【高考试卷】2020届浙江省杭州市高考数学命题比赛模拟试题(3)

合集下载

浙江省2020届高三高考模拟试题数学试卷及解析word版

浙江省2020届高三高考模拟试题数学试卷及解析word版

浙江省2020届高三高考模拟试题数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U=R,集合A={x|x<32},集合B={y|y>1},则∁U(A∩B)=()A.[32,+∞)B.(−∞,1]∪[32,+∞)C.(1,32)D.(−∞,32)2.已知i是虚数单位,若z=3+i1−2i,则z的共轭复数z等于()A.1−7i3B.1+7i3C.1−7i5D.1+7i53.若双曲线x2m−y2=1的焦距为4,则其渐近线方程为()A.y=±√33x B.y=±√3x C.y=±√55x D.y=±√5x4.已知α,β是两个相交平面,其中l⊂α,则()A.β内一定能找到与l平行的直线B.β内一定能找到与l垂直的直线C.若β内有一条直线与l平行,则该直线与α平行D.若β内有无数条直线与l垂直,则β与α垂直5.等差数列{a n}的公差为d,a1≠0,S n为数列{a n}的前n项和,则“d=0”是“S2nS n∈Z”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.随机变量ξ的分布列如表:ξ﹣1012P13a b c其中a,b,c成等差数列,若E(ξ)=19,则D(ξ)=()A.181B.29C.89D.80817.若存在正实数y,使得xyy−x =15x+4y,则实数x的最大值为()A.15B.54C.1D.48.从集合{A,B,C,D,E,F}和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85B .95C .2040D .22809.已知三棱锥P ﹣ABC 的所有棱长为1.M 是底面△ABC 内部一个动点(包括边界),且M 到三个侧面P AB ,PBC ,P AC 的距离h 1,h 2,h 3成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,则下列正确的是( )A .α=βB .β=γC .α<βD .β<γ10.已知|2a →+b →|=2,a →⋅b →∈[−4,0],则|a →|的取值范围是( ) A .[0,1]B .[12,1]C .[1,2]D .[0,2]二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.若α∈(0,π2),sinα=√63,则cosα= ,tan2α= .12.一个长方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体与原长方体的体积之比是 ,剩余部分表面积是 .13.若实数x ,y 满足{x +y −3≥02x −y +m ≤0y ≤4,若3x +y 的最大值为7,则m = .14.在二项式(√x +1ax 2)5(a >0)的展开式中x﹣5的系数与常数项相等,则a 的值是 .15.设数列{a n }的前n 项和为S n .若S 2=6,a n +1=3S n +2,n ∈N *,则a 2= ,S 5= . 16.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a cos B =b cos A ,∠A =π6,边BC 上的中线长为4.则c = ;AB →⋅BC →= .17.如图,过椭圆C:x2a2+y2b2=1的左、右焦点F1,F2分别作斜率为2√2的直线交椭圆C上半部分于A,B两点,记△AOF1,△BOF2的面积分别为S1,S2,若S1:S2=7:5,则椭圆C离心率为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知函数f(x)=sin(2x+π3)+sin(2x−π3)+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[−π4,π2]上的最大值和最小值.19.(15分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1;(2)若D在B1C1上,满足B1D=2DC1,求AD与平面A1BC1所成的角的正弦值.20.(15分)已知等比数列{a n}(其中n∈N*),前n项和记为S n,满足:S3=716,log2a n+1=﹣1+log2a n.(1)求数列{a n}的通项公式;(2)求数列{a n•log2a n}(n∈N*)的前n项和T n.21.(15分)已知抛物线C:y=12x2与直线l:y=kx﹣1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.(1)证明:直线AB恒过定点Q;(2)试求△P AB面积的最小值.22.(15分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2).(1)求a的取值范围;(2)证明:f(x1)−f(x2)<12.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【详解详析】∵U=R,A={x|x<32},B={y|y>1},∴A∩B=(1,32),∴∁U(A∩B)=(−∞,1]∪[32,+∞).故选:B.2.【详解详析】∵z=3+i1−2i =(3+i)(1+2i)(1−2i)(1+2i)=15+75i,∴z=15−75i.故选:C.3.【详解详析】双曲线x2m−y2=1的焦距为4,可得m+1=4,所以m=3,所以双曲线的渐近线方程为:y=±√33x.故选:A.4.【详解详析】由α,β是两个相交平面,其中l⊂α,知:在A中,当l与α,β的交线相交时,β内不能找到与l平行的直线,故A错误;在B中,由直线与平面的位置关系知β内一定能找到与l垂直的直线,故B正确;在C中,β内有一条直线与l平行,则该直线与α平行或该直线在α内,故C错误;在D 中,β内有无数条直线与l 垂直,则β与α不一定垂直,故D 错误. 故选:B .5.【详解详析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和, “d =0”⇒“S 2n S n∈Z ”,当S2nS n∈Z 时,d 不一定为0,例如,数列1,3,5,7,9,11中,S 6S 3=1+3+5+7+9+111+3+5=4,d =2,故d =0”是“S 2n S n∈Z ”的充分不必要条件.故选:A .6.【详解详析】∵a ,b ,c 成等差数列,E (ξ)=19, ∴由变量ξ的分布列,知:{a +b +c =232b =a +c (−1)×13+b +2c =19,解得a =13,b =29,c =19,∴D (ξ)=(﹣1−19)2×13+(0−19)2×13+(1−19)2×29+(2−19)2×19=8081.故选:D .7.【详解详析】∵xyy−x =15x+4y , ∴4xy 2+(5x 2﹣1)y +x =0, ∴y 1•y 2=14>0, ∴y 1+y 2=−5x 2−14x ≥0,∴{5x 2−1≥0x <0,或{5x 2−1≤0x >0, ∴0<x ≤√55或x ≤−√55①, △=(5x 2﹣1)2﹣16x 2≥0, ∴5x 2﹣1≥4x 或5x 2﹣1≤﹣4x , 解得:﹣1≤x ≤15②,综上x 的取值范围是:0<x ≤15;x的最大值是15,故选:A.8.【详解详析】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,若字母C和数字4,7都出现,需要在字母A,B,D,E,F中选出1个字母,有5种选法,若字母C和数字4出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C和数字7出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A,B,D,E,F中选出2个字母,有C52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A44=24种情况,则一共有85×24=2040种不同排法;故选:C.9.【详解详析】依题意知正四面体P﹣ABC的顶点P在底面ABC的射影是正三角形ABC的中心O,由余弦定理可知,cosα=cos∠PMO•cos<MO,AB>,其中<MO,AB>表示直线MO与AB的夹角,同理可以将β,γ转化,cosβ=cos∠PMO•cos<MO,BC>,其中<MO,BC>表示直线MO与BC的夹角,cosγ=cos∠PMO•cos<MO,AC>,其中<MO,AC>表示直线MO与AC的夹角,由于∠PMO是公共的,因此题意即比较OM与AB,BC,AC夹角的大小,设M到AB,BC,AC的距离为d1,d2,d3则d1=sinℎ1θ,其中θ是正四面体相邻两个面所成角,sinθ=2√23,所以d1,d2,d3成单调递增的等差数列,然后在△ABC中解决问题由于d1<d2<d3,可知M在如图阴影区域(不包括边界)从图中可以看出,OM与BC所成角小于OM与AC所成角,所以β<γ,故选:D.10.【详解详析】选择合适的基底.设m →=2a →+b →,则|m →|=2,b →=m →−2a →,a →⋅b →=a →⋅m →−2a →2∈[−4,0], ∴(a →−14m →)2=a →2−12a →•m →+116m →2≤8+116m →2 |m →|2=m →2=4,所以可得:m→28=12,配方可得12=18m →2≤2(a →−14m →)2≤4+18m →2=92,所以|a →−14m →|∈[12,32], 则|a →|∈[0,2]. 故选:D .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.【详解详析】∵α∈(0,π2),sinα=√63, ∴cosα=√1−sin 2α=√33,tanα=sinαcosα=√2,∴tan2α=2tanα1−tan 2α=√21−(√2)2=−2√2.故答案为:√33,﹣2√2.12.【详解详析】根据几何体的三视图转换为几何体为: 如图所示:该几何体为长方体切去一个角.故:V =2×1×1−13×12×2×1×1=53.所以:V 1V =532=56.S =2(1×2+1×2+1×1)−12(1×2+1×2+1×1)+12×√2×√2=9.故答案为:56,9.13.【详解详析】作出不等式组{x +y −3≥02x −y +m ≤0y ≤4对应的平面区域如图:(阴影部分).令z =3x +y 得y =﹣3x +z , 平移直线y =﹣3x +z , 由图象可知当3x +y =7.由 {3x +y =7y =4,解得 {x =1y =4,即B (1,4),同时A 也在2x ﹣y +m =0上, 解得m =﹣2x +y =﹣2×1+4=2. 故答案为:2.14.【详解详析】∵二项式(√x +1ax2)5(a >0)的展开式的通项公式为 T r +1=C 5r •(1a)r•x5−5r 2,令5−5r 2=−5,求得r =3,故展开式中x﹣5的系数为C 53•(1a )3;令5−5r 2=0,求得r =1,故展开式中的常数项为 C 51•1a =5a , 由为C 53•(1a )3=5•1a ,可得a =√2,故答案为:√2.15.【详解详析】∵数列{a n }的前n 项和为S n .S 2=6,a n +1=3S n +2,n ∈N *, ∴a 2=3a 1+2,且a 1+a 2=6,解得a 1=1,a 2=5,a 3=3S 2+2=3(1+5)+2=20, a 4=3S 3+2=3(1+5+20)+2=80, a 5=3(1+5+20+80)+2=320, ∴S 5=1+5+20+80+320=426. 故答案为:5,426.16.【详解详析】由a cos B =b cos A ,及正弦定理得sin A cos B =sin B cos A , 所以sin (A ﹣B )=0, 故B =A =π6,所以由正弦定理可得c =√3a ,由余弦定理得16=c 2+(a2)2﹣2c •a2•cos π6,解得c =8√217;可得a =8√77,可得AB →⋅BC →=−ac cos B =−8√77×8√217×√32=−967.故答案为:8√217,−967. 17.【详解详析】作点B 关于原点的对称点B 1,可得S △BOF 2=S△B′OF 1,则有S 1S2=|y A ||y B 1|=75,所以y A =−75y B 1.将直线AB 1方程x =√2y4−c ,代入椭圆方程后,{x =√24y −c x 2a 2+y 2b 2=1,整理可得:(b 2+8a 2)y 2﹣4√2b 2cy +8b 4=0, 由韦达定理解得y A +y B 1=4√2b 2cb 2+8a 2,y A y B 1=−8b 4b 2+8a 2,三式联立,可解得离心率e =ca =12. 故答案为:12.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.【详解详析】(1)f (x )=sin2x +cos2x +1=√2sin(2x +π4)+1 所以最小正周期为π. 因为当π2+2kπ≤2x +π4≤3π2+2kπ时,f (x )单调递减.所以单调递减区间是[π8+kπ,5π8+kπ].(2)当x ∈[−π4,π2]时,2x +π4∈[−π4,5π4],当2x +π4=π2函数取得最大值为√2+1,当2x +π4=−π4或5π4时,函数取得最小值,最小值为−√22×√2+1=0.19.【详解详析】(1)在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1, 根据已知条件易得AB 1⊥A 1B ,由A 1C 1⊥面ABB 1A 1,得AB 1⊥A 1C 1, A 1B ∩A 1C 1=A 1,以AB 1⊥平面A 1BC 1;(2)以A 1B 1,A 1C 1,A 1A 为x ,y ,z 轴建立直角坐标系,设AB =a , 则A (0,0,a ),B (a ,0,a ),C 1(0,a ,0),D(a3,2a 3,0),所以AD →=(a3,2a 3,−a),设平面A 1BC 1的法向量为n →,则n →=(1,0,−1), 可计算得到cos <AD →,n →>=2√77,所以AD 与平面A 1BC 1所成的角的正弦值为2√77. 20.【详解详析】(1)由题意,设等比数列{a n }的公比为q , ∵log 2a n +1=﹣1+log 2a n , ∴log 2a n+1−log 2a n =log 2a n+1a n=−1,∴q =a n+1a n =12.由S 3=716,得a 1[1−(12)3]1−12=716,解得a 1=14.∴数列{a n }的通项公式为a n =12n+1.(2)由题意,设b n =a n •log 2a n ,则b n =−n+12n+1. ∴T n =b 1+b 2+…+b n =−(222+323+⋯+n+12n+1) 故−T n =222+323+⋯+n+12n+1,−T n2=223+⋯+n2n+1+n+12n+2.两式相减,可得−T n2=12+123+⋯+12n+1−n+12n+2=34−n+32n+2.∴T n=n+32n+1−32.21.【详解详析】(1)由y=12x2求导得y′=x,设A(x1,y1),B(x2,y2),其中y1=12x12,y2=12x22则k P A=x1,P A:y﹣y1=x1(x﹣x1),设P(x0,kx0﹣1),代入P A直线方程得kx0﹣1+y1=x1x0,PB直线方程同理,代入可得kx0﹣1+y2=x2x0,所以直线AB:kx0﹣1+y=xx0,即x0(k﹣x)﹣1+y=0,所以过定点(k,1);(2)直线l方程与抛物线方程联立,得到x2﹣2kx+2=0,由于无交点解△可得k2<2.将AB:y=xx0﹣kx0+1代入y=12x2,得12x2−xx0+kx0−1=0,所以△=x02−2kx0+2>0,|AB|=2√1+x02√△,设点P到直线AB的距离是d,则d=02√1+x02,所以S△PAB=12|AB|d=(x02−2kx0+2)32=[(x0−k)2+2−k2]32,所以面积最小值为(2−k2)32.22.【详解详析】(1)求导得f′(x)=lnx+1﹣2ax(x>0),由题意可得函数g(x)=lnx+1﹣2ax有且只有两个零点.∵g′(x)=1x −2a=1−2axx.当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,舍去;当a>0时,令g′(x)=0,解得x=12a,所以x∈(0,12a ),g′(x)>0,g(x)单调递增,x∈(12a,+∞),g′(x)<0,g(x)单调递减.所以x=12a 是g(x)的极大值点,则g(12a)>0,解得0<a<12;(2)g(x)=0有两个根x1,x2,且x1<12a<x2,又g(1)=1﹣2a>0,所以x1<1<12a<x2,从而可知f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.所以f(x1)<f(1)=−a<0,f(x2)>f(1)=−a>−1,2.所以f(x1)−f(x2)<12。

2020年浙江省杭州高中高考数学模拟试卷(3月份)

2020年浙江省杭州高中高考数学模拟试卷(3月份)
已知 = ,则 =________; =________.
已知 的内角 , , 的对边分别为 , , ,若 , ,且 = ,则 =________; 的面积为________.
从 , , , , , 这 个数中随机抽取 个数构成一个五位数 ,则满足条件“ ”的五位数的个数有________.
设 , 是椭圆 的两个焦点, 是 上一点,且满足 的面积为 ,则 的取值范围是________.
6.某几何体的三视图如图所示,则该几何体的体积是()
A. B. C. D.
7. “ ”是“ ”成立的
A.必要不充分条件B.充分不必要条件
C.既不充分也不必要条件D.充分必要条件
8.如图,圆 是半径为 的圆, ,设 , 为圆上的任意 个点,则 的取值范围是()
A. B. C. D.
9.如图,在三棱锥 中, = = , = = ,设二面角 的平面角为 ,则()
【解析】
此题暂无解析
【解答】
此题暂无解答
5.
【答案】
此题暂无答案
【考点】
离散来随机兴苯的期钱与方差
【解析】
此题暂无解析
【解答】
此题暂无解答
6.
【答案】
此题暂无答案
【考点】
由三都问求体积
【解析】
此题暂无解析
【解答】
此题暂无解答
7.
【答案】
此题暂无答案
【考点】
必要条水表综分条近与充要条件的判断
【解析】
此题暂无解析
此题暂无解答
【解析】
此题暂无解析
【解答】
此题暂无解答
三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算过程)
【答案】

2020届浙江省杭州二中高三下学期高考仿真考数学试题解析

2020届浙江省杭州二中高三下学期高考仿真考数学试题解析
解:
设 ,
由题意可知切线斜率存在,设切线方程为 ,则 ,所以 ,
联立方程 ,化简可得 ,
设 , ,则 ;
所以 ;
又因为 ,所以 ,
所以 ,
所以

所以 ,即
所以 ,即 ,
所以 ,
所以 .
故答案为: .
点评:
本题主要考查了椭圆离心率的求法,同时考查了直线与椭圆的位置关系,属于中档题.
17.在平面直角坐标系中,定义 为两点 , 之间的“折线距离”,则椭圆 上一点 和直线 上一点 的“折线距离”的最小值为________
答案:
根据新定义,利用参数法,表示出椭圆 1上一点P与直线 上一点Q的“折线距离”,然后分类讨论求出最小值.
解:
解:设直线 上的任意一点坐标 ,
椭圆 1上任意一点的坐标为
由题意可知
分类讨论:
① ,
② 解同上;
③ ,
∴椭圆 1上一点P与直线 上一点Q的“折线距离”的最小值为 .
故答案为:
点评:
本题是中档题,考查新定义,利用新定义求出函数的最小值问题,考查计算能力,对新定义的理解和灵活运应是解好本题的关键.
故 ,
因为 ,
所以 ,
故选:A.
点评:
本题考查异面直线所成角、线面角以及面面角的求法,考查通过向量求解异面直线所成角、线面角以及面面角,考查计算能力,考查数形结合思想,体现了综合性,是中档题.
8.已知甲盒子中有1个黑球,1个白球和2个红球,乙盒子中有1个黑球,1个白球和3个红球,现在从甲乙两个盒子中各取1个球,分别记取出的红球的个数为 , 则有()
2020届浙江省杭州二中高三下学期高考仿真考数学试题
一、单选题
1.已知集合A={x|x<1},B={x| },则

浙江专用2020版高考数学模拟试卷(含两套,解析版)

浙江专用2020版高考数学模拟试卷(含两套,解析版)

