斜率,即有如下形式的公式:1112233121312()(,)(,)(,())n n n n n n n n y y h K K K K f x y K f x ph y phK K f x qh y qh rK sK λλλ+=+++⎧⎪=⎪⎨=++⎪⎪=+++⎩40把32,K K 在),(n n y x 处展开,通过与)(1+n x y 在n x 的直接Taylor 展式比较,可确定系数s r q p ,,,,,,321λλλ,满足下式,从而使得上述公式具有三阶精度,41特别地,2,1,1,21,32,61231=−======s r q p λλλ是其一特例.123232223311213161p q p q pqs r s λλλλλλλλ++=⎧⎪⎪+=⎪⎪⎪+=⎨⎪⎪=⎪⎪+=⎪⎩423-5 四阶Runge -Kutta 公式相同的方法,可以导出下列经典的四阶Runge -Kutta 公式:112341213243(22)6(,)(,)22(,)22(,)n n n n n n n n n n h y y K K K K K f x y h h K f x y K h h K f x y K K f x h y hK +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩43例 用经典四阶Runge —Kutta 方法求解初值问题'83[0,0.4](0)1y y x y =−⎧∈⎨=⎩,取0.2h =,求(0.4)y 的近似值,要求保留六位小数.解:四阶Runge —Kutta 格式为44112341211123122241330.2(22)6(,)830.2(,)83(0.1) 5.6 2.120.2(,)83(0.1) 6.32 2.372(,0.2)83(0.2) 4.208 1.578k k k k k k k k k k k kk k k k ky y K K K K K f x y y K f x y K y K yK f x y K y K y K f x y K y K y ++++⎧=++++⎪⎪==−⎪⎪⎪=+=−+=−⎨⎪⎪=+=−+=−⎪⎪⎪=+=−+=−⎩则10.5494 1.2016k k y y +=+,45故12(0.2) 2.3004,(0.4) 2.4654y y y y ≈=≈=.注:由准确解382()33xy x e −=−可得(0.2) 2.300792,(0.4) 2.465871y y ==46§5 线性多步法基本思想:在计算1+i y 之前,已计算出一系列的近似值i y y ,,1",如果充分利用这些已知信息,可以期望会获得更高精度的)(1+i x y 的近似值1+i y .基本方法:基于数值积分与基于Taylor 展开的构造方法.475-1 基于数值积分的构造方法对方程),('y x f y =两边从i x 到1+i x 积分,则得∫++=+1),()()(1i ix x i i dxy x f x y x y 设)(x P r 是f (x , y )的插值多项式,由此可得以下的一般形式的计算公式:∫++=+1)(1i ix x r i i dxx P y y 48例 取线性插值))(,())(,()(11111+++++−−+−−=i i i i ii i i i i r x y x f x x x x x y x f x x x x x P ,则得到梯形法:)],(),([2111+++++=i i i i i i y x f y x f hy y495-2 Adams 显式公式在区间],[1+i i x x 上利用r +1个数据点),(,),,(),,(11r i r i i i i i f x f x f x −−−−"构造插值多项式)(x P r ,由牛顿后插公式(注意到:j i j i j f f −Δ=∇)j i jrj j i r f j t th x P −=Δ⎟⎟⎠⎞⎜⎜⎝⎛−−=+∑0)1()(其中!)1()1(j j s s s j s +−−=⎟⎟⎠⎞⎜⎜⎝⎛". 50可得10rj i i rj i jj y y h f αΔ+−==+∑——Adams 显式公式其中1(1)j j t dt j α−⎛⎞=−⎜⎟⎝⎠∫,它可写成:∑=−++=rj ji rj i i f h y y 01β515-3 Adams 隐式公式在区间],[1+i i x x 上利用r +1个数据点),(,),,(),,(1111+−+−++r i r i i i i i f x f x f x "构造插值多项式)(x P r ,由牛顿后插公式101)1()(+−=+Δ⎟⎟⎠⎞⎜⎜⎝⎛−−=+∑j i jrj ji r f j t th x P 可得*11rj i i rj i j j y y h f α+−+==+Δ∑——Adams 隐式公式52其中01(1)jj t dt j −−⎛⎞α=−⎜⎟⎝⎠∫,它又可写成: *11ri i rj i j j y y h f β+−+==+∑535-4 Adams 预测-校正公式以r =3时的Adams 显式与隐式公式为例. 此时,显式公式为)9375955(243211−−−+−+−+=i i i i i i f f f f hy y 利用Taylor 展式,容易计算局部截断误差为)(720251)5(5i x y h . 54)5199(242111−−+++−++=i i i i i i f f f f hy y 同样利用Taylor 展开可得,其局部截断误差为5(5)19()720i h y x −. 隐式公式为55⎪⎩⎪⎨⎧+−++=−+−+=−−+++−−−+)519),(9(24)9375955(24211113211i i i i i i i i i i i i i f f f y x f hy y f f f f h y y 注 利用2-5节的相同作法同样可以构造更精确的计算过程.可构造利用显式预测,隐式校正的计算公式:56§6 方程组与高阶方程的情形6-1 一阶方程组常微分方程初值问题为⎩⎨⎧==00)(),('y x y y x f y 此时T m y y y ),,(1"=,Tm f f f ),,(1"=. 此时上述的一切方法均可使用,只是注意y 与f 此时为向量.576-2 化高阶方程为一阶方程组解下列的m 阶方程()(1)'(1)(1)000000(,,',,)(),'(),,()m m m m y f x y y y y x y y x y yx y −−−⎧=⎨===⎩""令)1(21,,',−===m m y y y y y y ",则有58'12'23'1'12(,,,,)m m m m y y y y y yy f x y y y −⎧=⎪=⎪⎪⎨⎪=⎪⎪=⎩#"初始条件为:)1(00'002001)(,,)(,)(−===m m y x y y x y y x y "。

流体力学教案第8章边界层理论

流体力学教案第8章边界层理论

第八章 边界层理论§8—1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。

对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。

速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。

若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。

对于非粘性流场,则可按理想流体来处理。

则N-S 方程可由欧拉方程代替,从而使问题大为简化。

Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。

由vVl==粘性力惯性力Re ,则在这些流动中,惯性力〉〉粘性力,所以可略去粘性力。

但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。

所以,在这一薄层中,两者均不能略去。

这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现.a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。

b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。

层内,粘性流,主要速度降在此,有旋流动.c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。

d .按流动状态,边界层又分为层流边界层和紊流边界层。

由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。

所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,边图8-2空气沿平板边界层速度分布外部区域边界层界层外的流动是无旋的势流.边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。

(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。

常微分方程小节练习

常微分方程小节练习

第十二章 常微分方程一、主要内容及要求:1.了解微分方程的阶、解、通解、特解等概念,对于一阶、二阶常系数线性方程,会用已知的特解表示方程的通解;会验证至多二阶方程的解2.掌握可分离变量微分方程的求解,会解简单的、多项式最多二次的齐次方程 3.掌握一阶线性微分方程的求解方法——常数变异法;能够判别伯努利方程并知道相应的非线性代换ny z -=1,能够写出通过代换所得到的一阶线性非齐次微分方程,会判别全微分方程,对于简单的全微分方程能够求其通解,了解积分因子概念,掌握0=-xdy ydx 的几个简单的积分因子 4.掌握)()(x f y n =型微分方程的求解,了解),(y x f y '=''型、),(y y f y '=''型的求解方法5.理解二阶线性微分方程解的结构,会判别函数组的线性相关性6.掌握二阶常系数齐次线性微分方程的解法,能够熟练地通过特征方程求特征根,写出三种相应的通解,并能求满足初始条件的特解8.会求自由项为)(x P e n x λ型的二阶常系数非齐次线性微分方程的特解,一般情况下)(x P n 不超过一次多项式,λ至多为特征方程的单根;会写)sin cos (x B x A exββλ+型的二阶常系数非齐次线性方程的特解二、具体的内容分配如下:习题8-1:微分方程的基本概念,可分离变量的微分方程 习题8-2:齐次方程,一阶线性齐次微分方程习题8-3:一阶线性非齐次微分方程,伯努利方程 习题8-4:全微分方程,可降阶的高阶微分方程习题8-5:二阶线性微分方程解的结构,常系数齐次线性微分方程(主要是二阶)的通解习题8-6:常系数非齐次线性微分方程(主要是二阶)的通解 总习题八: 三.习题内容:习题8—1 A 题一、填空题1.凡表示未知函数、未知函数的 与自变量之间的关系的方程,叫做微分方程;未知函数是一元函数的,叫做 微分方程。

2.微分方程0324=+'+'''y y y x 的阶数为 。

高等数学11单元第八章常微分方程

高等数学11单元第八章常微分方程

授课11单元教案第一节微分方程的基本概念教学过程一、引入新课初等数学中就有各种各样的方程:线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后求取方程的解。

方程的定义:含有未知数的的等式。

它表达了未知量所必须满足的某种条件。

根据对未知量所施行的数学运算的不同,我们可以将方程分成许多不同的类型来研究。

引例1二、新授课1、微分方程的定义:含有未知函数的导数或微分的方程,称为微分方程如果未知函数是一元函数的微分方程称为常微分方程式;如果未知函数是多元函数的微分方程式称为偏微分方程。

例如,22;d yx y x dx=+=dx 和是常微分方程dyzxy x∂=∂是偏微分方程. 微分方程中未知函数的最高阶导数的阶数,称为微分方程式的阶。

一阶微分方程的一般形式为 (,,)0F x y y '= 例如:2354()0y x y x '+-=,2()20dy dyx y x dx dx-+=都是一阶微分方程。

二阶微分方程的一般形式为 (,,,)0F x y y y '''= 例如:222sin 0d y dyyx dx dx-+=,2223()(2)y k y '''=+都是二阶微分方程。

类似可写出n 阶微分方程的一般形式 ()(,,,,)0n F x y y y y '''=。

其中F 是n +2个变量的函数。

这里必须指出,在方程()(,,,,)0n F x y y y y '''=中,()n y 必须出现,而,,,x y y '(1),n y y -''等变量可以不出现。

例如()()n y f x =也是n 阶微分方程。

例1 .指出下列方程中哪些是微分方程,并说明它们的阶数:122222222(1) 0; (2) 2;(3) sin 0; (4) 3;(5) '''3; (6) ;(7) '''(')0. t dy y dx y y x d yxdy y xdx y e dt yy y x dy dx x y xy y -==++=+=+==+-=2、微分方程的解能够满足微分方程的函数都称为微分方程的解 求微分方程的解的过程,称为解微分方程例如,函数3x 16是微分方程22d y x dx =的解。

