等腰三角形的性质6
等腰三角形知识点总结等腰三角形知识点归纳重点
等腰三角形知识点总结等腰三角形知识点归纳重点等腰三角形是初中数学中的一种基本几何图形,具有很多特殊的性质和定理。
本文将对等腰三角形的相关知识点进行总结和归纳,帮助读者更好地理解和掌握等腰三角形的特点和应用。
以下是等腰三角形知识点总结汇总,希望对大家的学习有所帮助。
1、等腰三角形知识总结,定义(1)等腰三角形:有两条边相等的三角形叫等腰三角形,相等的两条边叫腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
(2)等边三角形:特殊的等腰三角形,三条边都相等的三角形叫做等边三角形。
2、等腰三角形知识总结,等腰三角形的相关概念(1)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴。
(2)等腰三角形的外心、内心、重心和垂心都在顶角平分线上,即四心共线。
(3)等边三角形的外心、内心、重心和垂心四心合一,成为等边三角形的中心。
3、等腰三角形知识总结,等腰三角形的性质定理(1)推理格式:在△ABC中,因为AB=AC,所以∠B=∠C。
(2)定理的作用:证明同—个三角形中的两个角相等。
4、等腰三角形知识总结,等腰三角形性质定理的推论(1)等腰三角形的顶角平分线平分底边并且垂直于底边。
(2)等边三角形的三个内角都相等,并且每个角都等于60°。
5、等腰三角形知识总结,等腰三角形的判定定理(1)该定理是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据。
(2)注意:该定理不能叙述为“如果一个三角形中有两个底角相等,那么它的两腰也相等”。
因为在没有判定出它是等腰三角形之前,不能用“底角”、“腰”这些名词,只有等腰三角形才有“底角”、“腰”。
相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。
(2)等边对等角;(3)底边上的高、底边上的中线、顶角平分线互相重合;(4)是轴对称图形,对称轴是顶角平分线;(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(6)顶角等于180°减去底角的两倍;(7)顶角可以是锐角、直角、钝角,而底角只能是锐角.等边三角形性质:①具备等腰三角形的一切性质。
等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册
第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。
等腰三角形的性质
等腰三角形的性质等腰三角形是指具有两条边长度相等的三角形。
在几何学中,等腰三角形具有一些特殊的性质,这些性质不仅有助于我们理解和解决几何问题,还在各种实际应用中起着重要的作用。
本文将探讨等腰三角形的性质及其相关定理。
一、等腰三角形的定义等腰三角形是指具有两条边长度相等的三角形。
在一个三角形中,如果两条边的边长相等,我们就可以称之为等腰三角形。
通常,我们用字母a来表示等腰三角形的两条相等的边的长度,而用字母b表示与这两条边相对应的底边的长度。
二、等腰三角形的性质1. 等腰三角形的两个底角相等等腰三角形的两条等边,也是两个底角之间的夹角。
因此,等腰三角形具有两个底角相等的性质。
例如在一个等腰三角形ABC中,∠A 和∠B是相等的。
2. 等腰三角形的顶角等腰三角形的顶角是等腰三角形中与两个等边相对应的角。
这个角称为等腰三角形的顶角。
在等腰三角形ABC中,∠C就是顶角。
3. 等腰三角形的高线等腰三角形的高线是从顶角所在顶点到底边上的垂线,也就是等腰三角形顶角所在顶点到底边所在直线的垂直的线段。
等腰三角形的高线将底边平分,并且和两边构成相似三角形。
具体来说,等腰三角形ABC的高线CD将底边AB平分,同时构成了与等腰三角形ABC相似的等腰三角形ACD。
4. 等腰三角形中位线的性质等腰三角形中位线是从底边中点到对顶点的线段,在等腰三角形中,三条中位线相交于同一点,且对顶点到交点的距离是底边的一半。
5. 等腰三角形的外接圆和内切圆等腰三角形的外接圆是过等腰三角形三个顶点的圆,它的圆心与顶角所在顶点重合。
等腰三角形的内切圆是切于等腰三角形三边的圆,它的圆心位于等腰三角形的高线和中位线的交点上。
6. 等腰三角形的面积等腰三角形的面积可以通过底边和高线的长度来计算。
等腰三角形的面积等于底边长度乘以高线长度再除以2。
三、等腰三角形的相关定理1. 等腰三角形的高线定理在一个等腰三角形中,高线、底边和等腰腰长构成的直角三角形相似。
初中数学 等腰三角形有哪些全等性质
初中数学等腰三角形有哪些全等性质等腰三角形是指具有两条边长度相等的三角形。
在等腰三角形中,两条边被称为腰,而第三条边被称为底边。
等腰三角形的顶角和底角也是相等的。
等腰三角形的全等性质是指两个等腰三角形在边长和角度上完全相等,即它们的对应边长和对应角度都相等。
下面我们将详细解释等腰三角形的全等性质:1. 全等边性质:如果两个等腰三角形的两条腰的边长相等,那么这两个等腰三角形是全等的。
即如果在两个等腰三角形中,AB = A'B' 且AC = A'C',那么三角形ABC和三角形A'B'C'是全等的。
2. 全等角性质:如果两个等腰三角形的顶角和底角相等,那么这两个等腰三角形是全等的。
即如果在两个等腰三角形中,∠B = ∠B' 且∠C = ∠C',那么三角形ABC和三角形A'B'C'是全等的。
3. 全等边角边性质:如果两个等腰三角形的一对腰的边长和对应的顶角相等,且底边长度也相等,那么这两个等腰三角形是全等的。