浙江高考仿真卷(一)一、选择题(本大题共10小题,每小题4分,共40分)1.若集合A ={}x | x 2<1,B ={}x | 0<x <2,则A ∪B 等于( )A.{}x | 0<x <1B.{}x | -1<x <0C.{}x | 1<x <2D.{}x | -1<x <2答案 D解析 ∵集合A ={}x | x 2<1={}x | -1<x <1,B ={}x | 0<x <2,∴A ∪B ={}x | -1<x <2.2.双曲线x 24-y 2=1的顶点到渐近线的距离等于( )A.255B.45C.25D.455答案 A解析 双曲线x 24-y 2=1的顶点为()±2,0.渐近线方程为y =±12x . 双曲线x 24-y 2=1的顶点到渐近线的距离等于11+14=255.3.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,3x +y ≤3,y ≥0,则z =x +2y 的最大值是( )A .0B .1C .5D .6 答案 D解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示:由z =x +2y ,得y =-12x +12z ,平移直线y =-12x +12z ,由图象可知,当直线y =-12x +12z 经过点A 时,直线y =-12x +12z 在y 轴上的截距最大,此时z 最大.由⎩⎪⎨⎪⎧x =0,3x +y =3,得A (0,3), 此时z 的最大值为z =0+2×3=6.4.已知一个几何体的三视图如图所示,其中俯视图是一个边长为2的正方形,则该几何体的表面积为( )A.223 B .20 C .20+ 6 D .20+10答案 C解析 该几何体是棱长为2的正方体削去一个角后得到的几何体(如图),其表面积为S =3×2×2+2×(1+2)×22+12×2×2+12×22×3=20+ 6.5.设x ∈R ,则x 3<1是x 2<1的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由x 3<1,可得x <1, 由x 2<1,解得-1<x <1, 所以(-1,1)(-∞,1),所以x 3<1是x 2<1的必要不充分条件.6.函数y=x3+ln(x2+1-x)的图象大致为()答案 C解析因为f(x)的定义域为R,且f(-x)=(-x)3+ln()x2+1+x(-x)2+1+x=-x3+ln()=-x3-ln()x2+1-x=-f()x,所以f()x为奇函数,图象关于原点x2+1+x-1=-x3-ln()2-1>0,所以排除A.对称,排除B,D,因为f(1)=1+ln()7.设随机变量X的分布列如下:则方差D(X)等于()A.0 B.1 C.2 D.3答案 B解析a=1-0.1-0.3-0.4=0.2,E(X)=1×0.2+2×0.3+3×0.4=2,故D(X)=(0-2)2×0.1+(1-2)2×0.2+(2-2)2×0.3+(3-2)2×0.4=1.8.已知在矩形ABCD中,AD=2AB,沿直线BD将△ABD折成△A′BD,使点A′在平面BCD上的射影在△BCD内(不含边界).设二面角A′-BD-C的大小为θ,直线A′D, A′C 与平面BCD所成的角分别为α,β则()A.α<θ<βB.β<θ<αC.β<α<θD.α<β<θ答案 D解析如图,作A′E⊥BD于E, O是A′在平面BCD内的射影,连接OE,OD,OC,易知∠A′EO=θ,∠A′DO=α,∠A′CO=β,在矩形ABCD中,作AE⊥BD于E,延长AE交BC于F,由O点必落在EF上,由AD=2AB知OE<AE<CF<CO<OD,从而tan θ>tan β>tan α,即θ>β>α.9.已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x ≤2,f (4-x ),2<x <4,设方程f (x )-1e x =t (t ∈R )的四个不等实数根从小到大依次为x 1,x 2,x 3,x 4,则下列判断中一定成立的是( ) A.x 1+x 22=1B .1<x 1x 2<4C .4<x 3x 4<9D .0<()x 3-4()x 4-4<4答案 C解析 由题意,作出函数的图象如图所示,由图可知,0<x 1<1<x 2<2<x 3<3<x 4<4, 所以4<x 3x 4<16,又||log 2()4-x 3>||log 2()4-x 4, 得log 2()4-x 3>-log 2()4-x 4,所以log 2()4-x 3()4-x 4>0,得()4-x 3()4-x 4>1,即x 3x 4-4()x 3+x 4+15>0, 又x 3+x 4>2x 3x 4,所以2x 3x 4<x 3x 4+154, 所以()x 3x 4-3()x 3x 4-5>0,所以x 3x 4<9, 综上,4<x 3x 4<9.10.已知a ,b ,c ∈R 且a +b +c =0,a >b >c ,则ba 2+c 2的取值范围是( ) A.⎝⎛⎭⎫-55,55 B.⎝⎛⎭⎫-15,15 C .(-2,2) D.⎝⎛⎭⎫-2,55 答案 A解析 由a +b +c =0,a >b >c ,得a >0,c <0,b =-a -c .因为a >b >c ,即a >-a -c >c ,解得-2<c a <-12.设t =b a 2+c 2,则t 2=b 2a 2+c 2=(-a -c )2a 2+c 2=1+2ac a 2+c 2=1+2c a +a c .令y =c a +a c ,x =c a ,x ∈⎝⎛⎭⎫-2,-12,则y =x +1x,由对勾函数的性质知函数在(-2,-1]上单调递增,在⎣⎡⎭⎫-1,-12上单调递减,所以y max =-2,y >-52,即c a +ac ∈⎝⎛⎦⎤-52,-2, 所以2c a +ac∈⎣⎡⎭⎫-1,-45, 所以t 2∈⎣⎡⎭⎫0,15. 所以t ∈⎝⎛⎭⎫-55,55. 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 11.二项式(1+2x )5中,所有的二项式系数之和为_________________; 系数最大的项为________. 答案 32 80x 3,80x 4解析 所有的二项式系数之和为C 05+C 15+…+C 55=25=32,展开式为1+10x +40x 2+80x 3+80x 4+32x 5,系数最大的项为80x 3和80x 4.12.圆x 2+y 2-2x -4y =0的圆心C 的坐标是__________,设直线l :y =k (x +2)与圆C 交于A ,B 两点,若|AB |=2,则k =__________. 答案 (1,2) 0或125解析 由圆的一般方程x 2+y 2-2x -4y =0可得(x -1)2+(y -2)2=5,故圆心为C (1,2).又圆心到直线l 的距离d =|3k -2|1+k 2,由弦心距、半径及半弦长之间的关系可得⎝ ⎛⎭⎪⎫|3k -2|1+k 22+1=5,解得k =0或k =125.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =3,b =2,A =π3,则B=________;S △ABC =_____________. 答案 π4 3+34解析 由已知及正弦定理可得sin B =b sin A a =2×sin π33=22, 由于0<B <π,可解得B =π4或B =3π4,因为b <a ,利用三角形中大边对大角可知B <A , 所以B =π4,C =π-π3-π4=5π12,所以S △ABC =12ab sin C =12×3×2×sin 5π12=3+34.综上,B =π4,S △ABC =3+34.14.在政治、历史、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则甲的不同的选法种数为____.乙、丙两名同学都选物理的概率是________. 答案 15949解析 由题意知同学甲只要在除物理之外的六门学科中选两门即可,故甲的不同的选法种数为C 26=6×52=15(种);由题意知同学乙、丙两人除选物理之外,还要在剩下的六门学科中选两门,故乙、丙的所有不同的选法种数为m =C 26C 26=6×52×6×52=225(种),而同学乙、丙两人从7门学科中选3门的所有选法种数为n =C 37C 37=7×6×53×2×1×7×6×53×2×1=35×35=1 225(种),故所求事件的概率是P =2251 225=949.15.已知正实数x ,y 满足x +2y =4,则2x (y +1)的最大值为________. 答案 3解析 已知正实数x ,y 满足x +2y =4,根据基本不等式得到2x ()y +1=x ()2y +2≤x +2y +22=3.当且仅当x =2y +2,即x =3,y =12时,等号成立. 16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若对任意λ∈R ,不等式|λBC →-BA →|≥|BC →|恒成立,则c b +bc 的最大值为________.答案5解析 由对任意λ∈R ,不等式|λBC →-BA →|≥|BC →|恒成立,得BC 边上的高h ≥a . 在△ABC 中,有12ah =12bc sin A ,即bc =ahsin A ,在△ABC 中,由余弦定理得 b 2+c 2=a 2+2bc cos A =a 2+2ah cos Asin A, 则c b +b c =b 2+c2bc =a 2+2ah cos A sin A ahsin A =a 2sin A +2ah cos A ah =a sin A +2h cos A h≤h sin A +2h cos Ah=sin A +2cos A=5sin(A +φ),其中tan φ=2,则当A +φ=π2且h =a 时,c b +bc取得最大值 5.17.等差数列{a n }满足a 21+a 22n +1=1,则a 2n +1+a 23n +1的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤3-52,3+52解析 设⎩⎪⎨⎪⎧a 1=sin α,a 2n +1=cos α⇒a 2n +1=a 1+2nd =cos α⇒2nd =cos α-sin α⇒a 2n +1+a 23n +1=(a 2n +1-nd )2 +(a 2n +1+nd )2=2[a 22n +1+(nd )2]=2⎣⎡⎦⎤cos 2α+⎝⎛⎭⎫cos α-sin α22=2cos 2α+1-2sin αcos α2=3+2cos 2α-sin 2α2=3+5cos ()2α+φ2⎝⎛⎭⎫其中sin φ=15,cos φ=25,所以所求的范围为 ⎣⎢⎡⎦⎥⎤3-52,3+52.三、解答题(本大题共5小题,共74分.)18.(14分)已知函数f (x )=cos x ()sin x -3cos x ,x ∈R . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在区间⎣⎡⎦⎤π3,2π3上的单调性. 解 (1)由题意得f (x )=cos x sin x -3cos 2x =12sin 2x -32()1+cos 2x =12sin 2x -32cos 2x -32 =sin ⎝⎛⎭⎫2x -π3-32. 所以f (x )的最小正周期T =2π2=π,其最大值为1-32.(2)令z =2x -π3,则函数y =sin z 的单调递增区间是⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎡⎦⎤π3,2π3,B =⎩⎨⎧⎭⎬⎫x ⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z , 易知A ∩B =⎣⎡⎦⎤π3,5π12.所以当x ∈⎣⎡⎦⎤π3,2π3时,f (x )在区间⎣⎡⎦⎤π3,5π12上单调递增;在区间⎣⎡⎦⎤5π12,2π3上单调递减. 19.(15分)在四棱锥E -ABCD 中,BC ∥AD ,AD ⊥DC ,AD =DC =2BC ,AB =AE =ED =BE ,F 是AE 的中点.(1)证明:BF ∥平面EDC ;(2)求BF 与平面EBC 所成角的正弦值. (1)证明 取ED 的中点G ,连接FG ,GC , 则FG ∥AD ,且FG =12AD ,又因为BC ∥AD ,且BC =12AD ,所以FG ∥BC ,且FG =BC , 所以四边形BFGC 是平行四边形, 所以BF ∥CG ,因为BF ⊄平面EDC ,CG ⊂平面EDC , 所以BF ∥平面EDC .(2)解 分别取AD ,BC 的中点H ,N ,连接EH 交FG 于点M ,则M 是FG 的中点,连接MN ,则BF ∥MN ,所以BF 与平面EBC 所成角即为MN 与平面EBC 所成角, 由EA =ED ,H 是AD 的中点,得EH ⊥AD ,由于BC ∥AD ,所以BC ⊥EH ,易知四边形BHDC 是平行四边形,所以CD ∥BH , 由BC ⊥CD ,得BC ⊥BH ,又EH ∩BH =H ,所以BC ⊥平面EBH ,因为BC ⊂平面EBC ,所以平面EBC ⊥平面EBH , 过点M 作MI ⊥BE ,垂足为I ,则MI ⊥平面EBC , 连接IN ,∠MNI 即为所求的角.设BC =1,则AD =CD =2,所以AB =5, 由AB =BE =AE =5,得BF =152, 所以MN =BF =152, 在Rt △AHE 中,由AE =5,AH =1,得EH =2, 在△EBH 中,由BH =EH =2,BE =5, MI ⊥BE ,M 为HE 的中点,可得MI =114, 因此sin ∠MNI =MI MN =16530.20.(15分)正项数列{}a n 满足a 2n +a n =3a 2n +1+2a n +1,a 1=1.(1)求a 2的值;(2)证明:对任意的n ∈N *,a n <2a n +1;(3)记数列{a n }的前n 项和为S n ,证明:对任意的n ∈N *,2-12n -1≤S n <3.(1)解 当n =1时,由a 21+a 1=3a 22+2a 2=2及a 2>0,得a 2=7-13. (2)证明 由a 2n +a n =3a 2n +1+2a n +1<4a 2n +1+2a n +1=(2a n +1)2+2a n +1,又因为y =x 2+x 在x ∈(0,+∞)上单调递增,故a n <2a n +1. (3)证明 由(2)知当n ≥2时,a n a n -1>12,a n -1a n -2>12,…,a 2a 1>12,相乘得a n >12n -1a 1=12n -1,即a n >12n -1, 故当n ≥2时,S n =a 1+a 2+…+a n >1+12+…+12n -1=2-12n -1,当n =1时,S 1=1=2-12n -1.所以当n ∈N *时,S n ≥2-12n -1.另一方面,a 2n +a n =3a 2n +1+2a n +1>2a 2n +1+2a n +1=2(a 2n +1+a n +1),令a 2n +a n =b n ,则b n >2b n +1,于是当n ≥2时,b n b n -1<12,b n -1b n -2<12,…,b 2b 1<12,相乘得b n <12n -1b 1=12n -2, 即a 2n +a n =b n <12n -2,故a n <12n -2, 故当n ≥2时,S n =a 1+(a 2+…+a n )<1+⎝⎛⎭⎫1+12+…+12n -2=3-12n -2<3.当n =1时,S 1=1<3, 综上,对任意的n ∈N *,2-12n -1≤S n <3.21.(15分)已知抛物线C 1:y 2=4x 和C 2:x 2=2py ()p >0的焦点分别为F 1,F 2,点P ()-1,-1且F 1F 2⊥OP (O 为坐标原点). (1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,求△PMN 面积的最小值. 解 (1)F 1(1,0),F 2⎝⎛⎭⎫0,p2, ∴F 1F 2→=⎝⎛⎭⎫-1,p 2, F 1F 2→·OP →=⎝⎛⎭⎫-1,p 2·()-1,-1=1-p 2=0, ∴p =2,∴抛物线C 2的方程为x 2=4y .(2)由题意知,过点O 的直线的斜率一定存在且不为0,设直线方程为y =kx ,联立⎩⎪⎨⎪⎧ y 2=4x ,y =kx ,得(kx )2=4x ,求得M ⎝⎛⎭⎫4k 2,4k , 联立⎩⎪⎨⎪⎧x 2=4y ,y =kx ,得N (4k,4k 2)(k <0),从而|MN |=1+k 2⎪⎪⎪⎪4k 2-4k =1+k 2⎝⎛⎭⎫4k 2-4k , 点P 到直线MN 的距离d =|k -1|1+k 2,S △PMN =12·|k -1|1+k 2·1+k 2⎝⎛⎭⎫4k 2-4k =2(1-k )(1-k 3)k 2=2(1-k )2()1+k +k 2k 2=2⎝⎛⎭⎫k +1k -2⎝⎛⎭⎫k +1k +1, 令t =k +1k ()t ≤-2,有S △PMN =2(t -2)(t +1),当t =-2,k =-1时,S △PMN 取得最小值. 即当过原点的直线为y =-x 时, △PMN 的面积取得最小值为8. 22.(15分)已知函数f (x )=ln x -ax +1. (1)讨论函数f (x )的单调性;(2)设函数g (x )=(x -2)e x +f (x )-1-b ,当a ≥1时,g (x )≤0对任意的x ∈⎝⎛⎭⎫12,1恒成立,求满足条件的b 最小的整数值.解 (1)由题意知,函数的定义域为(0,+∞),f ′(x )=1x -a ,当a ≤0时,f ′(x )=1x -a >0,f (x )的单调递增区间为(0,+∞),当a >0时,令f ′(x )=1x -a =0,x =1a,由f ′(x )>0,得x ∈⎝⎛⎭⎫0,1a ,由f ′(x )<0,得x ∈⎝⎛⎭⎫1a ,+∞, 所以f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,f (x )的单调递减区间为⎝⎛⎭⎫1a ,+∞. 综上,当a ≤0时,f (x )的单调递增区间为(0,+∞),当a >0时,f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞. (2)由g (x )=()x -2e x +ln x -ax -b , 因为g (x )≤0对任意的x ∈⎝⎛⎭⎫12,1恒成立,b ≥()x -2e x +ln x -ax 在a ≥1时对任意的x ∈⎝⎛⎭⎫12,1恒成立, 因为a ≥1,x >0,所以()x -2e x +ln x -ax ≤()x -2e x +ln x -x ,只需b ≥()x -2e x +ln x -x 对任意的x ∈⎝⎛⎭⎫12,1恒成立即可. 构造函数h (x )=()x -2e x +ln x -x , h ′(x )=(x -1)e x +1x -1=(x -1)⎝⎛⎭⎫e x -1x , 因为x ∈⎝⎛⎭⎫12,1,所以x -1<0,且t (x )=e x -1x单调递增,因为t ⎝⎛⎭⎫12=12e -2<0,t ()1=e -1>0,所以一定存在唯一的x 0∈⎝⎛⎭⎫12,1,使得t (x 0)=0, 即e x 0=1x 0,x 0=-ln x 0.所以h (x )的单调递增区间为⎝⎛⎭⎫12,x 0,单调递减区间为()x 0,1. 所以h (x )max =h ()x 0=()x 0-2e x 0+ln x 0-x 0 =1-2⎝⎛⎭⎫x 0+1x 0∈()-4,-3, 所以b 的最小的整数值为-3.浙江高考仿真卷(二)一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合M ={x |1≤x ≤3},N ={x |x >2},则集合M ∩(∁R N )等于( ) A .{x |1≤x ≤2} B .{x |x ≥1} C .{x |1≤x <2} D .{x |2<x ≤3}答案 A解析 ∵N ={x |x >2}, ∴∁R N ={x |x ≤2},∴集合M ∩(∁R N )={x |1≤x ≤2}.2.设双曲线x 2a 2-y 29=1(a >0)的两焦点之间的距离为10,则双曲线的离心率为( )A.35B.45C.54D.53 答案 C解析 因为双曲线x 2a 2-y 29=1(a >0)的两焦点之间的距离为10,所以2c =10,c =5,所以a 2=c 2-9=16,所以a =4.所以离心率e =54.3.已知x ,y ∈R ,且x >y >0,若a >b >1,则一定有( ) A .log a x >log b y B .sin a x >sin b y C .ay >bx D .a x >b y答案 D解析 当x >y >0,a >b >1时,由指数函数和幂的性质易得a x >a y >b y .4.将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到的函数为奇函数,则|φ|的最小值为( )A.π12B.π6C.π3D.5π6 答案 B解析 设y =cos(2x +φ)向右平移π3个单位长度得到的函数为g (x ),则g (x )=cos ⎝⎛⎭⎫2x -2π3+φ,因为g (x )为奇函数,且在原点有定义,所以-2π3+φ=k π+π2(k ∈Z ),解得φ=k π+7π6(k ∈Z ),故当k =-1时,|φ|min =π6.5.函数f (x )=e |x -1|-2cos(x -1)的部分图象可能是( )答案 A解析 因为f (1)=-1,所以排除B ;因为f (0)=e -2cos 1>0,所以排除D ;因为当x >2时,f (x )=e x -1-2cos (x -1),∴f ′(x )=e x -1+2sin(x -1)>e -2>0,即x >2时,f (x )具有单调性,排除C.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则D (ξ)的最大值为( ) A.23 B.59 C.29 D.34 答案 A解析 由分布列得a +b +c =1,又因为a ,b ,c 成等差数列,所以2b =a +c ,则a +c =23,所以E (ξ)=c -a ,D (ξ)=a (c -a +1)2+b (c -a )2+c (c -a -1)2=a (c -a )2+b (c -a )2+c (c -a )2+2a (c -a )+a -2c (c -a )+c =-(c -a )2+23,则当a =c 时,D (ξ)取得最大值23.7.