流体力学教案第8章边界层理论

流体力学教案第8章边界层理论

第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。

对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。

速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。

若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。

对于非粘性流场,则可按理想流体来处理。

则N-S 方程可由欧拉方程代替,从而使问题大为简化。

Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。

由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。

但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。

所以,在这一薄层中,两者均不能略去。

这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。

a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。

b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。

层内,粘性流,主要速度降在此,有旋流动。

c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。

d .按流动状态,边界层又分为层流边界层和紊流边界层。

由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。

所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。

边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。

(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。

经济数学第8章 常微分方程

经济数学第8章  常微分方程
1
8.1 微分方程的基本概念 定义8.1 含有未知函数的导数(或微分)的方 程,叫做微分方程. 定义8.2 微分方程中未知函数的最高阶导数( 或微分)的阶数,叫做微分方程的阶.
定义8.3 如果将某个已知函数代入微分方程 中,能使该方程成为恒等式,则称此函数为该微 分方程的解.
2
定义8.4 如果n阶微分方程的解中含有n个独 立的任意常数,则称这样的解为微分方程的通解. 而确定了通解中任意常数的值的解,则被称为方程 的特解. 通常,为了确定微分方程的某个特解,先要求 出其通解后再代入确定任意常数的条件(称为初始 条件),从而求出满足初始条件的特解.
第8章 常微分方程
微分方程是微积分学联系实际的重要渠道之 一,因为用数学工具来解决实际问题或研究各种 自然现象时,第一步就是要寻求函数关系.但在 很多情况下,我们不能直接得到所需要的函数关 系,而是由实际问题所提供的信息及相关学科的 知识可得到关于所求函数的导数或微分的关系式 ,这样的关系式就是微分方程.建立了微分方程 后,再通过求解微分方程可得到我们寻找的所需 要的函数关系.
21
例8.13 某公司2008年招聘新员工100名,预 计从现在开始,第t年招聘人员增加速度为t的2倍, 求到2018 . 例8.14 已知某厂的纯利润L对广告费x的变化 率dLdx与常数A和纯利润L之差成正比.当x=0时, L=L0,试求纯利润L与广告费x之间的函数关系
22
③将所设的解及其导数代入非齐次线性微分方 程,解出
然后写出非齐次线性微分方程的通解
13
8.3 二阶常系数线性齐次微分方程
8.3.1
二阶常系数线性齐次微分方程的概念
定义8.7 方程:y″+py′+qy=f(x)
称为二阶常系数线性齐次微分方程,其中p,q 为常数,f(x)是x的连续函数. 当f(x)≡0时, 方程:y″+py′+qy=0称为二阶常 系数线性齐次微分方程.当f(x)≠0时,方程称为二阶 常系数线性非齐次微分方程.

微积分课程教学大纲

微积分课程教学大纲

《微积分(I)》课程教学大纲英文译名:Calculus I适用专业:学分数:6 总学时数:96一、本课程教学目的和任务通过本课程的学习,使学生获得一元函数微积分学、向量代数和空间解析几何等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

同时,注重培养学生获取知识能力、应用能力和创新能力,提高学生的素质。

二、本课程的基本要求1.理解函数的概念,掌握基本初等函数的性质及其图形,理解复合函数的概念,了解反函数、分段函数的概念。

会建立简单实际问题的函数关系模型。

2.理解极限的概念(对极限的ε—N、ε—δ定义,可在教学过程中逐步加深理解,对于给定ε求N或δ不作过高要求),掌握极限四则运算法则,了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限,了解无穷小、无穷大的概念,会用无穷小的比较求极限。

3.理解函数在一点连续的概念,了解间断点的概念并会判别间断点的类型,了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大值最小值定理)。

4.理解导数和微分的概念,理解导数的几何意义及函数的可导与连续之间的关系,掌握导数与微分的运算法则和导数的基本公式,掌握初等函数的一阶、二阶导数的求法,会求隐函数和参数方程所确定的函数的一阶、二阶导数,会用导数描述一些几何量与物理量。

5.理解拉格朗日中值定理,了解罗尔中值定理、柯西中值定理和泰勒公式。

6.理解函数极值的概念,会求函数的极值;会判断函数的单调性、函数图形的凹凸性,会求拐点;会描绘函数的图形(包括水平和铅直渐近线);会求解较简单的最大值和最小值的应用问题。

7.会用罗必达法则求不定式的极限。

8.会求曲线的曲率和曲率半径。

9.理解不定积分和定积分的概念和性质,掌握换元积分法和分部积分法,含有理函数和三角函数有理式的积分,理解变上限函数及求导定理,掌握牛顿—莱布尼兹公式,了解广义积分的概念,掌握用定积分求一些几何量和物理量(如平面面积、体积、平面弧长、功、压力、引力等)的方法。

大一微积分下册经典题目及解析

大一微积分下册经典题目及解析

微积分练习册[第八章]多元函数微分学习题8-1多元函数的基本概念1.填空题:(1)若yxxy y x y x f tan),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________yf f x-==(3)若)0()(22 y yy x xyf +=,则__________)(=x f (4)若22),(y x xy y x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数xyz arcsin=的定义域是________________ (8)函数xy xy z 2222-+=的间断点是_______________2。

求下列极限: (1)xy xy y x 42lim0+-→→(2)x xyy x sin lim0→→(3)22222200)()cos(1lim y x y x y x y x ++-→→3。

证明0lim22)0,0(),(=+→yx xy y x4.证明:极限0lim 242)0,0(),(=+→y x yx y x 不存在5。

函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么习题8—2偏导数及其在经济分析中的应用1。

填空题 (1)设y x z tanln =,则__________________,=∂∂=∂∂yzx z ; (2)设)(y x e z xy+=,则__________________,=∂∂=∂∂yzx z ; (3)设zyxu =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ; (4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x zy z x z(5)设zyx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x2.求下列函数的偏导数y xy z )1()1(+=z y x u )arcsin()2(-=3.设xy z =,求函数在(1,1)点的二阶偏导数4。

弹性力学简明教程 课后习题答案

弹性力学简明教程 课后习题答案

《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。

2-4 按习题2-2分析。

2-5 在的条件中,将出现2、3阶微量。

当略去3阶微量后,得出的切应力互等定理完全相同。

2-6 同上题。

在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。

其区别只是在3阶微量〔即更高阶微量〕上,可以略去不计。

2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。

2-8 在大边界上,应分别列出两个精确的边界条件;在小边界〔即次要边界〕上,按照圣维南原理可列出3个积分的近似边界条件来代替。

2-9 在小边界OA边上,对于图2-15〔a〕、〔b〕问题的三个积分边界条件相同,因此,这两个问题为静力等效。

2-10 参见本章小结。

2-11 参见本章小结。

2-12 参见本章小结。

2-13 注意按应力求解时,在单连体中应力分量必须满足〔1〕平衡微分方程,〔2〕相容方程,〔3〕应力边界条件〔假设>。

2-14 见教科书。

2-15 见教科书。

2-16 见教科书。

2-17 取它们均满足平衡微分方程,相容方程与x=0和的应力边界条件,因此,它们是该问题的正确解答。

2-18 见教科书。

2-19 提示:求出任一点的位移分量和,与转动量,再令,便可得出。

第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:〔1〕校核相容条件是否满足,〔2〕求应力,〔3〕推求出每一边上的面力从而得出这个应力函数所能解决的问题。

