河北省邯郸市2016届中考数学一模试卷(解析版)
河北省邯郸市2016届中考数学一模试卷含答案解析
年河北省邯郸市中考数学一模试卷2016一、选择题(本大题共个小题,~小题,每小题分;~小题,每小题分,共分.161.在3,﹣1,0,﹣2这四个数中,最大的数是(A.0B.6C.﹣2D.32.如图所示的几何体的俯视图是(11031116342))A.B.C.D.3.一元一次不等式x+1<2的解集在数轴上表示为()A.C.B.D.4.如图,A B∥C D,A D平分∠BA C,若∠B A D=70°,那么∠A C D的度数为()A.40°B.35°C.50°D.45°5.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.6.下列计算正确的是()A.|﹣a|=a B.a2a3=a6C.D.()0=07.如图,小聪在作线段A B 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于A B 的长为半径画弧,两弧相交于C、D,则直线C D 即为所求.根据他的作图方法可知四边形A D B C 一定是()A.矩形B.菱形C.正方形D.等腰梯形8.已知:是整数,则满足条件的最小正整数n 为(A.2 B.3 C.4D.59.如图,四边形A B C D 是⊙O 的内接四边形,若∠B O D=88°,则∠B C D 的度数是())A.88°B.92°C.106°D.136°10.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+111.下列命题中逆命题是真命题的是(A.对顶角相等)B.若两个角都是45°,那么这两个角相等C.全等三角形的对应角相等D.两直线平行,同位角相等12.若关于x的方程x2﹣4x+m=0 没有实数根,则实数m 的取值范围是(A.m<﹣4 B.m>﹣4 C.m<4D.m>4)13.如图所示,正方形A B C D 的面积为12,△A B E 是等边三角形,点E 在正方形A B C D 内,在对角线A C 上有一点P,使PD+PE 的和最小,则这个最小值为()A.2 B.2 C.3 D.14.如图,在平面直角坐标系中,过点A 与x轴平行的直线交抛物线y= 于点B、C,2线段B C 的长度为6,抛物线y=﹣2x +b与y轴交于点A,则b=()A.115.已知△A B C 在正方形网格中的位置如图所示,点A、B、C、P 均在格点上,则点P 叫做△A B C 的(B.4.5C.3 D.6)A.外心B.内心C.重心D.无法确定16.如图是小李销售某种食品的总利润y元与销售量x 千克的函数图象(总利润=总销售额﹣总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中利润与销售量的函数图象,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②二、填空题(本大题共个小题,每小题分,共分.把答案写在题中横线上)431217.太阳的半径约为696 000千米,用科学记数法表示数696 000为18.若m、n 互为倒数,则mn2﹣(n﹣1)的值为19.如图所示,正五边形A B C D E的边长为1,⊙B 过五边形的顶点A、C,则劣弧AC 的长..为.20.如图,在第1 个△A BC 中,∠B=20°,A B=CB;在边A B 上任取一点D,延长C A 到A ,1 1 1 1 2使A A =A D,得到第2 个△A A D;在边A D 上任取一点E,延长A A 到A ,使A A =A E,得1 2 1 1 2 2 1 2 3 2 3 2到第3个△A A E,…按此做法继续下去,则第5 个三角形中以A 为顶点的内角度数是.2 3 5三、解答题(本大题共个小题,共分)66621.定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b= ,等式右边是通常的加法、减法及除法运算,比如:2⊗1=(1)求5⊗4 的值;=0(2)若x⊗2=1(其中x≠0),求x的值是多少?22.为了迎接体育中考,初三7 班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6 分以上(包括6 分)为合格,成绩达到9 分以上(包括9 分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:平均分方差2.4中位数合格率91.7%83.3%优秀率16.7%8.3%男生女生6.91.3(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?23.已知:如图1,Rt△A B C中,∠B A C=90°,点D是线段A C的中点,连接B D并延长至点E,使BE=2B D.连接AE,CE.(1)求证:四边形A B C E是平行四边形;(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠M E C=∠E M C,B M交A C于点N.①求证:△A B N≌△M C N;②当点M恰为AE中点时s in∠A B M=.24.已知函数y=﹣x+4的图象与函数的图象在同一坐标系内.函数y=﹣x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线A B上一点,点N与点M关于y轴对称,线段M N交y 轴于点C.