2014年秋九年级新人教版数学上册 25.2 用列举法求概率同步练习

合集下载

新人教版数学九上同步练习:25.2 用列举法求概率

新人教版数学九上同步练习:25.2 用列举法求概率

25.2 用列举法求概率1.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( A )2.有3个整式x,x+1,2,先随机取一个整式作为分子,再在余下的整式中随机取一个作为分母,恰能组成分式的概率是( C )3.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( B )4. 如图,五一期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是( B )(A) (D)5.(2017淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m-n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( B )(B) (D)6.箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和17.某市初中毕业女生体育考试项目有四项,其中“立定跳远”“1 000米跑”“篮球运球”为必测项目,另一项从“掷实心球”“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实心球”或“一分8. (2017娄底)在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L19.(2017遵义)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.解:(1)因为甲盘中一共有4个粽子,其中豆沙粽只有1个,所以小明从甲盘中任取一个粽子,(2)画树状图如下由树状图可以看出,所有可能出现的结果共有16种,这些结果出现的可能性相同,恰好取到两个白粽子的结果有4种,所以小明恰好取到两个白粽子的概率为P=10.(2017贺州)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中分摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由. 解:(1)列表如下由表可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相同,摸出的球上的数字之和小于6的结果有9种,所以P(小王去(2)认同小李的说法.理由如下:因为P(小王去所以P(小李去因为所以规则不公平,认同小李的说法.11.(易错题)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)2种,所以他们三人在同一个半天去游玩的概率为。

【精品】人教版九年级数学上册25.2用列举法求概率同步测试及答案

【精品】人教版九年级数学上册25.2用列举法求概率同步测试及答案

用列举法求概率第1课时 直接列举法求概率 [见B 本P54]1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一球,两次都摸到黑球的概率是( A ) A.14 B.13 C.12 D.232.为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了.她第一次就拨通电话的概率是( C ) A.12 B.14 C.16 D.183.若从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为( A ) A.12 B.34 C.13 D.14【解析】∵从长度分别为3,5,6,9的四条线段中任取三条的可能结果有:3,5,6;3,5,9;3,6,9;5,6,9;能组成三角形的有:3,5,6;5,6,9;∴能组成三角形的概率为12.4.在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4,从袋中随机地摸取一个小球后,然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是__29__.5.从1,2,3,4,5中任取一个数作为十位上的数,再从2,3,4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是__13__.【解析】 所组成的所有两位数为12,13,14,22,23,24,32,33,34,42,43,44,52,53,54,共15种情形,其中是3的倍数的有12,24,33,42,54,共5种情形,∴P =515=13.6.小红有A ,B ,C ,D 四种颜色的衬衫,又有E ,F 两种颜色的裤子,若他喜欢的是A 衬衫配E裤子,则黑暗中,她随机拿出一套恰好是她最喜欢的搭配的概率是__18__.7.一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表的方法,求出两次摸出的球上的数字之和为偶数的概率. 解: 列表(第二次 和第一次1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出球上的数字之和为偶数的概率为59.8.如图25-2-1,有四张背面相同的纸牌A ,B ,C ,D ,其正面分别是红桃,方块,黑桃,梅花,其中红桃,方块为红色,黑桃,梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.图25-2-1(1)用列表法表示两次摸牌所有可能出现的结果(纸牌用A ,B ,C ,D 表示); (2)求摸出的两张纸牌同为红色的概率. 解: (1)列表法:第1次第2次 A B C DA BA CA DAB AB CB DBC AC BC DCD AD BD CD(2)P =212=16.9.如图25-2-2,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( B ) A.16 B.13 C.12 D.22图25-2-2【解析】 共有6种等可能的结果,能让两盏灯泡同时发光的是闭合开关K 1,K 3与K 3,K 1,∴能让两盏灯泡同时发光的概率为13.10.在x 2□2xy □y 2的空格“□”中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( C )A .1 B.34 C.12 D.14【解析】 在x 2□2xy □y 2的空格“□”中,分别填上“+”或“-”有四种情形:+-;++;-+;--,其中能构成完全平方式的有2种,故概率为24=12.11.对于平面内任意一个凸四边形ABCD ,现从以下四个关系式:①AB =CD ;②AD =BC ;③AB∥CD ;④∠A =∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是__12__.【解析】 从4个条件中任取两个共有①②、①③、①④、②③、②④、③④6种可能性相等的结果,其中①②、①③、③④能得出四边形ABCD 是平行四边形,故能得出四边形ABCD 是平行四边形的概率为36=12.12.甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机各伸出一根手指;ⅱ)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时, (1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.解: 设A ,B ,C ,D ,乙甲 A B C D EA AA AB AC AD AE B BA BB BC BD BE C CA CB CC CD CED DA DB DC DD DE E EA EBEC ED EE由表格可知,共有25(1)由上表可知,甲伸出小拇指取胜有1种可能∴P (甲伸出小拇指取胜)=125.(2)由上表可知,乙取胜有5种可能,∴P (乙取胜)=525=15.13.一个不透明的袋子里装有编号分别为1,2,3的球(除编号以外,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为13.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x ,乙摸出球的编号记为y ,用列表法求点A (x ,y )在直线y =x 下方的概率. 解: (1)设袋子里2号球的个数为x ,则: x 1+x +3=13,解得x =2.经检验,x =2为所列方程的解. ∴ 袋子里2号球的个数为2. (2)用列表法表示为: 结果 1 2 2 3 3 3 1 (2,1) (2,1) (3,1) (3,1) (3,1) 2 (1,2) (2,2) (3,2) (3,2) (3,2) 2 (1,2) (2,2) (3,2) (3,2) (3,2) 3 (1,3) (2,3) (2,3) (3,3) (3,3) 3 (1,3) (2,3) (2,3) (3,3) (3,3) 3 (1,3) (2,3) (2,3) (3,3) (3,3)1),(3,2),(3,2),(3,2),(3,2),(3,2),(3,2),共11种.把事件“点A (x ,y )在直线y =x 下方”记作事件A ,∴P (A )= 1130.第2课时 树状图求概率 [见A 本P56]1.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( B )A .0 B.13 C.23D .12.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( A ) A.310 B.925 C.920 D.353.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是__13__.4.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是__23__.图25-2-35.合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图25-2-3所示,学生B ,C ,D随机坐到其他三个座位上,则学生B 坐在2号座位的概率是__13__.6.如图25-2-4,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为__19__.7.在一个口袋中有4个完全相同的小球,把它们分别标上数字-1,0,1,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.求下列事件的概率: (1)两次都是正数的概率P (A );(2)两次的数字和等于0的概率P (B ).第一次第二次 -1 0 1 2-1 (-1,-1) (0,-1) (1,-1) (2,-1) 0 (-1,0) (0,0) (1,0) (2,0) 1 (-1,1) (0,1) (1,1) (2,1) 2 (-1,2) (0,2) (1,2) (2,2)(1)是正数的结果有4种,所以P (A )=416=14(2)由上表可知,两个数字和为0的结果有3种,所以P (B )=316.8.在一个不透明的箱子中装有3个小球,分别标有字母A ,B ,C ,这3个小球除所标字母外,其他都相同.从箱子中随机地摸出一个小球,然后放回;再随机地摸出一个小球.请你利用画树状图的方法,求两次摸出的小球所标字母不同的概率. 解:共有9种等可能的结果,其中两次摸出的小球所标字母不同的结果有6种,所以所求的概率为69=23.9.用图25-2-5中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( D ) A.14 B.34 C.13 D.12图25- 第9题答图【解析】 将第二个转盘中的蓝色部分等分成两部分,画树状图如答图.∵共有6种等可能的结果,可配成紫色的有3种情况,∴可配成紫色的概率是12.10.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表的方法,求两次摸到不同颜色球的概率.【解析】 (1)由蓝球1个,任意摸出一个球是蓝球的概率为14,知共有4个球;又知袋中有红球2个,蓝球1个,故黄球只有1个.(2)根据列表的情况来求概率. 解:(1)袋中黄球的个数为1个; (2)列表如下:红1 红2 黄 蓝 红1 (红1,红2) (红1,黄) (红1,蓝) 红2 (红2,红1) (红2,黄) (红2,蓝) 黄 (黄,红1) (黄,红2) (黄,蓝) 蓝 (蓝,红1) (蓝,红2) (蓝,黄)所以两次摸到不同颜色球的概率为P =1012=56.11.阅读对话,解答问题.图25-2-6(1)分别用a ,b 表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用列表法写出(a ,b )的所有取值;(2)求在(a ,b )中使关于x 的一元二次方程x 2-ax +2b =0有实数根的概率. 解:(1)(a ,b )对应的表格为:ba 1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3 (3,1) (3,2) (3,3) 4 (4,1) (4,2) (4,3)(2)∵方程x 2-ax +2b =0有实数根, ∴Δ=a 2-8b ≥0.∵使a 2-8b ≥0的(a ,b )有(3,1),(4,1),(4,2),∴P =312=14.12.甲、两乙人在玩转盘游戏时,把2个可以自由转动的转盘A ,B 分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图25-2-7所示),指针的位置固定,游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲胜,若指针所指两个区域的数字之和为4的倍数,则乙胜,如果落在分割线上,则需要重新转动转盘. (1)试用列表或画树状图的方法,求甲获胜的概率; (2)这个游戏公平吗?图25-2-7解: (1)转盘A 转盘B 1 2 3 4 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4) (2,4) (3,4) (4,4) 5(1,5)(2,5)(3,5)(4,5)因为数字之和共有12种结果,其中“和是3的倍数”的结果有4种,所以P (甲获胜)=412=13. (2)因为“和是4的倍数”的结果有3种,所以P (乙获胜)=312=14, 因为13≠14,所以这个游戏不公平.13.现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别为2和3.从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜.请用列表法或画树状图的方法说明这个游戏是否公平.(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4,5,6三种情况,所以出现‘和为4’的概率是13”,她的这种看法是否正确?说明理由.解: (1)画树状图如下: 223 323由图可知,所有等可能的结果共有4种,其中,摸到的牌面数字相同的情况有2种,摸到的牌面数字不同的情况也有2种,所以P (小红获胜)=24=12,P (小明获胜)=24=12.所以这个游戏是公平的.(2)小丽的看法错误.两张牌的牌面数字“和为4”的概率为P (和为4)=14;两张牌的牌面数字“和为5”的概率为P (和为5)=24;两张牌的牌面数字“和为6”的概率为P (和为6)=14.所以小丽的看法不正确.。