3-2 用逆解法求解。

由于本题中l>>h,x=0,l属于次要边界〔小边界〕,可将小边界上的面力化为主矢量和主矩表示。

3-3 见3-1例题。

3-4 本题也属于逆解法的问题。

首先校核是否满足相容方程。

再由求出应力后,并求对应的面力。

本题的应力解答如习题3-10所示。

应力对应的面力是:主要边界:所以在边界上无剪切面力作用。

第八章 常微分方程初值问题的解法

第八章 常微分方程初值问题的解法

第八章常微分方程初值问题的解法在科学与工程问题中,常微分方程描述物理量的变化规律,应用非常广泛. 本章介绍最基本的常微分方程初值问题的解法,主要针对单个常微分方程,也讨论常微分方程组的有关技术.8.1引言本节介绍常微分方程、以及初值问题的基本概念,并对常微分方程初值问题的敏感性进行分析.8.1.1 问题分类与可解性很多科学与工程问题在数学上都用微分方程来描述,比如,天体运动的轨迹、机器人控制、化学反应过程的描述和控制、以及电路瞬态过程分析,等等. 这些问题中要求解随时间变化的物理量,即未知函数y(t),t表示时间,而微分方程描述了未知函数与它的一阶或高阶导数之间的关系. 由于未知函数是单变量函数,这种微分方程被称为常微分方程(ordinary differential equation, ODE),它具有如下的一般形式①:g(t,y,y′,⋯,y(k))=0 ,(8.1) 其中函数g: ℝk+2→ℝ. 类似地,如果待求的物理量为多元函数,则由它及其偏导函数构成的微分方程称为偏微分方程(partial differential equation, PDE). 偏微分方程的数值解法超出了本书的范围,但其基础是常微分方程的解法.在实际问题中,往往有多个物理量相互关联,它们构成的一组常微分方程决定了整个系统的变化规律. 我们先针对单个常微分方程的问题介绍一些基本概念和求解方法,然后在第8.5节讨论常微分方程组的有关问题.如公式(8.1),若常微分方程包含未知函数的最高阶导数为y(k),则称之为k阶常微分方程. 大多数情况下,可将常微分方程(8.1)写成如下的等价形式:y(k)=f(t,y,y′,⋯,y(k−1)) ,(8.2) 其中函数f: ℝk+1→ℝ. 这种等号左边为未知函数的最高阶导数y(k)的方程称为显式常微分方程,对应的形如(8.1)式的方程称为隐式常微分方程.通过简单的变量代换可将一般的k阶常微分方程转化为一阶常微分方程组. 例如对于方程(8.2),设u1(t)=y(t),u2(t)=y′(t),⋯,u k(t)=y(k−1), 则得到等价的一阶显式常微分方程组为:{u1′=u2u2′=u3⋯u k′=f(t,u1,u2,⋯,u k).(8.3)本书仅讨论显式常微分方程,并且不失一般性,只需考虑一阶常微分方程或方程组.例8.1 (一阶显式常微分方程):试用微积分知识求解如下一阶常微分方程:y′=y .[解] 采用分离变量法进行推导:①为了表达式简洁,在常微分方程中一般省略函数的自变量,即将y(t)简记为y,y′(t)简记为y′,等等.dy dt =y ⟹ dy y=dt , 对两边积分,得到原方程的解为:y (t )=c ∙e t ,其中c 为任意常数.从例8.1看出,仅根据常微分方程一般无法得到唯一的解. 要确定唯一解,还需在一些自变量点上给出未知函数的值,称为边界条件. 一种边界条件设置方法是给出t =t 0时未知函数的值:y (t 0)=y 0 .在合理的假定下,从t 0时刻对应的初始状态y 0开始,常微分方程决定了未知函数在t >t 0时的变化情况,也就是说这个边界条件可以确定常微分方程的唯一解(见定理8.1). 相应地,称y (t 0)=y 0为初始条件,而带初始条件的常微分方程问题:{y ′=f (t,y ),t ≥t 0y (t 0)=y 0 . (8.4)为初值问题(initial value problem, IVP ).定理8.1:若函数f (t,y )关于y 满足李普希兹(Lipschitz )条件,即存在常数L >0,使得对任意t ≥t 0,任意的y 与y ̂,有:|f (t,y )−f(t,y ̂)|≤L |y −y ̂| ,(8.5) 则常微分方程初值问题(8.4)存在唯一的解.一般情况下,定理8.1的条件总是满足的,因此常微分方程初值问题的解总是唯一存在的. 为了更清楚地理解这一点,考虑f (t,y )的偏导数ðf ðy 存在,则它在求解区域内可推出李普希兹条件(8.5),因为f (t,y )−f (t,y ̂)=ðf ðy (t,ξ)∙(y −y ̂) , 其中ξ为介于y 和y ̂之间的某个值. 设L 为|ðf ðy (t,ξ)|的上界,(8.5)式即得以满足.对公式(8.4)中的一阶常微分方程还可进一步分类. 若f (t,y )是关于y 的线性函数,f (t,y )=a (t )y +b (t ) ,(8.6) 其中a (t ),b (t )表示自变量为t 的两个一元函数,则对应的常微分方程为线性常微分方程,若b (t )≡0, 则为线性齐次常微分方程. 例8.1中的方程属于线性、齐次、常系数微分方程,这里的“常系数”是强调a (t )为常数函数.8.1.2 问题的敏感性对常微分方程初值问题,可分析它的敏感性,即考虑初值发生扰动对结果的影响. 注意这里的结果(解)是一个函数,而不是一个或多个值. 由于实际应用的需要,分析常微分方程初值问题的敏感性时主要关心t →∞时y (t )受影响的情况,并给出有关的定义. 此外,考虑到常微分方程的求解总与数值算法交织在一起、以及历史的原因,一般用“稳定”、“不稳定”等词汇说明问题的敏感性.定义8.1:对于常微分方程初值问题(8.4),考虑初值y 0的扰动使问题的解y (t )发生偏差的情形. 若t →∞时y (t )的偏差被控制在有界范围内,则称该初值问题是稳定的(stable ),否则该初值问题是不稳定的(unstable ). 特别地,若t →∞时y (t )的偏差收敛到零,则称该初值问题是渐进稳定的(asymptotically stable ).关于定义8.1,说明两点:● 渐进稳定是比稳定更强的结论,若一个问题是渐进稳定的,它必然是稳定的. ● 对于不稳定的常微分方程初值问题,初始数据的扰动将使t →∞时的结果误差无穷大. 因此为了保证数值求解的有效性,常微分方程初值问题具有稳定性是非常重要的.例8.2 (初值问题的稳定性): 考察如下“模型问题”的稳定性:{y ′=λy,t ≥t 0y (t 0)=y 0 . (8.7)[解] 易知此常微分方程的准确解为:y (t )=y 0e λ(t−t 0). 假设初值经过扰动后变为y 0+Δy 0,对应的扰动后解为y ̂(t )=(y 0+Δy 0)e λ(t−t 0),所以扰动带来的误差为Δy (t )=Δy 0e λ(t−t 0) .根据定义8.1,需考虑t →∞时Δy (t )的值,它取决于λ. 易知,若λ≤0,则原问题是稳定的,若λ>0,原问题不稳定. 而且当λ<0时,原问题渐进稳定.图8-1分三种情况显示了初值扰动对问题(8.7)的解的影响,从中可以看出不稳定、稳定、渐进稳定的不同含义.对例8.2中的模型问题,若考虑参数λ为一般的复数,则问题的稳定性取决于λ的实部,若Re(λ)≤0, 则问题是稳定的,否则不稳定. 例8.2的结论还可推广到线性、常系数常微分方程,即根据f (t,y )中y 的系数可确定初值问题的稳定性. 对于一般的线性常微分方程(8.6),由于方程中y 的系数为关于t 的函数,仅能分析t 取某个值时的局部稳定性.例8.3 (局部稳定性): 考察如下常微分方程初值问题的稳定性:{y ′=−10ty,t ≥0y (0)=1 . (8.8)[解] 此常微分方程为线性常微分方程,其中y 的系数为a (t )=−10t . 当t ≥0时,a (t )≤0,在定义域内每个时间点上该问题都是局部稳定的.事实上,方程(8.8)的解析为y (t )=e −5t 2,初值扰动Δy 0造成的结果误差为Δy (t )=Δy 0e −5t 2. 这说明初值问题(8.8)是稳定的.对于更一般的一阶常微分方程(8.4),由于其中f (t,y )可能是非线性函数,分析它的稳定性非常复杂. 一种方法是通过泰勒展开用一个线性常微分方程来近似它,再利用线性常微分方程稳定性分析的结论了解它的局部稳定性. 具体的说,在某个解函数y ∗(t)附近用一阶泰勒展开近似f (t,y ),f (t,y )≈f (t,y ∗)+ðf ðy(t,y ∗)∙(y −y ∗) 则原微分方程被局部近似为(用符号z 代替y ): 图8-1 (a) λ>0对应的不稳定问题, (b) λ=0对应的稳定问题, (c) λ<0对应的渐进稳定问题. (a) (b) (c)z′=ðfðy(t,y∗)∙(z−y∗)+f(t,y∗)这是关于未知函数z(t)的一阶线性常微分方程,可分析t取某个值时的局部稳定性. 因此,对于具体的y∗(t)和t的取值,常微分方程初值问题(8.4)的局部稳定性取决于ðfðy(t,y∗)的实部的正负号. 应注意的是,这样得到的关于稳定性的结论只是局部有效的.实际遇到的大多数常微分方程初值问题都是稳定的,因此在后面讨论数值解法时这常常是默认的条件.8.2简单的数值解法与有关概念大多数常微分方程都无法解析求解(尤其是常微分方程组),只能得到解的数值近似. 数值解与解析解有很大差别,它是解函数在离散点集上近似值的列表,因此求解常微分方程的数值方法也叫离散变量法. 本节先介绍最简单的常微分方程初值问题解法——欧拉法(Euler method),然后给出数值解法的稳定性和准确度的概念,最后介绍两种隐格式解法.8.2.1 欧拉法数值求解常微分方程初值问题,一般都是“步进式”的计算过程,即从t0开始依次算出离散自变量点上的函数近似值. 这些离散自变量点和对应的函数近似值记为:t0<t1<⋯<t n<t n+1<⋯y 0,y1,⋯y n,y n+1,⋯其中y0是根据初值条件已知的. 相邻自变量点的间距为 n=t n+1−t n, 称为步长.数值解法通常使用形如y n+1=G(y n+1,y n,y n−1,…,y n−k)(8.9) 的计算公式,其中G表示某个多元函数. 公式(8.9)是若干个相邻时间点上函数近似值满足的关系式,利用它以及较早时间点上函数近似值可算出y n+1. 若公式(8.9)中k=0,则对应的解法称为单步法(single-step method),其计算公式为:y n+1=G(y n+1,y n) .(8.10) 否则,称为多步法(multiple-step method). 另一方面,若函数G与y n+1无关,即:y n+1=G(y n,y n−1,…,y n−k),则称为显格式方法(explicit method),否则称为隐格式方法(implicit method). 显然,显格式方法的计算较简单,只需将已得到的函数近似值代入等号右边,则可算出y n+1.欧拉法是一种显格式单步法,对初值问题(8.4)其计算公式为:y n+1=y n+ n f(t n,y n) , n=0,1,2,⋯.(8.11) 它可根据数值微分的向前差分公式(第7.7节)导出. 由于y′=f(t,y),则y′(t n)=f(t n,y(t n))≈y(t n+1)−y(t n)n,得到近似公式y(t n+1)≈y(t n)+ n f(t n,y(t n)),将其中的函数值换为数值近似值,则得到欧拉法的递推计算公式(8.11). 还可以从数值积分的角度进行推导,由于y(t n+1)=y(t n)+∫y′(s)dst n+1t n =y(t n)+∫f(s,y(s))dst n+1t n,用左矩形公式近似计算其中的积分(矩形的高为s=t n时被积函数值),则有y(t n+1)≈y(t n)+ n f(t n,y(t n)) ,将其中的函数值换为数值近似值,便得到欧拉法的计算公式.例8.4 (欧拉法):用欧拉法求解初值问题{y ′=t −y +1y (0)=1. 求t =0.5时y (t )的值,计算中将步长分别固定为0.1和0.05.[解] 在本题中,f (t,y )=t −y +1, t 0=0, y 0=1, 则欧拉法计算公式为:y n+1=y n + (t n −y n +1) , n =0,1,2,⋯当步长h=0.1时,计算公式为y n+1=0.9y n +0.1t n +0.1; 当步长h=0.05时,计算公式为y n+1=0.95y n +0.05t n +0.05. 两种情况的计算结果列于表8-1中,同时也给出了准确解y (t )=t +e −t 的结果.表8-1 欧拉法计算例8.4的结果 h=0.1h=0.05 t ny n y (t n ) t n y n t n y n 0.11.000000 1.004837 0.05 1.000000 0.3 1.035092 0.21.010000 1.018731 0.1 1.002500 0.35 1.048337 0.31.029000 1.040818 0.15 1.007375 0.4 1.063420 0.41.056100 1.070320 0.2 1.014506 0.45 1.080249 0.5 1.090490 1.106531 0.25 1.023781 0.5 1.098737 从计算结果可以看出,步长取0.05时,计算的误差较小.在常微分方程初值问题的数值求解过程中,步长 n ,(n =0,1,2,⋯)的设置对计算的准确性和计算量都有影响. 一般地,步长越小计算结果越准确,但计算步数也越多(对于固定的计算区间右端点),因此总计算量就越大. 在实际的数值求解过程中,如何设置合适的步长达到准确度与效率的最佳平衡是很重要的一个问题.8.2.2数值解法的稳定性与准确度在使用数值方法求解初值问题时,还应考虑数值方法的稳定性. 实际的计算过程中都存在误差,若某一步的解函数近似值y n 存在误差,在后续递推计算过程中,它会如何传播呢?会不会恶性增长,以至于“淹没”准确解?通过数值方法的稳定性分析可以回答这些问题. 首先给出稳定性的定义.定义8.2:采用某个数值方法求解常微分方程初值问题(8.4),若在节点t n 上的函数近似值存在扰动δn ,由它引起的后续各节点上的误差δm (m >n )均不超过δn ,即|δm |≤|δn |,(m >n),则称该方法是稳定的.在大多数实际问题中,截断误差是常微分方程数值求解中的主要计算误差,因此我们忽略舍入误差. 此外,仅考虑稳定的常微分方程初值问题.考虑单步法的稳定性,需要分析扰动δn 对y n+1的影响,推导δn+1与δn 的关系式. 以欧拉法为例,先考虑模型问题(8.7),并且设Re(λ)≤0. 此时欧拉法的计算公式为②:y n+1=y n + λy n =(1+ λ)y n ,由y n 上的扰动δn 引起y n+1的误差为:δn+1=(1+ λ)δn ,要使δn+1的大小不超过δn ,则要求|1+ λ|≤1 . (8.12)② 对于稳定性分析以及后面的一些场合,由于只考虑一步的计算,将步长 n 记为 .。