即如果在两个等腰三角形中,AB = A'B',∠B = ∠B',AC = A'C',那么三角形ABC和三角形A'B'C'是全等的。
4. 全等边边边性质:如果两个等腰三角形的三条边的边长都相等,那么这两个等腰三角形是全等的。
即如果在两个等腰三角形中,AB = A'B',BC = B'C',AC = A'C',那么三角形ABC 和三角形A'B'C'是全等的。
通过这些全等性质,我们可以判断两个等腰三角形是否全等,以及在已知一些边长和角度的情况下,计算出其他未知的边长和角度。
这些全等性质也为解决与等腰三角形相关的几何问题提供了依据。
在应用中,我们可以利用等腰三角形的全等性质来证明几何定理、解决几何问题,或者进行构造等腰三角形的操作。
等腰三角形性质
等腰三角形性质等腰三角形是初中数学中一个重要的概念,它具有许多特点和性质。
在本文中,我将为大家详细介绍等腰三角形的性质,并通过具体的例子来加深理解。
一、等腰三角形的定义和性质等腰三角形是指两边长度相等的三角形。
它的性质有以下几点:1. 两底角相等:等腰三角形的两个底角(即底边两侧的角)相等。
这是等腰三角形的最基本性质之一。
例如,我们可以考虑一个等腰三角形ABC,其中AB=AC。
根据定义,我们可以得出∠B=∠C。
这个性质可以通过实际测量角度来验证。
2. 顶角平分底边:等腰三角形的顶角(即顶点的角)平分底边。
这意味着顶角的两个角度与底边的两个角度相等。
例如,我们可以考虑一个等腰三角形ABC,其中AB=AC。
根据定义,我们可以得出∠A=∠B=∠C。
这个性质可以通过实际测量角度来验证。
3. 等腰三角形的高线:等腰三角形的高线是从顶点到底边中点的线段,它与底边垂直。
例如,我们可以考虑一个等腰三角形ABC,其中AB=AC。
我们可以通过实际绘制图形来验证高线的垂直性。
二、等腰三角形的应用等腰三角形的性质在数学中有广泛的应用。
下面,我将介绍一些常见的应用情况。
1. 判定等腰三角形:当我们遇到一个三角形,需要判断它是否为等腰三角形时,可以利用等腰三角形的性质进行判断。
例如,我们可以考虑一个三角形ABC,其中AB=AC。
根据等腰三角形的性质,我们可以得出∠A=∠B=∠C,从而判定这个三角形为等腰三角形。
2. 求等腰三角形的面积:当给定等腰三角形的底边长度和高线长度时,我们可以利用等腰三角形的性质求解其面积。
例如,我们可以考虑一个等腰三角形ABC,其中AB=AC,高线AD与底边BC垂直,且AD=h。
根据等腰三角形的性质,我们可以得出BC=2AD。
因此,等腰三角形的面积S=1/2×BC×h=AD×h。
三、等腰三角形的拓展等腰三角形的性质还可以进一步拓展到其他几何概念中。
1. 等腰梯形:等腰梯形是指两边平行且等长的梯形。
等腰三角形的性质
等腰三角形的性质等腰三角形是指具有两条边长度相等的三角形。
等腰三角形的性质是数学中的重要概念之一,它具有许多有趣的特点和性质。
本文将介绍等腰三角形的性质及其相关定理。
一、等腰三角形的定义等腰三角形是指具有两条边长度相等的三角形。
在等腰三角形中,这两条边被称为腰,而另外一条边称为底边。
由于两条腰的长度相等,所以等腰三角形的底角也必然相等。
二、等腰三角形的性质1. 等腰三角形的底角相等:由等腰三角形的定义可知,两条腰的长度相等,因此底角也必然相等。
这是等腰三角形最基本的性质之一。
2. 等腰三角形的顶角平分底角:在等腰三角形中,顶角与底角之间的关系十分特殊。
根据平分角的性质,等腰三角形的顶角将平分底角,使得等腰三角形的顶角等于底角的一半。
3. 等腰三角形中,顶角、底边、高线之间存在特殊关系:等腰三角形中,高线是从顶角向底边作垂直线,垂足处的线段被称为高线。
根据等腰三角形的性质,高线将底边平分,并且高线与底边垂直。
4. 等腰三角形的两条腰上的高线相等:等腰三角形的两条腰上的高线长度相等。
因为两条腰的长度相等,所以它们与底边构成的高线长度也必然相等。
5. 等腰三角形的两边夹角相等:等腰三角形的两边夹角等于顶角的一半。
这是等腰三角形中重要的定理之一,也是许多证明问题中的关键。
6. 等腰三角形中,高线、中线、角平分线重合:在等腰三角形中,高线、中线和角平分线三者的垂足点重合。
这是等腰三角形中有趣的性质之一。
三、等腰三角形的应用1. 利用等腰三角形的性质求解几何问题:等腰三角形的性质可以应用于各种几何问题的求解过程中。
例如,通过已知条件推导等腰三角形的性质,进而解决其他相关问题。
2. 构造等腰三角形:在实际应用中,有时候需要根据具体要求构造等腰三角形。
通过利用等腰三角形的性质,可以在平面上进行精确的构造,满足特定的需求。
4. 证明几何定理:在数学证明中,等腰三角形的性质往往被用作证明其他几何定理的基础,通过运用等腰三角形的特性来推导其他结论。
等腰三角形的性质
等腰三角形的性质等腰三角形是指具有两条边长度相等(称作等腰边)的三角形。
在几何学中,等腰三角形有很多独特的性质和特点。
本文将探讨等腰三角形的性质,帮助读者更好地理解这一概念。
1. 等腰三角形定义等腰三角形是指两条边的长度相等,形成一个顶角和两个底角的三角形。
等腰三角形的顶角通常被称为顶点角,而两个底角则被称为底边角。
2. 顶角和底角性质由于等腰三角形的两条边相等,所以顶角必然相等。
也就是说,等腰三角形的顶点角度总是相等的。
另一方面,等腰三角形的底角度数也是相等的。
3. 底边性质在等腰三角形中,两个边相等的边被称为底边。
底边上的两个底角也是相等的。
此外,底边的中垂线也同时也是等腰三角形的高线和中线。
换句话说,底边的中垂线将等腰三角形切分为两个完全相等的直角三角形。
4. 对称性质等腰三角形具有对称性质。
当我们将等腰三角形绕着顶点旋转180度时,所得到的图形与原等腰三角形重合。