(1)m=,S△A O B=;(2)如果线段 M N 被反比例函数 值;的图象分成两部分,并且这两部分长度的比为1:3,求 k 的(3)如图2,若反比例函数图象经过点 N ,此时反比例函数上存在两个点E (x ,y ) 、F (x , 1 12 y )关于原点对称且到直线 M N 的距离之比为 1:3,若 x <x 请直接写出这两点的坐标.2 1 2 25.平面上,Rt △ A B C 与直径为 CE 的半圆 O 如图 1 摆放,∠B=90°,A C=2CE=m ,B C=n ,半圆 O 交 B C 边于点 D ,将半圆 O 绕点 C 按逆时针方向旋转,点 D 随半圆 O 旋转且∠EC D 始终等于∠A C B , 旋转角记为 α(0°≤α≤180°).(1)①当 α=0°时,连接 DE ,则∠C D E= °,C D=;②当 α=180°时,=.(2)试判断:旋转过程中 的大小有无变化?请仅就图 2 的情形给出证明. (3)若 m=10,n=8,当 α=∠A C B 时,线段 B D= (4)若 m=6,n=,当半圆 O 旋转至与△ A B C 的边相切时,线段 B D=..四、解答题(共 小题,满分 分)1 1426.【探究】:某商场秋季计划购进一批进价为每条40 元的围巾进行销售根据销售经验,应季销售 时,若每条围巾的售价为60 元,则可售出400 条;若每条围巾的售价每提高1 元,销售量相应减少 10 条.(1)假设每条围巾的售价提高x 元,那么销售每条围巾所获得的利润是 条(用含 x 的代数式表示).元,销售量是(2)设应季销售利润为 y 元,请写 y 与 x 的函数关系式;并求出应季销售利润为 8000 元时每条围 巾的售价.【拓展】:根据销售经验,过季处理时,若每条围巾的售价定为30 元亏本销售,可售出 50 条;若 每条围巾的售价每降低 1 元,销售量相应增加 5 条,(1)若剩余100 条围巾需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若 使亏损金额最小,每条围巾的售价应是元.(2)若过季需要处理的围巾共 m 条,且 100≤m ≤300,过季亏损金额最小是 含 m 的代数式表示)元;(用【延伸】:若商场共购进了 500 条围巾且销售情况满足上述条件,如果应季销售利润在不低于8000 元的条件下:(1)没有售出的围巾共 m 条,则 m 的取值范围是:;(2)要使最后的总利润(销售利润=应季销售利润﹣过季亏损金额)最大,则应季销售的售价是 元.参考公式:抛物线 y=ax 2+bx+c a 0( ≠ )的顶点坐标是.年河北省邯郸市中考数学一模试卷2016 参考答案与试题解析一、选择题(本大题共 个小题, ~ 小题,每小题 分; ~ 小题,每小题 分,共 分. 16 1.在 3,﹣1,0,﹣2 这四个数中,最大的数是( A .0B .6C .﹣2D .31 10 3 11 16 3 42 )【考点】有理数大小比较.【分析】根据正数大于 0,0 大于负数,可得答案. 【解答】解:3>0>﹣2>﹣1, 故选:D .【点评】本题考查了有理数大小比较,正数大于0,0 大于负数是解题关键.2.如图所示的几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看左边一个正方形,右边一个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,注意所有看到的线的都用实线表示.3.一元一次不等式x+1<2的解集在数轴上表示为(A.B.)C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题;一元一次不等式(组)及应用.【分析】求出不等式的解集,表示出数轴上即可.【解答】解:不等式x+1<2,解得:x<1,如图所示:故选B【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.如图,A B∥C D,A D平分∠BA C,若∠B A D=70°,那么∠A C D的度数为()A .40°B .35°C .50°D .45° 【考点】平行线的性质.【分析】根据角平分线定义求出∠B A C ,根据平行线性质得出∠AC D +∠B A C=180°,代入求出即可. 【解答】解:∵AD 平分∠B A C ,∠B A D=70°, ∴∠B A C=2∠B A D =140°, ∵A B ∥C D ,∴∠A C D=180°﹣∠B A C=40°, 故选:A .【点评】本题考查了角平分线定义和平行线的性质的应用,关键是求出∠B A C 的度数,再结合 ∠A C D+∠B A C=180°.5.在一个不透明的盒子中装有 3 个红球、2 个黄球和 1 个绿球,这些球除了颜色外无其他差别.从 中随机摸出一个小球,恰好是黄球的概率为( A .B .C .D .)【考点】概率公式. 【专题】计算题.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是黄球的概率= 故选 C .= .【点评】本题考查了概率公式:随机事件A 的概率 P (A )=事件 A 可能出现的结果数除以所有可能 出现的结果数.6.下列计算正确的是( A .|﹣a |=aB .a 2 a 3=a 6C .【考点】负整数指数幂;绝对值;同底数幂的乘法;零指数幂.)D .