人教版 九年级上册数学 25.2 用列举法求概率 同步课时训练(含答案)

人教版 九年级上册数学 25.2 用列举法求概率 同步课时训练(含答案)

人教版 初三数学 25.2 用列举法求概率 同步课时训练一、选择题1. 三名九年级同学坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原位的概率是 ( ) A.19B.16C.14D.122. 从同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.233. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.124. 2018·大连一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( ) A.13B.49C.12D.595. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.236. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长的三角形是等边三角形的概率是( ) A.19B.127C.59D.137. 书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( ) A.310B.625C.925D.3258. 2018·梧州 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种颜色的球各1个,这些球除颜色不同外无其他差别,每人从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( ) A.127B.13C.19D.29二、填空题9. 一张圆桌旁有四个座位,A 先坐在如图所示的位置上,B ,C ,D 三人随机坐到其他三个座位上,则A 与B 不相邻坐的概率为________.10. 掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为________.11. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.12. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.13. 分别写有数字13,2,-1,0,π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是________.14. 小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是________.15. 淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式决定,那么她们两人都抽到物理实验的概率是________.16. 已知电路AB 由如图所示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题17. 甲、乙、丙三名学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序. (1)求甲第一个出场的概率; (2)求甲比乙先出场的概率.18. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 在一个不透明的袋子里装有4个分别标有1,2,3,4的小球,它们的形状、大小等完全相同.李强从袋子里随机取出1个小球,记下数字为x,王芳在剩下的3个小球中随机取出1个小球,记下数字为y,这样就确定了点M的坐标(x,y).(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.人教版 初三数学 25.2 用列举法求概率 同步课时训练-答案一、选择题1. 【答案】D[解析] 利用列举法可知,三人全部的坐法有6种,其中恰好有两名同学没有坐回原位的情况有3种,因此恰好有两名同学没有坐回原位的概率是36=12. 故选D.2. 【答案】A3. 【答案】C4. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为59.5. 【答案】C[解析] 列表得:B 盘A 盘 3451 4 5 62 5 6 7 3678所以甲获胜的概率是59.6. 【答案】A[解析] 画树状图如下:由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a ,b ,c 为边长的三边形是等边三角形的概率是327=19.故选A.7. 【答案】A[解析] 3本小说分别记作A ,B ,C ,2本散文分别记作D ,E.一共有20种等可能的结果,其中2本都是小说的结果有6种,因此随机抽取2本都是小说的概率是310.8. 【答案】D[解析] 如图,用A ,B ,C 分别表示红球、黄球、白球,可以发现一共有27种等可能结果,三人摸到球的颜色都不相同的结果有6种,∴P (三人摸到球的颜色都不相同)=627=29.二、填空题9. 【答案】13 [解析] 可设第一个位置和第三个位置都与A 相邻.画树状图如下:∵共有6种等可能结果,A 与B 不相邻坐的结果有2种, ∴A 与B 不相邻坐的概率为13.10. 【答案】38 [解析] 画树状图如下:∵共有8种等可能的结果,其中有两次正面朝上、一次反面朝上的结果有3种, ∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为38.11. 【答案】47 [解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为47.12. 【答案】35[解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.13. 【答案】25 [解析] 五个数中2和π是无理数,故从中任意抽取一张,抽到无理数的概率是25.14. 【答案】16 [解析] 画树状图如下:因为从上到下的顺序总共有6种等可能的结果,顺序恰好为“上册、中册、下册”的结果有1种,所以从上到下的顺序恰好为“上册、中册、下册”的概率是16.15. 【答案】19 [解析] 列表如下:由表可知,共有9种等可能的结果,其中两人都抽到物理实验的结果只有1种,所以她们两人都抽到物理实验的概率是19.16. 【答案】35 [解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.三、解答题17. 【答案】解:列举出所有出场顺序:甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲.一共有6种等可能的结果. (1)其中甲第一个出场的结果有2种, 所以P (甲第一个出场)=13.(2)其中甲比乙先出场的结果有3种, 所以P (甲比乙先出场)=12.18. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B手中的结果只有1种,∴两次传球后,球恰好在B手中的概率为1 4.(2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A手中的结果有2种,∴三次传球后,球恰好在A手中的概率为28=14.20. 【答案】解:(1)画树状图如下:由图可知,点M的坐标共有12种,即(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)以上12个点中,在函数y=x+1的图象上的点有3个,即(1,2),(2,3),(3,4),所以所求概率=312=1 4.。

人教版数学九年级上册:25.2 用列举法求概率 同步练习(附答案)

人教版数学九年级上册:25.2 用列举法求概率  同步练习(附答案)

25.2 用列举法求概率第1课时用列表法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.342.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.193.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.同时掷两枚质地均匀的骰子,两枚骰子点数的和是5的概率是()A.112B.19C.16D.145.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.1166.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.347.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.238.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是.9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是.10.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法表示出所有可能出现的游戏结果;(2)求张华胜出的概率.剪刀石头布11.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择同一间放映室看电影的概率是.12.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式,则第一、二位出场选手都是女选手的概率是.13.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为()A.12B.13C.14D.1514.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.在某校运动会4×400 m 接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为 .16.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率是23.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.17.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用列表法列出所有可能,并求顾客享受8折优惠的概率.转盘甲 转盘乙18.如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数y=-x+1图象上的概率.第2课时用树状图法求概率1.在一个不透明的口袋中装有2个白球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随机摸出一个球,两次摸到都是白球的概率是()A.112B.16C.14D.122.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.123.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是()A.13B.49C.59D.234.经过某十字路口的汽车,可直行,也可向左转或向右转.如果这三种可能性大小相同,那么两辆汽车经过该十字路口时都直行的概率是.5.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.6.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5.现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.7.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用画树状图的方法表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.8.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率.9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为()A.23B.12C.13D.1图1 图210.用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则取一把钥匙恰能打开一把锁的概率是()A.18B.16C.14D.1211.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.12.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.13.(遵义中考)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.14.在四边形ABCD中,有下列条件:①AB綊CD;②AD綊BC;③AC=BD;④AC⊥BD.(1)从中任选一个作为已知条件,能判定四边形ABCD是平行四边形的概率是;(2)从中任选两个作为已知条件,请用画树状图法表示能判定四边形ABCD是矩形的概率,并判断能判定四边形ABCD是矩形和是菱形的概率是否相等?15.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?参考答案:25.2 用列举法求概率第1课时用列表法求概率1.A2.A3.B4.B5.D6.B7.C8.14.9.14.10.解:(1)列表如下:(2)由表可知,张华胜出的结果有3种,∴P (张华胜出)=39=13.11.14.12.16.13.C 14. 13.15. 12.16.解:(1)设袋子中白球有x 个,根据题意,得 x x +1=23.解得x =2. 经检验,x =2是所列方程的根,且符合题意. 答:袋子中有白球2个. (2)列表:∴两次都摸到相同颜色的小球的概率为59.17.(1)14;(2)解:列表如下:由表格可知共有其中指针指向每个区域的字母相同的有2种, 所以P (顾客享受8折优惠)=212=16.18.解:(1)列表如下:所以|m +n|>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.第2课时 用树状图法求概率1.C 2.B 3.C 4. 19.5. 25.6. 59.7.解:(1)画树状图如下:可能出现的结果共6种,分别是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),它们出现的可能性相等.(2)∵两个数字之和能被3整除的情况共有2种, ∴P (两个数字之和能被3整除)=26=13.8.(1)14;(2)解:画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16.9.A 10.C 11. 16.12. 49.13.(1)14;(2)解:画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好取到两个白粽子的结果有4种. ∴P (小明恰好取到两个白粽子)=416=14.14.(1)12;(2)解:画树状图如下:由树状图可知,从中任选两个作为已知条件共有12种等可能的结果,能判定四边形ABCD 是矩形的有4种,能判定四边形ABCD 是菱形的有4种. ∴能判定四边形ABCD 是矩形的概率为412=13,能判定四边形ABCD 是菱形的概率为412=13.∴能判定四边形ABCD 是矩形和是菱形的概率相等.15.(1)13;解:(2)用Z 表示正确选项,C 表示错误选项,画树状图如下:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第二道题使用“求助”时,P (小颖顺利通关)=19.(3)若小颖将“求助”留在第一道题使用,画树状图如下:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第一道题使用“求助”时,P (小颖顺利通关)=18.∵18>19,∴建议在答第一道题时使用“求助”.。

人教版九年级数学上25.2用列举法求概率(3)同步测试含答案

人教版九年级数学上25.2用列举法求概率(3)同步测试含答案
∵共有 12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有 6 种情况, ∴抽到卡片上印有的图案都是轴对称图形的概率为: = . 故选 D.
2.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两 个粽子都没有蛋黄的概率是( ) A. B. C. D. 【解答】解:用 A 表示没蛋黄,B 表示有蛋黄的,画树状图如下:
一共有 6 种情况,在第二象限的点有(﹣1,1)(﹣1,2)共 2 个, 所以,P= = . 故选 B.
4.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则: 抛出两个正面﹣﹣小明赢 1 分;抛出其他结果﹣﹣小刚赢 1 分; 谁先到 10分,谁就获胜. 这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( ) A.把“抛出两个正面”改为“抛出两个同面” B.把“抛出其他结果”改为“抛出两个反面” C.把“小明赢 1 分”改为“小明赢 3 分” D.把“小刚赢 1 分”改为“小刚赢 3 分” 【解答】解:
因为 p(正,正)= ,则出现其他结果的概率为: , A.根据出现抛出两个相同面的概率为: ,则把“抛出;
13.现有点数为:2,3,4,5 的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌 上的数字之和为偶数的概率为______. 14.有背面完全相同,正面上分别标有两个连续自然数 k,k+1(其中 k=0,1,2,…,19)的卡片 20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的 各位数字之和(例如:若取到标有 9,10的卡片,则卡片上两个数的各位数字之和为 9+1+0=10) 不小于 14的概率为______. 15.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且 只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去,则从最初位置 爬到 4 号蜂房中,不同的爬法有______种.