这也意味着,等腰三角形的两条底边可以互换位置,而依然保持相等。
5. 面积计算方法等腰三角形的面积计算方法与其他三角形相同,即通过底边长度和高线的长度来计算。
由于等腰三角形的中垂线与底边相等,所以可以通过底边和顶角的正弦函数来计算高线的长度。
等腰三角形的面积公式为:面积 = 1/2 * 底边长度 * 高线长度。
6. 角平分线性质在等腰三角形中,顶角的角平分线既是等腰三角形的高线,也是等腰三角形的中线。
这意味着角平分线将顶角分成两个相等的角,并且它们与等腰三角形的底边相等。
7. 判定等腰三角形的方法为了判定一个三角形是否为等腰三角形,我们可以观察其边的长度或者角度的度数。
如果三角形的两条边长度相等,则该三角形是等腰三角形。
另一种判定方法是观察顶点角和底边角的度数,如果它们相等,则该三角形是等腰三角形。
总结:等腰三角形是一种具有两条边长度相等的三角形。
它具有许多独特的性质和特点,包括顶角和底角的相等性,底边的中垂线、高线和中线的重合性,对称性质,面积计算方法以及角平分线的性质。
等腰三角形的性质
等腰三角形的性质等腰三角形是学习几何学时常见的一种特殊三角形,它具有很多独特的性质和特点。
本文将以点明等腰三角形的定义以及其性质为主线,讲解等腰三角形的一些基本知识和相关定理。
一、等腰三角形的定义等腰三角形是指两边(腰)的边长相等的三角形。
在一个等腰三角形中,通常会存在一个等腰线,即连接两个底角的线段,也是三角形的对称轴。
二、等腰三角形的基本性质1. 等腰三角形的底角相等:一个等腰三角形的两个底角(即不等边对应的两个角)相等,可记作∠A = ∠C。
2. 等腰三角形的等腰线中点角相等:等腰线将底边分为两段,连接等腰线与底边中点的线段,该线段分割出来的两个角相等,可记作∠BAD = ∠DAC,∠BDA = ∠DAB。
3. 等腰三角形的顶角平分底角:等腰三角形的顶角(即等边对应的角)等于两个底角之和的一半,可记作∠B = ∠A + ∠C。
4. 等腰三角形的高线及中线:等腰三角形的高线是从顶点到底边的垂直线段,等腰三角形的中线是从顶点到底边的中点的线段。
在等腰三角形中,高线和中线重合,且与底边垂直。
三、等腰三角形的相关定理1. 在等腰三角形中,如果两条边相等,那么两个对应的角也相等,即边对角相等定理。
例如,若AC = BC,则∠A = ∠B。
2. 在等腰三角形中,如果一个角为直角,则它对应的两边必然相等,即等腰直角三角形的两条腰相等。
例如,在直角等腰三角形ABC中,如果∠C = 90°,则AC = BC。
3. 在等腰三角形中,如果一条边平分对脚的底角,则该边为底边(腰),且等腰线也平分对脚的顶角。
例如,在等腰三角形ABC中,如果AD是BC的平分线,则BD = CD,且∠BAD = ∠CAD。
通过对等腰三角形的定义、基本性质和相关定理的分析,我们可以更好地理解和应用等腰三角形。
在实际应用中,等腰三角形常用于解决与对称性、垂直性、角度和边长之间关系等问题。
对等腰三角形有着深入的理解,对于解题和推理能力的培养会有积极的促进作用。
六年级数学等腰三角形的性质
六年级数学等腰三角形的性质等腰三角形是初中数学学习中的重要概念之一。
六年级学生在学习数学的过程中,也需要掌握等腰三角形的性质和相关定理。
本文将介绍等腰三角形的定义、性质以及相关定理,帮助六年级学生更好地理解和应用等腰三角形。
一、等腰三角形的定义及性质等腰三角形是指具有两条边长度相等的三角形。
在等腰三角形中,我们可以通过观察和探究发现以下性质:1. 等腰三角形的底边两边相等:等腰三角形两底边的长度相等,即底边的两边与底边夹角的两边相等。
2. 等腰三角形的顶角两边相等:等腰三角形的两顶角对应的两边相等,即顶角两边的长度相等。
3. 等腰三角形的底角和顶角相等:等腰三角形的底角和顶角的度数相等,即底角和顶角的度数相等。
通过以上性质,我们可以得出一些结论:1. 等腰三角形的底边中线和高线相等:等腰三角形的底边中线是连接底边中点和顶角的直线段,等腰三角形的高线是从顶角降垂到底边的垂线。
底边中线和高线的长度相等。
2. 等腰三角形的底边中线和顶角平分线重合:等腰三角形的底边中线和顶角平分线是同一条直线,即底边中线也是顶角的平分线。
3. 等腰三角形的底边中线和顶角平分线垂直:等腰三角形的底边中线和顶角平分线相互垂直。
二、等腰三角形的相关定理在研究等腰三角形的过程中,数学家总结出一些重要的等腰三角形定理,这些定理对解决各种相关题目非常有帮助。
1. 等腰三角形的高线相等定理:等腰三角形的两条高线相等。
2. 等腰三角形的顶角平分线的性质:等腰三角形的顶角平分线和底边中线重合,并且底边上任意点到顶角平分线的距离都相等。
3. 等腰三角形的底角平分线相等定理:等腰三角形的底角平分线相等,且与底边垂直。
以上定理是在等腰三角形的基础上得出的,对于解决相关题目非常有帮助。
在学习等腰三角形时,应该理解这些定理的含义,并能够熟练运用它们解决问题。
三、例题与解析为了更好地理解等腰三角形的性质和相关定理,我们来看几个例题并进行解析。
例题1:在等腰三角形ABC中,AB = AC,D为底边BC的中点,连接AD并延长至点E,求证:∠BAC = ∠CAE。
等腰三角形的性质与应用