已知单位向量e 1,e 2,且e 1·e 2=-12,若向量a 满足(a -e 1)·(a -e 2)=54,则|a |的取值范围为( ) A.⎣⎡⎦⎤2-32,2+32 B.⎣⎡⎦⎤2-12,2+12 C.⎝⎛⎦⎤0,2+12 D.⎝⎛⎦⎤0,2+32 答案 B解析 因为向量e 1,e 2为单位向量, 且e 1·e 2=|e 1|·|e 2|·cos 〈e 1,e 2〉=-12,所以|e 1+e 2|=1+1+2×⎝⎛⎭⎫-12=1. 因为(a -e 1)·(a -e 2)=54,所以a 2-a ·(e 1+e 2)+e 1·e 2=54,所以|a |2-a ·(e 1+e 2)=74,所以|a |2-|a |·cos 〈a ,e 1+e 2〉=74,所以cos 〈a ,e 1+e 2〉=|a |2-74|a |,又因为-1≤cos 〈a ,e 1+e 2〉≤1, 所以|a |的取值范围为⎣⎡⎦⎤2-12,2+12. 8.在等腰梯形ABCD 中,已知AB =AD =CD =1,BC =2,将△ABD 沿直线BD 翻折成△A ′BD ,如图,则直线BA ′与CD 所成角的取值范围是( )A.⎣⎡⎦⎤π3,π2 B.⎣⎡⎦⎤π6,π3 C.⎣⎡⎦⎤π6,π2 D.⎣⎡⎦⎤0,π3 答案 A解析 在等腰梯形ABCD 中,易知∠ABC =π3,∠ABD =∠CBD =π6,则∠A ′BD =π6,为定值,所以BA ′的轨迹可看作是以BD 为轴,B 为顶点,母线与轴的夹角为π6的圆锥的侧面,故点A ′的轨迹如图中AF 所示,其中F 为BC 的中点.过点B 作CD 的平行线,过点C 作BD 的平行线,两平行线交于点E ,则直线BA ′与BE 所成的角即直线BA ′与CD 所成的角.又易知CD ⊥BD ,所以直线A ′B 与CD 所成角的取值范围是⎣⎡⎦⎤π3,π2,故选A.9.已知函数f (x )=⎩⎨⎧2x -x 2,0≤x <2,2f (x -2),x ≥2, g (x )=kx +2,若函数F (x )=f (x )-g (x )在[0,+∞)上只有两个零点,则实数k 的值不可能为( ) A .-23 B .-12 C .-34 D .-1答案 A解析 函数F (x )=f (x )-g (x )的零点为函数y =f (x )与y =g (x )图象的交点,在同一直角坐标系下作出函数y =f (x )与y =g (x )的图象,如图所示,当函数y =g (x )的图象经过点(2,0)时满足条件,此时k =2-00-2=-1 ,当函数y =g (x )的图象经过点(4,0)时满足条件,此时k =2-00-4=-12 ,当函数y =g (x )的图象与(x -1)2+y 2=1(x >0,y >0)相切时也满足题意,此时|k +2|1+k2=1,解得k =-34, 故选A.10.已知数列满足,a 1=1,a 2=12,且[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *,记T 2n为数列{a n }的前2n 项和,数列{b n }是首项和公比都是2的等比数列,则使不等式⎝⎛⎭⎫T 2n +1b n ·1b n <1成立的最小整数n 为( ) A .7 B .6 C .5 D .4 答案 C解析 因为[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *,∴当n 为偶数时,可得(3+1)a n +2-2a n +2(1-1)=0,n ∈N *,即a n +2a n =12,∴a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列;当n 为奇数时,可得(3-1)a n +2-2a n +2(-1-1)=0,n ∈N *,即a n +2-a n =2,∴a 1,a 3,a 5,…是以a 1=1为首项,以2为公差的等差数列,T 2n =(a 1+a 3+a 5+…+a 2n -1)+(a 2+a 4+a 6+…+a 2n )=n 2+1-12n ,∵数列{b n }是首项和公比都是2的等比数列,b n =2×2n -1=2n ,则⎝⎛⎭⎫T 2n +1b n ·1b n <1等价为⎝⎛⎭⎫n 2+1-12n +12n ·12n <1,即(n 2+1)·12n <1,即n 2+1<2n ,分析函数y =n 2+1与y =2n ,则当n =1时,2=2,当n =2时,5<4不成立,当n =3时,10<8不成立,当n =4时,17<16不成立,当n =5时,26<32成立,当n ≥5时,n 2+1<2n 恒成立,故使不等式⎝⎛⎭⎫T 2n +1b n ·1b n <1成立的最小整数n 为5.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.若⎝⎛⎭⎫3x -1x n 的展开式中所有项的系数的绝对值之和为64,则n =________;该展开式中的常数项是____________. 答案 3 -27解析 所求系数的绝对值之和相当于⎝⎛⎭⎫3x +1x n 中所有项的系数之和,则在⎝⎛⎭⎫3x +1x n 中令x =1,得(3+1)n =64,所以n =3;⎝⎛⎭⎫3x -1x 3的通项为T k +1=C k 3(3x )3-k ⎝⎛⎭⎫-1x k =C k 3·33-k · (-1)k 332kx-,令3-3k 2=0,则k =1,常数项为C 13×32×(-1)1=-27. 12.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,x -2y +1≤0,x +y ≤m ,若此不等式组所表示的平面区域形状为三角形,则m 的取值范围为_______,如果目标函数z =2x -y 的最小值为-1,则实数m =________. 答案 (2,+∞) 4解析 要使不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +1≤0,x +y ≤m 所表示的平面区域形状为三角形,直线x =1与直线x-2y +1=0的交点(1,1)必在直线的左下方,所以m >2,画出该区域如图阴影部分所示(含边界),由z =2x -y 得y =2x -z ,由图可知,当直线y =2x -z 过点A (1,m -1)时在y 轴上的截距最大,z 最小,所以,-1=2×1-(m -1),解得m =4.13.如图是一个几何体的三视图,若它的体积是23,则a =________,该几何体的表面积为________.答案 1 3+ 5解析 如图所示,此几何体是四棱锥,底面是边长为a 的正方形,平面SAB ⊥平面ABCD ,并且∠SAB =90°,SA =2,所以体积是V =13×a 2×2=23,解得a =1,四个侧面都是直角三角形,所以计算出表面积是S =12+12×1×2+12×1×5+12×1×2+12×1×5=3+ 5.14.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 若a =7,c =3,A =60°,则b =________,△ABC 的面积S =________. 答案 1或2334或332解析 由余弦定理得a 2=b 2+c 2-2bc cos A ,即7=b 2+9-2b ×3cos 60°,即b 2-3b +2=0,解得b =1或2, 当b =1时, S =12bc sin A =12×1×3×sin 60°=334,同理当b =2时, S =332.15.如图所示,在排成4×4方阵的16个点中,中心位置4个点在某圆内,其余12个点在圆外.从16个点中任选3点,作为三角形的顶点,其中至少有一个顶点在圆内的三角形共有____个.答案 312解析 根据题意,分3种情况讨论:①取出的3个点都在圆内,C 34=4,即有4种取法;②在圆内取2点,圆外12点中有10个点可供选择,从中取1点,C 24C 110=60,即有60种取法;③在圆内取1点,圆外12点中取2点,C 14()C 212-4=248,即有248种取法.则至少有一个顶点在圆内的三角形有 4+60+248=312(个).16.已知F 1,F 2为椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上移动时,△PF 1F 2的内心I 的轨迹方程为____________________________. 答案 x 2+3y 2=1(y ≠0)解析 由题意得F 1(-1,0),F 2(1,0),设点P (x ,y ),I (m ,n ),-2<x <2,y ≠0,则|PF 1|=(x +1)2+y 2=(x +1)2+3-3x 24=⎪⎪⎪⎪x 2+2=2+x 2,则|PF 2|=2a -|PF 1|=4-⎝⎛⎭⎫2+x 2=2-x 2,|F 1F 2|=2c =2,|PF 1|+|PF 2|+|F 1F 2|=2a +2c =6,则由点I 为△PF 1F 2的内心结合图形(图略)得⎩⎨⎧2+x 2=m +1+2-x2-(1-m ),12×|n |×6=12×2×|y |,则⎩⎪⎨⎪⎧x =2m ,y =3n ,代入椭圆C 的方程得三角形的内心I 的轨迹方程为m 2+3n 2=1(n ≠0),即x 2+3y 2=1(y ≠0).17.设点P 是△ABC 所在平面内一动点,满足CP →=λCA →+μCB →,3λ+4μ=2(λ,μ∈R ),|P A →|=|PB →|=|PC →|.若|A B →|=3,则△ABC 面积的最大值是________. 答案 9解析 由3λ+4μ=2,得32λ+2μ=1,所以CP →=λCA →+μCB →=32λ·23CA →+2μ·12CB →.设23CA →=CM →,12CB →=CN →, 则由平面向量基本定理知点P ,M ,N 在同一直线上, 又|P A →|=|PB →|=|PC →|,所以P 为△ABC 的外心,且∠ACB 为锐角,PN ⊥BC ,由此可作图,如图所示,设∠ACB =θ,CN =x ,则BC =2x , CM =x cos θ,CA =3x2cos θ,所以S △ABC =12AC ·BC sin θ=12·3x 2cos θ·2x ·sin θ=3tan θ2x 2, 在△ABC 中,AB 2=AC 2+BC 2-2AC ·BC cos θ, 即4x 2+9x 24cos 2θ-2·2x ·3x 2cos θ·cos θ=9, 所以x 2=36cos 2θ9-8cos 2θ,所以S △ABC =3tan θ2·36cos 2θ9-8cos 2θ=54sin θcos θ9sin 2θ+cos 2θ=54tan θ9tan 2θ+1=549tan θ+1tan θ≤9. 当且仅当9tan θ=1tan θ,即tan θ=13时等号成立,所以△ABC 面积的最大值是9.三、解答题(本大题共5小题,共74分.)18.(14分)已知函数f (x )=4cos ⎝⎛⎭⎫π2-x cos ⎝⎛⎭⎫x -π3- 3. (1)求f (x )的单调递增区间; (2)求f (x )在区间⎣⎡⎦⎤π4,π3上的值域.解 (1)f (x )=4sin x ·⎝⎛⎭⎫cos x cos π3+sin x sin π3- 3 =4sin x ·⎝⎛⎭⎫12cos x +32sin x - 3 =2sin x cos x +23sin 2x - 3=sin 2x +3·()1-cos 2x - 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3. 令2k π-π2≤2x -π3≤2k π+π2,得k π-π12≤x ≤k π+5π12,k ∈Z ,f (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12()k ∈Z . (2)由π4≤x ≤π3,得π6≤2x -π3≤π3,故而2sin ⎝⎛⎭⎫2x -π3∈[1,3], 即f (x )在区间⎣⎡⎦⎤π4,π3上的值域为[1,3].19.(15分)如图,已知四边形ABCD 是正方形,AE ⊥平面ABCD ,PD ∥AE ,PD =AD =2EA =2,G ,F ,H 分别为BE ,BP ,PC 的中点.(1)求证:平面ABE ⊥平面GHF ;(2)求直线GH 与平面PBC 所成的角θ的正弦值.解 (1)因为AE ⊥平面ABCD ,BC ⊂平面ABCD ,所以AE ⊥BC , 因为四边形ABCD 是正方形,所以AB ⊥BC ,又BA ∩AE =A ,BA ,AE ⊂平面ABE ,所以BC ⊥平面AEB , 因为F ,H 分别为BP ,PC 的中点,所以FH 为△PBC 的中位线, 所以FH ∥BC , 所以FH ⊥平面ABE ,又FH ⊂平面GHF ,所以平面ABE ⊥平面GHF .(2)解 方法一 因为AE ⊥平面ABCD ,PD ∥AE ,所以PD ⊥平面ABCD ,又BC ⊂平面ABCD ,所以PD ⊥BC ,因为四边形ABCD 是正方形,所以CD ⊥BC , 又PD ∩CD =D ,PD ,CD ⊂平面PCD , 所以BC ⊥平面PCD ,又BC ⊂平面PBC ,所以平面PBC ⊥平面PCD . 连接DH ,则DH ⊥PC ,因为平面PBC ∩平面PCD =PC ,所以DH ⊥平面PBC ,所以∠DHG 为直线GH 与平面PBC 所成角的余角,即θ=π2-∠DHG .在等腰直角三角形PDC 中,因为PD =DC =2,所以PC =22, 所以DH =PD ·DCPC = 2.连接DG ,易知DG =22+12+⎝⎛⎭⎫122=212,GH =22+⎝⎛⎭⎫122=172, 所以在△DHG 中,cos ∠DHG =DH 2+HG 2-DG 22DH ·GH =3434,所以sin θ=sin ⎝⎛⎭⎫π2-∠DHG =cos ∠DHG =3434, 即直线GH 与平面PBC 所成的角θ的正弦值为3434. 方法二 易知DA ,DC ,DP 两两垂直,所以以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴,建立如图所示的空间直角坐标系,由PD =AD =2EA =2,易得B (2,2,0),C (0,2,0),P (0,0,2),H (0,1,1),G ⎝⎛⎭⎫2,1,12,则CP →=(0,-2,2),CB →=(2,0,0),HG →=⎝⎛⎭⎫2,0,-12.设平面PBC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CB →=(x ,y ,z )·(2,0,0)=0,n ·CP →=(x ,y ,z )·(0,-2,2)=0,则⎩⎪⎨⎪⎧ 2x =0,-2y +2z =0,则⎩⎪⎨⎪⎧x =0,y =z .令y =1,则z =1,所以n =(0,1,1)为平面PBC 的一个法向量, 所以sin θ=|cos 〈n ,HG →〉|=|n ·HG →|02+12+12×22+02+⎝⎛⎭⎫-122=122×172=3434, 故直线GH 与平面PBC 所成的角θ的正弦值为3434. 20.(15分)已知数列{a n }满足:a 1=12,a n +1=1e n a -(n ∈N *).(其中e 为自然对数的底数,e =2.71828…)(1)证明:a n +1>a n (n ∈N *);(2)设b n =1-a n ,是否存在实数M >0,使得b 1+b 2+…+b n ≤M 对任意n ∈N *成立?若存在,求出M 的一个值;若不存在,请说明理由. (1)证明 设f (x )=e x -x -1,令f ′(x )=e x -1=0, 得到x =0.当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减; 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.故f (x )≥f (0)=0,即e x ≥x +1(当且仅当x =0时取等号). 故a n +1=1en a -≥a n ,且取不到等号,所以a n +1>a n .(2)解 先用数学归纳法证明a n ≤1-1n +1.①当n =1时,a 1≤1-12成立.②假设当n =k (k ≥1,k ∈N *)时,不等式a k ≤1-1k +1成立,那么当n =k +1时,a k +1=1ek a -≤11ek -+=111ek +≤11+1k +1=k +1k +2 =1-1k +2,即a k +1≤1-1k +2也成立.故对n ∈N *都有a n ≤1-1n +1. 所以b n =1-a n ≥1n +1.取n =2t -1(t ∈N *),b 1+b 2+…+b n ≥12+13+…+1n +1 =12+⎝⎛⎭⎫13+14+… +⎝⎛⎭⎫12t -1+1+12t -1+2+…+12t . 即b 1+b 2+…+b n ≥12+12+…+12=t2.其中t =log 2n +1,t ∈N *,当n →+∞时,t →+∞,t2→+∞,所以不存在满足条件的实数M ,使得b 1+b 2+…+b n ≤M 对任意n ∈N *成立. 21.(15分)抛物线C :y =x 2,直线l 的斜率为2. (1)若l 与抛物线C 相切,求直线l 的方程;(2)若l 与抛物线C 相交于A ,B ,线段AB 的中垂线交C 于P ,Q ,求|PQ ||AB |的取值范围.解 (1)设直线l 的方程为y =2x +b ,联立直线l 与抛物线C 的方程⎩⎪⎨⎪⎧y =2x +b ,y =x 2,得x 2-2x -b =0,Δ=4+4b =0,所以b =-1, 因此,直线l 的方程为y =2x -1.(2)设直线l 的方程为y =2x +b ,设点A ()x 1,y 1, B ()x 2,y 2,P ()x 3,y 3,Q ()x 4,y 4,联立直线l 与抛物线C 的方程⎩⎪⎨⎪⎧y =2x +b ,y =x 2, 得x 2-2x -b =0,Δ=4+4b >0,所以b >-1. 由根与系数的关系得x 1+x 2=2,x 1x 2=-b . 所以|AB |=5|x 1-x 2|=25(b +1), 且y 1+y 2=2(x 1+x 2)+2b =4+2b , 所以线段AB 的中点为(1,2+b ),所以直线PQ 的方程为y =-12x +52+b ,由⎩⎪⎨⎪⎧y =-12x +52+b ,y =x 2,得2x 2+x -5-2b =0, 由根与系数的关系得x 3+x 4=-12,x 3x 4=-52-b ,所以|PQ |=52|x 3-x 4|=5441+16b , 所以|PQ ||AB |=1841+16b 1+b=1816+25b +1>12,所以|PQ ||AB |的取值范围是⎝⎛⎭⎫12,+∞. 22.(15分)已知函数f (x )=e x -e x sin x ,x ∈⎣⎡⎦⎤0,π2(e 为自然对数的底数). (1)求函数f (x )的值域;(2)若不等式f (x )≥k (x -1)(1-sin x )对任意x ∈⎣⎡⎦⎤0,π2恒成立,求实数k 的取值范围; (3)证明:e x -1>-12(x -32)2+1.(1)解 因为f (x )=e x -e x sin x ,所以f ′(x )=e x -e x (sin x +cos x )=e x (1-sin x -cos x )=e x ⎣⎡⎦⎤1-2sin ⎝⎛⎭⎫x +π4, ∵x ∈⎣⎡⎦⎤0,π2,∴x +π4∈⎣⎡⎦⎤π4,3π4, ∴sin ⎝⎛⎭⎫x +π4≥22,所以f ′(x )≤0, 故函数f (x )在⎣⎡⎦⎤0,π2上单调递减,函数f (x )的最大值为f (0)=1-0=1; f (x )的最小值为f ⎝⎛⎭⎫π2=2πe -2πe sin π2=0, 所以函数f (x )的值域为[0,1].(2)解 原不等式可化为e x (1-sin x )≥k (x -1)(1-sin x ),(*) 因为1-sin x ≥0恒成立,故(*)式可化为e x ≥k (x -1). 令g (x )=e x -kx +k ,x ∈⎣⎡⎦⎤0,π2,则g ′(x )=e x -k , 当k ≤0时,g ′(x )=e x -k >0,所以函数g (x )在⎣⎡⎦⎤0,π2上单调递增,故g (x )≥g (0)=1+k ≥0,所以-1≤k ≤0;当k >0时,令g ′(x )=e x -k =0,得x =ln k ,所以当x ∈(0,ln k )时,g ′(x )=e x -k <0; 当x ∈(ln k ,+∞)时,g ′(x )=e x -k >0.所以当ln k <π2,即0<k <2πe 时,函数g (x )min =g (ln k )=2k -k ln k >0成立;当ln k ≥π2,即k ≥2πe 时,函数g (x )在⎣⎡⎦⎤0,π2上单调递减,g (x )min =g ⎝⎛⎭⎫π2=2πe -k ·π2+k ≥0,解得2πe ≤k ≤2πeπ12-, 综上,-1≤k ≤2πeπ12-. (3)证明 令h (x )=e x -1+12⎝⎛⎭⎫x -322-1, 则h ′(x )=e x -1+x -32.令t (x )=h ′(x )=e x -1+x -32,则t ′(x )=e x -1+1>0,所以h ′(x )在R 上单调递增,由h ′⎝⎛⎭⎫12=12e --1<0,h ′⎝⎛⎭⎫34=14e --34>0, 故存在x 0∈⎝⎛⎭⎫12,34,使得h ′()x 0=0, 即01ex -=32-x 0. 所以当x ∈(-∞,x 0)时,h ′(x )<0; 当x ∈(x 0,+∞)时,h ′(x )>0.故当x =x 0时,函数h (x )有极小值,且是唯一的极小值, 故函数h (x )min =h (x 0)=01ex -+12⎝⎛⎭⎫x 0-322-1 =-⎝⎛⎭⎫x 0-32+12⎝⎛⎭⎫x 0-322-1 =12×⎣⎡⎦⎤⎝⎛⎭⎫x 0-32-12-32=12⎝⎛⎭⎫x 0-522-32, 因为x 0∈⎝⎛⎭⎫12,34,所以12⎝⎛⎭⎫x 0-522-32> 12×⎝⎛⎭⎫34-522-32=132>0,故h (x )=e x -1+12⎝⎛⎭⎫x -322-1>0, 即e x -1>-12⎝⎛⎭⎫x -322+1.。