2014年秋新人教版九年级上25.2用列举法求概率优化训练课件

2014年秋新人教版九年级上25.2用列举法求概率优化训练课件

请你用列表或画树状图的方法说明理由.
解:(1)设红球的个数为 x, 2 由题意,得 =0.5.解得 x=1. 2+1+x
所以口袋中红球的个数是 1.
(2)不对.记两个白球为白1、白2,画树状图如图 D46.
图 D46
2 1 1 1 ∴P(白)=4=2,P(黄)=4,P(红)=4. ∴小明的说法是不对的.
ቤተ መጻሕፍቲ ባይዱ
图 25-2-1
(1)求随机抽取一张卡片,恰好得到数字 2 的概率; (2)小贝和小晶想用以上四张卡片做游戏,游戏规则见 图 25-2-1(2).你认为这个游戏公平吗?请用列表法或画树状图法 说明理由;若认为不公平,请你修改规则,使游戏变得公平. 思路点拨:第一次抽取有 3 种可能结果,第二次抽取出现 的可能结果会很多,所以可用列表或树状图法求出所有可能的 结果.
1 数字为偶数的有1种情况,∴P= . 6
4.一个不透明的口袋里装有红、白、黄三种颜色的乒乓球 (除颜色外其余都相同),其中有白球 2 个,黄球 1 个.若从中 任意摸出一个球,这个球是白球的概率为 0.5.
(1)求口袋中红球的个数;
(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸
1 出一球,摸到红球、白球或黄球的概率都是 ,你认为对吗? 3
解:共有以下几种情况: 红色水笔和白色橡皮,红色水笔和黑色橡皮, 蓝色水笔和白色橡皮,蓝色水笔和黑色橡皮,
黑色水笔和白色橡皮,黑色水笔和黑色橡皮,
共有 6 种等可能的结果,其中取出红色水笔和白色橡皮只 占 1 种,
1 ∴取出红色水笔和白色橡皮配套的概率= . 6
【跟踪训练】 1.从 1,2,-3 三个数中,随机抽取两个数相乘,积是正 数的概率是( B ) A.0 1 B. 3 2 C. 3 D.1

人教版九年级数学上册《25.2用列举法求概率》同步练习题(附答案)

人教版九年级数学上册《25.2用列举法求概率》同步练习题(附答案)

人教版九年级数学上册《25.2用列举法求概率》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为()A.B.C.D.2.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.3.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()A.B.C.D.4.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为()A.B.C.D.5.初三(1)班周沫同学拿了A,B,C,D四把钥匙去开教室前、后门的锁,其中A钥匙只能开前门,B钥匙只能开后门,任意取出一把钥匙能够一次打开教室门的概率是()A.B.C.1 D.6.小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,如图,依次制成编号为的五张卡片(除编号和内容外,其余完全相同).将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.则抽到的两张卡片恰好是编号为(基站建设)和(人工智能)的概率是()A.B.C.D.7.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )A.B.C.D.8.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.10.小红、小明、小芳在一起做游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是.11.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.12.如图,是一个可以自由转动的转盘,盘面被平均,分成6等份,分别标有数字2,3,4,5,6,7.转动转盘,当转盘停止时,指针指向区域所标示的数字即为转出的数字(若指针落在相邻两扇形交界处,重新转动转盘).则转出的数字大于3的概率是.13.如图,在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,任意三个格点组成的三角形面积如果不小于1则称为“离心三角形”,而如果面积恰好等于1则称为“环绕三角形”。

数学人教版九年级上册25.2用列举法求概率同步练习(有答案)

数学人教版九年级上册25.2用列举法求概率同步练习(有答案)

25.2 用列举法求概率同步练习一、选择题1.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球以后不放回布袋,再摸第二个球,这时获得的两个球的颜色中有“一红一黄”的概率是 ()A. 1B. 2C. 1D. 269332.同时投掷三枚质地平均的硬币,起码有两枚硬币正面向上的概率是()A. 3B.5C. 2D. 188323.如图是一次数学活动课制作的一个转盘,盘面被平分红四个扇形地区,并分别标有数字 - 1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指地区的数字 (当指针恰巧指在分界限上时,不记,重转 ),则记录的两个数字都是正数的概率为 ()A. 1B. 1C. 1D. 186424.小明和他的爸爸妈妈共 3 人站成一排摄影,他的爸爸妈妈相邻的概率是 ()A. 1B. 1C. 1D. 263235.三名初三学生坐在仅有的三个座位上,起身后从头就坐,恰巧有两名同学没有坐回原座位的概率为()第1页/共7页A. )19B. )16C. )14D. )126.从九年级一班 3 名优异班干部和九二班 2 名优异班干部中随机抽取两名学生担当升旗手,则抽取的两名学生恰巧一个班的概率为()A. 1B. 2C. 3D. 455557.从长为 3,5,7,10 的四条线段中随意选用三条作为边,能构成三角形的概率是 ()A. 1B. 1C. 3D. 14248.小王家新锁的密码是 6 位数,他记得前两位数是 23,后两位数是 32,中间两位数忘了,那么他一次按对的概率是()A. 1B. 1C. 1D. 12050901009.某校高一年级今年计划招四个班的重生,并采纳随机摇号的方法分班,小明和小红既是该校的高一重生,又是好朋友,那么小明和小红分在同一个班的时机是 ()A. 41B. 31C. 21D. 4310. 若一个袋子中装有形状与大小均完整同样有 4 张卡片, 4 张卡片上分别标有数字 - 2,- 1,2,3,现从中随意抽出此中两张卡片分别记为 x,y,并以此确立点 ??( ??,??),那么点 P 落在直线??= - ??+ 1上的概率是 ()A.1B.1C.1D.12346二、填空题11. 有 5 张看上去无差其他卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取 2 张,抽出的卡片上的数字恰巧是两个连续整数的概率是______ .12.箱子里放有 2 个黑球和 2 个红球,它们除颜色外其他都同样,现从箱子里随机摸出两个球,恰巧为 1 个黑球和 1 个红球的概率是 ______ .13.假如随意选择一对有序整数 ( ??,??),此中 |??| ≤ 1,|??| ≤3,每一对这样的有序整数被选择的可能性是相等的,那么对于 x 的方程2有两个相等实数根的概率是 ______ .??+ ????+ ??= 014. 从- 1,- 2,1,2四个数中,任取一个数记为k,再从余下的三23个数中,任取一个数记为??.则一次函数 ??= ????+ ??的图象不经过第四象限的概率是 ______ .15.从- 1,0,2,3 这四个数中,任取两个数作为 a,b,分别代入一元二次方程2中,那么全部可能的一元二次???? + ????+ 2 = 0方程中有实数解的一元二次方程的概率为______ .三、计算题16.一袋中装有形状大小都同样的四个小球,每个小球上各标有一个数字,分别是 1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;而后将小球放回袋中并搅拌平均,再任取一个小球,对应的数字作为这个两位数的十位第3页/共7页数.(1)写出按上述规定获得全部可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于 7的概率.17.最近几年来,手机微信红包快速流行起来 .昨年春节,小米的爷爷也试试用微信发红包,他分别将 10 元、30 元、60 元的三个红包发到只有爷爷、爸爸、妈妈和小米的微信群里,他们每人只好抢一个红包,且抢就任何一个红包的时机均等 (爷爷只发不抢,红包里钱的多少与抢红包的先后次序没关 ).(1)求小米抢到 60 元红包的概率;(2)假如小米的奶奶也加入“抢红包”的微信群,他们四个人中将有一个人抢不到红包,那么这类状况下,求小米和妈妈两个人抢到红包的钱数之和许多于 70 元的概率.18.若 n 是一个两位正整数,且 n 的个位数字大于十位数字,则称 n为“两位递加数”(如 13,35,56 等).在某次数学兴趣活动中,每位参加者需从由数字 1,2,3,4,5,6 组成的全部的“两位递加数”中随机抽取 1 个数,且只好抽取一次.(1)写出全部个位数字是 5 的“两位递加数”;(2)请用列表法或树状图,求抽取的“两位递加数”的个位数字与十位数字之积能被 10 整除的概率.第5页/共7页【答案】1. C2. D3. C4. D5. D6. B7. B8. D9. A10. B11.2512.2313.1714.1615.1416.解: ( 1) 画树状图:共有 16 种等可能的结果数,它们是:11, 41,71,81,14,44,74,84,17,47,77,87, 18,48,78, 88;( 2)算术平方根大于 4 且小于 7 的结果数为 6,因此算术平方根大于 4 且小于 7 的概率 = 166 = 38.17.解: ( 1) 小米抢到 60 元红包的概率 = 1;3( 2)画树状图为:共有 24 种等可能的结果数,此中小米和妈妈两个人抢到红包的钱数之和许多于70 元的结果数为 8,因此小米和妈妈两个人抢到红包的钱数之和许多于70 元的概率 = 8= 1.24318. 解:(1)依据题意全部个位数字是 5 的“两位递加数”是 15、25、35、45 这 4 个;( 2)画树状图为:共有 15 种等可能的结果数,此中个位数字与十位数字之积能被10整除的结果数为 3,因此个位数字与十位数字之积能被10 整除的概率 = 3= 1.155第7页/共7页。