等腰三角形的性质与应用知识点1、等腰三角形的性质(1)等腰三角形有两边相等;(2)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴.(3)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合.(4)等边对等角:等腰三角形的两个底角相等.知识点2、等腰三角形的判定定理定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边).知识点3、等边三角形的性质与判定1.等边三角形的三个角都相等,并且每个角都等于60°.2.等边三角形是轴对称图形,它有三条对称轴.3.有一个角是60°的等腰三角形是等边三角形.4.拓展:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等.知识点4、等腰三角形性质的应用(1)等腰三角形两底角的平分线相等;(2)等腰三角形两腰上的中线相等;(3)等腰三角形两腰上的高相等;(4)等腰三角形底边上的中点到两腰的距离相等.知识点5、等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,要视具体情况来定。
经典例题例1.如图,已知在等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M.求证:M是BE的中点.例2.如图,已知:中,,D是BC上一点,且,求的度数.例3.已知:如图,中,于D.求证:.例 4.如图,△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线,且相交于点F,则图中的等腰三角形有( )A. 6个B. 7个C. 8个D. 9个例5.已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,E、F分别是垂足.求证:AE=AF.例6.如图,△ABC中,AB=AC,D,E分别是BC,AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.例7.如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连结D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.例8.数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)特例启发,解答题目题目中,AE与DB的大小关系是:AEDB(填“>”、“<”或“=”).理由如下:如图2,过点E作交AC于点F(请你完成以下解答过程)例9.如图,在四边形ABDC中,AB=2AC,试判断DC与AC的位置关系,并证明你的结论.例10.已知为不等边三角形,于D点,求证:D点到AB、AC边的距离必不相等.例11.如图,为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE 与BD相交于点P,于F.求证:BP=2PF.。
等腰三角形和等边三角形的性质
等腰三角形和等边三角形的性质一、等腰三角形的性质1.1 定义:等腰三角形是指有两边相等的三角形。
1.2 两边相等:在等腰三角形中,两个底角相等,两条底边相等。
1.3 底角平分线:在等腰三角形中,底边的垂直平分线同时也是底角平分线。
1.4 顶角平分线:在等腰三角形中,顶角的平分线、底边的中线和底角的平分线三线合一。
1.5 面积公式:等腰三角形的面积公式为:S=12absinC,其中 a 和 b 分别为等腰三角形的底边,C 为顶角。
二、等边三角形的性质2.1 定义:等边三角形是指三边相等的三角形。
2.2 内角相等:在等边三角形中,三个内角都相等,每个内角为60∘。
2.3 外角相等:在等边三角形中,每个外角都相等,每个外角为120∘。
2.4 中线相等:在等边三角形中,三条中线相等,且都垂直于对边。
2.5 高线相等:在等边三角形中,三条高线相等,且都垂直于对边。
2.6 面积公式:等边三角形的面积公式为:S=√34a2,其中 a 为等边三角形的边长。
2.7 圆周角定理:在等边三角形中,每个圆周角都等于60∘。
2.8 圆心对称:等边三角形具有圆心对称性,即三角形的三条高线、三条中线、三条角平分线都相交于同一点,称为三角形的垂心。
2.9 稳定性:等边三角形是稳定的,不会因为外力的作用而变形。
总结:等腰三角形和等边三角形是特殊的三角形,它们具有独特的性质。
通过掌握这些性质,我们可以更好地理解和解决与等腰三角形和等边三角形相关的问题。
习题及方法:1.习题:判断以下三角形是否为等腰三角形。
解答:根据等腰三角形的性质,只需要判断两边是否相等即可。
如果两边相等,则为等腰三角形。
2.习题:已知等腰三角形的底边长为8cm,腰长为5cm,求该三角形的面积。
解答:根据等腰三角形的性质,底边上的高也是腰长的垂直平分线。
因此,可以将三角形分成两个直角三角形,每个直角三角形的底边为4cm,高为5cm。
面积公式为S=12×底边×高,所以面积为12×4cm×5cm=10cm2。
等腰三角形的性质及计算方法
等腰三角形的性质及计算方法等腰三角形是指两条边相等的三角形。
在数学中,我们经常需要计算三角形的各种属性和特性。
本文将介绍等腰三角形的性质,并提供一些计算等腰三角形的方法。
一、等腰三角形的性质1. 两边相等:等腰三角形的两条边长度相等,即AB = AC。
这是等腰三角形最基本的性质。
2. 两底角相等:等腰三角形的两个底角(即两个基边所对的角)相等,即∠B = ∠C。
3. 顶角平分底角:等腰三角形的顶角(即顶点所对的角)平分底角,即∠A = ∠B = ∠C。
4. 等腰三角形的高:等腰三角形的高是从顶点向底边的垂直距离,记作h。
5. 等腰三角形的中线:等腰三角形的中线是连接底边中点与顶点的线段,记作AM。
二、等腰三角形的计算方法1. 计算等腰三角形的周长:等腰三角形的周长可以通过两边的长度和底边的长度来计算。