2020届浙江省杭州市高级中学高三下学期3月高考模拟测试数学试题(解析版)

2020届浙江省杭州市高级中学高三下学期3月高考模拟测试数学试题(解析版)

2020届浙江省杭州市高级中学高三下学期3月高考模拟测试数学试题一、单选题1.若集合2{|10},{|0A x x B x =-≥=<x <4},则A ∩B =( )A .(-∞,-1)B .[0,4)C .[1,4)D .(4,+∞)【答案】C【解析】解一元二次不等式求得集合A ,由此求得两个集合的交集. 【详解】由()()21110x x x -=+-≥解得1x ≤-或1x ≥,所以(][),11,A =-∞-+∞U ,所以[)1,4A B =I .故选:C 【点睛】本小题主要考查一元二次不等式的解法,考查集合交集的概念和运算,属于基础题. 2.已知i 为虚数单位,2,iz i+=则z 的虚部为( ) A .1 B .-2C .2D .-2i【答案】B【解析】利用复数的除法运算化简z 的表达式,由此求得z 的虚部. 【详解】 依题意()()()2212i i i z i i i i +⋅-+===-⋅-,故虚部为2-. 故选:B 【点睛】本小题主要考查复数除法运算,考查复数虚部的求法,属于基础题.3.已知双曲线C :22221y x a b-=(0,0a b >>)的渐近线方程为12y x =±,则双曲线C 的离心率为( )A B C .2D【答案】B【解析】根据双曲线的方程和其渐近线方程可求得12a b =,然后再根据离心率的计算公式可得所求. 【详解】由22220y x a b-=可得a y x b =±,即为双曲线的渐近线的方程,又渐近线方程为12y x =±, ∴12a b =, ∴2ba=. ∴离心率2222e 15c a b b a a+===+=.故选B . 【点睛】(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量,,a b c 的方程或不等式,利用222b c a =-和ce a=转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围. (2)本题容易出现的错误是认为12b a =,由双曲线的标准方程求渐近线方程时,不论焦点在哪个轴上,只需把方程中的“1=”改为“0=”,即可得到渐近线的方程. 4.函数的大致图像为( )A .B .C .D .【答案】D 【解析】由题意,当时,求得,单调递增,排除A ,B ;当时,令,求得在单调递增,在单调递减,即可得到答案.【详解】 由题意,当时,,,单调递增,排除A ,B当时,,,令,在单调递增,在单调递减,选D 【点睛】本题主要考查了函数图象的识别问题,其中解答中合理利用导数得到函数的单调性是解答的本题的关键,着重考查了分析问题和解答问题的能力,属于基础题. 5.已知随机变量ξ满足P (ξ=0) =x ,P (ξ=1) =1-x ,若1(0,),2x ∈则( ) A .E (ξ)随着x 的增大而增大,D (ξ)随着x 的增大而增大 B .E (ξ)随着x 的增大而减小,D (ξ)随着x 的增大而增大 C .E (ξ)随着x 的增大而减小,D (ξ)随着x 的增大而减小 D .E (ξ)随着x 的增大而增大,D (ξ)随着x 的增大而减小 【答案】B【解析】求得E ξ和D ξ的表达式,由此判断出两者的单调性. 【详解】依题意()0111E x x x ξ=⨯+⨯-=-,在区间1(0,)2上是减函数.()()()2201111D x x x x ξ=--⋅+--⋅-⎡⎤⎡⎤⎣⎦⎣⎦2x x =-+,注意到函数2y x x =-+的开口向下,对称轴为12x =,所以2y x x =-+在区间1(0,)2上是增函数,也即D ξ在区间1(0,)2上是增函数. 故选:B 【点睛】本小题主要考查随机变量期望和方差的计算,考查函数的单调性,属于基础题. 6.某几何体的三视图如图所示,则该几何体的体积是()A .23B .43C .83D .163【答案】C【解析】根据三视图可得复原后的几何体(如图所示),根据公式可计算其体积. 【详解】根据三视图可得对应的几何体为四棱锥P ABCD - , 它是正方体中去掉一个三棱锥和三棱柱,又22242ABCD S=⨯=矩形,P 到底面ABCD 的距离为2,故1842233V =⨯⨯=,故选C.【点睛】本题考察三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系.如果复原几何体比较困难,那么可根据常见几何体(如正方体、圆柱、球等)的切割来考虑. 7.“()()ln 2ln 10a b --->”是“1ab>”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】由对数的运算性质与不等式的基本性质结合充分必要条件的判定方法得答案. 【详解】解:由()()ln 2ln 10a b --->,得201021a b a b ->⎧⎪->⎨⎪->-⎩,得1a b >>,1ab∴>; 反之,由1ab>,不一定有()()ln 2ln 10a b --->,如2,1a b =-=- ∴“()()ln 2ln 10a b --->”是“1ab>”成立的充分不必要条件.故选:A. 【点睛】本题考查对数的运算性质与不等式的基本性质,考查充分必要条件的判定方法,是基础题.8.如图,圆O是半径为1的圆,1,2OA=设B,C为圆上的任意2个点,则AC BC⋅u u u r u u u r的取值范围是()A.1[,3]8-B.[-1,3] C.[-1,1] D.1[,1]8-【答案】A【解析】利用平面向量线性运算和数量积运算,将AC BC⋅u u u r u u u r转化为211cos22BC BCθ-⋅u u u r u u u r,其中θ为OAu u u r和BCuuu r的夹角.由此求得AC BC⋅u u u r u u u r的取值范围. 【详解】设D是线段BC的中点,则有OD BC^.设θ为OAu u u r和BCuuu r的夹角.则AC BC⋅u u u r u u u r()OC OA BC OC BC OA BC=-⋅=⋅-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u rcos cosOC BC BCO OA BCθ=⋅⋅∠-⋅⋅u u u r u u u r u u u r u u u r211cos22BC BCθ=-u u u r u u u r,且2221111111cos2222228BC BC BC BC BCθ⎛⎫-≥-=--⎪⎝⎭u u u r u u u r u u u r u u u r u u u r,由于[]0,2BC∈u u u r,所以当12BC=u u u r时,AC BC⋅u u u r u u u r有最小值18-.又当2BC=u u u r且cos1θ=-时,211cos22BC BCθ-u u u r u u u r有最大值为3,即AC BC⋅u u u r u u u r有最大值3.所以AC BC⋅u u u r u u u r的取值范围是1,38⎡⎤-⎢⎥⎣⎦.故选:A【点睛】本小题主要考查向量线性运算、数量积的运算,考查化归与转化的数学思想方法,属于中档题.9.如图,在三棱锥P ABC -中,PB BC a ==,()PA AC b a b ==<,设二面角P AB C --的平面角为α,则( )A .+PCA PCB α∠+∠>π,2PAC PBC α<∠+∠ B .+PCA PCB α∠+∠<π,2PAC PBC α<∠+∠ C .+PCA PCB α∠+∠>π,2PAC PBC α>∠+∠D .+PCA PCB α∠+∠<π,2PAC PBC α>∠+∠ 【答案】C【解析】解题的关键是通过构造垂面得出PMC α∠=,然后转化到平面中解决即可. 【详解】解:如图(1),取PC 中点D ,连接AD ,BD ,由PB =BC =a ,PA =AC 易知BD ⊥PC ,AD ⊥PC ,故可得PC ⊥平面ABD , 作PM ⊥AB 于M ,由ABP ABC ≅V V ,可得CM ⊥AB , ∴PMC α∠=,又PM CM h a b ==<<,由图(2)可得2222PMC PBC PACα∠∠∠=>>, 2PAC PBC α∴>∠+∠,22PBC PACPCA PCB PCA PCB α∠∠+∠+∠>++∠+∠ 22PBC PACPCB PCA π∠∠=+∠++∠= 故选:C. 【点睛】本题考查空间角的综合问题,考查空间想象能力,逻辑推理能力,属于中档题.10.设a 、b R +∈,数列{}n a 满足12a =,21n n a a a b +=⋅+,n *∈N ,则( )A .对于任意a ,都存在实数M ,使得n a M <恒成立B .对于任意b ,都存在实数M ,使得n a M <恒成立C .对于任意()24,b a ∈-+∞,都存在实数M ,使得n a M <恒成立D .对于任意()0,24b a ∈-,都存在实数M ,使得n a M <恒成立 【答案】D【解析】取1a b ==,可排除AB ;由蛛网图可得数列{}n a 的单调情况,进而得到要使n a M <,只需11422ab a+-<,由此可得到答案.【详解】取1a b ==,211n n a a +=+,数列{}n a 恒单调递增,且不存在最大值,故排除AB 选项;由蛛网图可知,2ax b x +=存在两个不动点,且11142ab x a --=,21142abx a+-=,因为当110a x <<时,数列{}n a 单调递增,则1n a x <; 当112x a x <<时,数列{}n a 单调递减,则11n x a a <≤; 所以要使n a M <,只需要120a x <<,故11422aba-<,化简得24b a <-且0b >.故选:D . 【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.二、填空题11.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”P ABCD -,PA ⊥底面ABCD ,2PA AB ==,1AD =,则该“阳马”的最长棱长等于______;外接球表面积等于______. 【答案】3 9π【解析】分别求各边长即可得最长棱,通过补成长方体可得球半径. 【详解】如图,PA ⊥底面ABCD ,底面ABCD 为长方形,且2PA AB ==,1AD =, 所以22,5,PB PD ==2222222213PC PA AB BC =++=++=.最长棱为:3.该几何体可以通过补体得长方体,所以其外接球的半径为1322PC =. 则其外接球的表面积为23492ππ⎛⎫⨯= ⎪⎝⎭,故答案为:3;9π.【点睛】本题主要考查了四棱锥的几何特征及外接球问题,属于基础题.12.设x ,y 满足约束条件21020,1x y x y x -+≥⎧⎪-≤⎨⎪≤⎩则z =2x +3y 的最大值为____;满足条件的x ,y 构成的平面区域的面积是____【答案】112512【解析】画出可行域,计算出可行域的面积,平移基准直线230x y +=到可行域边界的位置,由此求得23z x y =+的最大值. 【详解】画出可行域如下图所示:其中()1211,3,1,,,233A B C ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,所以15322AB =-=,C 到直线AB 的距离为25133+=,所以可行域的面积为1552522312⨯⨯=.平移基准直线230x y +=到可行域边界()1,3A 点位置时,z 取得最大值为213311⨯+⨯=.故答案为:(1)2512;(2)11.【点睛】本小题主要考查利用线性规划求最大值,考查可行域面积的求法,考查数形结合的数学思想方法,属于基础题.13.已知56016(2)(25)x x a a x a x +-=+++L ,则a 0=____,a 5=____.【答案】160- 15【解析】令0x =,求得0a 的值.由乘法分配律,结合二项式展开式,求得5a 的值. 【详解】由56016(2)(25)x x a a x a x +-=+++L ,令0x =得()5025a ⨯-=,即0160a =-,5a 即5x 的系数,根据乘法分配律以及二项式展开式可知,5x 的系数为()1105522515C C ⋅⋅+⋅-=,即515a =.故答案为:(1)160-;(2)15 【点睛】本小题主要考查二项式定理的运用,考查乘法分配律,属于基础题. 14.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若,(423)cos 6A b aB π==+,且b =1,则B =____;△ABC 的面积为____. 【答案】512π14【解析】利用正弦定理化简已知条件,求得tan B 的值,由此求得B 的大小.判断出b c =,由此利用三角形的面积公式,求得三角形ABC 的面积.【详解】依题意,(4cos 6A b aB π==+,由正弦定理得(sin 4sincos 6B B π=+,解得tan 2B =,而tantan164tan 2641tan tan643ππππππ++⎛⎫+===+ ⎪⎝⎭-⋅()0,B π∈,所以56412B πππ=+=,则5561212C B ππππ=--==,所以1c b ==,所以1111sin 112224S cb A ==⨯⨯⨯=.故答案为:(1)512π;(2)14【点睛】本小题主要考查正弦定理解三角形,考查三角形的面积公式,属于基础题.15.从0,1,2,3,4,5这6个数中随机抽取5个数构成一个五位数abcde ,则满足条件“a b c d e <<>>”的五位数的个数有____. 【答案】21【解析】由题意可知c 最大,a 不能为零,对c 分成5c =和4c =两种情况进行分类讨论,由此求得满足条件的五位数的个数. 【详解】由题意可知c 最大,a 不能为零,当5c =时,则从剩下4个不为零的数中选2个,放在c 的左边,再从剩下的3个数中取两个,放在右边,故方法数有224318C C ⋅=.当4c =时,5不能选取,则从身下3个不为零的数中选两个,,放在c 的左边,再从剩下的2个数中取两个,放在右边,故方法数有22323C C ⋅=.所以总的方法数有18321+=. 故答案为:21 【点睛】本小题主要考查简单的排列组合问题,属于基础题.16.设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y 是C 上一点,且满足12PF F ∆则0||x 的取值范围是____. 【答案】[]0,1【解析】根据12PF F ∆的面积列不等式,解不等式求得0||x 的取值范围. 【详解】依题意,122F F =,所以120122PF F S y ∆=⨯=0y =2200214x y m +=,所以2200224124144y x m m m ⎛⎫=-=- ⎪-⎝⎭.由于02m <<,204m <<,根据二次函数的性质可知:()(]22424240,4m m m -=--+∈,所以241234m m -≤--,所以202412414x m m =-≤-,解得[]00,1x ∈.故答案为:[]0,1 【点睛】本小题主要考查椭圆的几何性质,考查化归与转化的数学思想方法,属于中档题. 17.设函数()()ln ,f x x a x b a b R =+++∈,当[]1,x e ∈时,记()f x 最大值为(),M a b ,则(),M a b 的最小值为______.【答案】2e 【解析】易知(){}max ln ,ln f x x a x b x a x b =++++--,设()ln G x x x a b =-+-,()ln F x x x a b =+++,利用绝对值不等式的性质即可得解. 【详解】(){}max ln ,ln f x x a x b x a x b =++++--,设()ln G x x x a b =-+-,()ln F x x x a b =+++, 令()ln h x x x =-,()'11h x x=- 当[]1,x e ∈时,()'0h x ≤,所以()h x 单调递减令()ln n x x x =+,()'11n x x=+ 当[]1,x e ∈时,()'0n x >,所以()n x 单调递增所以当[]1,x e ∈时,(){}max 1,1G x a b a e b =+-+--,(){}max 1,1F x a b a e b =+++++,则()4,1111M a b a b a e b a e b a b ≥+-++--+++++++ 则()4,22222M a b e a e a e ≥+++-+≥, 即(),2eM a b ≥ 故答案为:2e . 【点睛】本题考查函数最值的求法,考查绝对值不等式的性质,考查转化思想及逻辑推理能力,属于难题.三、解答题18.已知函数2()6cos 3(2xf x x ωωω=->0)的图象上相邻两对称轴之间的距离为4.(1)求ω的值及f (x )的单调递增区间;(2)若00214()(,)33f x x =∈,求0(1)f x +的值.【答案】(1)4πω=,在区间为1028,8,33k k k Z ⎡⎤-++∈⎢⎥⎣⎦;(2)-【解析】(1)利用降次公式、辅助角公式化简()f x 的解析式,根据图象上相邻两对称轴之间的距离求得ω,根据三角函数单调区间的求法,求得()f x 的单调递增区间. (2)结合同角三角函数的基本关系式以及两角和的正弦公式,求得0(1)f x +的值. 【详解】 (1)依题意()()3cos 133cos f x x x x x ωωωω=+-=3x πω⎛⎫=+ ⎪⎝⎭,由于()f x 的图象上相邻两对称轴之间的距离为4,则()280T πωω==>,解得4πω=.所以()43f x x ππ⎛⎫=+⎪⎝⎭.令222432k x k ππππππ-≤+≤+,解得1028,8,33x k k k Z ⎡⎤∈-++∈⎢⎥⎣⎦,即()f x 的单调递增区间为1028,8,33k k k Z ⎡⎤-++∈⎢⎥⎣⎦. (2)因为0063()23sin 43f x x ππ⎛⎫=+=⎪⎝⎭,即03sin 435x ππ⎛⎫+= ⎪⎝⎭,而0214(,)33x ∈,03,4322x ππππ⎛⎫+∈ ⎪⎝⎭,所以04cos 435x ππ⎛⎫+=- ⎪⎝⎭.所以0(1)f x +00023sin 23sin cos cos sin 443434434x x x πππππππππ⎡⎤⎛⎫⎛⎫⎛⎫=++=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎦324262352525⎛⎫=⨯-⨯=- ⎪ ⎪⎭【点睛】本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查同角三角函数的基本关系式,考查两角和的正弦公式,考查化归与转化的数学思想方法,属于中档题. 19.如图,已知四棱锥A -BCDE 中,AB =BC =2,∠ABC =120°,26,AE =CD //BE ,BE =2CD =4,60EBC ∠=︒(1)求证:EC ⊥平面ABC ;(2)求直线AD 与平面ABE 所成角的正弦值. 【答案】(1)详见解析;(2)33055【解析】(1)通过余弦定理和勾股定理,计算证明证得,EC CA EC CB ⊥⊥,由此证得EC ⊥平面ABC .(2)建立空间直角坐标系,通过直线AD 的方向向量和平面ABE 的法向量,求得线面角的正弦值. 【详解】(1)在三角形ABC 中,由余弦定理得2222222cos12023AC =+-⨯⨯⨯=o .在三角形BCE 中,由余弦定理得2242242cos6023EC =+-⨯⨯⨯=o .所以222222,CE CA EA CE CB EB +=+=,所以,EC CA EC CB ⊥⊥,而CA CB C ⋂=,所以EC ⊥平面ABC .(2)建立如图所示空间直角坐标系C xyz -,则()0,0,0C ,()()0,0,23,23,0,0E A ,()3,1,0B,所以()()()3,1,0,23,0,23,3,1,23AB AE BE =-=-=--u u u r u u u r u u u r,131,,3222CD BE ⎛⎫==-- ⎪ ⎪⎝u u u r u u u r ,所以31531,,3,,,32222D AD ⎛⎫⎛⎫--=-- ⎪ ⎪ ⎪ ⎪⎝⎝u u u r .设(),,n x y z =r 是平面ABE 的法向量,则3023230n AB x y n AE x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩u u u v v u u u vv ,取()1,3,1n =r .设直线AD 与平面ABE 所成角为θ,则330sin AD n AD nθ⋅==⋅u u u r ru u u r r .【点睛】本小题主要考查线面垂直的证明,考查空间向量法求线面角,考查空间想象能力和逻辑推理能力,属于中档题.20.已知等差数列{}n a 的公差不为零,且33a =,1a 、2a 、4a 成等比数列,数列{}n b 满足()1222*n n b b nb a n +++=∈N L L (1)求数列{}n a 、{}n b 的通项公式; (2)3121112*n n n nb b b a a n b b b +++++>-∈N L L .【答案】(1)n a n =,2n b n=,*n ∈N ;(2)证明见解析. 【解析】(1)设等差数列{}n a 的公差为d ,0d ≠,运用等差数列的通项公式和等比数列的中项性质,解方程可得首项和公差,进而得到n a ,可令1n =,求得1b ,再将n 换为1n -,相减可得n b ; (21n +>+L 注意检验1n =时不等式成立,再假设n k =时不等式成立,证明1n k =+时,不等式也成立,注意运用分析法证明. 【详解】(1)等差数列{}n a 的公差d 不为零,33a =,可得123a d +=,1a 、2a 、4a 成等比数列,可得2142a a a =,即()()21113a a d a d +=+,解方程可得11a d ==,则()11n a a n d n =+-=.数列{}n b 满足1222n n b b nb a +++=L L ,可得1122b a ==, 当2n ≥时,由12222n n b b nb a n +++==L L , 可得()()1212121n b b n b n -+++-=-L L , 相减可得2n nb =,则2n b n =,12b =也适合2n b n =,则2n b n=,*n ∈N ; (2)*1n a n ++>∈N L L 即为1n >+L 下面应用数学归纳法证明. (i )当1n =2=,右边为2->右边,不等式成立;(ii )假设n k =1k >+-L 当1n k =+1k >+L1k >+-L ,只要证12k k +>+1>-即证10⎛> ⎝,由*k ∈N ,可得上式成立,可得1n k =+时,不等式也成立. 综上可得,对一切*n ∈N1n +>+L)*1n a n +>∈N L L . 【点睛】本题考查等差数列通项公式的求解,同时也考查了利用n S 求通项以及数列不等式的证明,考查了数学归纳法的应用,考查计算能力与推理能力,属于中等题.21.已知抛物线E :22(0)y px p =>过点Q (1,2),F 为其焦点,过F 且不垂直于x 轴的直线l 交抛物线E 于A ,B 两点,动点P 满足△PAB 的垂心为原点O . (1)求抛物线E 的方程;(2)求证:动点P 在定直线m 上,并求PABQABS S ∆∆的最小值.【答案】(1)24y x =;(2)证明见解析,PABQABS S ∆∆的最小值为【解析】(1)将点Q 的坐标代入抛物线方程,由此求得p 的值,进而求得抛物线E 的方程.(2)设出直线l 的方程,联立直线l 的方程与抛物线的方程,写出韦达定理,设出直线,AP BP 的方程,联立直线,AP BP 的方程求得P 的坐标,由此判断出动点P 在定直线3x =-上.求得PABQABS S ∆∆的表达式,利用基本不等式求得其最小值. 【详解】(1)将Q 点坐标代入抛物线方程得2221,2p p =⨯=,所以24y x =.(2)由(1)知抛物线E 的方程为24y x =,所以()1,0F ,设直线l 的方程为1x ty =+,设()()1122,,,A x y B x y ,由214x ty y x =+⎧⎨=⎩消去x 得2440y ty --=,所以121244y y t y y +=⎧⎨⋅=-⎩.由于O 为三角形PAB 的垂心,所以221111PAPA OBPB OAPB x k y k k k k x k y ⎧=-⎪⋅=-⎧⎪⇒⎨⎨⋅=-⎩⎪=-⎪⎩,所以直线AP 的方程为()2112x y y x x y -=--,即21344y y x y =-+.同理可求得直线BP 的方程为12344y y x y =-+.由2112344344y y x y y y y ⎧=-+⎪⎪⎨⎪=-+⎪⎩,结合121244y y t y y +=⎧⎨⋅=-⎩,解得()3,3P t -,所以P在定直线3x =-上.直线l 的方程为110x ty x ty =+⇒--=,P 到直线l的距离为1d ==Q 到直线l的距离为2d ==所以PABQABS S ∆∆2121343232212222AB d t t t t t t AB d ⨯⨯+===+=+≥=⨯⨯32,23t t t ==±时取等号.所以PAB QAB S S ∆∆的最小值为【点睛】本小题主要考查抛物线方程的求法,考查直线和抛物线的位置关系,考查抛物线中三角形面积的有关计算,属于中档题.22.已知2()2ln(2)(1)()(1)f x x x g x k x =+-+=+,.(1)求()f x 的单调区间;(2)当2k =时,求证:对于1x ∀>-,()()f x g x <恒成立;(3)若存在01x >-,使得当0(1,)x x ∈-时,恒有()()f x g x >成立,试求k 的取值范围.【答案】(1)单调减区间为3(2,2-+-,单调增区间为3()2-+∞;(2)详见解析;(3)(,2)-∞.【解析】【详解】试题分析:(1)对函数()f x 求导后,利用导数和单调性的关系,可求得函数()f x 的单调区间.(2)构造函数()()()h x f x g x =-,利用导数求得函数()h x 在()1,-+∞上递减,且()10h -=,则()0h x <,故原不等式成立.(3)同(2)构造函数()()()h x f x g x =-,对k 分成2,2,2k k k =三类,讨论函数()h x 的单调性、极值和最值,由此求得k 的取值范围. 试题解析: (1)()()2'212f x x x =-++ ()2231(2)2x x x x -++=>-+,当()'0f x <时,2310++>x x .解得x >当()'0f x >时,解得2x -<<所以()f x 单调减区间为32,2⎛-+- ⎝⎭,单调增区间为32⎛⎫-++∞ ⎪ ⎪⎝⎭. (2)设()()()h x f x g x =-()()()22ln 211(1)x x k x x =+-+-+>-,当2k =时,由题意,当()1,x ∈-+∞时,()0h x <恒成立. ()()223122'x x x h x -++=-+()()2312x x x -++=+,∴当1x >-时,()'0h x <恒成立,()h x 单调递减. 又()10h -=,∴当()1,x ∈-+∞时,()()10h x h <-=恒成立,即()()0f x g x -<. ∴对于1x ∀>-,()()f x g x <恒成立. (3)因为()()223'12x x k x h x -++=-+()226222x k x k x ++++=-+. 由(2)知,当2k =时,()()f x g x <恒成立, 即对于1x ∀>-,()()()22ln 2121x x x +-+<+, 不存在满足条件的0x ;当2k >时,对于1x ∀>-,10x +>, 此时()()211x k x +<+.∴()()()()22ln 21211x x x k x +-+<+<+, 即()()f x g x <恒成立,不存在满足条件的0x ; 当2k <时,令()()()22622t x x k x k =--+-+,可知()t x 与()'h x 符号相同,当()0,x x ∈+∞时,()0t x <,()'0h x <,()h x 单调递减.∴当()01,x x ∈-时,()()10h x h >-=, 即()()0f x g x ->恒成立. 综上,k 的取值范围为(),2-∞.点睛:本题主要考查导数和单调区间,导数与不等式的证明,导数与恒成立问题的求解方法.第一问求函数的单调区间,这是导数问题的基本题型,也是基本功,先求定义域,然后求导,要注意通分和因式分解.二、三两问一个是恒成立问题,一个是存在性问题,要注意取值是最大值还是最小值.。