人教版九年级上册数学列举法求概率()同步练习

人教版九年级上册数学列举法求概率()同步练习

2014人教版九年级数学上册第25章25.2《列举法求概率》同步练习及答案 (2)◆随堂检测1.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.2.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?,求y与x之间的函数关系式. (2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是143.某商场在今年“十·一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.◆典例分析为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A 、B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择A 、B 中哪个转盘呢?并请说明理由.分析:首先要将实际问题转化为数学问题,即:“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”这个问题涉及两个带指针的转盘,即涉及两个因素,产生的结果数目较多,列举时很容易造成重复或遗漏.为了避免这种重复或遗漏, 可以用画树状图和列表法求解,不过用列表法更简单.列表的时候,注意左上角的内容要16 8A45 7B联欢晚会游戏转盘规范,中间结果一般要用有序数对的形式表示;每一个转盘转动,都有3种等可能的结果,而且第二个转盘转动的结果不受第一个结果的限制,因此一共有33 =9种等可能的结果. 解:列表如下: 从表中可以发现:A 盘数字大于B 盘数字的结果共有5种.∴P(A 数较大)=95,P(B 数较大)=94.∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.◆课下作业 ●拓展提高1.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图所示),从中任意一张是数字3的概率是( )A B 4 5 7 1 (1,4) (1,5) (1,7) 6 (6,4) (6,5) (6,7) 8(8,4)(8,5)(8,7)A.61B.31C.21D.322.连掷两次骰子,它们的点数都是4的概率是( ) A.61 B.41 C.161 D.361 3.一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小亮从布袋中摸出一球后放回去摇匀,再摸出一个球,则小亮两次都能摸到白球的概率是________.4.如图,有三张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字.试用列表或画树状图的方法,求抽出的两张卡片上的数字都是正数的概率.5.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数的和是5; (2)至少有一个骰子的点数为5.●体验中考1.(2009年,台州市)盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( ) A .23B .15C .D .352.(2009年,丽水市)如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在-3 1 正 面 背 面2分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是_______.3.(2009年,常德市)“六一”儿童节期间,某儿童用品商店设置了如下促销活动:如果购买该店100元以上的商品,就能参加一次游戏,即在现场抛掷一个正方体两次(这个正方体相对的两个面上分别画有相同图案),如果两次都出现相同的图案,即可获得价值20元的礼品一份,否则没有奖励.求游戏中获得礼品的概率是多少?参考答案:◆随堂检测1.45.876543212.解:(1)取出一个黑球的概率44347P ==+. (2)取出一个白球的概率37x P x y +=++,∴3174x x y +=++, ∴1247x x y +=++,∴y 与x 的函数关系式为35y x =+. 3.解:列表如下:∴P (两次摸出的小球的标号之和为“8”或“6”)=4.◆课下作业●拓展提高1.B.2.D..3.194.解:列表(略).由表可知,共有9种情况,每种情况发生的可能性相同,两张卡片都是正数的情况出现了4次.因此,两张卡片上的数都是正数的概率4p .95.解:列表如下:第21 2 3 4 5 6个第1个1 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6).由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A)的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41.369(2)至少有一个骰子的点数为5(记为事件B )的结果有11个,所以P(B)=1136.●体验中考 1.C. 2.157. 3.解:设这三种图案分别用A 、B 、C 表示,则列表得∴()93P ==获得礼品.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

2014年秋人教版九年级数学上册随堂优化课后能力提升专练25.2用列举法求概率

2014年秋人教版九年级数学上册随堂优化课后能力提升专练25.2用列举法求概率

25.2 用列举法求概率(附答案)1.准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( ) A.13 B.14 C.15 D.162.三男一女同行,从中任意选出两人,性别不同的可能性大小是( )A.12B.13C.14D.343.如图25-2-3是一个可以自由转动的转盘,当转盘转动停止后,下面有3个表述:①指针指向3个区域的可能性相同;②指针指向红色区域的概率为13;③指针指向红色区域的概率为12.其中正确的表述是( )图25-2-3 A .①② B .①③ C .② D .③4.某市民政部门“五一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票中,设置如下奖项:奖金/元1000 500 100 50 10 2 数量/个10 40 150 400 1000 10 000 如果花A.1200 B.3500 C.1500 D.120005.在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片任意摆放,将所有图形的正面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是( )A.15B.25C.35D.456.如图25-2-4所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是____________.图25-2-47.一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球,求恰好摸到标号为2的小球的概率;(2)随机摸取一个小球然后放回,再随机摸取一个小球,求两次摸取的小球的标号的和为5的概率.8.在一个袋子中,有完全相同的4张卡片,把它们分別编码为1,2,3,4.(1)从袋子中随机取两张卡片,求取出的卡片的编号之和等于4的概率;(2)先从袋子中随机取一张卡片,记该卡片的编号为a ,然后将其放回袋中,再从袋中随机取出一张卡片,记该卡片的编号为b ,求满足a +2>b 的概率.9.(2012年广东)有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ).(1)用树状图或列表法表示x ,y 所有可能出现的结果;(2)求使分式x 2-3xy x 2-y 2+y x -y有意义的(x ,y )出现的概率; (3)化简分式x 2-3xy x 2-y 2+y x -y;并求使分式的值为整数的(x ,y )出现的概率.10.如图25-2-5,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯口朝上.我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.图25-2-5(1)随机翻一个杯子,求翻到黄色杯子的概率;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.25.2 用列举法求概率【课后巩固提升】1.A 2.A 3.D 4.C5.D 解析:5种图形中除“平行四边形”外都是轴对称图形,翻开图形是轴对称图形的结果有4种,故概率为45. 6.137.解:(1)共有4个球,标号为2的球有1个,所以概率为14. (2)如图D47,共有16种情况,两次摸取的小球的标号的和为5的情况有4种,所以所求的概率为14.图D478.解:(1)如图D48,画树状图得:图D48∴一共有12种等可能的结果,取出的卡片的编号之和等于4的有2种情况.∴取出的卡片的编号之和等于4的概率为:212=16(2)如图D49画树状图得:图D49∴一共有16种等可能的结果,满足a +2>b 的有13种情况.∴满足a +2>b 的概率为1316. 9.解:(2)∵求使分式x x 2-y 2+y x -y有意义的(x ,y )有(-1,-2),(1,-2),(-2,-1),(-2,1)4种情况,∴使分式x 2-3xy x 2-y 2+y x -y有意义的(x ,y )出现的概率49. (3)x 2-3xy x 2-y 2+y x -y =x -y x +y, 使分式的值为整数的(x ,y )有(-2,-2),(1,-2),(-1,-1),(-2,1),(1,1)5种情况.∴使分式的值为整数的(x ,y )出现的概率是59.10.解:(1)P (翻到黄色杯子)=13. (2)将杯口朝上用“上”表示,杯口朝下用“下”表示,画树状图如图D50.图D50由树状图可知:所有等可能出现的结果共有9种,∴P (恰好有一个杯口朝上)=69=23.。

人教版九年级数学上25.2用列举法求概率(3)同步测试含答案

人教版九年级数学上25.2用列举法求概率(3)同步测试含答案

《25.2 用列举法求概率》(3)一、选择题1.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.2.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.4.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面﹣﹣小明赢1分;抛出其他结果﹣﹣小刚赢1分;谁先到10分,谁就获胜.这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是()A.把“抛出两个正面”改为“抛出两个同面”B.把“抛出其他结果”改为“抛出两个反面”C.把“小明赢1分”改为“小明赢3分”D.把“小刚赢1分”改为“小刚赢3分”5.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.B.C.D.6.如图,随机闭合开关K,K2,K3中的两个,则能让两盏灯泡同时发光的概率为()1A.B.C.D.7.一枚质地均匀的正方体骰子,六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,其朝上面上的两个数字之和为6的概率是()A.B.C.D.8.有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是()A.B.C.D.二、填空题9.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是______.10.如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为______.11.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是______.12.把同一副扑克中的红桃2,3,4,5有数字的一面朝下放置,洗匀后甲先抽取一张,记下数字后将牌放回,洗匀后乙再抽取一张.设先后两次抽得的数字分别记为x和y,则|x﹣y|≥2的概率为______.。