()0=0【分析】分别根据绝对值的性质、同底数幂的乘法法则、0 指数幂及负整数指数幂的计算法则对各选项进行逐一判断即可.【解答】解:A、当a<0时,|﹣a|=﹣a,故本选项错误;B、a2 a3=a5,故本选项错误;C、(﹣2)﹣1=﹣,故本选项正确;D、()0=1,故本选项错误.故选C.【点评】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.7.如图,小聪在作线段A B 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于A B 的长为半径画弧,两弧相交于C、D,则直线C D 即为所求.根据他的作图方法可知四边形A D B C 一定是()A.矩形B.菱形C.正方形D.等腰梯形【考点】菱形的判定;线段垂直平分线的性质.【专题】压轴题.【分析】根据垂直平分线的画法得出四边形A D B C 四边的关系进而得出四边形一定是菱形.【解答】解:∵分别以A 和B 为圆心,大于A B 的长为半径画弧,两弧相交于C、D,∴A C=A D=B D=B C,∴四边形A D B C 一定是菱形,故选:B.【点评】此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.8.已知:是整数,则满足条件的最小正整数n 为()A.2B.3C.4D.5【考点】二次根式的定义.【分析】因为数n为5.是整数,且==2,则5n是完全平方数,满足条件的最小正整【解答】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故本题选D.【点评】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则全平方数和一个代数式的积的形式.=.除法法则=.解题关键是分解成一个完9.如图,四边形A B C D是⊙O的内接四边形,若∠B O D=88°,则∠B C D的度数是()A.88°B.92°C.106°D.136°【考点】圆内接四边形的性质;圆周角定理.【分析】首先根据∠B O D=88°,应用圆周角定理,求出∠B A D的度数多少;然后根据圆内接四边形的性质,可得∠BA D+∠B C D=180°,据此求出∠B C D的度数是多少即可.【解答】解:∵∠B O D=88°,∴∠B A D=88°÷2=44°,∵∠B A D+∠B C D=180°,∴∠BC D=180°﹣44°=136°,即∠B C D的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】分别利用公式法以及提取公因式法分解因式得出答案.【解答】解:A、m2+n2无法分解因式,故此选项错误;B、x2+2x﹣1无法分解因式,故此选项错误;C、a2﹣a=a(a﹣1),正确;D、a2+2a+1=(a+1)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.11.下列命题中逆命题是真命题的是(A.对顶角相等)B.若两个角都是45°,那么这两个角相等C.全等三角形的对应角相等D.两直线平行,同位角相等【考点】命题与定理.【分析】互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、逆命题是相等的角是对顶角,是假命题,故A错误;B、逆命题是如过两个角相等,那么这两个角是对顶角,是假命题,故B错误;C、逆命题是对应角相等的三角形全等,是假命题,故C错误;D、逆命题是同位角相等,两直线平行,故D正确;故选:D.【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是(A.m<﹣4B.m>﹣4C.m<4D.m>4【考点】根的判别式.)【专题】计算题.【分析】由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.﹣<,【解答】解:∵△=(﹣4)2﹣4m=164m0∴m>4.故选D【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.13.如图所示,正方形A B C D的面积为12,△A B E是等边三角形,点E在正方形A B C D内,在对角线A C上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C.3D.【考点】轴对称-最短路线问题.【专题】计算题;压轴题.【分析】由于点B与D关于A C对称,所以连接B D,与A C的交点即为P点.此时P D+PE=BE最小,而BE是等边△A B E的边,BE=A B,由正方形AB C D的面积为12,可求出A B的长,从而得出结果.【解答】解:设B E与A C交于点F(P′),连接B D,∵点B与D关于A C对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在A C与BE的交点上时,PD+PE最小,为BE的长度;∵正方形A B C D的面积为12,∴A B=2.又∵△A BE是等边三角形,∴BE=A B=2.故所求最小值为2.故选:A.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.14.如图,在平面直角坐标系中,过点A与x轴平行的直线交抛物线y=于点B、C,线段B C的长度为6,抛物线y=﹣2x2+b与轴交于点,则b=(y A)A.1【考点】二次函数的性质.