浙江省杭州市2020届高考数学模拟试题

浙江省杭州市2020届高考数学模拟试题

浙江省杭州市2020届高考数学命题比赛模拟试题172020年试卷命题双向细目表说明:题型及考点分布按照《2019年考试说明》2020年高考模拟试卷数学卷本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色的字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷上无效。

参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π= ()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(原创)已知复数ibi-2z =实部和虚部相等,则z =( )A .2B . 3C .D . (命题意图:考查复数的概念及复数模的求法,属容易题)2.(原创)已知x R ∈,则“3>x ”是“0652>+-x x ”成立的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(命题意图:考查充分条件、必要条件与充要条件的意义,属容易题)3.(原创)已知等差数列{}n a 的前n 项和为n s ,若21975=++a a a ,则13s =( )A .36B .72C .91D .182(命题意图:考查等差数列前n 项和的公式及等差数列性质的应用,属中档题)4.(根据惠州市2017届第二次调研考试改编)如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个四等分点(F 是靠近B 处的),那么=( ) A.3121- B. 3141+ C.2131+ D. 4321- (命题意图:考查平面向量基本定理的应用,属容易题)5.(原创)已知双曲线)0,0(1:2222>>=-b a by a x C 的一条渐近线与直线013-=+y x 垂直,则双曲线的离心率为( )A. 3B.25C.10D.2 (命题意图:考查双曲线的离心率概念,渐近线表示及直线垂直位置关系的表示,属中档题)6.(根据山东省济南市2017届高三一模考试改编)已知某几何体的三视图及相关数据如图所示,则该几何体的表面积为 A. 2πB. π276+C. 43πD. ππ25276++(命题意图:考查三视图,直观图,属容易题)7.(原创)设变量,x y 满足不等式组⎪⎩⎪⎨⎧≤--≥-≥+2224y x y x y x ,则22x y +的最小值是( )A .22B .9C .8D .2(命题意图:考查线性规划中的最值及数形结合的思想方法,中等偏难题)8.(原创)在正四棱锥ABCD P -中,2=PA ,二面角C AB P --的平面角为︒60,则PA 与底面ABCD 所成角的正弦值是( ) A .515 B .33 C .23 D .55(命题意图:考查空间二面角及直线和平面所成角,属中档题) 9.(根据浙江省宁波市2016届高三适应性考试改编)已知函数⎩⎨⎧≤+->=mx x x m x x f ,22,3)(2,若函数()()g x f x x =-有三个不同的零点,则实数m的取值范围是( )A .3>mB .3≤mC .2≥mD .32<≤m (命题意图:考查函数零点的定义,及函数数形结合思想应用,属中等偏难题) 10.(根据广东省惠州市2017届高三二模考试改编) 定义在R 上的函数)(x f y =满足)()25)()5(>'-=-x f x x f x f ,(,若21x x <,且521>+x x ,则有 ( )A .)()(21x f x f >B .)()(21x f x f <C .)()(21x f x f =D .不确定 (命题意图:考查函数的导数定义,利用导数求函数的单调性,属较难题) 非选择题部分(共110分) 注意事项:1.用黑色的字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x |x 2﹣4x ≤0},则A ∩B =( ) A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.(4分)设i 为虚数单位,复数z =2+3ii,则z 的共轭复数是( ) A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i3.(4分)设变量x ,y 满足约束条件{x +y ≥1,2x −y ≤2,x −y +1≥0,则z =(x ﹣3)2+y 2的最小值为( )A .2B .4√55C .4D .1654.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.(4分)函数f (x )=x 2+e |x |的图象只可能是( )A .B .C .D .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是( )A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为π4C .PQ ≥√2ABD .CD 1与PQ 不可能垂直7.(4分)已知0<a <23,随机变量ξ的分布列如图:则当a 增大时,ξ的期望E (ξ)变化情况是( )ξ ﹣10 1 P13abA .E (ξ)增大B .E (ξ)减小C .E (ξ)先增后减D .E (ξ)先减后增8.(4分)已知函数f(x)={x 2+4x +2,x ≤0log 2x ,x >0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为( ) A .(−154,0]B .(−154,2]C .[﹣4,+∞)D .[﹣4,2)9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则( )A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ10.(4分)设数列{a n }满足a n +1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是( ) A .﹣3B .﹣2C .﹣1D .1二.填空题(共7小题,满分36分)11.(6分)过点P (1,1)作直线l 与双曲线x 2−y 22=λ交于A ,B 两点,若点P 恰为线段AB 的中点,则实数λ的取值范围是 .12.(6分)一个几何体的三视图如图所示,则该几何体的体积为 .13.(6分)已知(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则a 2= ,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6= . 14.(6分)在△ABC 中,a =1,cos C =34,△ABC 的面积为√74,则c = . 15.(4分)在平面直角坐标系xOy 中,已知椭圆x 2a +y 2b =1(a >b >0)的上、下顶点分别为B 2,B 1,若一个半径为√2b ,过点B 1,B 2的圆M 与椭圆的一个交点为P (异于顶点B 1,B 2),且|k PB 1−kPB 2|=89,则椭圆的离心率为 .16.(4分)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°, CB =CD =2√3.若点M 为边BC 上的动点,则AM →•DM →的最小值为 .17.(4分)设f (x )是定义在(0,+∞)上的可导函数,且满足f (x )+xf '(x )>0,则不等式f (x +1)>(x ﹣1)f (x 2﹣1)的解集为 三.解答题(共5小题,满分74分)18.(14分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b ﹣c =1,cos A =13,△ABC 的面积为2√2.(Ⅰ)求a 及sin C 的值; (Ⅱ)求cos (2A −π6)的值.19.(15分)如图,三棱锥D ﹣ABC 中,AD =CD ,AB =BC =4√2,AB ⊥BC . (1)求证:AC ⊥BD ;(2)若二面角D ﹣AC ﹣B 的大小为150°且BD =4√7时,求直线BM 与面ABC 所成角的正弦值.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14. (1)求数列{a n },{b n }的通项公式;(2)令c n =a b n ,(﹣1)n d n =n c n +n ,求数列{d n }的前项和为T n .21.(15分)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.22.(15分)设函数f(x)=e x cos x,g(x)=e2x﹣2ax.(1)当x∈[0,π3]时,求f(x)的值域;(2)当x∈[0,+∞)时,不等式g(x)≥f′(x)e2x恒成立(f'(x)是f(x)的导函数),求实数a的取值范围.2020年浙江省高考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x |x 2﹣4x ≤0},则A ∩B =( ) A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]【解答】解:由题意得:A ={x ∈N *|x ≤3}={1,2,3},B ={x |x 2﹣4x ≤0}={x |0≤x ≤4}, ∴所以A ∩B ={1,2,3}, 故选:A .2.(4分)设i 为虚数单位,复数z =2+3ii,则z 的共轭复数是( ) A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i【解答】解:∵z =2+3i i =(2+3i)(−i)−i2=3−2i , ∴z =3+2i . 故选:B .3.(4分)设变量x ,y 满足约束条件{x +y ≥1,2x −y ≤2,x −y +1≥0,则z =(x ﹣3)2+y 2的最小值为( )A .2B .4√55C .4D .165【解答】解:画出变量x ,y 满足约束条件{x +y ≥1,2x −y ≤2,x −y +1≥0,的可行域,可发现z =(x ﹣3)2+y 2的最小值是(3,0)到2x ﹣y ﹣2=0距离的平方. 取得最小值:(6−24+1)2=165.故选:D .4.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要【解答】解:若cos2α=13,则cos2α=1﹣2sin 2α,sin α=±√33,则cos2α=13”是“sin α=√33”的不充分条件;若sin α=√33,则cos2α=1﹣2sin 2α,cos2α=13,则cos2α=13”是“sin α=√33”的必要条件; 综上所述:“cos2α=13”是“sin α=√33”的必要不充分条件.故选:B .5.(4分)函数f (x )=x 2+e |x |的图象只可能是( )A .B .C .D .【解答】解:因为对于任意的x ∈R ,f (x )=x 2+e |x |>0恒成立,所以排除A ,B , 由于f (0)=02+e |0|=1,则排除D , 故选:C .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是( )A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为π4C .PQ ≥√2ABD .CD 1与PQ 不可能垂直【解答】解:在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点, 在A 中,当Q 为线段B 1C 1中点时,线段PQ 与平面CDD 1C 1平行,故A 正确; 在C 中,当Q 为线段B 1C 1的中点时,PQ ∥DC 1, ∴线段PQ 与DD 1所成角为∠C 1DD 1=π4,故B 正确;在C 中,PQ ≥√2AB ,当且仅当Q 为线段B 1C 1的中点时取等号,故C 正确; 在D 中,当Q 为线段B 1C 1的中点时,PQ ∥DC 1,CD 1与PQ 垂直,故D 错误. 故选:D .7.(4分)已知0<a <23,随机变量ξ的分布列如图:则当a 增大时,ξ的期望E (ξ)变化情况是( )ξ ﹣10 1 P13abA .E (ξ)增大B .E (ξ)减小C .E (ξ)先增后减D .E (ξ)先减后增【解答】解:依题可知{E(ξ)=−13+b a +b =23,∴E(ξ)=−13+23−a ,∴当a 增大时,ξ的期望E (ξ)减小.故选:B .8.(4分)已知函数f(x)={x 2+4x +2,x ≤0log 2x ,x >0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为( ) A .(−154,0] B .(−154,2] C .[﹣4,+∞) D .[﹣4,2)【解答】解:作出函数f (x )的图象,方程f (x )=a 有三个不同的实数根 即等价于函数y =f (x )的图象与直线y =a 有三个交点A ,B ,C ,故有﹣2<a ≤2, 不妨设x 1<x 2<x 3,因为点A ,B 关于直线x =﹣2对称,所以x 1+x 2=﹣4, ﹣2<log 2x 3≤2,即14<x 3≤4,故−154<x 1+x 2+x 3≤0.故选:A .9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则( )A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ【解答】解:∵在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点, 记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β, 二面角M ﹣AC ﹣B 的平面角为γ. ∴根据最小角定理得α≥β, 根据最大角定理得β≤γ. 故选:A .10.(4分)设数列{a n }满足a n +1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是( ) A .﹣3B .﹣2C .﹣1D .1【解答】解:a n+1−a n =a n 2+a n −2=(a n +2)(a n −1),若a n <﹣2,则a n +1>a n ,则该数列单调递增,所以无限趋于﹣2.若a n =﹣2,则a n +1=a n ,则该数列为常数列,即a n =2.所以,综上所述,λ≥﹣2.∴λ的最小值是﹣2.故选:B . 二.填空题(共7小题,满分36分)11.(6分)过点P (1,1)作直线l 与双曲线x 2−y 22=λ交于A ,B 两点,若点P 恰为线段AB 的中点,则实数λ的取值范围是 (﹣∞,0)∪(0,12) .【解答】解:设A (x 1,y 1),B (x 2,y 2),代入双曲线可得:{x 12−y 122=λx 22−y 222=λ,两式相减可得:y 1−y 2x 1−x 2=2(x 1+x 2)y 1+y 2,而由题意可得,x 1+x 2=2×1=2,y 1+y 2=2×1=2, 所以直线AB 的斜率k =y 1−y 2x 1−x 2=2×22=2,所以直线AB 的方程为:y ﹣1=2(x ﹣1),即y =2x ﹣1,代入双曲线的方程可得:2x 2﹣4x +1+2λ=0,因为直线与双曲线由两个交点,所以△>0,且λ≠0,即△=16﹣4×2×(1+2λ)>0,解得:λ<12, 所以实数λ的取值范围是(﹣∞,0)∪(0,12),故答案为:(﹣∞,0)∪(0,12).12.(6分)一个几何体的三视图如图所示,则该几何体的体积为 9 .【解答】解:根据几何体的三视图转换为几何体为: 下底面为直角梯形,高为3的四棱锥体, 如图所示:所以:V =13×12(2+4)×3×3=9, 故答案为:913.(6分)已知(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则a 2= 15 ,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6= 64 .