人教版九年级数学上册《25-2 第1课时 用列举法求概率》作业同步练习题及参考答案

人教版九年级数学上册《25-2 第1课时 用列举法求概率》作业同步练习题及参考答案

3 2 3 6 25.2 用列举法求概率第 1 课时 用列举法求概率1. 从数字 2,3,4 中任选两个数组成一个两位数,组成的数是偶数的概率是()A.2B .1C .1D .52. 任取不等式组�-3 ≤ 0, 2� + 5 > 0的一个整数解,则能使关于 x 的方程 2x+k=-1 的解为非负数的概率为 .3. 在一个屏幕上有四张卡片,卡片上分别有大写的英文字母 A,Z,E,X,现已将字母隐藏.只要用手指触摸其中一张,上面的字母就会显现出来.某同学任意触摸其中 2 张,上面显现的英文字母都是中心对称图形的概率是.4. 现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是.5. 一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B,C,D 三人随机坐到其他三个座位上,求 A 与B 不相邻而坐的概率.6. 如图,在 5×5 的正方形网格中,从在格点上的点 A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的概率为( )A .1 3C .2 3B .1 2D .3 47. 星期天,小明去奶奶家,爷爷给他的一串钥匙上有 8 把钥匙,走到奶奶家里小明忘了爷爷告诉他开门是用哪一把钥匙,于是他随意选了一把,则小明第一次就能把门打开的概率是 .★8.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.他们用四种字母做成 10 枚棋子,其中 A棋 1 枚,B 棋 2 枚,C 棋 3 枚,D 棋 4 枚.“字母棋”的游戏规则为:①游戏时两人随机各摸一枚棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A 棋胜 B 棋,C 棋;B 棋胜 C 棋,D 棋;C 棋胜 D 棋;D 棋胜 A 棋;③相同棋子不分胜负. (1)若小玲先摸,问小玲摸到 C 棋的概率是多少?(2)已知小玲先摸到了 C 棋,小军在剩余的 9 枚棋中随机摸一枚,问这一轮中小玲胜小军的概率是多少? (3)已知小玲先摸一枚棋,小军在剩余的 9 枚棋中随机摸一枚,问这一轮中小玲希望摸到哪种棋使她胜小军的概率最大?★9.在武汉某中学的元旦晚会上,主持人安排了抽奖活动.具体方法是:设置如下表所示的翻板,每次抽 奖翻开一个数字,数字背面写有所中奖品或新年祝词.奖MP4 一部 万事如意 学业进步身体健康新年快乐奖 MP4 一 部1 2 3 4 5 6 7 893 2 2 1A ZA X奖笔记本电脑一 台 奖钢笔一 支心想事成(1) 主持人想知道“第一个人抽奖中奖”的概率,而且觉得翻板太麻烦,请你设计一个简便的模拟抽奖方法,并估计“第一个人抽奖中奖”的概率;(2) 若晚会开始前给每名入场的学生发一张入场券,其中有 100 张后标有“新年快乐”.晚会进行中主持人任意邀请台下 50 名同学上台合唱“同一首歌”,并宣布这 50 名同学的入场券后标有“新年快乐”的参与抽奖,结果有 4 人中奖,中奖率为 40%,请估计参加本次晚会的学生人数.参考答案夯基达标1.A 从数字 2,3,4 中任选两个数组成一个两位数,组成的两位数有 23,32,24,42,34,43 六个,其中偶数有四个,所以组成的两位数中是偶数的概率是4 = 2.故选 A .632.1 解不等式组 �-3 ≤ 0, 2� + 5 > 0得-5<k ≤3,因此整数解为-2,-1,0,1,2,3,共 6 个.关于 x 的方程 2x+k=-1 的解为 x=-�+1,∵关于 x 的方程 2x+k=-1 的解为非负数,∴k+1≤0,即 k ≤-1.∴符合题意的 k 为-1 和-2,共 2 个.∴解为非负数的概率为2 = 1.633.16如图,共有 6 种情况,其中符合条件的有一种,所以上面显现的英文字母都是中心对称图形的概率是 .63 3 8 104 4 9 A E Z X Z EE X4.2抽取的两张卡片共有 6 种可能结果,分别为-1 和-2;-1 和 3;-1 和 4;-2 和 3;-2 和 4;3 和 4,结果为负数的占 4 种结果,分别为-1 和 3;-1 和 4;-2 和 3;-2 和 4,所以这两张卡片上的数字之积为负数的概率是2.5.解 由于 A 的位置已经确定,B,C,D 随机而坐的情况共有 6 种(如图):6 种情况出现的可能性相同.其中 A 与 B 不相邻而坐的情况共有 2 种,所以所求的概率是2 = 1.63培优促能6.D 从点 A ,B ,C ,D 中任取三点,构成的三角形有四个:△ABC ,△ABD ,△ADC ,△BDC ,其中的直角三角形有三个:△ABC ,△ABD ,△ADC ,所以所求概率为3.故选 D .47.18. 解 (1)小玲摸到 C 棋的概率为 3.(2) 小军摸到 D 棋的概率是 ,所以在这一轮中小玲胜小军的概率是. 99(3) ①若小玲摸到 A 棋,5; 小玲胜小军的概率是9②若小玲摸到 B 棋,小玲胜小军的概率是7;9③若小玲摸到 C 棋,小玲胜小军的概率是4;1④若小玲摸到D 棋, 小玲胜小军的概率是.9由此可见,小玲希望摸到B 棋,此时胜小军的概率最大.创新应用9.解(1)共有9 种结果,其中有4 种中奖,则“第一个人抽奖中奖”的概率是4;可以取9 个完全相同的乒9乓球,在球上分别标上数字1~9,然后放在一个不透明的箱子中,每次摸一个球,摸到标有偶数的球即获奖,并且约定摸到2 号球可获得钢笔,摸到4 号球和6 号球可获得MP4,摸到8 号球可获得笔记本电脑.(2)4÷40%=10 人,总人数为100÷10=500.50。

人教版初中数学九年级上册《25.2 用列举法求概率》同步练习卷(含答案解析

人教版初中数学九年级上册《25.2 用列举法求概率》同步练习卷(含答案解析

人教新版九年级上学期《25.2 用列举法求概率》同步练习卷一.选择题(共1小题)1.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,那么一次打开锁的概率是()A.B.C.D.二.填空题(共8小题)2.甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率是.3.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,每个小球除字母不同外其余均相同,从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母,则两次摸出的小球上的字母相同的概率为.4.有四张卡片,分别写有数﹣2,0,1,5,将它们背面朝上(背面无差别)洗匀后放在桌上,从中任意抽出两张,则抽出卡片上的数的积是正数的概率是.5.袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是.6.如图是两个可以自由转动的均匀圆盘A和B,A、B分别被均匀的分成三等份和四等份.同时自由转动圆盘A和B,圆盘停止后(指针未指向一个确定的数字则重转),指针分别指向两个数字的和为偶数的概率是.7.掷两枚质地均匀的骰子,两次出现的点数相同的概率是.8.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,先从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为.9.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是.三.解答题(共1小题)10.甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.人教新版九年级上学期《25.2 用列举法求概率》同步练习卷参考答案与试题解析一.选择题(共1小题)1.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,那么一次打开锁的概率是()A.B.C.D.【分析】首先根据题意画出树状图得出所有等可能的结果和一把钥匙去开任意一把锁的情况数,再利用概率公式求解即可求得答案.【解答】解:分别用A与B表示锁,用A、B、C、D表示钥匙,画树状图得:则可得共有8种等可能的结果,一次打开锁的有2种情况,则一次打开锁的概率为:=.故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二.填空题(共8小题)2.甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率是.【分析】列举出所有情况,看取出的两球是同色球的情况数占总情况数的多少即可.【解答】解:∵可能的情况为∴一共有4种情况,所取出的两球是同色球的情况为2种,∴所取出的两球是同色球的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.3.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,每个小球除字母不同外其余均相同,从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母,则两次摸出的小球上的字母相同的概率为.【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率.【解答】解:列表得:由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.故答案为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.有四张卡片,分别写有数﹣2,0,1,5,将它们背面朝上(背面无差别)洗匀后放在桌上,从中任意抽出两张,则抽出卡片上的数的积是正数的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字积为正数的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中抽出卡片上的数字积为正数的结果为2种,所以抽出卡片上的数字积为正数的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.5.袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是.【分析】画树状图展示所有4种等可能的结果数,再找出第一次摸到红球,第二次摸到绿球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,第一次摸到红球,第二次摸到绿球的结果数为1,所以第一次摸到红球,第二次摸到绿球的概率=.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.6.如图是两个可以自由转动的均匀圆盘A和B,A、B分别被均匀的分成三等份和四等份.同时自由转动圆盘A和B,圆盘停止后(指针未指向一个确定的数字则重转),指针分别指向两个数字的和为偶数的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与指针分别指向的两个数字的和为偶数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中和为偶数的结果有6种,所以指针分别指向两个数字的和为偶数的概率是=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.7.掷两枚质地均匀的骰子,两次出现的点数相同的概率是.【分析】列举出所有情况,让两个骰子的点数相同的情况数除以总情况数即为所求的概率.【解答】解:列表得:∴一共有36种情况,两个骰子的点数相同的有6种情况,∴这两个骰子的点数相同的概率==.故答案为.【点评】本题考查了利用列表法或树状图求概率的方法:先利用列表法或树状图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念计算出这个事件的概率=.8.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,先从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为.【分析】列表得出所有等可能的情况数,找出两个乒乓球上数字之和大于5的情况数,即可求出所求的概率.【解答】解:列表得:所有等可能的情况数有12种,其中两个乒乓球上数字之和大于5的情况有4种,则P==.故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.9.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与至少有一辆汽车向左转的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:.故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.三.解答题(共1小题)10.甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.【分析】(1)画出树状图,进一步一一列举得出所有情况即可;(2)计算甲、乙获胜的概率,进一步比较得出答案即可.【解答】解:(1)如图所示:(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,红),(绿,黄),(绿,绿)共9种情况;(2)P(甲获胜)==,P(乙获胜)=,P(甲获胜)>P(乙获胜),所以游戏不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.利用概率=所求情况数与总情况数之比解决问题.。