由于等腰三角形的两边相等,可以使用以下公式计算周长:周长 = AB + AC + BC = 2AB + BC。
2. 计算等腰三角形的面积:等腰三角形的面积可以通过高和底边的长度来计算。
使用以下公式计算面积:面积 = 1/2 * 底边长度 * 高 = 1/2 * BC * h。
3. 计算等腰三角形的高:若已知等腰三角形底边长度BC和两边的长度AB(或AC),可以使用勾股定理计算三角形的高。
假设底边的中点是M,则通过三角形的中线AM可以得到高h,并使用以下公式计算高:h = √(AB² - (1/2 * BC)²)。
4. 计算等腰三角形的底边长度:若已知等腰三角形的两边长度AB 和AC,可以使用以下公式计算底边的长度:BC = 2√(AB² - (1/2 * AC)²)。
5. 计算等腰三角形的顶角和底角:等腰三角形的顶角和底角相等,可以使用以下方法计算角度值:- 计算顶角的度数:∠A = ∠B = ∠C = 180度 / (3 - 1)= 90度。
- 使用正弦函数计算角度的弧度值:sin(∠A) = sin(∠B) = sin(∠C) = (1/2 * BC) / AB。
等腰三角形的性质与判定
等腰三角形的性质与判定等腰三角形是初中数学中经常遇到的一个重要概念,它具有一些独特的性质和判定方法。
在本文中,我将为大家详细介绍等腰三角形的性质以及如何判定一个三角形是否为等腰三角形。
一、等腰三角形的性质等腰三角形是指两条边相等的三角形。
它具有以下几个重要的性质:1. 顶角平分线:等腰三角形的顶角平分线也是底边的中线。
这意味着等腰三角形的顶角平分线与底边相等,并且平分线的中点与底边的中点重合。
2. 底角相等:等腰三角形的两个底角是相等的。
这是等腰三角形最基本的性质之一,也是判定一个三角形是否为等腰三角形的重要依据。
3. 高线重合:等腰三角形的两条高线重合于底边中点。
这意味着等腰三角形的两条高线相等,并且它们的交点与底边的中点重合。
二、判定等腰三角形的方法判定一个三角形是否为等腰三角形,我们可以运用以下几种方法:1. 两边相等:如果一个三角形的两边相等,那么它就是一个等腰三角形。
这是最简单的判定方法,只需要比较两条边的长度即可。
2. 底角相等:如果一个三角形的两个底角相等,那么它就是一个等腰三角形。
这个方法也比较简单,只需要用量角器或直尺测量两个角的度数即可。
3. 顶角平分线:如果一个三角形的顶角平分线与底边的中线重合,那么它就是一个等腰三角形。
这个方法需要用到直尺和量角器,先画出顶角平分线,再测量底边中线的长度,如果两者重合,就可以判定为等腰三角形。
三、实际应用等腰三角形在现实生活中有许多实际应用。
例如,在建筑设计中,我们经常会遇到等腰三角形的形状,比如屋顶的斜面。
通过了解等腰三角形的性质和判定方法,我们可以更好地理解和应用这些形状。
此外,等腰三角形还与数学中的其他概念有着密切的联系。
例如,等腰三角形的顶角平分线与底边的中线重合这一性质,与中位线的性质有着相似之处。
通过比较和分析这些概念之间的关系,我们可以更深入地理解数学知识。
总结:等腰三角形是初中数学中的重要概念,它具有独特的性质和判定方法。
等腰三角形的性质 (6)
教学目标:1.能够用综合法证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.2.初步了解反证法的含义,并能利用反证法证明简单的命题.3.体验数学活动中的探索与创造,感受数学的严谨性.教学重点与难点:重点:等腰三角形的判定定理的证明.难点:利用等腰三角形的性质求相关角的运算。
教学过程:第一环节 回顾旧知 复习导入师:请同学们回顾一下,前面我们学习了等腰三角形的哪些性质。
生1:等腰三角形两底角相等,就是“等边对等角”。
生2:“三线合一”。
生3:等腰三角形两腰上的高相等,两腰上的中线相等,两底角的平分线相等。
师:非常好!同学们概括的很全面。
那么对于等腰三角形的性质定理:等腰三角形两底角相等,这个命题的题设和结论是什么? 生:题设:等腰三角形。
结论:两底角相等。
师:我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等? 生:完全成立,可以证明出来。
设计意图:设计成问题串是为引出等腰三角形的判定定理埋下伏笔。
学生独立思考是对上节课内容有效地检测手段。
第二环节 合作探究 展示交流师:以前我们通过改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.比如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?下面我们来一起证明一下这个结论。
请同学们画出图形,写出已知、求证。
学生活动:在练习本上画图,写出已知、求证,完成证明命题的前两CBA步。
找一个同学黑板板书。
生:已知:如图,在△ABC中,∠B=∠C,求证:AB=AC,师:同学们完成的很好,下面怎样来完成证明过程哪?(停顿一下,给学生思考时间。
)同学们回想一下,我们是怎样证明“等边对等角的”?生1:作辅助线构造两个全等的三角形,使AB与AC成为对应边就可以了。
生2:由前面定理的证明的方法,通过作BC的中线,或作∠A的平分线,或作BC上的高,都可以把△ABC分成两个全等的三角形。
等腰三角形的性质
等腰三角形的性质等腰三角形是指具有两条边相等的三角形。
在几何学中,等腰三角形具有一些特殊的性质和定理。
本文将就等腰三角形的性质进行探讨,帮助读者更好地理解和应用这些定理。
一、等腰三角形的定义等腰三角形的定义是指具有两边长相等的三角形。
在等腰三角形中,两边被称为腰,不与腰相等的边称为底边,顶角为顶点对应的角。