【解答】解:由(1﹣x )6的通项为T r+1=C 6r (−x)r 可得,令r =2,即x 2项的系数a 2为C 62=15,即a 2=15,由(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,取x =﹣1,得a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6=[1﹣(﹣1)]6=64,故答案为:15,64. 14.(6分)在△ABC 中,a =1,cos C =34,△ABC 的面积为√74,则c = √2 . 【解答】解:∵a =1,cos C =34,△ABC 的面积为√74, ∴sin C =√1−cos 2C =√74,可得√74=12ab sin C =√78ab ,解得ab =2,∴b =2,∴由余弦定理可得c =2+b 2−2abcosC =√12+22−2×1×2×34=√2. 故答案为:√2.15.(4分)在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的上、下顶点分别为B 2,B 1,若一个半径为√2b ,过点B 1,B 2的圆M 与椭圆的一个交点为P (异于顶点B 1,B 2),且|k PB 1−kPB 2|=89,则椭圆的离心率为2√23. 【解答】解:设P (x 0,y 0),B 1(0,﹣b ),B 2(0,+b ),由|kPB 1−kPB 2|=89,|y 0−b x 0−y 0+b x 0|=89,∴|x 0|=94b ,由题意得圆M 的圆心在x 轴上,设圆心(t ,0),由题意知:t 2+b 2=2b 2∴t 2=b 2, ∴MP 2=2b 2=(x 0﹣t )2+y 02,∴y 02=716b 2,P 在椭圆上,所以81b 216a +716=1, ∴a 2=9b 2=9(a 2﹣c 2),∴e 2=89,所以离心率为2√23,故答案为:2√23. 16.(4分)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°,CB =CD =2√3.若点M 为边BC 上的动点,则AM →•DM →的最小值为214.【解答】解:如图所示:以B 为原点,以BA 所在的直线为x 轴,以BC 所在的直线为y 轴,过点D 做DP ⊥x 轴,过点D 做DQ ⊥y 轴,∵AB ⊥BC ,AD ⊥CD ,∠BAD =120°,CB =CD =2√3, ∴B (0,0),A (2,0),C (0,2√3),D (3,√3),设M (0,a ),则AM →=(﹣2,a ),DM →=(﹣3,a −√3),故AM →•DM →=6+a (a −√3)=(a −√32)2+214≥214, 故答案为:214.17.(4分)设f (x )是定义在(0,+∞)上的可导函数,且满足f (x )+xf '(x )>0,则不等式f (x +1)>(x ﹣1)f (x 2﹣1)的解集为 (1,2)【解答】解:令g (x )=xf (x ),x ∈(0,+∞).g ′(x )=f (x )+xf '(x )>0, ∴函数g (x )在x ∈(0,+∞)上单调递增.不等式f (x +1)>(x ﹣1)f (x 2﹣1)即不等式(x +1)f (x +1)>(x 2﹣1)f (x 2﹣1),x +1>0. ∴x +1>x 2﹣1>0,解得:1<x <2.∴不等式f (x +1)>(x ﹣1)f (x 2﹣1)的解集为(1,2).故答案为:(1,2).三.解答题(共5小题,满分74分)18.(14分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b ﹣c =1,cos A =13,△ABC 的面积为2√2.(Ⅰ)求a 及sin C 的值; (Ⅱ)求cos (2A −π6)的值.【解答】解:(Ⅰ)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b ﹣c =1,cos A =13, ∴sin A =√1−cos 2A =2√23, ∵△ABC 的面积为12bc •sin A =bc 2•2√23=√23bc =2√2,∴bc =6,∴b =3,c =2, ∴a =√b 2+c 2−2bc ⋅cosA =√9+4−2⋅3⋅2⋅13=3. 再根据正弦定理可得a sinA=c sinC,即2√23=2sinC,∴sin C =4√29. (Ⅱ)∴sin2A =2sin A cos A =4√29,cos2A =2cos 2A ﹣1=−79, 故 cos (2A −π6)=cos2A cos π6+sin2A sinπ6=−79•√32+4√29•12=4√2−7√318. 19.(15分)如图,三棱锥D ﹣ABC 中,AD =CD ,AB =BC =4√2,AB ⊥BC . (1)求证:AC ⊥BD ;(2)若二面角D ﹣AC ﹣B 的大小为150°且BD =4√7时,求直线BM 与面ABC 所成角的正弦值.【解答】解:(1)证明:取AC 中点O ,连结BO ,DO , ∵AD =CD ,AB =BC ,∴AC ⊥BO ,AC ⊥DO , ∵BO ∩DO =O ,∴AC ⊥平面BOD , 又BD ⊂平面BOD ,∴AC ⊥BD .(2)解:由(1)知∠BOD 是二面角D ﹣AC ﹣B 的平面角,∴∠BOD =150°, ∵AC ⊥平面BOD ,∴平面BOD ⊥平面ABC , 在平面BOD 内作Oz ⊥OB ,则Oz ⊥平面ABC ,以O 为原点,OB 为x 轴,OC 为y 轴,OD 为z 轴,建立空间直角坐标系, 由题意得OB =4,在△BOD 中由余弦定理得OD =4√3,∴A (0,﹣4,0),B (4,0,0),C (0,4,0),D (﹣6,0,2√3),∴M (﹣3,2,√3),BM →=(﹣7,2,√3),平面ABC 的法向量n →=(0,0,1),设直线BM 与面ABC 所成角为θ,则直线BM 与面ABC 所成角的正弦值为:sin θ=|n →⋅BM →||n →|⋅|BM →|=√356=√4228.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14.(1)求数列{a n },{b n }的通项公式;(2)令c n =a b n ,(﹣1)n d n =n c n +n ,求数列{d n }的前项和为T n .【解答】解:(1)等差数列{a n }的公差设为d ,正项等比数列{b n }的公比设为q ,q >0,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,可得2a 2=b 1+b 2,即2(1+d )=2+2q ,即d =q ,数列{b n }的前n 项和为S n ,且S 3=14,可得2+2q +2q 2=14,解得q =2,d =2,则a n =2n ﹣1,b n =2n ;(2)c n =a b n =2n +1﹣1,(﹣1)n d n =n c n +n =n •2n +1,则d n =2n •(﹣2)n ,前项和为T n =2•(﹣2)+4•4+6•(﹣8)+…+2n •(﹣2)n ,﹣2T n =2•4+4•(﹣8)+6•16+…+2n •(﹣2)n +1,相减可得3T n =﹣4+2(4+(﹣8)+…+(﹣2)n )﹣2n •(﹣2)n +1=﹣4+2•4(1−(−2)n−1)1−(−2)−2n •(﹣2)n +1,化简可得T n =−49−6n+29•(﹣2)n +1. 21.(15分)已知抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.(1)若点M 纵坐标为√2,求M 与焦点的距离;(2)若t =﹣1,P (1,1),Q (1,﹣1),求证:y A •y B 为常数;(3)是否存在t ,使得y A •y B =1且y P •y Q 为常数?若存在,求出t 的所有可能值,若不存在,请说明理由.【解答】解:(1)解:∵抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.点M 纵坐标为√2, ∴点M 的横坐标x M =(√2)2=2,∵y 2=x ,∴p =12,∴M 与焦点的距离为MF =x M +p 2=2+14=94.(2)证明:设M (y 02,y 0),直线PM :y ﹣1=y 0−1y 02−1(x ﹣1),当x =﹣1时,y A =y 0−1y 0+1,直线QM :y +1=y 0+1y 02−1(x ﹣1),x =﹣1时,y B =−y 0−1y 0−1,∴y A y B =﹣1, ∴y A •y B 为常数﹣1.(3)解:设M (y 02,y 0),A (t ,y A ),直线MA :y ﹣y 0=y 0−y A y 02−t (x ﹣y 02), 联立y 2=x ,得y 2−y 02−t y 0−y A y +y 02−t y 0−y A y 0−y 02=0,∴y 0+y p =y 02−t y 0−y A ,即y P =y 0y A −t y 0−y A, 同理得y Q =y 0y B −1y 0−y B,∵y A •y B =1,∴y P y Q =y 02−ty 0(y A +y B )+t 2y 02−y 0(y A +y B )+1, 要使y P y Q 为常数,即t =1,此时y P y Q 为常数1,∴存在t =1,使得y A •y B =1且y P •y Q 为常数1.22.(15分)设函数f (x )=e x cos x ,g (x )=e 2x ﹣2ax .(1)当x ∈[0,π3]时,求f (x )的值域;(2)当x ∈[0,+∞)时,不等式g(x)≥f′(x)e 2x 恒成立(f '(x )是f (x )的导函数),求实数a 的取值范围. 【解答】解:(1)由题可得f '(x )=e x cos x ﹣e x sin x =e x (cos x ﹣sin x ).令f '(x )=e x (cos x ﹣sin x )=0,得x =π4∈[0,π3]. 当x ∈(0,π4)时,f '(x )>0,当x ∈(π4,π3)时,f '(x )<0,所以f(x)max =f(π4)=√22e π4,f(x)min =min{f(0),f(π3)}.因为f(π3)=e π32>e 332=e 2>1=f(0),所以f (x )min =1, 所以f (x )的值域为[1,√22e π4]. (2)由g(x)≥f′(x)e 2x 得e 2x −2ax ≥cosx−sinx e x , 即sinx−cosxe +e 2x −2ax ≥0.设ℎ(x)=sinx−cosx e x +e 2x −2ax ,则ℎ′(x)=2cosx e x +2e 2x −2a . 设φ(x )=h '(x ),则φ′(x)=4e 3x −2√2sin(x+π4)e x. 当x ∈[0,+∞)时,4e 3x ≥4,2√2sin(x +π4≤2√2),所以φ'(x )>0. 所以φ(x )即h '(x )在[0,+∞)上单调递增,则h '(x )≥h '(0)=4﹣2a .若a ≤2,则h '(x )≥h '(0)=4﹣2a ≥0,所以h (x )在[0,+∞)上单调递增.所以h (xa >2)≥h (0)=0恒成立,符合题意.若,则h '(0)=4﹣2a <0,必存在正实数x 0,满足:当x ∈(0,x 0)时,h '(x )<0,h (x )单调递减,此时h (x )<h (0)=0,不符合题意综上所述,a 的取值范围是(﹣∞,2].。

浙江省杭州市2020届高考数学命题比赛模拟试题142020051601167

浙江省杭州市2020届高考数学命题比赛模拟试题142020051601167

浙江省杭州市2020届高考数学命题比赛模拟试题14本试卷分为选择题和非选择题两部分。

考试时间120分种。

请考生按规定用笔将所有试题的答案标号涂、写在答题纸上。

参考公式:球的表面积公式 柱体的体积公式24πS R = V=Sh球的体积公式 其中S 表示锥体的底面积,h 表示锥体的高34π3V R =台体的体积公式: 其中R 表示球的半径 V=31h (2211S S S S ++) 棱锥的体积公式 其中21,s s 分别表示台体的上、下底面积,V=31Sh h 表示台体的高 其中S 表示锥体的底面积, 如果事件A B ,互斥,那么 h 表示锥体的高 ()()()P A B P A P B +=+第I 卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的。

请在答题卡指定区域内作答。

1.【原创】在复平面内,复数2)21(21i iiz -+-=对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.【原创】盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为 ( ) A .恰有1只是坏的 B .恰有2只是好的 C .4只全是好的 D .至多有2只是坏的3.【原创】在243)1(xx -的展开式中,x 的幂指数是整数的项共有 ( ) A .3项 B .4项 C .5项 D .6项4.【原创】已知集合{}034|2≤+-=x x x A ,{}a x x B ≥=|,则下列选项中不是φ=B A I 的充分条件的是 ( ) A .4≥aB .3≥aC .3>aD .43<<a5.一个多面体的三视图如图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该多面体的表面积为 ( )A .246+B .224+C .244+D .26.【原创】将函数f (x )=)23sin(x +π(cos x -2sin x )+sin 2x 的图象向左平移π8个单位长度后得到函数g (x ),则g (x )具有性质 ( )A .在(0,π4)上单调递增,为奇函数B .周期为π,图象关于(π4,0)对称C .最大值为2,图象关于直线x =π2对称D .在(-π2,0)上单调递增,为偶函数7.经过双曲线=1(a >b >0)的右焦点为F 作该双曲线一条渐近线的垂线与两条渐近线相交于M ,N 两点,若O 是坐标原点,△OMN 的面积是,则该双曲线的离心率是( )A .2B .C .D .8.【原创】设等差数列{}n a 的前n 项和为n S ,若786S S S <<,则满足01<•+n n S S 的正整数n 的值为 ( ) A .12 B .13 C .14 D .159.已知f (x )=x (1+lnx ),若k ∈Z ,且k (x ﹣2)<f (x )对任意x >2恒成立,则k 的最大值为 ( ) A .3B .4C .5D .610.【原创】已知C B A ,,三点共线,O 为平面直角坐标系原点,且满足m m 34+=,R m ∈,若函数a mxbmx x f ++=)(,),[+∞∈a x ,其中R b a ∈>,0,记),(b a m 为)(x f 的最小值,则当2),(=b a m 时,b 的取值范围为( ) A.0>b B .0<b C .1>b D .1<b第II 卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分。

浙江省杭州市2020届高三模拟数学试卷及解析答案

浙江省杭州市2020届高三模拟数学试卷及解析答案

【解析】利用平面向量线性运算和数量积运算,将 AC BC 转化为
A.1
B.-2
C.2
D.-2i
【答案(答案仅供参考)】B
【解析】利用复数的除法运算化简 z 的表达式,由此求得 z 的虚部.
【详解】
依题意
z
=
2
+ i
i
=
(2
+ i)(−i) i (−i)
=
1−
2i
,故虚部为
−2
.
故选:B 【画龙点睛】 本小题主要考查复数除法运算,考查复数虚部的求法,属于基础题.
3.已知双曲线 C
浙江省杭州市 2020 届高三模拟数学试卷
一、单选题
1.若集合 A = {x | x2 −1 0}, B = {x | 0 <x<4},则 A∩B=( )
A.(-∞,-1)
B.[0,4)
C.[1,4)
D.(4,+∞)
【答案(答案仅供参考)】C
【解析】解一元二次不等式求得集合 A ,由此求得两个集合的交集.

y2 a2

x2 b2
= 0 可得
y
=
a b
x ,即为双曲线的渐近线的方程,
又渐近线方程为 y = 1 x , 2
∴a =1, b2
∴b = 2. a
∴离心率 e = c = a
a2 + b2 = a
1+
b2 a2
=
5.
故选 B.
【画龙点睛】
(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量 a, b, c
V = 14 2 2 = 8,
3
3