微积分课后习题参考答案第六章

微积分课后习题参考答案第六章

第六章 微分方程与差分方程§1微分方程的基本概念习 题 6 — 11.验证下列各题中函数是所给微分方程的解,并指出解的类型: ⑴03=+'y y x ,3-=Cx y ; 解:3-=Cx y 是03=+'y y x 的通解;⑵ax xyy +=',bx ax y +=2,其中a ,b 为常数; 解:bx ax y +=2是ax xy y +='的特解(因为b 不是任意常数);⑶()()022='-'+'+''-y y y y x y x xy ,()xy y ln =;解:()xy y ln =是()()022='-'+'+''-y y y y x y x xy 的特解;⑷0127=+'-''y y y ,x xe C e C y 4231+=;解:x xe C eC y 4231+=是0127=+'-''y y y 的通解;⑸x y y y 2103=-'+'',50355221--+=-x e C e C y x x. 解:50355221--+=-x e C eC y x x是x y y y 2103=-'+''的通解. 知识点:,定义6.2(若一个函数代入微分方程后,能使方程两端恒等,则称这个函数为微分方程的解)和若微分方程的解中含有独立的任意常数且个数与微分方程的阶数相同,这样的解叫做微分方程的通解,不含任意常数的解称为特解。

2.在曲线族()xex C C y 221+=中找出满足条件10==x y ,10='=x y 的曲线.解:由题意得:()xe x C C C y 222122++=',∵10==x y ,10='=x y , ∴解得11=C ,12-=C , 故所求曲线为()xex y 21-=(xxe y 2=)。

(整理)微分方程的例题分析与解法

(整理)微分方程的例题分析与解法

微分方程的例题分析及解法本单元的基本内容是常微分方程的概念,一阶常微分方程的解法,二阶常微分方程的解法,微分方程的应用。

一、常微分方程的概念本单元介绍了微分方程、常微分方程、微分方程的阶、解、通解、特解、初始条件等基本概念,要正确理解这些概念;要学会判别微分方程的类型,理解线性微分方程解的结构定理。

二、一阶常微分方程的解法本单元介绍了三种类型的一阶微分方程的求解方法:变量可分离型,齐次型,线性方程。

对于一阶微分方程,首先要看是否可以经过恒等变形将它的变量分离;对于一阶线性微分方程,先用分离变量法求解其相应的齐次方程,再用常数变易法求解非齐次方程;当然也可直接代下列通解公式:pxdxq(x)e pxdxye dxC齐次型微分方程yyf()y x令u u与自变量x的变量可分离的微分方程。

,则方程化为关于未知数x三、二阶微分方程的解法1.特殊类型的二阶常微分方程本章介绍了三种特殊类型的二阶方程的求解方法:(1)y f(x),直接积分;(2)y f(x,y),令y p,(3)y f(y,y),令y p,则y dp pdy这三种方法都是为了“降价”,即降成一阶方程。

2.二阶线性常系数微分方程二阶线性常系数微分方程求解的关键是:(1)特征方程对于相应的齐次方程,利用特征方程2p q0求通解:(2)对于非齐次方程,根据下列形式自由项的特点f(x)e x P m(x)和f(x)e axP l(~xx)cosxp n(x)sin设置特解y的形式,然后使用待定系数法。

四、微分方程的应用求解应用问题时,首先需要列微分方程,这可根据有关科学知识,分析所研究的变量应该遵循的规律,找出各量之间的等量关系,列出微分方程,然后根据微分方程的类型的用相应的方法求解,还应注意,有的应用问题还含有初始条件。

一、疑难解析(一)一阶微分方程1.关于可分离变量的微分方程可分离变量的微分方程是一阶微分方程中的一种最简单的方程,形如f1(x)g1(y)dxf2(x)g2(y)dy0(1)的微分方程称为变量可分离的微分方程,或称可分离变量的微分方程,若f2(x)g1(y) 0,则方程(1)可化为变量已分离的方程g2(y)dy f1(x)dxg1(y)f2(x)两端积分,即得(1)的通解:G(y)F(x)C(2)(2)式是方程(1)的通解(含有一个任意常数),但不是全部解,用分离变量法可求出其通解为y sin(x c),但显然y1也是该方程的解,却未包含在通解中,从这个例子也可以理解通解并不是微分方程的全部解,本课程不要求求全部解。