二、等腰三角形的性质1. 顶角的平分线是底边的中垂线在等腰三角形中,顶角的平分线与底边相交于底边的中点,并且垂直于底边。
这是等腰三角形特有的性质之一。
2. 两底角相等等腰三角形的两边相等,所以它的两底角也相等。
这是等腰三角形的基本性质。
3. 底角的平分线也是高的线段等腰三角形中,底角的平分线与对边也是高的线段。
这一性质可以根据相似三角形的性质推导得出。
4. 等腰三角形的高经过顶角的平分线的中点等腰三角形的高经过底边中点。
这是等腰三角形与平行四边形的联系之一。
5. 等腰三角形的高线段相等等腰三角形的高线段长度相等。
这也是等腰三角形的重要性质之一。
6. 等腰三角形具有对称性等腰三角形具有对称性,即以顶点为中心旋转180度后,图形完全重合。
这是等腰三角形的独特性质。
三、等腰三角形的应用等腰三角形的性质在几何学中有广泛的应用。
它们常用于解决各种几何问题,以及在三角函数中的应用等。
1. 求解等腰三角形的面积由于等腰三角形的高线段相等,可以利用等腰三角形的高与底边的关系求解三角形的面积。
2. 证明等腰三角形的定理等腰三角形的性质可以用于证明其他定理,如三角形的角平分线定理,平行四边形的特性等。
3. 解决三角函数的应用问题在三角函数的应用中,等腰三角形提供了一种简便的方法来求解各种角度和边长的关系。
四、总结等腰三角形是一种具有特殊性质的三角形。
它的性质包括顶角的平分线是底边的中垂线、两底角相等、底角的平分线是高的线段,等等。
这些性质不仅在几何学中有广泛的应用,而且还可以在其他数学领域解决问题。
通过深入研究和理解等腰三角形的性质,读者可以更好地应用于实际问题的解决过程中。
等腰三角形的性质与判定
等腰三角形的性质与判定等腰三角形是指两边长度相等的三角形。
在几何学中,等腰三角形具有一些特殊的性质和判定方法。
本文将详细介绍等腰三角形的性质以及如何判定一个三角形是否为等腰三角形。
一、等腰三角形的性质1. 等腰三角形的两底角(底边两旁的角)是相等的。
设等腰三角形的两底角分别为A,那么∠A = ∠B。
2. 等腰三角形的顶角(底边对面的角)是锐角。
设等腰三角形的顶角为C,那么∠C < 90°。
3. 等腰三角形的高线(从顶点到底边的垂直线)同时也是它的中线和对称轴。
等腰三角形的高线可以将底边分成两段相等的线段,同时也将顶角分成两个相等的角。
4. 等腰三角形的中线(从顶点到底边中点的线段)是它的高线和对称轴。
等腰三角形的中线同时也是它的底边的二等分线,它将等腰三角形分成两个面积相等的小三角形。
二、判定一个三角形是否为等腰三角形在判定一个三角形是否为等腰三角形时,我们可以利用以下几种方法:1. 通过测量两边的长度。
如果一个三角形的两边长度相等,那么这个三角形就是等腰三角形。
2. 通过测量两底角的大小。
如果一个三角形的两底角相等,那么这个三角形就是等腰三角形。
3. 通过判断顶角是否为锐角。
如果一个三角形的顶角是锐角,那么这个三角形就有可能是等腰三角形。
我们可以通过测量或计算三个角的大小来判断是否满足等腰三角形的顶角为锐角的条件。
4. 通过判断两条边长和夹角的关系。
如果一个三角形的两边长度相等且夹角小于90°,那么这个三角形就是等腰三角形。
需要注意的是,以上方法只是判定等腰三角形的一些常见方法,并非所有方法的总结。
在实际问题中,可能还会涉及其他判定方法。
在几何学中,等腰三角形的性质和判定是非常重要的基础知识。
通过对等腰三角形的学习,可以帮助我们更好地理解和解决与三角形相关的问题。
无论是在数学学习中还是实际应用中,等腰三角形的性质和判定都具有广泛的应用价值。
总结:等腰三角形具有两边长度相等、两底角相等、顶角为锐角等性质。
等腰三角形性质
等腰三角形性质等腰三角形是一种特殊的三角形,具有以下性质:1.两个底角相等;2.底边的中线、高及顶角平分线三线合一;3.等边三角形各内角都等于60°。
这些性质可以用来解决有关三角形的边、角的证明及计算问题,也可以用来进行有关线段、角的证明及计算问题。
本节的重难点在于对等腰三角形性质的掌握与灵活应用,利用性质,结合三角形有关知识及全等三角形判定及性质解决相关问题是本节研究的重点。
例如,对于等腰三角形中的一个问题:证明等腰三角形两腰的中线相等。
我们可以考虑证明△ABD≌△ACE,而∠A为公共角,AB=AC,所以只需证明AD=AE即能达到证明目的。
通过推导可以得出BD=CE。
又例如,对于等腰三角形中的一个问题:一个外角为100°,求三内角度数。
我们可以利用三角形内角和及等腰三角形性质等边对等角,但要注意外角是顶角的外角还是底角的外角,在两种不同位置时,求得的结果不一样,需要进行两种情况的分别求解。
还有一个例子是:在△ABC中,AC>AB。
求证:∠B>∠C。
这是三角形中边角之间不等关系的一个重要结论:三角形中,若边不相等,则较大的边所对的角也较大。
这一结论可帮助我们利用边的不等关系,证明角的不等关系。
最后一个例子是:在△ABC中,∠B=2∠C,AD为角平分线。
求证AB+BD=AC。
我们可以采用补短法来完成,即延长AB至E,使BD=BE下只需证AE=AC即可。
证一:延长AB至E,使BE=BD,则有AE=AB+BD。
由于BE=BD,所以∠XXX∠EBD,而∠ABC=∠E+∠BDE=2∠E=2∠C。
因此,∠E=∠C。
在△ABE和△ACD中,∠EAD=∠CAD,AD=AD,因此△AED≌△ACD,从而AE=AC。
所以,AB+BD=AC。
证二:由于∠B=2∠C>∠C,所以AC>AB。
在AC上取AF=AB,然后证明FC=BD。
连接DF作桥梁,证明XXX。
由于∠B=2∠C>∠C,所以∠1=∠2.因此,△ABD≌△AFD,从而BD=FD。
等腰直角三角形的性质定理
等腰直角三角形的性质定理