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x|x 2﹣4x ≤0},则A ∩B =()A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.(4分)设i 为虚数单位,复数??=2+3??,则z 的共轭复数是()A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i3.(4分)设变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,则z =(x ﹣3)2+y 2的最小值为()A .2B .4√55C .4D .1654.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.(4分)函数f (x )=x 2+e |x|的图象只可能是()A .B .C .D .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是()A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为4C .≥√2D .CD 1与PQ 不可能垂直7.(4分)已知0<??<23,随机变量ξ的分布列如图:则当a增大时,ξ的期望E(ξ)变化情况是()ξ﹣101P13a bA.E(ξ)增大B.E(ξ)减小C.E(ξ)先增后减D.E(ξ)先减后增8.(4分)已知函数??(??)={2+4??+2,??≤02??,??>0,且方程f(x)=a有三个不同的实数根x1,x2,x3,则x1+x2+x3的取值范围为()A.(-154,0]B.(-154,2]C.[﹣4,+∞)D.[﹣4,2)9.(4分)如图,在三棱台ABC﹣A1B1C1中,M是棱A1C1上的点,记直线AM与直线BC所成的角为α,直线AM与平面ABC所成的角为β,二面角M﹣AC﹣B的平面角为γ.则()A.α≥β,β≤γB.α≤β,β≤γC.α≥β,β≥γD.α≤β,β≥γ10.(4分)设数列{a n}满足a n+1=a n2+2a n﹣2(n∈N*),若存在常数λ,使得a n≤λ恒成立,则λ的最小值是()A.﹣3B.﹣2C.﹣1D.1二.填空题(共7小题,满分36分)11.(6分)过点P(1,1)作直线l与双曲线??2-22=??交于A,B两点,若点P恰为线段AB的中点,则实数λ的取值范围是.12.(6分)一个几何体的三视图如图所示,则该几何体的体积为.13.(6分)已知(1﹣x)6=a0+a1x+a2x2+…+a6x6,则a2=,a0﹣a1+a2﹣a3+a4﹣a5+a6=.14.(6分)在△ABC中,a=1,cosC=34,△ABC的面积为√74,则c=.15.(4分)在平面直角坐标系xOy中,已知椭圆22+??2??2=1(a>b>0)的上、下顶点分别为B2,B1,若一个半径为√2b,过点B1,B2的圆M与椭圆的一个交点为P(异于顶点B1,B2),且|k1-k2|=89,则椭圆的离心率为.16.(4分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BCD=60°,CB=CD=2√3.若点M为边BC上的动点,则→→的最小值为.17.(4分)设f(x)是定义在(0,+∞)上的可导函数,且满足f(x)+xf'(x)>0,则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为三.解答题(共5小题,满分74分)18.(14分)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,△ABC的面积为2√2.(Ⅰ)求a及sinC的值;(Ⅱ)求cos(2A-6)的值.19.(15分)如图,三棱锥D﹣ABC中,AD=CD,AB=BC=4√2,AB⊥BC.(1)求证:AC⊥BD;(2)若二面角D﹣AC﹣B的大小为150°且BD=4√7时,求直线BM与面ABC所成角的正弦值.20.(15分)在等差数列{a n}和正项等比数列{b n}中,a1=1,b1=2,且b1,a2,b2成等差数列,数列{b n}的前n项和为Sn,且S3=14.(1)求数列{a n},{b n}的通项公式;(2)令??=????,(﹣1)n d n=nc n+n,求数列{d n}的前项和为T n.21.(15分)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A y B为常数;(3)是否存在t,使得y A y B=1且y P?y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.22.(15分)设函数f(x)=e x cosx,g(x)=e2x﹣2ax.(1)当??∈[0,]时,求f(x)的值域;3恒成立(f'(x)是f(x)的导函数),求实数a的取值范围.(2)当x∈[0,+∞)时,不等式??(??)≥′(??)2??2020年浙江省高考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x|x 2﹣4x ≤0},则A ∩B =()A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]【解答】解:由题意得:A ={x ∈N *|x ≤3}={1,2,3},B ={x|x 2﹣4x ≤0}={x|0≤x ≤4},∴所以A ∩B ={1,2,3},故选:A .2.(4分)设i 为虚数单位,复数??=2+3??,则z 的共轭复数是()A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i【解答】解:∵??=2+3??=(2+3??)(-??)-??2=3-2??,∴??=3+2??.故选:B .3.(4分)设变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,则z =(x ﹣3)2+y 2的最小值为()A .2B .4√55C .4D .165【解答】解:画出变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,的可行域,可发现z =(x ﹣3)2+y 2的最小值是(3,0)到2x ﹣y ﹣2=0距离的平方.取得最小值:(6-2√4+1)2=165.故选:D .4.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要【解答】解:若cos2α=13,则cos2α=1﹣2sin 2α,sin α=±√33,则cos2α=13”是“sin α=√33”的不充分条件;若sin α=√33,则cos2α=1﹣2sin 2α,cos2α=13,则cos2α=13”是“sin α=√33”的必要条件;综上所述:“cos2α=13”是“sin α=√33”的必要不充分条件.故选:B .5.(4分)函数f(x)=x2+e|x|的图象只可能是()A.B.C.D.【解答】解:因为对于任意的x∈R,f(x)=x2+e|x|>0恒成立,所以排除A,B,由于f(0)=02+e|0|=1,则排除D,故选:C.6.(4分)如图,在正方体ABCD﹣A1B1C1D1中,P为线段AD的中点,Q为线段B1C1的动点,则下列说法中错误的是()A.线段PQ与平面CDD1C1可能平行B.当Q为线段B1C1的中点时,线段PQ与DD1所成角为4C.≥√2D.CD1与PQ不可能垂直【解答】解:在正方体ABCD﹣A1B1C1D1中,P为线段AD的中点,Q为线段B1C1的动点,在A中,当Q为线段B1C1中点时,线段PQ与平面CDD1C1平行,故A正确;在C中,当Q为线段B1C1的中点时,PQ∥DC1,∴线段PQ与DD1所成角为∠C1DD1=4,故B正确;在C中,PQ≥√2AB,当且仅当Q为线段B1C1的中点时取等号,故C正确;在D中,当Q为线段B1C1的中点时,PQ∥DC1,CD1与PQ垂直,故D错误.故选:D.7.(4分)已知0<??<23,随机变量ξ的分布列如图:则当a增大时,ξ的期望E(ξ)变化情况是()ξ﹣101P13a b A.E(ξ)增大B.E(ξ)减小C.E(ξ)先增后减D.E(ξ)先减后增【解答】解:依题可知{()=-13+??+??=23,∴??(??)=-13+23-??,∴当a 增大时,ξ的期望E (ξ)减小.故选:B .8.(4分)已知函数??(??)={2+4??+2,??≤02??,??>0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为()A .(-154,0]B .(-154,2]C .[﹣4,+∞)D .[﹣4,2)【解答】解:作出函数f (x )的图象,方程f (x )=a 有三个不同的实数根即等价于函数y =f (x )的图象与直线y =a 有三个交点A ,B ,C ,故有﹣2<a ≤2,不妨设x 1<x 2<x 3,因为点A ,B 关于直线x =﹣2对称,所以x 1+x 2=﹣4,﹣2<log 2x 3≤2,即14<x 3≤4,故-154<x 1+x 2+x 3≤0.故选:A .9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则()A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ【解答】解:∵在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.∴根据最小角定理得α≥β,根据最大角定理得β≤γ.故选:A .10.(4分)设数列{a n }满足a n+1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是()A .﹣3B .﹣2C .﹣1D .1【解答】解:??+1-????=????2+????-2=(????+2)(????-1),若a n <﹣2,则a n+1>a n ,则该数列单调递增,所以无限趋于﹣2.若a n =﹣2,则a n+1=a n ,则该数列为常数列,即a n =2.所以,综上所述,λ≥﹣2.∴λ的最小值是﹣2.故选:B.二.填空题(共7小题,满分36分)11.(6分)过点P(1,1)作直线l与双曲线??2-22=??交于A,B两点,若点P恰为线段AB的中点,则实数λ的取值范围是(﹣∞,0)∪(0,12).【解答】解:设A(x1,y1),B(x2,y2),代入双曲线可得:{12-122=??22-222=??,两式相减可得:1-??2??1-??2=2(??1+??2)??1+??2,而由题意可得,x1+x2=2×1=2,y1+y2=2×1=2,所以直线AB的斜率k=1-??21-??2=2×22=2,所以直线AB的方程为:y﹣1=2(x﹣1),即y=2x﹣1,代入双曲线的方程可得:2x2﹣4x+1+2λ=0,因为直线与双曲线由两个交点,所以△>0,且λ≠0,即△=16﹣4×2×(1+2λ)>0,解得:??<12,所以实数λ的取值范围是(﹣∞,0)∪(0,12),故答案为:(﹣∞,0)∪(0,12).12.(6分)一个几何体的三视图如图所示,则该几何体的体积为9.【解答】解:根据几何体的三视图转换为几何体为:下底面为直角梯形,高为3的四棱锥体,如图所示:所以:V=13×12(2+4)×3×3=9,故答案为:913.(6分)已知(1﹣x)6=a0+a1x+a2x2+…+a6x6,则a2=15,a0﹣a1+a2﹣a3+a4﹣a5+a6=64.【解答】解:由(1﹣x)6的通项为??+1=??6(-??)??可得,令r=2,即x2项的系数a2为??62=15,即a2=15,由(1﹣x)6=a0+a1x+a2x2+…+a6x6,取x=﹣1,得a0﹣a1+a2﹣a3+a4﹣a5+a6=[1﹣(﹣1)]6=64,故答案为:15,64.14.(6分)在△ABC中,a=1,cosC=34,△ABC的面积为√74,则c=√2.【解答】解:∵a=1,cosC=34,△ABC的面积为√74,∴sinC=√1-2??=√74,可得√74=12absinC=√78ab,解得ab=2,∴b=2,∴由余弦定理可得c=√??2+??2-2=√12+22-2×1×2×34=√2.故答案为:√2.15.(4分)在平面直角坐标系xOy中,已知椭圆22+??2??2=1(a>b>0)的上、下顶点分别为B2,B1,若一个半径为√2b,过点B1,B2的圆M与椭圆的一个交点为P(异于顶点B1,B2),且|k1-k2|=89,则椭圆的离心率为2√23.【解答】解:设P(x0,y0),B1(0,﹣b),B2(0,+b),由|k1-k2|=89,|0-??-??0+????0|=89,∴|x0|=94b,由题意得圆M的圆心在x轴上,设圆心(t,0),由题意知:t2+b2=2b2∴t2=b2,∴MP2=2b2=(x0﹣t)2+y02,∴y02=716??2,P在椭圆上,所以81??216??2+716=1,∴a2=9b2=9(a2﹣c2),∴e2=89,所以离心率为2√23,故答案为:2√23.16.(4分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BCD=60°,CB=CD=2√3.若点M为边BC上的动点,则→→的最小值为214.【解答】解:如图所示:以B为原点,以BA所在的直线为x轴,以BC所在的直线为y轴,过点D做DP⊥x轴,过点D做DQ⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,==2√3,∴B(0,0),A(2,0),C(0,2√3),D(3,√3),设M(0,a),则→=(﹣2,a),→=(﹣3,a-√3),故→→=6+a(a-√3)=(??-√32)2+214≥214,故答案为:214.17.(4分)设f(x)是定义在(0,+∞)上的可导函数,且满足f(x)+xf'(x)>0,则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为(1,2)【解答】解:令g(x)=xf(x),x∈(0,+∞).g′(x)=f(x)+xf'(x)>0,∴函数g(x)在x∈(0,+∞)上单调递增.不等式f(x+1)>(x﹣1)f(x2﹣1)即不等式(x+1)f(x+1)>(x2﹣1)f(x2﹣1),x+1>0.∴x+1>x2﹣1>0,解得:1<x<2.∴不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为(1,2).故答案为:(1,2).三.解答题(共5小题,满分74分)18.(14分)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,△ABC的面积为2√2.(Ⅰ)求a及sinC的值;(Ⅱ)求cos(2A-6)的值.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,∴sinA=√1-2=2√23,∵△ABC的面积为12bc?sinA=22√23=√23bc=2√2,∴bc=6,∴b=3,c=2,∴a=√??2+??2-2=√9+4-2?3?2?13=3.再根据正弦定理可得=??,即32√23=2,∴sinC=4√29.(Ⅱ)∴sin2A=2sinAcosA=4√29,cos2A=2cos2A﹣1=-79,故cos(2A-6)=cos2Acos6+sin2Asin??6=-79√32+4√29?12=4√2-7√318.19.(15分)如图,三棱锥D﹣ABC中,AD=CD,AB=BC=4√2,AB⊥BC.(1)求证:AC⊥BD;(2)若二面角D﹣AC﹣B的大小为150°且BD=4√7时,求直线BM与面ABC所成角的正弦值.【解答】解:(1)证明:取AC中点O,连结BO,DO,∵AD=CD,AB=BC,∴AC⊥BO,AC⊥DO,∵BO∩DO=O,∴AC⊥平面BOD,又BD?平面BOD,∴AC⊥BD.(2)解:由(1)知∠BOD是二面角D﹣AC﹣B的平面角,∴∠BOD=150°,∵AC⊥平面BOD,∴平面BOD⊥平面ABC,在平面BOD内作Oz⊥OB,则Oz⊥平面ABC,以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系,由题意得OB=4,在△BOD中由余弦定理得OD=4√3,∴A(0,﹣4,0),B(4,0,0),C(0,4,0),D(﹣6,0,2√3),∴M(﹣3,2,√3),→=(﹣7,2,√3),平面ABC 的法向量??→=(0,0,1),设直线BM 与面ABC 所成角为θ,则直线BM 与面ABC 所成角的正弦值为:sin θ=|??→→||??→|?|→|=√3√56=√4228.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14.(1)求数列{a n },{b n }的通项公式;(2)令??=????,(﹣1)nd n =nc n +n ,求数列{d n }的前项和为T n .【解答】解:(1)等差数列{a n }的公差设为d ,正项等比数列{b n }的公比设为q ,q >0,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,可得2a 2=b 1+b 2,即2(1+d )=2+2q ,即d =q ,数列{b n }的前n 项和为S n ,且S 3=14,可得2+2q+2q 2=14,解得q =2,d =2,则a n =2n ﹣1,b n =2n ;(2)??=?????=2n +1﹣1,(﹣1)n d n =nc n +n =n?2n+1,则d n =2n?(﹣2)n ,前项和为T n =2?(﹣2)+4?4+6?(﹣8)+…+2n?(﹣2)n ,﹣2T n =2?4+4?(﹣8)+6?16+…+2n?(﹣2)n+1,相减可得3T n =﹣4+2(4+(﹣8)+…+(﹣2)n )﹣2n?(﹣2)n+1=﹣4+2?4(1-(-2)-1)1-(-2)-2n?(﹣2)n+1,化简可得T n =-49-6??+29(﹣2)n+1.21.(15分)已知抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.(1)若点M 纵坐标为√2,求M 与焦点的距离;(2)若t =﹣1,P (1,1),Q (1,﹣1),求证:y A y B 为常数;(3)是否存在t ,使得y A y B =1且y P ?y Q 为常数?若存在,求出t 的所有可能值,若不存在,请说明理由.【解答】解:(1)解:∵抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.点M 纵坐标为√2,∴点M 的横坐标x M =(√2)2=2,∵y 2=x ,∴p=12,∴M 与焦点的距离为MF =??+2=2+14=94.(2)证明:设M (??02,??0),直线PM :y ﹣1=0-102-1(x ﹣1),当x =﹣1时,??=0-10+1,直线QM :y+1=??0+102-1(x ﹣1),x =﹣1时,y B =-??0-1??0-1,∴y A y B =﹣1,∴y A y B 为常数﹣1.(3)解:设M (??02,??0),A (t ,y A ),直线MA :y ﹣y 0=0-????02-??(x ﹣y 02),联立y 2=x ,得??2-02-??0-??????+??02-????0-??????0-??02=0,∴y 0+y p =??02-????0-????,即y P =??0????-????0-????,同理得y Q =0????-10-????,∵y A ?y B =1,∴y P y Q =??02-0(????+????)+??202-??0(????+????)+1,要使y P y Q 为常数,即t =1,此时y P y Q 为常数1,∴存在t =1,使得y A ?y B =1且y P ?y Q 为常数1.22.(15分)设函数f (x )=e x cosx ,g (x )=e 2x﹣2ax .(1)当??∈[0,3]时,求f (x )的值域;(2)当x ∈[0,+∞)时,不等式??(??)≥′(??)2??恒成立(f'(x )是f (x )的导函数),求实数a 的取值范围.【解答】解:(1)由题可得f '(x )=e x cosx ﹣e x sinx =e x (cosx ﹣sinx ).令f'(x )=e x (cosx ﹣sin x )=0,得??=4∈[0,??3].当??∈(0,4)时,f'(x )>0,当??∈(??4,??3)时,f'(x )<0,所以??(??)=??(4)=√22??4,??(??)={??(0),??(??3)}.因为??(3)=??32>??332=??2>1=??(0),所以f (x )min =1,所以f (x )的值域为[1,√224].(2)由??(??)≥′(??)2??得??2??-2≥-,即-+??2??-2≥0.设(??)=-+??2??-2,则?′(??)=2????+2??2??-2??.设φ(x )=h'(x ),则??′(??)=4??3??-2√2(??+4).当x ∈[0,+∞)时,4e 3x ≥4,2√2(??+4≤2√2),所以φ'(x )>0.所以φ(x )即h'(x )在[0,+∞)上单调递增,则h'(x )≥h'(0)=4﹣2a .若a ≤2,则h'(x )≥h'(0)=4﹣2a ≥0,所以h (x )在[0,+∞)上单调递增.所以h (xa >2)≥h (0)=0恒成立,符合题意.若,则h'(0)=4﹣2a <0,必存在正实数x 0,满足:当x ∈(0,x 0)时,h'(x )<0,h (x )单调递减,此时h (x )<h (0)=0,不符合题意综上所述,a 的取值范围是(﹣∞,2].。