第八章微分方程本章主要通过几个具体的例子,说明微分方程的应用问题

第八章微分方程本章主要通过几个具体的例子,说明微分方程的应用问题

221第八章 微 分 方 程本章主要通过几个具体的例子,说明微分方程的应用问题,并介绍一些基本概念及几种常用的微分方程的解法.第一节 微分方程的基本概念例1 自由落体运动 自由落体运动是指物体在仅受到地球引力的作用下,初速度为零的运动.根据牛顿第二定律:ma F =,它的运动路程)(t s s =大小的变化规律可表示为:m g dtsd m =22. 且还满足0)0(,0)0(='=s s ,即⎪⎩⎪⎨⎧='==(2) 0)0(,0)0((1) 22s s g dt sd对(1)两边积分,得 1C gt dtds+=, (3) 对(3)两边积分,得21221C t C gt s ++=, (4) 这里21,C C 都是任意常数.将(2)代入(4),得0,012==C C . 故自由落体运动路程的规律为221gt s =. (5) 这是微分方程应用的最早一个例子.例2 Malthus 人口模型 英国人口学家马尔萨斯(Malthus T R 1766-1834)根据百余年的人口统计资料,于18世纪末提出著名的人口模型.该模型假设人口的净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与当时的人口数成正比.设时刻t 的人口为)(t x ,净相对增长率为r ,我们将)(t x 当作连续变量考虑,开始时(0=t )的人口数量为0x ,即0)0(x x =.按照Malthus 理论,于是)(t x 满足如下方程为:⎪⎩⎪⎨⎧==(7).)0((6), 0x x rx dt dx其中r 为常数.(6)称为Malthus 人口模型. 对(6)整理,得r d t xdx=. (8) 对(8)两边积分,得rt Ce t x =)(, (9)222将(7)代入(9),得0x C =,故人口增长规律为rt e x t x 0)(=. (10)如果0>r ,(10)表明人口将以指数规律无限增长.特别地,当∞→t 时,+∞→)(t x ,这似乎不可能. 这个模型可以与19世纪以前欧洲一些地区的人口统计数据很好地吻合,但是当后来人们用它与19世纪的人口资料比较时,误差较大.例3 Logistic 模型 荷兰生物数学家V erhulst 引入常数m x 表示自然资源和环境条件所能容许的最大人口,并假定净相对增长率等于⎪⎪⎭⎫⎝⎛-m x t x r )(1,即净相对增长率随着)(t x 增加而减少.因为随着人口的增加,自然资源,环境条件等因素对人口继续增长的阻滞作用越来越显著.如果人口较少时(相对于资源而言)人口增长率还可以看作常数.当人口增加到一定数量后,增长率就会随着人口的继续增加而逐渐减少.这正是对Malthus 人口模型中人口的固定净相对增长率的修正.这样,Malthus 人口模型(6)变为:⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=(12). )0((11), )()(10x x t x x t x r dt dx m该模型的解为()rtm me x x x t x -⎪⎪⎭⎫ ⎝⎛-+=110, (13)易看出,当+∞→t 时,m x t x →)(.这个模型称为Logistic 模型,其结果经计算与实际情况比较吻合.此模型在很多领域有着较广泛的应用.例4 广告模型 在当今这个信息社会中,广告在商品推销中起着极其重要的作用.当生产者生产出一批产品后,便会考虑到广告的大众性和快捷性,利用广告促销作用更快更多地卖出产品.那么,广告与促销到底有何关系?广告在不同时期的效果如何?下面建立独家销售的广告模型来研究.该模型假设:商品的销售速度会因做广告而增加,但当商品在市场趋于饱和时,销售速度将趋于极限值,这时,销售速度将开始下降;自然衰减是销售速度的一种性质,商品销售速度的变化率随商品的销售率的增加而减少.设)(t s 为t 时刻商品的销售速度,M 表示销售速度的上限;0>λ为衰减因子常数,即广告作用随时间增加,而自然衰减的速度;)(t A 为t 时刻的广告水平(以费用表示).建立方程为:⎪⎩⎪⎨⎧=-⎪⎭⎫⎝⎛-⋅⋅=(15) )0((14) )()(1)(0s s t s M t s t A p dtds λ 其中p 为响应函数,即)(t A 对)(t s 的影响力,p 为常数.223由假设知,当销售进行到某个时刻时,无论怎样作广告,都无法阻止销售速度的下降,故选择如下广告策略:⎩⎨⎧>≤≤=ττt t A t A 00)(, 其中A 为常数.在[]τ,0时间内,设用于广告的花费为a ,则τaA =,代入(14),有ττλa p s a M p dt ds ⋅=⎪⎭⎫ ⎝⎛⋅++, 令τλa M p b ⋅+=; τpac =. 则有c bs dtds=+. (16) 解(16),得bcke t s bt+=-)( , (17) 其中k 为任意常数.将(15)代入(17),得()bt bt e s e bct s --+-=01)(, (18) 当τ>t 时,由)(t A 的表达式,则(14)为s dtdsλ-=. (19) 其解为()t e t s t s -=τλ)()(. (20) 这样,联合(18)与(20),得到()()⎪⎩⎪⎨⎧>≤≤+-=---τττττλt e s t e s e bct s btbt )(01)(0. (21)其图形如图8-1.224图8-1上述四个例子中的关系式(1)、(6)、(11)和(14)都含有未知函数的导数,它们都是微分方程.一般地,凡是含有自变量、自变量的未知函数以及未知函数的导数(或微分)的方程,都叫做微分方程.如果微分方程中,自变量的个数只有一个,则称之为常微分方程;自变量的个数为两个或两个以上,则称之为偏微分方程.本章只讨论常微分方程.微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶.例如方程(6)、(11)和(14)是一阶微分方程;方程(1)是二阶微分方程. 一般地,n 阶微分方程的形式是,,(y x F )(,,n y y ')=0 (22)其中2+n F 是个变量的函数.这里必须指出,在方程(22)中,)(n y 必须出现的,而)1(,,,,-'n y y y x 等变量则可以不出现.例如n 阶微分方程01)(=+n y中,除)(n y 外,其他变量都没有出现.如果能从方程(22)中解出最高阶导数,得微分方程),,,,()1()(-'=n n y y y x f y (23)以后我们讨论的微分方程都是这种已解出最高阶导数的方程或能解出最高阶导数的方程,且(23)式右端的函数在所讨论的范围内连续.由前面的例子我们看到,在研究某些实际问题时,首先要建立微分方程,然后找出满足微分方程的函数(解微分方程),就是说,找出这样的函数,把这函数代入微分方程能使该方程成为恒等式.这个函数就叫做该微分方程的解.确切地说,设函数)(x y ϕ=在区间I 上有n 阶连续导数,如果在区间I 上,0)](,),(),(,[)(≡'x x x x F n ϕϕϕ那么函数)(x y ϕ=就叫做微分方程(22)在区间I 的解.由前面的例子,可知函数(4)和(5)都是微分方程(1)的解;函数(9)和(10)都是微分方程(6)的解;函数(13)是微分方程(11)的解;函数(21)是微分方程(14)的解.如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.例如,函数(9)是微分方程(6)的解,它含有一个任意常数,而方程(6)是一阶的,所以函数(9)是微分方程(6)的通解;函数(4)是方程(1)的解,它含有两个任意常数,而方程(1)是二阶的,所以函数(4)是方程(1)的通解.在利用微分方程求解实际问题时,所得到的含有任意常数的通解因其具有不确定性而不能满足需要,通常还要根据问题的实际背景,加上某些特定的条件,确定通解中的任意常数.用来确定通解中任意常数值的条件叫做初始条件.例1中的条件(2),例2中的条件(7)等,便是初始条件.一般地,设微分方程中的未知函数为)(x y y =,如果微分方程是一阶的,通常用来确定任意常数的初始条件是,00y y x x ==时,或写成 00y yx x ==.225其中0x 、0y 都是给定的值;如果微分方程是二阶的,通常用来确定任意常数的初始条件是:,00y y x x ==时,0y y '=', 或写成 00y yx x ==,0y y x x '='=. 其中00,y x 和0y '都是给定的值. 由初始条件确定了通解中的任意常数的解,就叫做微分方程的特解.例如(5)式是方程(1)满足条件(2)的特解;(10)式是方程(6)满足条件(7)的特解. 微分方程的解所对应的几何图形叫做微分方程的积分曲线.通解的几何图形是一族积分曲线,特解所对应的几何图形是一族积分曲线中的一条.第二节 变量分离方程从本节开始,我们将在微分方程基本概念的基础上,从求解最简单的微分方程—可分离变量的微分方程入手,从易到难地介绍一些微分方程的解法.形如)()(y x f dxdyϕ= (1) 的方程,称为变量分离方程.其中)(x f 和)(y ϕ分别是x 和y 的连续函数.下面说明方程(1)的求解方法.如果0)(≠y ϕ,我们可将方程(1)改写成dx x f y dy)()(=ϕ 这样,变量就“分离”开来了,两边积分,得到方程(1)的通解C dx x f y dy+=⎰⎰)()(ϕ (2) 这里我们把积分常数C 明确写出来,而把)(y dy ϕ⎰,dx x f )(⎰分别理解为)(1y ϕ,)(x f 的某一个原函数. 如果存在0y ,使0)(0=y ϕ,直接代入方程(1),可知0y y =也是(1)的解.如果它不包含在方程的通解(2)中.必须予以补上.例1 求微分方程xy dxdy2= (3) 的通解.226解 方程(3)是变量分离方程,变量分离后得xdx ydy2=, 两端积分⎰⎰=xdx y dy2,得 12ln C x y +=, 从而 2112x C C x e e e y ±=±=+,因1Ce ±仍是任意常数,把它记作C ,得到2x Ce y =. (4)此外,0=y 显然也是方程(3)的解,如果在(4)中允许0=C ,则0=y 也就包含在(4)中,因此,(3)的通解便是方程(4),其中C 是任意常数.例2 解方程0)1(=++dy x xydx . (5) 解 变量分离,得 dx x xy dy 1+-=, 两边积分,得dx x xy dy 1+-=⎰⎰, ⎰⎰⎪⎭⎫ ⎝⎛+--=+-+-=dx x dx x x y 111111ln , 1ln 1ln ln C x x y +-=+-, 1ln 1lnC x x y+-=+, x Ce x y-=+1(1C C ±=), 故所求方程的通解为x e x C y -+=)1(. (6)此外,0=y 显然也是方程(5)的解,而0=y 包含在(6)中,因此,方程(6)是(5)的通解,其中C 是任意常数.例3 解Malthus 人口模型:227rx dtdx=, 0)0(x x =. 解 变量分离,得rdt xdx=, 两边积分,得C rt x ln ln +=,rt Ce t x =)(,因初始条件()00x x =,所以0x c =,故满足初始条件的解为rt e x t x 0)(= .第三节 齐次方程形如)(xydx dy ϕ= (1) 的方程,称为齐次方程.这里)(u ϕ是u 的连续函数.例如:0)2()(22=---dy xy x dx y xy ,是齐次方程,因为)(21)(2222xy x yxy xyx y xy dx dy --=--=. 下面说明方程(1)的求解方法. 作变量变换,令xyu =, (2) 即ux y =,于是dxdu x u dx dy +=, (3) 将(2)和(3)代入方程(1),则原方程变为)(u dxduxu ϕ=+, 即 u u dxdux -=)(ϕ. 变量分离,得xdxu u du =-)(ϕ,两边积分,得228⎰⎰=-x dxu u du )(ϕ.求出积分后,再用xy代替u ,便得所给齐次方程的通解. 例1 解方程dxdyxydx dy x y =+22. 解 原方程可写成1)(222-=-=xy x y xxy y dx dy , 因此是齐次方程.令,u xy=则 dxdu x u dx dy ux y +==,, 于是原方程变为12-=+u u dx du x u ,即 1-=u u dx du x . 变量分离,得xdx du u =-)11(,两端积分,得x C u u ln ln =+-,或写为 C u xu +=ln . 以xy代入上式中的u ,便得所给方程的通解为 C xyy +=ln . 例2 求解方程y xy dxdyx=+2 )0(<x . 解 将方程改写为xy x y dx dy +=2 )0(<x ,这是齐次方程. 以u xy =及u dx duu dx dy +=代入,则原方程变为 u dxdux 2=, (4) 分离变量,得到xdxudu =2,229两边积分,得到(4)的通解C x u +-=)l n (,即()[]2ln C x u +-=. )0)(l n (>+-C x 这里C 是任意常数. (5)此外,方程(4)还有解 0=u ,注意,此解并不包括在通解(5)中.代回原来的变量,即得原方程的通解[]2)l n (C x x y +-= )0)(l n (>+-C x 及解0=y .第四节 一阶线性微分方程一、一阶线性微分方程形如)()(x Q y x P dxdy=+ (1) 的方程,叫做一阶线性微分方程,因为它对于未知函数y 及其导数是一次方程.如果0)(≡x Q 则方程(1)称为齐次的;如果)(x Q 不恒等于零,则方程(1)称为非齐次的.当0)(≡x Q 时,(1)可写成0)(=+y x P dxdy(2) 方程(2)叫做对应于非齐次线性方程(1)的齐次线性方程.(2)是变量分离方程,变量分离后得dx x P ydy)(-=, 两边积分,得⎰+-=1ln )(ln C dx x P y ,由此得)(,1)(C C Ce y dxx P ±=⎰=- (3)式(3)是所求的齐次线性方程(2)的通解.这里C 是任意常数.下面我们来讨论求非齐次线性方程(1)的通解的方法.不难看出,(2)是(3)的特殊情形,两者既有联系又有差异.因此可以设想它们的解也应该有一定的联系.我们试图利用方程(2)的通解(3)的形式去求出方程(1)的通解.显然,如果(3)中C 恒保持常数,它必不可能是(1)的解.我们设想:在(2)中,将常数C 换成x 的待定函数)(x u ,使它满足方程(1),从而求出)(x u .该方法称为常数变易法.为此,令⎰=-dx x P ue y )( , (4) 于是 ⎰-⎰'=--dx x P dx x P e x uP e u dxdy)()()(. (5)将(4)和(5)代入方程(1)得230)()()()()()(x Q ue x P e x uP e u dx x P dx x P dx x P =⎰+⎰-⎰'---,即 )()(x Q e u dx x P =⎰'-,⎰='dxx P e x Q u )()(. 两边积分,得 ⎰+⎰=C dx e x Q u dxx P )()(.把上式代入(4),便得非齐次线性方程(1)的通解⎪⎭⎫⎝⎛+⎰⎰=⎰-C dx e x Q e y dxx P dx x P )()()(. (6)将(6)式改写成两项之和⎰⎰⎰+⎰=--dx e x Q e Ce y dx x P dx x P dx x P )()()()(. 上式右端第一项是对应的齐次线性方程(2)的通解,第二项是非齐次线性方程(1)的一个特解.由此可知,一阶非齐次线性方程通解等于对应的齐次方程的通解与非齐次方程的一个特解之和.例 1 求方程25)1(12+=+-x x y dx dy 的通解.解 这是一个一阶非齐次线性方程.先求对应的齐次方程的通解.012=+-y x dx dy , 变量分离,得12+=x dxy dy , 两边积分,得 1ln 1ln 2ln C x y ++=,即 2)1(+=x C y (1C C ±=).用常数变易法,把()x u C 换成,即令2)1(+=x u y , (7)那么 )1(2)1(2+++'=x u x u dxdy, 代入所给非齐次方程,得21)1(+='x u .两边积分,得 C x u ++=231(32). 在把上式代入(7)式,即得所求方程的通解为⎥⎦⎤⎢⎣⎡+++=C x x y 232)1(32)1(.231例2 求方程1)1()1(++=-+n x x e ny dxdyx 的通解,这里n 为常数. 解: 将方程改写为 n x x e y x ndx dy )1(1+=+-, (8)首先,求齐线性方程 01=+-y x ndx dy 的通解,从dx x n y dy 1+=得到齐线性方程的通解为 n x C y )1(+=.其次,应用常数变易法求非齐线性方程的通解.为此,在上式中把C 看成为x 的待定函数)(x u ,即n x x u y )1)((+=, (9)微分之,得到)()1()1()(1x u n n x dxx du dx dy n n -+++=. (10) 以(9)及(10)代入(8),得到x e dx x du =)(, 积分之,求得 C e x u x ~)(+=,因此,以所求的)(x C 代入(9),即得原方程的通解)~()1(C e x y x n ++=. 这里C ~是任意常数 二 、 伯努利方程形如n y x Q y x P dxdy)()(=+ )1,0(≠n (11) 的方程叫做伯努利方程.当0=n 或1=n 时,这是线性微分方程.当1,0≠≠n n 时,这方程不是线性的,但是通过变量的代换,便可把它化为线性的.事实上,以n y 除方程(10)的两边,得)()(1x Q y x P dxdyyn n=+--. (12) 容易看出,上式左端第一项与)(1ny dxd -只差一个常数因子n -1,因此,我们令 n y z -=1,那么dxdy y n dx dz n --=)1(. 用)1(n -乘方程(12)的两端,再通过上述变换便得线性方程)()1()()1(x Q n z x P n dxdz-=-+.232求出这方程的通解后,以z y n 代-1,便可得到伯努利方程(11)的通解.此外,当0>n 时,方程还有解0=y .