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。
但等边三角形(特殊的等腰三角形)有三条对称轴。
每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。
8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。
9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。
等腰三角形的性质与应用
等腰三角形的性质与应用等腰三角形是几何学中常见的一种特殊三角形,它的性质独特,应用广泛。
本文将深入探讨等腰三角形的性质以及在实际问题中的应用。
一、等腰三角形的定义和性质等腰三角形是指具有两条边长度相等的三角形。
在等腰三角形中,有以下几个重要的性质:1. 两底角相等:等腰三角形的两个底角(即两边长相等的角)相等。
这是等腰三角形最基本的性质之一。
可以通过对角度进行比较或利用对称性来证明。
2. 顶角平分线与底边垂直:等腰三角形的顶角平分线(即连接顶角和底边中点的线段)与底边垂直。
这个性质对于求解等腰三角形的高、应用中的问题都非常有用。
3. 高重合:等腰三角形的高(即从顶点到底边的垂直线段)重合于底边中点。
这意味着等腰三角形的高也是底边上的中线和中位线。
二、等腰三角形的性质证明1. 两底角相等的证明:以等腰三角形ABC为例,设AC=BC,要证明∠ACB = ∠CAB。
证明:由于AC=BC,且直线段AB共线,所以三角形ABC是一个等腰三角形。
根据等腰三角形的定义,两边AC和BC相等,而根据三角形中的一对对应角相等的性质,∠ACB = ∠CAB。
2. 顶角平分线与底边垂直的证明:以等腰三角形ABC为例,设AC=BC,M为底边AB的中点,要证明AM ⊥ BC。
证明:连接AM和BM,由于AC=BC,AM=BM,所以三角形ABM和ACM是等腰三角形。
根据等腰三角形高重合的性质,AM重合于CM,而由高重合又可以得到AM ⊥ BC。
三、等腰三角形的应用1. 求解等腰三角形的高:已知等腰三角形的底边长和顶角,可以利用三角函数的性质来计算等腰三角形的高。
例如,如果已知等腰三角形的底边长为a,顶角为θ,则高h可以通过h = a * sin(θ/2) 来计算。
2. 三角形的构造问题:在一些实际问题中,可以利用等腰三角形的特性来进行三角形的构造。
例如,已知一个角的两条边长相等,可以根据等腰三角形的性质构造出一个等腰三角形。
3. 几何证明问题:在几何证明中,等腰三角形常常可以作为中间步骤,起到简化问题的作用。
等腰三角形的10大性质
等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情感态度与价值观 :引导学生对图形的观察、发
现,激发学生的好奇心和求知欲,并在运用数学知识解答 问题的活动中获取成功的体验,建立学习的自信心
一. 教材分析
(三)教学的重难点
重点
等腰三角形的性质及其应用 难点
等腰三角形的性质证明
二、教学方法和手段
采用引导探索式和问题性教学 模式结合多媒体实施教学,向 学生提供更多的活动机会和空 间。
等腰三角形的性质
(1课时)
教材:义务教育课程标准实验教科书(人教版)
汕头市河浦中学 郑冬如
一. 教材分析 (一)教材的内容及其地位和作用
本节在我们已学过的知识的基础上,进一 步认识特殊的轴对称图形——等腰三角形, 并探究等腰三角形的性质。在探究等腰三 角形的相关问题时,再对等边三角形的相 关内容进行深入探讨。
a A
利用轴对称的知识
你能指明它的腰、底 边、顶角、和底角吗?
B
C
腰:AC、AB
底边:BC
顶角:两腰所夹的角∠BAC 底角:底边与腰的夹角∠ABC、 ∠ACB
把剪出的等腰三角形ABC沿折痕(AD所在的 直线)对折,回答下面问题:
等腰三角形是轴对称图形,请找出它的对称轴。
A
等腰三角形的两底角有什么关系? 顶角的平分线所在的直线是等腰三角形 的对称轴吗? 底边上的中线所在的直线是等腰三角C 形的对称轴吗?底边上的高所在的直 线呢?
D B
找出其中重合的线段和角,填入下表: 重合的角
∠BAD 、∠CAD ∠C 、∠B ∠ADC、 ∠ADB
重合的线段
AB、AC
AD、AD
BD、CD
你能发现等腰三角形的性质吗 ?说一说你的猜想。 A
性质1 等腰三角形的两个底角相等(“等边对等角”) 性质2 等腰三角形顶角平分线、底边上的中线、底
C 边上的高重合 (“三线合一”) B D
D
(3)如图,在△ABC中,AB=AC,点D在 A AC上,且BD=BC=AD, 求△ABC各角的度数。
D B C
A
C
(1)等腰三角形的一个角 是360,它的另外两个角是 720 , 720 或 360 , 1080 _______________________ (2)等腰三角形的一个角是1100,它的另外 350 , 350 两个角是_______________________ (3)如图,在△ABC中, AB=AD=DC,∠BAD=260 , 求∠B和∠C的度数。
一. 教材分析
(二)教学目标
知识与技能目标:理解掌握等腰三角形的性质;运
用等腰三角形的性质进行证明和计算。
数学思考 :观察等腰三角形的对称性,发展形象思维;
通过实践、观察、证明等腰三角形的性质,发展学生合理 推理能力和演绎推理能力
解决问题 :通过观察等腰三角形的对称性,培养学生
观察、分析、归纳问题的能力;通过运用等腰三角形的性 质解决有关的问题,提高运用知识和技能解决问题的能力, 发展应用意识。