人教版初中数学九年级上册《25.2 用列举法求概率》同步练习卷

人教版初中数学九年级上册《25.2 用列举法求概率》同步练习卷

人教新版九年级上学期《25.2 用列举法求概率》同步练习卷一.填空题(共1小题)1.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是,据此判断该游戏(填“公平”或“不公平”).二.解答题(共49小题)2.一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片除数字外都相同.小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.3.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.4.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.5.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.6.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.7.车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.8.端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.9.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.10.端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为.(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.11.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.12.在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;(2)从中任意抽取1个球恰好是红球的概率是;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.13.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.14.甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9.芳芳和明明用摸球记数的方法在如图所示的正六边形ABCDEF的边上做游戏,游戏规则为:游戏者从口袋中随机摸出一个小球,小球上的数字是几,就从顶点A按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点A 按顺时针连跳4个边长,跳到点E,再从点E顺时针连跳7个边长,跳到点F.分别求出芳芳、明明跳回起点A的概率,并指出游戏规则是否公平.15.在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.16.如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).17.由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.18.小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或列表法说明理由.19.“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动.为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.20.小华和小军做摸球游戏:A袋装有编号为1,2,3的三个小球,B袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同.从两个袋子中分别随机摸出一个小球,若B袋摸出小球的编号与A袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.21.如图是一个转盘,转盘被平均分成4等份,即被分成4个大小相等的扇形,4个扇形分别标有数字1、2、3、4,指针的位置固定,转动转盘后任其自由停止,每次指针落在每一扇形的机会均等(若指针恰好落在分界线上则重转).(1)图中标有“1”的扇形至少绕圆心旋转度能与标有“4”的扇形的起始位置重合;(2)现有一本故事书,姐妹俩商定通过转盘游戏定输赢(赢的一方先看).游戏规则是:姐妹俩各转动一次转盘,两次转动后,若指针所指扇形上的数字之积为偶数,则姐姐赢;若指针所指扇形上的数字之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.22.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)按照(1)中的抽法,若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.23.A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?24.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.25.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)26.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.27.某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)28.某校团委计划在元且期间组织优秀团员到敬老院去服务,现选出了10名忧秀团员参加服务,其中男生6人,女生4人.(1)若从这10人中随机选一人当队长,求选中女生当队长的概率;(2)现决定从甲、乙中选一人当队长,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则选甲为队长;否则,选乙为队长.试问这个游戏公平吗?请用树状图或列表法说明理由.29.数学课上,老师拿了红,黄,蓝三个除颜色不同外的杯子,首先杯口朝上,老师叫一个同学进行游戏实验,蒙住该同学双眼,将3个杯子随机放置后,由该同学将其中一个杯子翻为杯口朝下,由另一个同学标记颜色,随后将杯子全部杯口朝下,再由该同学第二次翻杯,记下该杯颜色,随后由全班同学进行同样操作.(1)请用树状图或列表表示进行2次操作时的所有可能情况;(2)小刚和小聪打赌,如果两次翻杯颜色相同,则小刚胜,若颜色不同,则小聪胜,这个游戏公平吗?说明理由.30.小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.31.小林有3张扑克牌,小丽有2张扑克牌,扑克牌上的数宇如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张.(1)求两人抽取的扑克牌上的数字之积为奇数的概率;(用“列表”或“画树状图”的方法说明)(2)若两人抽取的扑克牌上的数字之积为奇数,则小林胜,否则小丽胜,这个游戏公平吗?若不公平,请修改游戏规则,使得游戏公平;若公平,请说明理由.32.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和等于12,则李燕获胜;若指针所指区域内两数和等于13,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)游戏对双方公平吗?请说明理由.33.今年暑假,小丽爸爸的同事送给她爸爸一张北京故宫的门票,她和哥哥两人都很想去参观,可门票只有一张.读九年级的哥哥想了一个办法,他拿了八张扑克牌,将数字为1,2,3,5的四张牌给小丽,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小利和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌上的数字相加,如果和为偶数,则小丽去;如果和为奇数,则哥哥去.(1)请用画树状图或列表的方法求小丽去北京故宫参观的概率;(2)哥哥设计的游戏规则公平吗?请说明理由.34.2018年9月,第24届山东省运动会在青岛举行,有20名志愿者参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取1张,不放回,再取1张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.35.如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)36.在一个不透明的小口布袋中装有4个标有1,2,3,4的小球,它们的质地、大小完全相同,小明从布袋里随机摸出一个小球,记下数字为x,小红在剩下的3个小球中随机摸出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标.(2)小明和小红约定做一个游戏,其规则为:x、y若满足<1,则小明胜;否则,小红胜;这个游戏公平吗?说明理由.37.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲同学从布袋中随机摸出1个球,若是红球,则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出1个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?38.张明和李昆两名同学用如图所示的甲、乙两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向某一扇形(若指针恰好停在分格线上,则重转一次),用指针所指两个扇形内的数字求积,如果积大于10,那么甲获胜;如果积等于10,那么乙获胜,请你解决下列问题:(1)利用树状图或列表的方法(只选其中一种)表示游戏所有可能出现的结果;(2)此游戏是否公平,请说明理由.39.小明与小亮共同发明了一种“字母棋”进行比胜负的游戏,他们用三种字母做成5颗棋子(棋子除字母外其它均相同),其中A棋1颗,B棋2颗,C棋2颗.“字母棋”的游戏规则为:将5颗棋子放入一个不透明的袋子中,然后随机从5颗棋子中摸出两颗棋子,若摸到A棋,则小明胜;若摸到两颗相同的棋子,则小亮胜,其余情况视为平局,游戏重新进行.(1)若小明从袋子中随机摸出一颗棋子,求小明摸到标有字母B的棋子的概率;(2)在游戏刚准备进行时,数学课代表小军对游戏的公平性产生了怀疑,请你通过列表或画树状图的方法帮助小军同学验证这个游戏公平吗?请说明理由.40.在春季“植树节”活动中,王亮和李明两位同学想通过摸球的方式来决定谁去参加学校的植树节活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中摸出一个小球,如果所摸出的小球上的数字之和小于6,那么王亮去,否则就是李明去.(1)用画树状图或列表的方法,求出王亮去的概率;(2)李明说:“这种规则不公平”,你认同他的说法吗?请你说明理由.41.小华和小军做摸卡片游戏,规则如下:甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.若点A在第一象限,则小华胜,若点A在第三象限则小军胜.这个游戏对双方公平吗?请说明理由.42.当当和叮叮玩纸牌游戏:如图是同一副扑克牌中的4张黑桃牌的正面,将这4张牌正面朝下洗匀后放在桌上,当当先从中抽出一张,叮叮从剩余的3张牌中也抽出一张,比较两人抽出的牌面上的数字,数字大者获胜.(1)求当当抽出的牌面上的数字为6的概率;(2)该游戏是否公平?请用画树状图或列表的方法说明理由.43.小亮和小芳都想参加学校杜团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去等加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新特动转盘.(1)转盘转到2的倍数的概率是多少?(2)你认为这个游戏公平吗?请说明理由.44.“车让人,让出文明,让出安全,让出秩序,让出和谐”.“车让人”成为古都西安一道亮丽的风景线.为采集更多古都人民“车让人”的文明事迹,某校九年级社会实践小组的5名同学计划在A、B两个十字路口抓拍“车让人”文明出行的感人瞬间.为了统一协调,需要从5名同学中选出1人作为组长,已知小米和小林均被其他人推荐,且都愿意成为组长,为了确定谁来担当组长职,他们制定了一个游戏,规则如下:①在一个不透明的布袋中放入1个黑球和2个白球;②将袋中的球摇匀后,小米先从袋中摸出1球,若摸到黑球,则不放回袋中,若摸到白球,则放回袋中,记下小米摸球颜色,完成一次摸球;③小米完成摸球后,小林再从袋中摸出1球,并记下颜色;④若两次摸球颜色相同,则小米当组长;若两次摸球颜色不同,则小林当组长.。