例3 求方程2)(ln y x a xydx dy =+, 的通解.解 以2y 除方程的两边,得x a y xdx dy y ln 112=+--. 即 x a y xdx y d ln 1)(11=+---.令1-=y z ,则上述方程成为x a z xdx dz ln 1-=-, 这是一个线性方程,它的通解为⎥⎦⎤⎢⎣⎡-=2)(ln 2x a C x z .以1-y 代z ,故得所求方程的通解为1)(ln 22=⎥⎦⎤⎢⎣⎡-x a C yx .此外,方程还有解0=y .在上节中,对于齐次方程⎪⎭⎫⎝⎛='x y y ϕ,我们通过变量变换xu y =,把它化为变量可分离的方程,然后分离变量,经积分求得通解.在本节中,对于一阶非齐次线性方程)()(x Q y x P y =+',我们通过解对应的齐次线性方程找到变量变换⎰=-dxx P ue y )(,利用这一代换,把非齐次线性方程化为变量可分离的方程,然后经积分求得通解.对于伯努利方程n y x Q y x P y )()(=+',我们通过变量变换z yn=-1,把它化为线性方程,然后按线性方程的解法求得通解,可见,以上方程都是通过变量变换化为可求解方程来求解的,该方法适合很多特殊方程求解.233第五节 可降阶的高阶微分方程从这一节起,我们讨论二阶及二阶以上的微分方程,即所谓的高阶微分方程,对于有些高阶微分方程,我们可以通过变量变换将它化成较低阶的方程来求解.下面以二阶微分方程为例来介绍:二阶微分方程的一般形式为0),,,(='''y y y x F或者),,(y y x f y '=''一般来说,二阶微分方程要比一阶微分方程的求解复杂一些.但是对于某些二阶微分方程来说,如果我们能设法作变量代换把它从二阶降至一阶,那么就有可能应用前面几节中所讲的方法来求出它的解了.下面介绍三种容易降阶的二阶微分方程的求解方法. 一、()x f y =''型的微分方程形如)(x f y ='' (1)的方程,右端仅含有自变量x .两端同时积分一次,就化为一阶方程1)(C dx x f y +='⎰再积分一次,得到通解21])([C dx C dx x f y ++=⎰⎰一般地对())(x f y n =求解,只需对方程两端积分n 次. 例1 求解方程x e x y -+=''2s i n .解 对所给的方程连续积分两次,得12cos 21C e x y x +--='-, 212sin 41C x C e x y x +++-=-所求的通解为212s i n 41C x C e x y x +++-=-. 例2 求微分方程x ey xc o s 2-='''.的通解.解 对所给方程连续积分三次,得C x e y x+-=''sin 212, 22cos 41C Cx x e y x+++=',23432212sin 81C x C x C x e y x ++++= ⎪⎭⎫ ⎝⎛=21C C .所求的通解为32212sin 81C x C x C x e y x ++++=.二、),(y x f y '=''型的微分方程形如),(y x f y '='' (2)的方程,右端不显含未知函数y .这时,只要令,p y ='那么p dxdpy '=='' 而方程(2)就化为),(p x f p ='.这是一个关于变量p x 、的一阶微分方程,再按一阶方程求解.设其通解为),(1C x p ϕ=.但是dxdyp =,因此又得到一个一阶微分方程 ),(1C x dxdyϕ=. 对它进行积分,便得方程(2)的通解为⎰+=21),(C dx C x y ϕ.例3 求微分方程y x y x '=''+2)1(2,满足初始条件,10==x y 30='=x y的特解.解 所给方程是),(y x f y '=''型的.令,p y ='代入方程并分离变量后,有dx x x p dp 212+=. 两边积分,得C x p ++=)1ln(ln 2,235即 )1(21x C y p +='=. ()C e C ±=1 由条件30='=x y ,得31=C ,所以 )1(32x y +='. 两边再积分得 233C x x y ++=. 又由条件,10==x y 得12=C ,于是所求的特解为133++=x x y .三、),(y y f y '=''型的微分方程形如),(y y f y '='' (3)的方程,其中不明显地含自变量x .这时,只要令p y =',并利用复合函数的求导法则把y ''化为对y 的导数,即dydppdx dy dy dp dx dp y =⋅=='' 这样方程(3)就成为),(p y f dydpp=. 这是一个关于变量p y ,的一阶微分方程,再按一阶微分方程求解.设它的通解为 ),(1C y p y ϕ==', 分离变量并积分,便得方程(3)的通解为⎰+=21),(C x C y dyϕ.例4 求微分方程02='-''y y y的通解.解 所给方程是),(y y f y '=''型的.令 p y =',则236dydp p y ='', 代入原方程,得02=-p dydpyp. 在0≠y 、0≠p 时,约去p 并分离变量,得ydyp dp =. 两边积分,得C y p +=ln ln ,即 y C p 1=,或y C y 1'= )(1C e C ±=. 再分离变量并两端积分,便得所求方程的通解为2'1ln C x C y +=,或 xC1e C y 2= )2'=(2C e C ±.第六节 二阶线性微分方程一、二阶常系数齐次线性微分方程二阶齐次线性微分方程的形式为0)()(=+'+''y x Q y x P y . (1)如果)()(x Q x P y y 、的系数、'均为常数,则(1)式为0=+'+''qy y p y , (2)其中q p 、是常数,则称(2)为二阶常系数齐次线性微分方程.如果q p 、不全为常数,称(1)为二阶变系数齐次线性微分方程.下面我们主要研究二阶常系数齐次线性微分方程的解法.关于方程(2),我们不加证明地给出二阶常系数齐次线性微分方程的有关定理: 定理1 (解的叠加定理)如果21y y 、是方程(2)的两个解,那么2211y C y C y +=也是(2)的解,其中21,C C 是任意常数.237定理2 如果21y y 、是方程(2)的两个不成比例的特解(即常数≡/21y y ),则2211y C y C y +=就是方程(2)的通解,其中21,C C 是任意常数.在这里我们之所以要求21,y y 不成比例,是因为如果有21Cy y =,那么就可推出()2212211y C C C y C y C y +=+=,即通解2211y C y C y +=中的两个任意常数变成一个.根据定理2,要求(2)的通解,只要设法先求出它的两个解21,y y ,且常数≡/21y y ,则2211y C y C y +=就是方程(2)的通解.仔细观察方程(2)可知,它的解应该具有各阶导数都只相差一个常数因子的性质,因此我们推测方程(2)的解是指数函数.取rx e y =(r 为常数),选取适当的r ,使它满足方程(2),则rx e y =就是方程(2)的解. 将rx e y =代入方程(2),得到0)(2=++rx e q pr r .由于0≠rxe,所以02=++q pr r . (3)由此可见,只要r 满足代数方程(3),函数rx e y =就是微分方程(2)的解.我们把代数方程(3)叫做微分方程(2)的特征方程.特征方程(3)是一个二次代数方程,其中r r 、2的系数及常数项恰好依次是微分方程(2)中y y '''、及y 的系数.特征方程(3)的两个根21r r 、可以用公式2422,1qp p r -±-=求出.它们有三种不同的形式:(i )当042>-q p 时,21,r r 是两个不相等的实根:2421q p p r -+-=,2422q p p r ---=(ii )当042=-q p 时,21,r r 是两个相等的实根:221pr r -==238(iii )当042<-q p 时,21,r r 是一对共轭复根:,1βαi r += ,2βαi r -=其中 ,2p-=α 242p q -=β. 相应地,微分方程(2)的通解也就有三种不同的情形.分别讨论如下: (ⅰ)特征方程有两个不相等的实根:21r r ≠. 微分方程(2)有两个解x r x r e y e y 2121==、,并且12y y 不是常数,因此微分方程(2)的通解为 x r x r e C e C y 2121+=.(ⅱ)特征方程有两个相等的实根:21r r =. 这时,微分方程(2)有一个解.11x r e y =下面求出微分方程(2)的另一个解2y ,并且要求12y y 不是常数. 设)(12x u y y =,)(12x u e y x r =即,代入微分方程(2),可得 0)(=''x u因为这里只要得到一个不为常数的解,所以不妨选取x u =,由此得到微分方程(2)的另一个解.21x r xe y =从而微分方程(2)的通解为x r x r xe C e C y 1121+=即 ()xr e x C C y 121+=(ⅲ) 特征方程有一对共轭复根:)0(,21≠-=+=ββαβαi r i r . 这时,微分方程(2)有两个解()()x i xi e y ey βαβα-+==21, ,并且12y y 不是常数.但它们是复值函数形式.为了得出实值函数形式,我们先利用欧拉公式θθθsin cos i ei +=,21,y y 把改写为()),sin (cos 1x i x e e e e y x x i x x i ββαβαβα+=⋅==+ ())sin (cos 2x i x e e e e y x x i x x i ββαβαβα-=⋅==--.239由于复值函数21y y 与之间成共轭关系,因此,取它们的和除以2就得到它们的实部;取它们的差除以2i 就得到它们的虚部.根据方程(2)有关解的定理,所以实值函数,cos )(21211x e y y y x βα=+=x e y y i y x βαsin )(21212=-=还是微分方程(2)的解,且x xe xe y y x x βββααcot sin cos 21==不是常数,所以微分方程(2)的通解为)sin cos (21x C x C e y x ββα+=.综上所述,求二阶常系数齐次线性微分方程0=+'+''qy y p y , 的通解的步骤如下:第一步 写出微分方程(2)的特征方程02=++q pr r . 第二步 求出特征方程(3)的两个根21,r r .第三步 根据特征方程(3)的两个根的不同情形,按照下列表格写出微分方程(2)的通解:例1 求微分方程032=-'-''y y y 的通解. 解 所给微分方程的特征方程为0322=--r r ,其根3,121=-=r r 是两个不相等的实根,因此所求通解为x x e C e C y 321+=-.例2 求方程0222=++s dt dsdts d 满足初始条件2400-='===t t s s 、的特解.解 所给微分方程的特征方程为2400122=++r r ,其根121-==r r 是两个相等的实根,因此所求微分方程的通解为t e t C C s -+=)(21,将初始条件2400-='===t t s s、代入通解,得41=C ,22=C于是所求特解为t e t s -+=)24(.例3 求微分方程052=+'-''y y y 的通解. 解 所给方程的特征方程为,0522=+-r r其根i r 212,1±=为一对共轭复根.因此所求通解为)2sin 2cos (21x C x C e y x +=.二、二阶常系数非齐次线性微分方程二阶常系数非齐次线性微分方程的一般形式是),(x f qy y p y =+'+'' (4) 其中q p 、是常数,0)(≠x f .当0)(=x f 时,(4)可写为0=+'+''qy y p y . (5)叫作方程(4)对应的二阶常系数齐次线性微分方程.关于方程(4)的通解,我们不加证明地给出如下定理:定理3 如果*y 是方程(4)的一个特解,Y 是方程(4)对应的齐次方程(5)的通解,则方程(4)的通解为*+=y Y y .由上述定理3可知,求二阶常系数非齐次线性微分方程(4)的通解,归结为求对应的齐次线性方程(5)的通解和非齐次方程(4)本身的一个特解.由于二阶常系数齐次线性微分方程的通解的求法已得到解决,所以这里只需讨论求二阶常系数非齐次线性微分方程的一个特解*y 的方法.本节介绍当方程(4)中的()x f 取两种常见形式时求*y 的方法.这种方法的特点是不用积分就可以求出*y 来,这种方法叫做待定系数法.)(x f 的两种形式是241(1)x m e x P x f λ)()(=,其中λ是常数,)(x P m 是x 的一个m 次多项式:m m m m m a x a x a x a x P ++⋅⋅⋅++=--1110)(.(2)]sin )(cos )([)(x x P x x P e x f n l x ωωλ+=,其中ωλ、是常数,)()(x P x P n l 、分别是x 的l 次、n 次多项式,其中有一个可为零.下面分别介绍)(x f 为上述两种形式时*y 的求法.1.)()(x P e x f m x λ=型我们知道,方程(4)的特解*y 是使(4)成为恒等式的函数.怎样的函数能使(4)成为恒等式呢?因为(4)式右端)(x f 是多项式)(x P m 与指数函数x e λ的乘积,而多项式与指数函数乘积的导数仍然是同一类型,因此,我们推测x e x Q y λ)(=*(其中)(x Q 是某个多项式)可能是方程(4)的特解.把"'***y y y 及、代入方程(4),然后考虑能否选取适当的多项式)(x Q ,使x e x Q y λ)(=*满足方程(4).为此将,)(x e x Q y λ=*[])()(x Q x Q e yx '+='*λλ, [])()(2)(2x Q x Q x Q e yx ''+'+="*λλλ 代入方程(4)并消去x e λ,得 )()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ. (6)推导可知如下结论:如果x m e x P x f λ)()(=,则二阶常系数非齐次线性微分方程(4)具有形如x m k e x Q x y λ)(=* (7)的特解,其中)(x Q m 是与)(x P m 同次m (次)的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取为10、或2. 上述结论可推广到n 阶常系数非齐次线性微分方程,但要注意(7)式中的k 是特征方程含根λ的重复次数(即若λ不是特征方程的根,k 取为0;若λ是特征方程的s 重根,k 取为s ).例1 求微分方程1332+=-'-''x y y y 的一个特解.解 这是二阶常系数非齐次线性微分方程,且函数)(x f 是x m e x P λ)(型(其中0,13)(=+=λx x P m ).与所给原方程对应的齐次线性微分方程为032=-'-''y y y ,242它的特征方程为0322=--r r .有两个实根3,121=-=r r ,由于这里0=λ不是特征方程的根,所以应设特解为10b x b y +=*.把它代入原方程,得13323100+=---x b b x b ,比较两端x 同次幂的系数,得⎩⎨⎧=--=-13233100b b b 由此求得31,110=-=b b .于是求得一个特解为 31+-=*x y . 例2 求微分方程x xe y y y 265=+'-''的通解.解 所给方程也是二阶常系数非齐次线性微分方程,且型是x m e x P x f λ)()((其中)2,)(==λx x P m . 与所给原方程对应的齐次线性微分方程为065=+'-''y y y ,它的特征方程为0652=+-r r ,有两个实根3,221==r r ,于是与所给方程对应的齐次方程的通解为x x e C e C Y 3221+=.由于2=λ是特征方程的单根,所以应设*y 为x e b x b x y 210)(+=*,把它代入所给原方程,得x b b x b =-+-10022,比较等式两端同次幂的系数,得⎩⎨⎧=-=-0212100b b b , 解得1,2110-=-=b b .因此求得一个特解为243x e x x y 2)121(--=*. 从而所求的通解为 x x x e x x e C e C y 223221)2(21+-+=. 2.[]x x P x x P e x f n l x ωωλsin )(cos )()(+=型 应用欧拉公式和方程(4)有关解的定理,不加证明地可得如下结论:如果[]x x P x x P e x f n l x ωωλsin )(cos )()(+=,则二阶常系数非齐次线性微分方程(4)的特解可设为]s i n c o s )([)2()1(x R x x R e x y m m x k ωωλ+=* (8)其中)(),()2()1(x R x R m m 是m 次多项式,},max{n l m =,而ωλi k +按(或ωλi -)不是特征方程的根、或是特征方程的单根依次取为10或.上述结论可推广到n 阶常系数非齐次线性微分方程,但要注意(8)式中的k 是特征方程中含根ωλi +(或ωλi -)的重复次数.例3 求微分方程x x y y 2cos =+''的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且属于[]x x P x x P e x f n l x ωωλsin )(cos )()(+=型(其中0)(,)(,2,0====x P x x P n l ωλ).与所给方程对应的齐次方程为0=+''y y ,它的特征方程为012=+r ,有两个复根i r i r -==21,,由于这里i i 2=+ωλ不是特征方程的根,所以应设特解为x d cx x b ax y 2sin )(2cos )(+++=*.把它代入所给方程,得x x x a d cx x c b ax 2cos 2sin )433(2cos )433=++-+--(.比较两端同类项的系数,得⎪⎪⎩⎪⎪⎨⎧=--=-=+-=-0430304313a d c c b a , 由此解得 94,0,0,31===-=d c b a . 于是求得原方程的一个特解为244 x x x y 2sin 942cos 31+-=*. 以上我们主要介绍了二阶线性微分方程的解法,该方法可以推广到高阶线性微分方程.。