人顺便瞧了壹眼更漏,天啊,都已经三更天了!这还没有跟老爷商量明天到底是玉盈还是冰凝,哪壹个姑娘随自己壹同去王府呢!“老爷,妾 身寻思着,两个姑娘都是这么可人疼的,原先咱们跟王府没打过什么交道,这头壹回,要不让两个姑娘都去见见世面,您觉得呢?”“不行, 不行!三人为众,初次登门,兴师动众的,咱们怎么可以跟王府摆这么大的阵势?这是大忌,万万不可!”“可是玉盈和凝儿,您说能舍了哪 个?王府的门槛有多高、水有多深,咱们谁能知道?那四福晋什么人没见过,什么话没听过?妾身可是早就听说了,那绝对是个厉害角 色。”“不管怎么说,只能带壹个,两个绝对不行!”“唉,要说没私心也不可能,只是这凝儿呢,哪里能是那四福晋的对手。先不说这姑娘 天天大门不出二门不迈,咱们又这么可着劲儿地宠她,就说她那脸皮儿,薄得跟层纸儿似的,万壹四福晋说两句她不中听的话,还不当场羞愧 难当,没了脸面?”“凝儿什么都好,就是脸皮子太薄,心气儿又高,太要强。”“可不是。其实这玉盈呢,里里外外的壹把手,也是见过大 世面,见过大阵仗的,迎来送往、能言善道,察言观色全都不在话下,对付四福晋,应该不至于太处下风。”“可是凝儿马上就要选秀了,雍 亲王爷的额娘可是永和宫的主位――德妃娘娘。明天这个机会实在是太难得,正好可以托四福晋给德妃娘娘递个话儿,求着留牌子不容易,这 求着摞牌子应该不是难事儿。凝儿同去,可以让四福晋先见个面,有个印象,也好在向德妃娘娘托情的时候,替咱们凝儿多多美言几 句。”“是啊,这可是关系凝儿壹辈子的终身大事。”“那就这么定了,明天让凝儿随你壹同去吧。”虽然终于商定了下来,可此时三更天都 要过了,年夫人无奈,只得待第二天早上再告诉凝儿。第二天壹早,还黑着,年夫人壹见大丫环吟雪进来伺候她,急得她忙说:“我这儿先不 用伺候,赶快放下手头的活计,快去给二丫鬟传话儿,让她抓紧梳洗打扮,壹会儿随我壹同拜访王府。”没壹会儿,吟雪就回来了:“回夫人, 二丫鬟昨天夜里受了凉,这会儿正发着烧,含烟已经差人请大夫去了。”“啊?昨天晚上来我这儿的时候不是还好好的吗?”话音壹落,年夫 人就想起来,壹准儿是昨天晚上凝儿来送头面首饰的时候着了风寒,唉,这闺女自小就是体弱多病,含烟这丫头是怎么伺候的?这么重要的时 刻病倒了,还怎么可能去见雍亲王福晋?“你赶快去给大姑奶奶传话儿,让她抓紧时间梳洗,我先去找老爷。”“是,夫人。”随着吟雪的应 声,主仆二人立即分头行动。第壹卷 第二十二章 王府今天是大年三十,雍亲王府张灯结彩,壹派热闹景象。年府的马车刚刚抵达王府门口, 管事儿的嬷嬷就迎了
活动7 自主探究等腰三角形中有关的线段、角
活动8 小结与作业
(1)三角形是轴对称图形吗? (2)什么样的三角形是轴对称图形?
心灵手巧
如下图,把一张长方形的纸片对折,并剪下阴影
部分,再把它展开,得到一个什么图形?
B A D C
像△ABC 这样有两条边相等(AB=AC)的三角形, 叫做等腰三角形。
除了剪纸的方法,你还能用其它的方法 作(画)出一个等腰三角形吗?
(1)性质1(等腰三角形的两个底角相等)的条件和 受性质 1证明的启发,你能证明性质2 结论分别是什么?
(等腰三角形顶角平分线、底边上的 (2)用数学符号如何表达条件和结论?
条件:在△ABC中,AC=AB;结论: ∠B = ∠C A (3)如何证明?
中பைடு நூலகம்、底边上的高重合)吗 ?
证明:作底边BC边上的中线AD
三、学法指导
学生通过动口、动手、动脑等活动, 主动探索,发现问题;互动合作、解 决问题;归纳概括,形成能力。增强 数学应用意识,养成及时归纳总结的 良好习惯。
四、教学程序
活动1 温故而知新 活动2 实践观察,认识等腰三角形 活动3 探索等腰三角形的性质 活动4 等腰三角形的性质定理的证明 活动5 等腰三角形的性质定理的运用 活动6 反馈练习
A B C
D
(1)等腰三角形底边中点到两腰 的距离相等吗?
E C
A
D
F B
(2)利用类似的方法,还可以得 到等腰三角形中那些线段相等?
这节课我们主要学习了什 么内容?有哪些收获呢?
课本习题14.3第1、4、6题。
解:
∵AB=AC,BD=BC=AD, ∴∠ABC=∠C=∠BDC. ∠A=∠ABD(等角对等边). 设∠A=x,则 ∠BDC= ∠A+ ∠ABD=2x, 从而 ∠ABC=∠C=∠BDC=2x. 于是在△ABC中,有 ∠A+ ∠ABC+ ∠C=x+2x+2x= 1800 解得 x=360 ∴在△ABC中, ∠A=360 , ∠ABC=∠C=720 B A D C
在△ACD和△ABD中 AB=AC AD=AD BD=CD ∴△ACD≌△ABD(SSS) ∴∠B = ∠C
C
D
B
(1)如果等腰三角形的顶角是360 , 那 么它的底角的度数为_______________ 720,720 (2)在△ABC中,AB=AC, ∠BAC=900 ,AD是BC边上的高,则∠BAD=______, 450 B DC AD BD=______=_____.
成都地质悠久,地层出露较全,全市地势差异显著,西北高,东南低,西部属于四川盆地边缘地区,以深丘和山地为主,海拔大多在1000— 3000米之间,最高处大邑县双河乡海拔为5353米,相对高度在1000米左右;东部属于四川盆地盆底平原,是成都平原的腹心地带,主要由第四 系冲击平原、台地和部分低山丘陵组成,土层深厚,土质肥沃,开发历史悠久,垦殖指数高,地势平坦,海拔一般在500米上下,最低处金堂 县云台乡仅海拔387米。 ; / 成都私家侦探公司 kfh63ndg 成都市东、西两个部分之间高差悬殊达4966米。由于地表海拔高度差异显著,直接造成水、热等气候要素在空间分布上的不同,不仅西部山地 气温、水温、地温大大低于东部平原,而且山地上下之间还呈现出明显的不同热量差异的垂直气候带,因而在成都市域范围内生物资源种类繁 多,门类齐全,分布又相对集中。