人教版初中数学九年级上册《25.2 用列举法求概率》同步练习卷

人教版初中数学九年级上册《25.2 用列举法求概率》同步练习卷

人教新版九年级上学期《25.2 用列举法求概率》同步练习卷一.解答题(共27小题)1.某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.2.为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.3.“金山银山,不如绿水青山”.鄂尔多斯市某旗区不断推进“森林城市”建设,今春种植四类树苗,园林部门从种植的这批树苗中随机抽取了4000棵,将各类树苗的种植棵数绘制成扇形统计图,将各类树苗的成活棵数绘制成条形统计图,经统计松树和杨树的成活率较高,且杨树的成活率为97%,根据图表中的信息解答下列问题:(1)扇形统计图中松树所对的圆心角为度,并补全条形统计图.(2)该旗区今年共种树32万棵,成活了约多少棵?(3)园林部门决定明年从这四类树苗中选两类种植,请用列表法或树状图求恰好选到成活率较高的两类树苗的概率.(松树、杨树、榆树、柳树分别用A,B,C,D表示)4.自我省深化课程改革以来,铁岭市某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共调查名学生,扇形统计图中B所对应的扇形的圆心角为度;(2)补全条形统计图;(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.5.我省中小学积极开展综合实践活动,某校准备组织开展四项综合实践活动:“A.我是非遗小传人,B.学做家常餐,C.爱心义卖行动,D.找个岗位去体验”.为了解学生最喜爱哪项综合实践活动,随机抽取部分学生进行问卷调查(每位学生只能选择一项),将调查结果绘制成下面两幅不完整的统计图,请结合图中提供的信息回答下列问题:(1)本次一共调查了名学生,在扇形统计图中,m的值是;(2)补全条形统计图;(3)若该校共有1200名学生,估计最喜爱B和C项目的学生一共有多少名?(4)现有最喜爱A,B,C,D活动项目的学生各一人,学校要从这四人中随机选取两人交流活动体会,请用列表或画树状图的方法求出恰好选取最喜爱C和D项目的两位学生的概率.6.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.7.小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入:②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法,列举出该游戏的所有可能情况;(2)小美得到小兔玩具的机会有多大?(3)假设有125人次玩此游戏,估计游戏设计者可赚多少元.8.某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.9.某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为人,其中“非常满意”的人数为人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.10.2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.11.某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.12.某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查.随机调查了某班所有同学最喜欢的节目(每名学生必选且只能选择四类节目中的一类)并将调查结果绘成如下不完整的统计图.根据两图提供的信息,回答下列问题:(1)最喜欢娱乐类节目的有人,图中x=;(2)请补全条形统计图;(3)根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;(4)在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.13.(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.14.在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.15.不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)16.在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;(2)从中任意抽取1个球恰好是红球的概率是;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.17.国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了全面了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)将图1补充完整;(2)通过分析,贫困户对扶贫工作的满意度(A、B、C类视为满意)是;(3)市扶贫办从该旗县甲乡镇3户、乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.18.抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查了多少名学生?(2)补全条形统计图;(3)该校共有500名学生,请你估计“十分了解”的学生有多少名?(4)在被调查“十分了解”的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.19.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.20.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.21.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?22.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:在表中:m=,n=.(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:在表中:x=,y=.②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.23.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).24.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).25.某茶农要对1号、2号、3号、4号四个品种共500株茶树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号茶树幼苗成活率为89.6%,把实验数据绘制成图1和图2所示的两幅不完整的统计图.(1)实验所用的2号茶树幼苗的数量是株;(2)求出3号茶树幼苗的成活数,并补全统计图2;(3)该茶农要从这四种茶树中选择两个品种进行推广,请用列表或画树状图的方法求出1号品种被选中的概率.26.庆祝改革开放40周年暨我爱我家•美丽青羊群众文艺展演圆满落幕,某学习小组对文艺展演中的A舞蹈《不忘初心》,B独舞《梨园一生》,C舞蹈《炫动的玫瑰》,D朝鲜组歌舞《阿里郎+atep》这四个节目开展“我最喜爱的舞蹈节目”调查,随机调查了部分观众(每位观众必选且只能选这四个节目中的一个)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了名观众;并将条形统计图补充完整;(2)学习小组准备从4个节目中随机选取两个节目的录像带回学校给同学们观看,请用树状图或者列表的方法求恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率.27.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽取n名学生作为样本,采用问卷调查的方式收集数据(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图,由图中提供的信息,解答下列问题:(1)补全条形统计图;(2)若该校共有学生2400名,试估计该校喜爱看电视的学生人数.(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名,求恰好抽到2名男生的概率.人教新版九年级上学期《25.2 用列举法求概率》2019年同步练习卷参考答案与试题解析一.解答题(共27小题)1.某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能的情况数,找出两位同学抽到同一实验A的情况数,即可求出所求概率.【解答】解:(1)小丽参加实验A考查的概率是,故答案为:;(2)列表如下:所有等可能的情况有16种,其中小明、小丽都参加实验A考查的只有1种情况,所以小明、小丽都参加实验A考查的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.2.为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:(1)该班学生的总人数为50 人;(2)由表中的数据可知:a = 16 ,b = 20% ;(3)报名参加排球训练的四个人为两男(分别记为A 、B )两女(分别记为C 、D ),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.【分析】(1)用篮球的人数除以其所占百分比即可得总人数;(2)根据各项目的人数之和等于总人数可求得a 的值,用羽毛球的人数除以总人数可得b 的值;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班学生的总人数为12÷24%=50(人), 故答案为:50;(2)a =50﹣(12+8+4+10)=16, 则b =×100%=20%,故答案为:16,20%;(3)画树状图如下:由树状图知,共有12种等可能结果,其中刚好选中一男一女的有8种结果,∴刚好选中一男一女的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3.“金山银山,不如绿水青山”.鄂尔多斯市某旗区不断推进“森林城市”建设,今春种植四类树苗,园林部门从种植的这批树苗中随机抽取了4000棵,将各类树苗的种植棵数绘制成扇形统计图,将各类树苗的成活棵数绘制成条形统计图,经统计松树和杨树的成活率较高,且杨树的成活率为97%,根据图表中的信息解答下列问题:(1)扇形统计图中松树所对的圆心角为144度,并补全条形统计图.(2)该旗区今年共种树32万棵,成活了约多少棵?(3)园林部门决定明年从这四类树苗中选两类种植,请用列表法或树状图求恰好选到成活率较高的两类树苗的概率.(松树、杨树、榆树、柳树分别用A,B,C,D表示)【分析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.【解答】解:(1)扇形统计图中松树所对的圆心角为360°×(1﹣20%﹣15%﹣25%)=144°,杨树的棵数=4000×25%×97%=970(棵),补全条形统计图如图所示,故答案为:144;(2)320000××100%=300000(棵),答:成活了约300000棵;(3)所有等可能的情况有12种,其中恰好选到成活率较高的两类树苗有2种,∴恰好选到成活率较高的两类树苗的概率==.【点评】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.4.自我省深化课程改革以来,铁岭市某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共调查60名学生,扇形统计图中B所对应的扇形的圆心角为144度;(2)补全条形统计图;(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.【分析】(1)用C类别人数除以其所占百分比可得总人数,用360°乘以B类别人数占总人数的比例即可得;(2)总人数乘以A类别的百分比求得其人数,用总人数减去A,B,C的人数求得D类别的人数,据此补全图形即可;(3)画树状图展示12种等可能的结果数,再找出所抽取的两人恰好是1名女生和1名男生的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生人数为12÷20%=60(名),则扇形统计图中B所对应的扇形的圆心角为360°×=144°.故答案为:60,144°.(2)A类别人数为60×15%=9(人),则D类别人数为60﹣(9+24+12)=15(人),补全条形图如下:(3)画树状图为:共有12种等可能的结果数,其中所抽取的两人恰好是1名女生和1名男生的结果数为8,所以所抽取的两人恰好是1名女生和1名男生的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,。

人教版九年级数学上册【推荐】25.2用列举法求概率同步练习.docx

人教版九年级数学上册【推荐】25.2用列举法求概率同步练习.docx

初中数学试卷 桑水出品概率的求法及应用一、用列举法求概率(一) 两步概率1.(2014·扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是__14___; (2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.解:画树状图(略),∵共有12种可能的结果,他恰好买到雪碧和奶汁的有2种等可能情况,∴P(他恰好买到雪碧和奶汁)=212=162.如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端A 1,B 1,C 1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.解:(1)P(恰好选中绳子AA 1)=13(2)画树状图(略),可知分别在两端随机任选两个绳头打结,总共有9种等可能情况,其中能连接成一根长绳的有6种,故P(这三根绳子连接成一根长绳)=69=233.在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取了不同的摸取方法,分别是:小明:随机摸取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机地摸取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.解:(1)略 (2)由树状图可知:小明摸取小球,可能出现的结果有16个,它们出现的可能性相等,其中满足标号之和为5(记为事件A)的结果有4个,即(1,4),(2,3),(3,2),(4,1),所以P(A)=416=14;小强摸取小球,可能出现的结果有12个,它们出现的可能性相等,其中满足标号之和为5(记为事件B)的结果有4个,即(1,4),(2,3),(3,2),(4,1),所以P(B)=412=134.(2014·黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.解:(1)画树状图(略),一共有12种选派方案(2)恰有一男一女参赛,共有8种可能,∴P(一男一女)=812=23(二) 三步概率5.如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A ,C 两个区域所涂颜色不相同的概率.解:画树状图(略),所有等可能的情况有8种,其中A ,C 两个区域所涂颜色不相同的有4种,则P =48=126.两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:(1)三辆车按出现的先后顺序共有哪几种不同的可能?(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大?为什么?解:(1)略 (2)对于乙,共有6种等可能结果,乘上等车的有3种,所以乙乘上等车的可能性为36=12,而甲乘上等车的可能性为13,故乙乘上等车的可能性大二、概率的应用7.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?解:(1)P(转动一次转盘获得购物券)=1020=12(2)200×120+100×320+50×620=40(元).∵40元>30元,∴选择转转盘对顾客更合算8.(2014·怀化)甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一个球,标号是1的概率;(2)从袋中随机摸出一个球然后放回,摇匀后再随机摸出一个球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏公平吗?请说明理由.解:(1)P(标号是1)=13 (2)这个游戏不公平,理由如下:列表(略),P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平三、统计与概率9.某校九年级有10个班,每班50名学生,为调查该校九年级学生一学期课外书籍的阅读情况,准备抽取50名学生作为一个样本进行分析,并规定如下:设一个学生一学期阅读课外书籍本数为n ,当0≤n <5时为一般读者;当5≤n <10时为良好读者;当n ≥10时为优秀读者.(1)下列四种抽取方法最具有代表性的是__B ___;A .随机抽取一个班的学生B .随机抽取50名学生C .随机抽取50名男生D .随机抽取50名女生(2)由上述最具代表性的抽取方法抽取50名学生一学期阅读本数的数据如下:8 10 6 9 7 16 8 110 13 10 5 8 2 6 97 5 7 6 4 12 10 116 8 14 157 12 13 89 7 10 12 11 8 13 104 6 8 13 65 7 1112 9根据以上数据回答下列问题:①求样本中优秀读者的频率;②估计该校九年级优秀读者的人数;③在样本为一般读者的学生中随机抽取2人,用树状图或列表法求抽得2人的课外书籍阅读本数都为4的概率.解:①25 ②200人 ③1610.每年3月12日,是中国的植树节.某街道办事处为进一步改善人居环境,准备在街道两边种植行道树,行道树的树种选择取决于居民的喜爱情况.为此,街道办事处的人员随机调查了部分居民,并将结果绘成如图中扇形统计图,其中∠AOB =126°.请根据扇形统计图,完成下列问题:(1)本次调查了多少名居民?其中喜爱“香樟”的居民有多少人?(2)请将条形统计图补全;(在图中完成)(3)某中学的一些同学也参与了投票,喜爱“小叶榕”的有四人,其中一名男生;喜爱“黄葛树”的也有四人,其中三名男生.若街道办事处准备分别从这两组中随机选出一名同学参与到街道植树活动中去,请你用列表或画树状图的方法求出所选两名同学恰好一名女生和一名男生的概率.解:(1)800人;40人(2)补图略(3)错误!。