水力学 第八章 边界层理论基础与绕流运动

水力学 第八章 边界层理论基础与绕流运动
3
2、边界层的厚度(Boundary Layer Thickness)
(1)边界层名义厚度
自固体边界表面沿其外法线到纵向流速 ux 达到主流速U0的99%处的距离。 边界层的厚度顺流增大,所以δ 是 x 的函数,即:δ (x)。
8-1 边界层的基本概念
4
(2)边界层位移厚度d(流量亏损厚度、排挤厚度)
第八章
§8 — 1 §8 — 2 §8 — 3 §8 — 4 §8 — 5 §8 — 6 §8 — 7
第八章
边界层理论基础和绕流运动
边界层的基本概念 边界层微分方程•普朗特边界层方程 边界层的动量积分方程 平板上的层流边界层 平板上的湍流边界层 边界层的分离现象和卡门涡街 绕流运动
1
边界层理论基础和绕流运动
3 10 Re xcr
5
教材中取: (2)边界层厚度
Re xcr 5.0 10
U 0xcr 3 106 v
5
1)层流边界层: 5 x Re 1x/ 2
8-1 边界层的基本概念
10
0.381x 2)紊流边界层: /5 Re1 x
2、管流或明渠流的边界层
进口处没有特别干扰的光 滑圆管流,进口段或起始段 长度为
8-1 边界层的基本概念
7
3、层流边界层与紊流边界层
当边界层厚度较小时,流速梯度很大,粘滞应力也很大,边界层内 的流动属于层流,这种边界层称为层流边界层(Laminar Boundary Layer)。 当雷诺数达到一定数值时,边界层内的流动经过一过渡段后转变为湍 流,成为湍流边界层(Turbulence Boundary Layer) 。
如图所示,可知: ρU δ δd 也可表示为:

高等数学第7章(第8节)

高等数学第7章(第8节)
原方程通解为
y C 1 e x C 2 e x x e x
x e
k x
i x i x
第四步 分析 y 的特点
y y1 y1 k x

x e

~ Rm cos x Rm sin x
y1 y1
y

y1 y1

y1 y1
y*
~ 所以 y 本质上为实函数 , 因此 Rm , Rm 均为 m 次实
因此特解为 y* x ( 1 x 1) e 2 x . 2
所求通解为
1 ( 2
x 2 x ) e2 x .
y 3 y 2 y 1 例3. 求解初值问题 y (0) y (0) y (0) 0
解: 本题 0 , 特征方程为
y* e x [ Q ( x) Q ( x) ] y* e x [ 2 Q ( x) 2 Q ( x) Q ( x) ]
代入原方程 , 得
(1) 若 不是特征方程的根, 则取 x e为[ m 次待定系数多项式 ( x) (2 p q ) Q ( x) ] Q ( x) ( 2 p ) Q Q (x) 从而得到特解
x
i 为特征方程的 k (=0, 1 )重根, 则设特解为
y* x e
k x
~ [ Rm ( x) cos x Rm ( x) sin x]
3. 上述结论也可推广到高阶方程的情形.
思考与练习
1 . (填空) 设
时可设特解为
y* x (a x b) cos x (cx d )sin x
y p y q y Pm ( x) e( i ) x

考研数学一(常微分方程)模拟试卷15

考研数学一(常微分方程)模拟试卷15

考研数学一(常微分方程)模拟试卷15(总分:60.00,做题时间:90分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