【2020年高考数学预测题】浙江省高考数学试卷3【附详细答案和解析_可编辑】

【2020年高考数学预测题】浙江省高考数学试卷3【附详细答案和解析_可编辑】

【2020年高考数学预测题】浙江省高考数学试卷3【附详细答案和解析_可编辑】 真水无香陈 tougao33学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 4 分 ,共计40分 , )1. 已知全集U =R ,集合A ={x||x −1|<1},B ={x |2x−5x−1≥1},则A ∩∁U B =( ) A.{x|1<x <2} B.{x|1<x ≤2}C.{x|1≤x <2}D.{x|1≤x <4}2. 下列关于双曲线Γ:x 26−y 23=1的判断,正确的是( )A.渐近线方程为x ±2y =0B.焦点坐标为(±3, 0)C.实轴长为12D.顶点坐标为(±6, 0)3. 已知x 、y 满足{x −y ≥0x +y −4≥0x ≤4,则3x −y 的最小值为( )A.4B.6C.12D.164. 某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是( )A.8B.6C.4D.25. 已知非零向量a →,b →,给定p:∃λ∈R ,使得a →=λb →,q:|a →+b →|=|a →|+|b →|,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6. 设函数f(x)=|2x −1|,c <b <a ,且f(c)>f(a)>f(b),则2a +2c 与2的大小关系是( ) A.2a +2c >2 B.2a +2c ≥2 C.2a +2c ≤2 D.2a +2c <27. (2018年浙江高考数学理科)设0<p <1,随机变量ξ的分布列则当p 在(0,1)内增大时,( ) A.D(ξ)减小 B.D(ξ)增大 C.D(ξ)先减小后增大 D.D(ξ)先增大后减小8. 已知正方体ABCD −A 1B 1C 1D 1中,E 是线段AB 上的点(含端点),设D 1E 与AD 所成的角为α,D 1E 与底面ABCD 所成的角为β,二面角D 1−AE −D 的平面角为γ,则( )A.β≤α≤γB.α≤β≤γC.α≤γ≤βD.β≤γ≤α9. 设x ,y ∈R ,且满足{(x −2)3+2x +sin (x −2)=2(y −2)3+2y +sin (y −2)=6,则x +y =( )A.1B.2C.3D.410. 1772年德国的天文学家J .E .波得发现了求太阳的行星距离的法则.记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如表:除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当是德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐用过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带.请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是( )A.388B.772C.1540D.3076二、 填空题 (本题共计 7 小题 ,每题 5 分 ,共计35分 , )11. 已知复数z 1=1−i ,z 1⋅z 2=1+i ,则复数z 2=________,|z 2|=________.12. 已知AC 、BD 为圆O:x 2+y 2=4的两条相互垂直的弦,垂足为M(1, √2),则四边形ABCD 的面积的最大值为________.13. 二项式(x 3+1x 2)n 的展开式中,只有第6项的系数最大,则该展开式中的常数项为________.14. 在△ABC 中,∠ABC =90∘,AB =4,BC =3,点D 在线段AC 上,若∠BDC =45∘,则cos ∠ABD =________.15. 已知圆C:x 2+(y −4)2=4与双曲线E:x 2a2−y 2b 2=1(a >0, b >0)的渐近线相切,则双曲线的离心率为________.16. 不等式|x +3|−|x −1|≤a 2−5a 的解集非空,则实数a 的取值范围是________.17. 已知平面向量a →,b →,c →,满足|a →|=|b →|=|a →−b →|=|a →+b →−c →|=1,则|c →|的最大值为M =________.三、 解答题 (本题共计 5 小题 ,每题 14 分 ,共计70分 , )18. 已知向量a →=(2sin (π4+x),−√3) ,b →=(sin (π4+x),cos 2x),设函数f (x )=a →⋅b →.(1)求函数f (x )的单调递增区间;(2)若x ∈[π4,π2],不等式|f (x )−m|<2恒成立,求实数m 的取值范围.19. 如图,已知三棱柱ABC −A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90∘,∠BAC =30∘,A 1A =A 1C =AC ,E, F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.20. 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N ∗,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式;(2)记c n =√an2b n, n ∈N ∗,证明: c 1+c 2+⋯+c n <2√n,n ∈N ∗.21. 已知以F 为焦点的抛物线C:y 2=2px (p >0) 过点P (1,−2),直线l 与C 交于A ,B 两点,M 为AB 中点,且OM →+OP →=λOF →. (1)当λ=3时,求点M 的坐标;(2)当OA →⋅OB →=12 时,求直线l 的方程.22. 已知函数 f(x)=ln x −ax +1 ,其中a 为实常数. (1)求函数f (x )的单调区间; (2)对任意不同的两点A(x 1,f(x 1)), B(x 2,f(x 2)) ,设直线AB 的斜率为k ,若x 1+x 2+k >0 恒成立,求a 的取值范围.参考答案与试题解析【2020年高考数学预测题】浙江省高考数学试卷3【附详细答案和解析_可编辑】一、 选择题 (本题共计 10 小题 ,每题 4 分 ,共计40分 ) 1.【答案】 【解答】 此题暂无解答 2.【答案】 B【解答】关于双曲线Γ:x 26−y 23=1,a 2=6,b 2=3,c 2=9,则渐近线方程为x ±√2y =0;焦点为(±3, 0);实轴2a =2√6,顶点坐标为(±√6, 0). 3.【答案】 【解答】 此题暂无解答4.【答案】 B【解答】解:根据三视图可知,该几何体是一个上下底面都是直角梯形的直棱柱, 所以该几何体的体积为V =(2+1)×22×2=6.故选B . 5.【答案】 B 【解答】解∶命题q:|a →+b →|=|a →|+|b →|成立的条件是,a →与b →共线且方向相同, 命题p:∃λ∈R ,使a →=λb →成立条件是,a →与b →共线 . 综上可知,p 是q 的必要不充分条件 . 故选B . 6.【答案】 D【解答】解:f(x)=|2x−1|={2x −1,x ≥01−2x,x <0,作出f(x)=|2x −1|的图象如图所示,由图可知,要使c <b <a 且f(c)>f(a)>f(b)成立, 则有c <0且a >0, 故必有2c <1且2a >1,又f(c)−f(a)>0,即为1−2c −(2a −1)>0, ∴ 2a +2c <2.故选:D .7.【答案】 D【解答】设0<p <1,随机变量ξ的分布列是 E (ξ)=0×1−p 2+1×12+2×p 2=p +12;方差是D (ξ)=(0−p −12)2×1−p 2+(1−p −12)2×12+(2−p −12)2×p2=−p 2+p +14=−(p −12)2+12,∴ p ∈(0,12)时,D(ξ)单调递增; p ∈(12,1)时,D(ξ)单调递减;∴ D(ξ)先增大后减小.8.【答案】D【解答】解:正方体AC 1中,AD//A 1D 1,设棱长为2, ∴ ∠A 1D 1E 是异面直线D 1E 与AD 所成角.易求D 1E =√D 1D 2+DE 2=√D 1D 2+AD 2+AE 2=3 A 1E =√A 122=√5 Rt △D 1A 1E 中,sin∠A 1D 1E =A 1ED 1E =√53即sinα=√53易知∠D1ED为D1E与平面ABCD所成角Rt△D1DE中sin∠D1ED=D1DDE =23即sinβ=23由AB⊥面A1ADD1∴ ∠D1AE二面角D1AED的平面角∴ sin∠D1AE=D1DAD1=√22即sinγ=√2 2∴ α,β,γ均为锐角,∴ sinβ<sinγ<sinα,∴ β<γ<α.故选D.9.【答案】D【解答】解:∵(x−2)3+2x+sin(x−2)=2,∴(x−2)3+2(x−2)+sin(x−2)=2−4=−2,∵(y−2)3+2y+sin(y−2)=6,∴(y−2)3+2(y−2)+sin(y−2)=6−4=2,设f(t)=t3+2t+sin t,则f(t)为奇函数,且f′(t)=3t2+2+cos t>0,即函数f(t)单调递增.由题意可知f(x−2)=−2,f(y−2)=2,即f(x−2)+f(y−2)=2−2=0,即f(x−2)=−f(y−2)=f(2−y),∵函数f(t)单调递增∴x−2=2−y,即x+y=4,故选:D.10.【答案】B 【解答】设从金星开始各星与太阳的距离构成数列{a n},则a1=7,a2=10,a3=16,a4=28,a5=52,a6=100,∴a2−a1=3=3×20,a3−a2=6=3×21,a4−a3=12=3×22,a5−a4=24=3×23,……,依此类推:a n−a n−1=3×2n−2,累加得:a n−a1=3×(20+21+22+23+⋯+2n−2)=3×2n−1−3,∴a n=3×2n−1+4,则从水星开始由近到远算,第10个行星与太阳的平均距离为a9=3×256+4=772,二、填空题(本题共计 7 小题,每题 5 分,共计35分)11.【答案】i,1【解答】复数z1=1−i,z1⋅z2=1+i,可得z2=1+i1−i=(1+i)(1+i)(1−i)(1+i)=2i2=i,|z2|=1,12.【答案】5【解答】如图连接OA、OD作OE⊥ACOF⊥BD垂足分别为E、F∵AC⊥BD∴四边形OEMF为矩形已知OA=OC=2 OM=√3,设圆心O到AC、BD的距离分别为d1、d2,则d12+d22=OM2=3.四边形ABCD的面积为:s=12⋅|AC|(|BM|+|MD|),从而:s=12|AC|⋅|BD|=2√(4−d12)(4−d22)≤8−(d12+d22)=5,当且仅当d12=d22时取等号,13.【答案】210【解答】解:展开式的通项为T r+1=C n r x3n−5r。

浙江省杭州高中2020届高三数学7月仿真模拟考试试题含解析

浙江省杭州高中2020届高三数学7月仿真模拟考试试题含解析

浙江省杭州高中2020届高三数学7月仿真模拟考试试题(含解析)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x,x >0}时,A ∩B=( ) A. {x|x >﹣2} B. {x|1<x <2}C. {x|1≤x ≤2}D. ∅【答案】B 【解析】试题分析:由集合A 中的函数2lg(4)y x =-,得到240x ->,解得:22x -<<,∴集合{|22}A x x =-<<,由集合B 中的函数3,0x y x =>,得到1y >,∴集合{}1B y y =,则{|12}A B x x ⋂=<<,故选B . 考点:交集及其运算. 2.“sin 0α=”是“cos 1α=”的( ).A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】 【分析】判断两个命题:sin 0α=⇒cos 1α=和cos 1α=⇒sin 0α=的真假即可得.【详解】由于22sin cos 1αα+=,且sin 0α=,得到cos 1α=±,故充分性不成立;当cos 1α=时,sin 0α=,故必要性成立.故选:B.【点睛】本题考查充分必要条件的判断,解题方法是根据充分必要条件的定义.即判断两个命题p q ⇒和q p ⇒的真假.3.在612x x ⎛⎫- ⎪⎝⎭展开式中,常数项是( )A. 160-B. 20-C. 20D. 160【答案】A 【解析】【分析】在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项. 【详解】解:612x x ⎛⎫- ⎪⎝⎭展开式的通项公式为()()()66621662112rrrrr r rr r T C x x C x ----+=⋅⋅-⋅=-⋅⋅⋅,令620r -=,可得3r =,故612x x ⎛⎫- ⎪⎝⎭展开式的常数项为368160C -⋅=-,故选:A.【点睛】本题考查了二项式定理.本题的关键是写出展开式的通项公式.4.如图,在矩形ABCD 中,=2=3AB BC ,,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -侧视图的面积为( )A.613B.1813C.213D.313【答案】B 【解析】 【分析】画出几何体的直观图,判断出几何体的结构,由此画出几何体的侧视图,并求得侧视图面积. 【详解】画出几何体的直观图如下图所示.由正视图和俯视图可知,平面ABD ⊥平面BCD . 过A 作AE BD ⊥交BD 于E ,过C 作CF BD ⊥交BD 于F .根据面面垂直的性质定理可知AE ⊥平面BCD ,CF ⊥平面ABD .则AE CF ⊥.由于四边形ABCD 是矩形,AE CF =,所以三棱锥A BCD -的侧视图是等腰直角三角形,画出侧视图如下图所示,其中两条直角边的长度分别等于,AE CF ,由于222313BD =+=,所以112213AB AD AB AD BD AE AE BD ⨯⨯⨯=⨯⨯⇒==, 则13AE CF ==. 所以侧视图的面积为1182131313⨯⨯=.故选:B【点睛】本小题主要考查求几何体的侧视图的面积,属于中档题. 5.函数22xy x =-的图象大致是()A. B. C. D.【答案】A 【解析】【详解】因为2、4是函数的零点,所以排除B 、C ; 因为1x =-时0y <,所以排除D,故选A6.一个箱子中装有形状完全相同的5个白球和()n n N *∈个黑球.现从中有放回的摸取4次,每次都是随机摸取一球,设摸得白球个数为X ,若()1D X =,则()E X =( ) A. 1 B. 2 C. 3 D. 4【答案】B 【解析】由题意,()~4,X B P ,()()1411,2D X P P P =-=∴=,()14422E X P ==⨯=,故选B.7.已知a R ∈,函数()f x 满足:存在00x >,对任意的0x >,恒有0()()f x a f x a -≤-.则()f x 可以为( )A. ()lg f x x =B. 2()2f x x x =-+ C. ()2x f x = D. ()sin f x x =【答案】D 【解析】对于选项A,由于()lg f x x =在0x >上是增函数,值域是R ,所以不满足()()0f x a f x a -≤-恒成立;对于选项B ,()22f x x x =-+在(0,1)上是增函数,在(1,)+∞是减函数,值域是(,1]-∞,所以不满足()()0f x a f x a -≤-恒成立;对于选项C ,()2xf x =在在0x >上是增函数,值域是(1,)+∞,所以不满足()()0f x a f x a -≤-恒成立;对于选项D,()sin f x x =在x>0时的值域为[-1,1],总存在00x >,对任意的0x >,恒有()()0f x a f x a -≤-.故选D.点睛:本题的难点在于图像分析,函数()f x 满足:存在00x >,对任意的0x >,恒有()()0f x a f x a -≤-.实际上就是说函数在x>0时,必须有最大值和最小值.8.已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确是( ) A. 若30S >,则20200a > B. 若30S <,则20200a <C. 若21a a >,则20212020a a >D. 若2111a a >,则20212020a a < 【答案】D 【解析】 【分析】由特殊化思想,选择合适等比数列,利用排除法即可求解. 【详解】考查等比数列:11a =,22a =-,34a =,()1,2n n a -=-,满足30S >,但是20200a <,选项A 错误; 考查等比数列:14a =-,22a =,31a =-,()31,12n nn a -⎛⎫=-⨯ ⎪⎝⎭,满足30S <,但是20200a >,选项B 错误;该数列满足21a a >,但是202120200a a <<,选项C 错误; 对于D ,若10a >,由211111111101q a a a q a q>⇔>⇔>⇒<<,所以数列{}n a 为递减数列, 故20212020a a <正确,若10a <,由21111111110q a a a q a q>⇔>⇔<⇒<或1q >, 当1q >时,数列{}n a 为递减数列,故20212020a a <正确;当0q <时,偶数项为正,奇数项为负,故20212020a a <,综上D 选项正确. 故选:D【点睛】本题主要考查了等比数列的性质,考查了推理运算能力,特殊化思想,属于中档题.9.已知双曲线C:22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,O 为坐标原点,以12F F 为直径的圆O 与双曲线及其渐近线在第一象限的交点分别为P 、Q ,点B 为圆O 与y 轴正半轴的交点,若2POF QOB ∠=∠,则双曲线C 的离心率为( ) A. 35+ B.35+ C. 15+D.15+ 【答案】D 【解析】【详解】画出图形如图所示,由题意得双曲线在一、三象限的渐近线方程为by x a=,以12F F 为直径的圆O 的方程为222x y c +=.由222b y xax y c⎧=⎪⎨⎪+=⎩,解得x a y b =⎧⎨=⎩,故点P 的坐标为(,)a b ; 由22222221x y a b x y c ⎧-=⎪⎨⎪+=⎩,解得222x b c b y c ⎧=+⎪⎨=⎪⎩,故点Q 的坐标为222)a b c bc +. ∵2POF QOB ∠=∠, ∴2sin sin POF QOB ∠=∠,∴22b a b c c +=,整理得2b ac =, ∴22c a ac -=,故得210e e --=, 解得152e +=.选D . 点睛:求双曲线的离心率时,可将条件中所给的几何关系转化为关于,,a b c 等式或不等式,再由222c a b =+及ce a=可得到关于e 的方程或不等式,然后解方程(或不等式)可得离心率(或其范围).解题时要注意平面几何知识的运用,如何把几何图形中的位置关系化为数量关系是解题的关键.10.在三棱锥S ABC -中,ABC ∆为正三角形,设二面角S AB C --,S BC A --,S CA B --的平面角的大小分别为,,,,2παβγαβγ⎛⎫≠ ⎪⎝⎭,则下面结论正确的是( )A. 111tan tan tan αβγ++的值可能是负数 B. 32παβγ++<C. αβγπ++>D.111tan tan tan αβγ++的值恒为正数 【答案】D 【解析】 【分析】作S 在底面ABC 的投影为O ,再分别作,,OM AB ON BC OP AC ⊥⊥⊥,进而分析,,αβγ的正切值再判断即可.【详解】作S 在底面ABC 的投影O ,再分别作,,OM AB ON BC OP AC ⊥⊥⊥,设ABC ∆边长为a .①当O 在ABC ∆内时,易得,,αβγ分别为,,SMO SNO SPO ∠∠∠.由ABCABOBCOACOSSSS=++可得1110tan tan tan MO NO PO aSO SO SO SOαβγ++=++=>. 当S 无限接近O 时易得αβγ++接近0,故C 错误.②当O 在ABC ∆外时,不妨设O 在,AC BC 的延长线构成的角内. 易得,,αβγ分别为,,SMO SNO SPO ππ∠-∠-∠.由ABCABOBCOACOSSSS=--可得1110tan tan tan MO NO PO aSO SO SO SOαβγ++=--=>. 且当S 无限接近O 时易得αβγ++接近2π,故B 错误.综上,A 也错误. 故选:D【点睛】本题主要考查了二面角的分析,需要画图理解,表达出对应的二面角的平面角,再根据平面内任一点到正三角形三边的距离关系求解分析,同时也要有极限的思想分析二面角的范围问题.属于难题.二、填空题(本大题共7小题,共36分,将答案填在答题纸上)11.复数z满足:1za ii=-+(其中0a>,i为虚数单位),z=a=________;复数z的共轭复数z在复平面上对应的点在第________象限.【答案】 (1). 2 (2). 四【解析】【分析】利用复数代数形式的乘法运算化简,可求得z,再根据复数求模公式可求得a的值,进而求得z在复平面内对应点的象限。

浙江省杭州市余杭区2020学年高三数学第三次模拟题

浙江省杭州市余杭区2020学年高三数学第三次模拟题

浙江省杭州市余杭区2020学年高三第三次模拟试题文科数学试题1、已知会合S=R,A{x|x22x30},B{x||x2|2},那么会合C R A B等于()A、{x|0x3}B、{x|1x2}C、{x|x0或x3}D、{x|x1,或x2}2、已知实数a、b、c,则“ac=bc”是“a=b”的()A.充足非必需条件.B.必需非充足条件.C.充要条件.D.既非充足又非必需条件3、设等差数列{an}的前n项和是S n,且a110,a29,那么以下不等式中建立的是()A.a10a110B.a20a220C.S20S210D.S40a410 4、复数z知足i z12i,则z()A.2i B.2i C.12i D.12i5、已知两个不一样的平面、和两条不重合的直线,、m n,有以下四个命题①若m//n,m,则n②若m,m,则//③若m,m//n,n,则④若m//,n,,则m//n 此中正确命题的个数是()A.0个B.1个C.2个D.3个6、将函数y log2x的图象按向量a平移后,获取y log2x1的图象,则()4A.a=(1,2)B.a=(1,-2)C.a=(-1,2)D.a=(-1,-2)7、两个正数a、b的等差中项是5,一个等比中项是6,且a b,则双曲线x2y21的离心率e等于2a2b2()3B.15C.13D.13A.23 28、设a n(n 2,3,4,)是(3x)n的睁开式中x的一项的系数,则3233318的值是()a2a3a18A.16B.17C.18D.19a b,(ab 0 )9、定义运算a b a,(ab 0),则函数f(x)(sinx)(cosx)的最小值为()bA.-2B.-1C.0D.110、已知函数y f(x)和y g(x)在[2,2]的图象以下所示:y f(x)y g(x)给出以下四个命题:(1)方程0有且仅有6个(2)方程0有且仅有3f[g(x)]根g[f(x)]个根(3)方程f[f(x)]0有且仅有5个根(4)方程g[g(x)]0有且仅有4个根此中正确的命题个数A.1B.2C.3D.4二、填空题x1.11、lim3x2x1x212、从4名男生和3名女生中选出4名代表参加一个校际沟通活动,要求这4名代表中一定既有男生又有女生,那么不一样的选法共有种(用数字作答).13、已知对于x的不等式(a24)x2(a2)x10的解集是空集,务实数a的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考冲刺试卷
芳草香出品
浙江省杭州市2019届高考数学命题比赛模拟试题14
本试卷分为选择题和非选择题两部分。

考试时间120分种。

请考生按规定用笔将所有试题的答案标号涂、写在答题纸上。

参考公式:
球的表面积公式 柱体的体积公式
24πS R = V=Sh
球的体积公式 其中S 表示锥体的底面积,h 表示锥体的高 34π3
V R = 台体的体积公式: 其中R 表示球的半径 V=
31h (2211S S S S ++) 棱锥的体积公式 其中21,s s 分别表示台体的上、下底面积, V=3
1Sh h 表示台体的高 其中S 表示锥体的底面积, 如果事件A B ,互斥,那么
h 表示锥体的高 ()()()P A B P A P B +=+
第I 卷(选择题 共40分)
一、选择题:本大题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的。

请在答题卡指定区域内作答。

1.【原创】在复平面内,复数2)21(21i i
i z -+-=对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.【原创】盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是
310的事件为 ( ) A .恰有1只是坏的 B .恰有2只是好的 C .4只全是好的 D .至多有2只是坏的
3.【原创】在243)1(x
x -的展开式中,x 的幂指数是整数的项共有 ( ) A .3项 B .4项 C .5项 D .6项
4.【原创】已知集合{}
034|2≤+-=x x x A ,{}a x x B ≥=|,则下列选项中不是φ=B A I 的充分条件的是 ( )
A .4≥a
B .3≥a
C .3>a
D .43<<a
5.一个多面体的三视图如图所示,正视图为等腰直角三角形,俯视图
中虚线平分矩形的面积,则该多面体的表面积为 ( )
A .246+
B .224+
C .244+
D .2
6.【原创】将函数f (x )=)2
3sin(x +π(cos x -2sin x )+sin 2x 的图象向左平移π8个单位长度后得到函数g (x ),则g (x )具有性质 ( )
A .在(0,π4)上单调递增,为奇函数
B .周期为π,图象关于(π4
,0)对称 C .最大值为2,图象关于直线x =π2对称 D .在(-π2
,0)上单调递增,为偶函数 7.经过双曲线=1(a >b >0)的右焦点为F 作该双曲线一条渐近线的垂线与两条渐近线相交于M ,N 两点,若O 是坐标原点,△OMN 的面积是,则该双曲线的离心率是 ( )。

相关文档
最新文档