人教新版数学九年级上学期《25.2用列举法求概率》同步练习

人教新版数学九年级上学期《25.2用列举法求概率》同步练习

人教新版数学九级上学期《25.2用列举法求概率》同步练习一.选择题(共10小题)1.有三张背面完全相同的纸牌(如图:用①、②、③表示),正面分别写有三个不同的条件,小明将这3张纸片背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张,抽得的条件能构成平行四边形的概率是()A.B.C.D.2.有三张质地相同的卡片,正面分别写有数字﹣2,﹣1,1,现将三张卡片背面朝上随机抽取一张,以其正面数字作为x的值,然后从剩余的两张卡片随机抽一张,以其正面数字作为y的值,则点(x,y)在第三象限的概率()A.B.C.D.3.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.4.如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条5.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.B.C.D.6.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.7.甲、乙两同学掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数,则满足关于x的方程x2+px+q=0有两个相等实数解的概率是()A.B.C.D.8.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点9.甲和乙一起做游戏,下列游戏规则对双方公平的是()A.在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一球,摸到红球甲获胜,摸到白球乙获胜;B.从标有号数1到100的100张卡片中,随意抽取一张,抽到号数为奇数甲获胜,否则乙获胜;C.任意掷一枚质地均匀的骰子,掷出的点数小于4则甲获胜,掷出的点数大于4则乙获胜;D.让小球在如图所示的地板上自由地滚动,并随机地停在某块方块上,若小球停在黑色区域则甲获胜,若停在白色区域则乙获胜10.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.则当x=()时,游戏对甲乙双方公平.A.3B.4C.5D.6二.填空题(共8小题)11.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取两张,抽到的两张图案既是轴对称的图形又是中心对称的图形的卡片的概率是.12.从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.13.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,每个小球除字母不同外其余均相同,从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母,则两次摸出的小球上的字母相同的概率为.14.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是15.把一枚六个面编号为1,2,3,4,5,6的质地均匀的正六面体骰子连续投掷2次,若两次正面朝上的编号分别为m、n,则二次函数y=x2+mx+2n的图象与x轴至少有一个交点的概率是.16.如图是两个质地均匀的转盘,现转动转盘①和转盘②各一次,则两个转盘指针都指向红的部分的概率为.17.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是,据此判断该游戏(填“公平”或“不公平”).18.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方.(填“公平”或“不公平”).三.解答题(共5小题)19.甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某一数字,否则重转.(1)请用树状图或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2﹣5x+6=0的解时,则甲获胜;若指针所指的两个数字都不是方程x2﹣5x+6=0的解时,则乙获胜,问他们两人谁获胜的概率大?请分析说明.20.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.21.甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.22.正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.(1)请用树状图或列表的方法表示可能出现的所有结果;(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.23.在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.(1)写出乙同学在数据整理或绘图过程中的错误(写出一个即可);(2)甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;(3)该班学生的身高数据的中位数是;(4)假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?参考答案一.选择题1.C.2.D.3.A.4.B.5.C.6.C.7.D.8.B.9.B.10.B.二.填空题11..12..13..14..15..16..17.,不公平.18.公平.三.解答题19.解:(1)列表如下:12342(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)(2)因为,方程x2﹣5x+6=0的解是:x1=2,x2=3,所以,从上表中可看出,指针所指的两个数字有12种等可能的结果,其中两个数字都是方程x2﹣5x+6=0的解有2次,两个数字都不是方程x2﹣5x+6=0的解有2次,所以,P(甲胜)=,P(乙胜)=,所以,此游戏两个获胜的概率一样大.20.解:(1)该班男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取卡片“小悦被抽中”的概率为,故答案为:不可能、随机、;(2)记小悦、小惠、小艳和小倩这四位女同学分别为A、B、C、D,列表如下:A B C DA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中小惠被抽中的有6种结果,所以小惠被抽中的概率为=.21.解:(1)如图所示:所有等可能结果为(红、绿、红)、(红、绿、绿)、(红、绿、红)、(红、绿、绿)、(红、红、红)、(红、红、绿),(绿、绿、红)、(绿、绿、绿)、(绿、绿、红)、(绿、绿、绿)(绿、红、红)、(绿、红、绿)这12种等可能结果;(2)因为“取出至少一个红球”的结果数为10钟,所以“取出至少一个红球”的概率为=.22.解:(1)(2)共有24种情况,和为3的倍数的情况是8种,所以.23.解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为:120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或161.故答案为:160或161;(4)列表得:P(一男一女)==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.2用列举法求概率知识点:用列举法求概率一、选择题1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ). A .41B .21 C .43 D .1.2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法法有( )种. A .4 B .7 C .12 D .81.3.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于( ). A .13 B .112 C .14D .1. 4.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ) . A. 25B .310C .320D .155.掷两个普通的正方体骰子,把两个点数相加.则下列事件中发生的机会最大的是 ( ) A .和为11 B .和为8 C .和为3 D .和为26.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( ). A.61B. 31C.21D. 327. 中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。

参加这个游戏的观众有三次翻牌的机会。

某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( ). A.41B.61C.51D.203 1234534898.用1、2、3、4、5这5个数字(数字可重复,如“522”)组成3位数,这个3位数是奇数的概率为( ). A .35 B .23 C .120 D .1125二、填空题9.一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上.则A 与B 不相邻而坐的概率为_____________.10. 有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08"和“北京”的字块,如果婴儿能够排成"2008北京”或者“北京2008".则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是___________.11.5个完全相同的白色球全部放入两个完全相同的抽屉,可以有一个抽屉空着,那么两个抽屉中都至少有2个球的概率是_____.12.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两上转盘中指针落在每一个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.所有可能得到的不同的积分别为_______________________;数字之积为奇数的概率为______. 三、解答题13.小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.(1)若小明恰好抽到了黑桃4.①请在下边框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,则小明负.你认为这个游戏是否公平?说明你的理由.14.《列子》中《歧路亡羊》写道:A 圆桌甲乙(4,2)24结果小华抽的扑克小明抽的扑克杨子之邻人亡羊,既率其党,又请杨子之竖追之。

杨子曰:“嘻!亡一羊,何追者之众?”邻人日:“多歧路。

”既反,问:“获羊乎?”日:“亡之矣。

”曰:“奚亡之?”曰:“歧路之中又有歧焉,吾不知所之,所以反也.”如图,假定所有的分叉口都各有两条新的歧路,并且丢失的羊走每条歧路的可能性都相等.(1)到第n次分歧时,共有多少条歧路?以当羊走过n个三叉路口后,找到羊的概率是多少?(2)当n=5时,派出6个人去找羊,找到羊的概率是多少?15. 两人要去某风景区游玩,每天某—时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆乍的状况比第一辆好,他就上第二辆车;如果第二辆不比第—辆好,他就上第三辆车.若把这三辆车的舒适程度分为上、中、下三等.请问:(1)三辆车按出现的先后顺序共有哪几种不同的可能?(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大?为什么?16. 如图是9×7的正方形点阵,其水平方向和竖起直方向的两格点间的长度都为1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:(1)请在图中画出以AB为边且面积为2的一个网格三角形;(2)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形的面积为2的概率;(3)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形为直角三角形的概率.25.2 第一课时 用列举法求概率(1)一、 1.A 2.C 3.C 4.B 5.B 6.A 7.B 8.A二、 9.31 10. 31 11.31 12.1,2,3,4,5,6,8,9,10,12,15,16,18,20,24 ;14. 三、13.(1)树形图略;23;(2)这个游戏对先抽牌的小明不利,因为12种可能结果中,先抽牌的人能获胜的只有5种,即先抽牌者获胜的概率为512.14. (1)到第n 次分歧时,共有2n条歧路;当羊走过n 个三叉路口后,找到羊的概率为12n ;(2)当n =5,6个人去找羊时,找到羊的概率为51360.1875216P =⨯==. 15.这是一道方案决策型的题.解这类题应根据题中条件,把所有可能的情况—用表格形式列出来.再来逐一分析得出最佳方案.(1)三辆车开来的先后顺序有6种可能:(上、中、下)、(上、下、中)、(中、上、下)、(中、下、上)、(下、中、上)、(下、上、中).(2)由于不知道任何信息,所以只能假定6种顺序出现的可能性相同.我们来研究在各种可能性的顺序之下,甲、乙二人分别会上哪一辆汽车:于是不难得出,甲乘上、中、下三辆车的概率都是13;而乙乘上等车的概率是12;乘中等车的概率是13,乘下等车的概率是16.乙采取的方案乘坐上等车的可能性大.16. (1)图形略,共12个三角形;(2)以A 、B 、M 为顶点的三角形的面积为2的概率为121236375614==-. (3)以A 、B 、M 为顶点的三角形为直角三角形的概率为121236375614==-. 第二课时知识点1、当一次实验涉及 因素并且可能出现的结果数目 时,为了不重复不漏地列出所有可能的 ,常常列出方形表格,我们称之为 。

2、如果在试验中包含两步,并且每一步均为 个情形,就可以用列表法求概率,可将第一步作为横坐标。

第二步作为,列出表格。

一、选择题,1、同时抛掷两次普通的正方体骰子,得到点数之和为6的概率是()A.136B.536C.16D.562、道数学单选题都含A、B、C、D 、四个选项,随机猜着两道题,恰巧全部猜对的概率为()A.12B.14C.18D.1163、袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A.19B.16C.13D.124、两个正四方体骰子的各面上分别标有数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地面的面所得的点数之和等于5的概率为()A.14B.316C.34D.385、5月9日为中国旅游日,苏州推出“读万卷书,行万里路,游苏州景”为主题的系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗家庙、烂柯河、龙游石窟中随机选择一个地点;下午从江郎山、三苏石林、开化根博园中随机选择一个地点游玩,则王先生恰好上午选中孔氏按南宗家庙,下午选中江郎山着两个地点的概率是()A.19B.13C.23D.296、定义一种“十位数上的数字比个位、百位上的数字都要小”的三位数字叫做“v数”如“947”就是一个“v数”。

若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“v 数”的概率是()A.14B.310C.12D.347、在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是()A 34B13C23D12二、填空题8、现在两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其他均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是9、小明有红色、黄色、白色三件运动短袖上衣和白色、黑色两条运动短裤,若任意组合穿着,则小明穿着“衣裤同色”的概率是10、某学校举行物理实验操作测试,准备了三项不同的实验,要求每位同学只参加其中一项实验,由学生自己抽签确定做哪项实验。

在这次测试中,小亮和大刚恰好做同一项实验的概率是11、甲盒装有3个乒乓球,标号分别为1、2、3;乙盒装有两个乒乓球,标号分别为1,2.现在分别从每个盒子中随机取出1个球,则取出的两个球标号之和为4的概率是12、从-2,-1,2这三个数中随机取出两个不同的数作为点的坐标,该点在第四象限的概率是13、某班有一个同学想给老师打电话,可他记不得其中的两个号码了,即36。

8288,他随意拨,恰好拨通老师电话的概率为三、解答题14、在不透明的盒子里,装有三个分别写着数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个球,记下数字后放回盒子,摇匀后随机再取出一个球,记下数字,请用画树形图或列表的方法,球下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.15、甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,(1)请用树状图法或列表法,求恰好选中甲、乙两同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选出一位,求恰好选中乙同学的概率。

25.2 第二课时 用列举法求概率(2)一、 1.B 2.D3.C 4.A5.A6.C 7.D二、8、16;9、16;10、13;11、13;12、13;13、1100三、14、(1)13 ;(2)49 15、(1)1;(2)1(第三课时)知识点:1、当一次实验,包含两步完成时,用 比较方便,当然此时也可用 法。

相关文档
最新文档