(分数:2.00)__________________________________________________________________________________________ 解析:2.,③y 2 dx一(y 2 +2xy一y)dy=0中,属于一阶线性微分方程的是( )(分数:2.00)A.①。

B.②。

C.③。

√D.①②③均不是。

x看成未知函数,y为自变量,则该方程就是一阶线性微分方程。

故应选C。

3.已知微分方程y"一4y'+4y=0,函数C,C2xe 2x (C 1,C 2为任意常数)为( )(分数:2.00)A.方程的通解。

B.方程的特解。

C.非方程的解。

D.是解,但不是通解也不是特解。

√解析:解析:令f(x)=C 1 C 2 xe 2x,C 1、C 2为任意常数,将f(x),f'(x)及f"(x)代入已知微分方程,经计算,满足方程y"一4y'+4y=0,故C 1 C 2 xe 2x是方程的解,因为含有任意常数,所以不是特解,又因为C 1 C 2实质上是一个任意常数,而方程是二阶微分方程,由通解的结构知应含有两个任意常数,故C 2x不是通解,故选D。

1 C2 xe4.设φ1 (x),φ2 (x),φ3 (x)为二阶非齐次线性方程y"+a 1 (x)y'+a 2 (x)y=f(x)的三个线性无关的解,则该方程的通解为( )(分数:2.00)A.C 1 [φ1 (x)+φ2 (x)]+C 2φ3 (x)。

B.C 1 [φ1 (x)一φ2 (x)]+C 2φ3 (x)。

C.C 1 [φ1 (x)+φ2 (x)]+C 2 [φ1 (x)一φ3 (x)]。

弹性力学-第八章 平面问题的极坐标解答

弹性力学-第八章 平面问题的极坐标解答

(2) 只有环向变形,无径向变形。 O
径向线段PA的相对伸长:
r2
PA PA PA
dr dr 0 dr (f)
径向线段PA的转角:
2
u
u dr r
dr
u
y
u r
d
B
B
rP
2
P
dr
u
2 A
x
A
u
(g) u
u
d
u r
dr
环向线段PB的相对伸长:
2
PB PB PB
BB PP PB
u
u d rd
xy
sin
2
x
y
2
x
y
2
cos 2
xy
sin
2
r
x
y
2
sin
2
xy
cos 2
第八章 平面问题的极坐标解答 §8.2 平面轴对称应力问题
§8.2 平面轴对称应力问题
A. 轴对称问题应力分量与协调方程
无体积力,且与θ无关.求解方法:
(1)应力分量
r
1 r
d
dr
d 2
dr 2
r 0
主 要内容
§8-1 §8-2 §8-3 §8-4 §8-5 §8-6 §8-7 §8-8 §8-9
基本方程 平面轴对称应力问题 内外壁受均布压力作用的圆筒或圆环板 匀速转动的圆盘 曲梁的纯弯曲 曲梁一端受径向集中力作用 圆孔对应力分布的影响 集中力作用于全平面 在顶端受集中力或集中力偶作用的楔形体
第八章 平面问题的极坐标解答 §8-1 基本方程
1 r
)
e2 (sin
r
cos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考题解答
∵ y ′ = 6e 2 x ,
y′′ = 12e 2 x ,
y′′ 4 y = 12e 2 x 4 3e 2 x = 0,
∵ y = 3e 2 x 中不含任意常数,
故为微分方程的特解.

E-mail: xuxin@
§1 微分方程基本概念
一, 问题的提出 二, 微分方程基本概念
E-mail: xuxin@
函数反映了客观世界运动过程中各种变 量之间的函数关系,是研究现实世界运动规 律的重要工具,但在大量的实际问题中遇到 稍为复杂的运动过程时,要直接写出反映运 动规律的量与量之间的函数关系往往是不可 能的,但常可建立含有要找的函数及其导数 的关系式,这种关系式称为微分方程,对微 分方程进行分析,找出未知函数来,这就是 解微分方程.
即 y = x + C, 将(2)代入(3)求得 C = 1, 所求曲线方程为 y = x 2 + 1 .
2
y = ∫ 2 xdx
(3)
(4)
E-mail: xuxin@
例 2 一个质量为 m 的质点开始位于 s0 ,并以初速度 v0 做垂直上抛运动,设只考虑重力作用,求质点的 运动方程. 解 设所求质点的运动方程为s = s (t ), d 2s s '' (t ) = 2 = g (5) dt 其中s (t ) |t =0 = s0,s′(t ) = v(t ) |t =0 = v0 (6)
2
E-mail: xuxin@
k 2 (C1 cos kt + C 2 sin kt ) + k 2 (C1 cos kt + C 2 sin kt ) ≡ 0
故 x = C1 cos kt + C 2 sin kt 是原方程的解 . dx ∵ x t = 0 = A, = 0, ∴ C1 = A, C 2 = 0. dt t = 0
E-mail: xuxin@
常见的定解条件
′( x0 ) = y1 , , y ( n 1) ( x0 ) = yn 1 y ( x0 ) = y0 , y 又称为初始条件;其中 y0 , y1 , , yn 1 为给定常数
相应的定解问题又称为初值问题,即
F ( x, y ′, y ′′, , y ( n ) ) = 0 ( n 1) ( x0 ) = yn 1 y ( x0 ) = y0 , y ′( x0 ) = y1 , , y
I,一阶微分方程几种形式: (1)一般形式:F ( x, y, y ′) = 0 (2)一阶显示方程:y′ = f ( x, y ) dy P ( x, y ) 或者Pdx + Qdy = 0 (3)对称形式: = dx Q( x, y )
E-mail: xuxin@
II,在一阶方程中,x和y的关系是等价的,因此 有时可以将x看成函数,y看成变量; 本章我们主要研究的是常微分方程. 一般地,n阶常微分方程记为
所求特解为 x = A cos kt . 补充: 微分方程的初等解法: 初等积分法. 求解微分方程 求积分
(通解可用初等函数或积分表示出来)
E-mail: xuxin@
思考题
函数 y = 3e 是微分方程 y ′′ 4 y = 0
2x
的什么解?
E-mail: xuxin@
分类1:微分方程与偏微分方程 在例1和例2中的(1)和(5)式中都含有未知 函数的导数,我们有:凡含有未知函数的导数或微 分的方程叫微分方程.并称方程中最高阶导数的阶 数为微分方程的阶数.
实质: 联系自变量,未知函数以及未知函数的某些 导数(或微分)之间的关系式. 说明1 (1)一个微分方程中自变量,自变量的未知函数未 必都出现;例1中两者都出现,例2中自变量未出现; (2)例1和例2中的微分方程分别为一阶,二阶微分 方程;
F ( x , y , y′,
, y ) = 0,
(n)
其中x为自变量,y为未知函数,这里y(n)一定 要出现,其它的可以出现也可以不出现.
E-mail: xuxin@
分类2:线性与非线性微分方程 F ( x, y′, y′′, , y ( n ) ) = 0 可以表示成如下形式 若
E-mail: xuxin元的,我们 称未知函数为一元函数的微分方程为常微分方程. 例1和例2中的微分方程分别为一阶常微分方程 和二阶常微分方程; 另一类未知函数为多元函数的方程为偏微分方程
x
说明2
z z + y = z, x y
xdx + ydy + zdz = 0
如引例中,y |x =1 = 3 定解条件(或初值);
dy = 2x 为定解问题(或初值问题) dx y |x =1 = 3
E-mail: xuxin@
例 3 验证:函数 x = C1 cos kt + C 2 sin kt 是微分
d x 方程 2 + k 2 x = 0的解. 并求满足初始条件 dt dx = 0 的特解. x t =0 = A, dt t = 0 dx ∵ = kC1 sin kt + kC 2 cos kt , 解 dt 2 d x = k 2C1 cos kt k 2C 2 sin kt , dt 2 2 d x 将 2 和x的表达式代入原方程 , dt
E-mail: xuxin@
分类3:解与隐式解 y = ( x)代入方程F ( x, y′, y′′, , y ( n ) ) = 0后 (1)若 能使得它变为恒等式 则称y = ( x)为F ( x, y′, y′′, , y ( n ) ) = 0的解 (2)若 关系式Φ ( x, y ) = 0 所确定的隐函数 y = ( x) 是方程F ( x, y′, y′′, , y ( n ) ) = 0的解
则称Φ ( x, y ) = 0为F ( x, y′, y′′, , y ( n ) ) = 0的隐式解
容易验证:
1 2 (1)s (t ) = gt + C1t + C2是s′′(t ) = g的解; 2 dy x 2 2 (2)x + y = 1是 = 的隐式解. dx y
解和隐式解统称为微分方程的解
E-mail: xuxin@
一,问题的提出
例 1 一 曲 线 通 过 点 (1,2), 且 在 该 曲 线 上 任 一 点
M ( x , y ) 处的切线的斜率为 2 x ,求这曲线的方程. 解 设所求曲线为 y = y( x ) dy (1) = 2x dx 其中 x = 1时, y = 2,记成y |x =1 = 2 (2)
y ( n ) + a1 ( x) y ( n 1) + + an 1 ( x) y′ + an ( x) y = f ( x) 则称之为n阶线性常微分方程, 其中a1 ( x), a2 ( x), , an ( x), f ( x)均为自变量x的已知函数. 反之,不能写成上面形式的微分方程称为非线性 微分方程. 如引例中的1,2都是线性的微分方程,分别 为一阶和二阶线性微分方程;而 2 dy d y g 2 = ay ay 和 2 + sin y = 0 dx dx t 都是一阶和二阶非线性微分方程.
E-mail: xuxin@
微分方程的解的分类:
对于n阶微分方程F ( x, y′, y′′, , y ( n ) ) = 0 (1)通解:若上式的解中含有n个独立的任意常数, 即 y = ( x, C1 , C2 , , Cn ) 通解 y = Ce x ; 例 y′ = y , 通解 y = C1 sin x + C 2 cos x; y′′ + y = 0,
(2)特解:确定了通解中任意常数以后的解. 说明3:通解和特解只是方程的两类解, 一阶方程的解要么是通解,要么是特解.
E-mail: xuxin@
微分方程求特解的方法和步骤: Step1:首先求出 F ( x, y′, y′′, , y ( n ) ) = 0 的通解; Step2:然后在根据实际情况找出能求出通解中n 个常数的条件——定解条件; Step3:根据定解条件求出满足条件的特解; 由定解条件求特解的问题,称为微分方程的 定解问题.
1 ′(t ) = v(t ) = gt + C1,s (t ) = gt 2 + C1t + C2 (7) s 2
对(5)两边积分可得:
将(6)代入(7)可得: 1 2 s = s (t ) = gt + v0t + s0 2
(8)
E-mail: xuxin@
二,微分方程的基本概念
相关文档
最新文档