【分析】根据题意知点A(0,b),设点C(x,b)、点B(x,b),则x、x是方程B.4.5C.3D.61212=b的两根,根据B C长度可得x﹣x=6即(x+x)2﹣4x x=36,由韦达定理将x+x、x x代入求1212121212解可得.【解答】解:根据题意点A(0,b),设点C(x,b)、点B(x,b),12抛物线y=中,当y=b时,有=b,即:x2+2x+1 3b=0﹣,∴x +x =﹣2,x x =1﹣3b,1 2 1 2∵BC=6,即x ﹣x =6,1 2∴(x ﹣x)2=36,即(x +x)2﹣4x x =36,1 2 1 2 1 2则:4﹣4(1﹣3b)=36,解得:b=3,故选:C.【点评】本题考查了二次函数性质,根据二次函数与一元二次方程间的关系,结合平行于x 轴上的两点之间的距离是解决本题的关键.15.已知△A B C 在正方形网格中的位置如图所示,点A、B、C、P 均在格点上,则点P 叫做△A B C 的()A.外心B.内心C.重心D.无法确定【考点】三角形的重心.【专题】网格型.【分析】根据三角形的重心的概念进行判断即可.【解答】解:由网格中图可知,点D 为A C 的中点,点E 为BC 的中点,则AE、B D 的交点P 是△A B C 的重心.故选:C.【点评】本题考查的是三角形的重心的概念,掌握三角形的重心是三角形三边中线的交点是解题的关键.16.如图是小李销售某种食品的总利润y元与销售量x 千克的函数图象(总利润=总销售额﹣总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中利润与销售量的函数图象,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②【考点】一次函数的应用.【分析】逐条分析4 个图象的变化得知:①售价不变,总成本减少;②售价不变,总成本增加;③总成本不变,售价增加;④总成本不变,售价减少,对照制定的两个方案即可得出结论.【解答】解:①根据函数图象可知,斜率不变,与y轴交点上移,即售价不变,总成本减少;②根据函数图象可知,斜率不变,与y轴交点下移,即售价不变,总成本增加;③根据函数图象可知,斜率变大,与y轴交点不变,即总成本不变,售价增加;④根据函数图象可知,斜率变小,与y轴交点不变,即总成本不变,售价减少.表示方案(1)的图象为①,表示方案(2)的图象为③.故选B.【点评】本题考查了一次函数的应用,解题的关键是根据函数的性质分析4 个图象.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的性质分析图象是关键.二、填空题(本大题共个小题,每小题分,共分.把答案写在题中横线上)431217.太阳的半径约为696 000千米,用科学记数法表示数696 000为6.96×10.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10的形式,其中≤<,为整数.确定的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n是正数;当原数的绝对值<1 时,n是负数.n 1 |a|10n n【解答】解:696000=6.96×10,5故答案为:6.96×10.5【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中≤<,n 1 |a|10 n为整数,表示时关键要正确确定a的值以及n的值.18.若m、n 互为倒数,则mn2﹣(n﹣1)的值为1.【考点】代数式求值;倒数.【分析】由m,n 互为倒数可知mn=1,代入代数式即可.【解答】解:因为m,n 互为倒数可得mn=1,所以mn ﹣(﹣)﹣(﹣).2 n1=n n1=1【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;19.如图所示,正五边形A B C D E 的边长为1,⊙B 过五边形的顶点A、C,则劣弧A C 的长为π.【考点】正多边形和圆;弧长的计算.【分析】由正五边形的性质好内角和定理得出∠B=108°,然后由弧长公式即可得出结果.【解答】解:∵五边形A B C D E 是正五边形,∴∠B= (5﹣2)×180°=108°,∴劣弧A C 的长= = π;故答案为:.【点评】本题考查了正五边形的性质、多边形内角和定理、弧长公式;熟练掌握正五边形的性质,由内角和定理求出∠B 的度数是解决问题的关键.20.如图,在第1个△A B C中,∠B=20°,A B=C B;在边A B上任取一点D,延长C A到A,11112使A A=A D,得到第2个△A A D;在边A D上任取一点E,延长A A到A,使A A=A E,得121122123232到第3个△A A E,…按此做法继续下去,则第5个三角形中以A为顶点的内角度数是5°.235【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠B A C的度数,再根据三角形外角的性质及等腰三角形的性1质分别求出∠D A A,∠E A A及∠F A A的度数,找出规律即可得出第n个三角形中以A为顶点213243n的内角度数.【解答】解:∵在△C B A中,∠B=20°,A B=C B,11∴∠B A C==80°,1∵A A=A D,∠B A C是△A A D的外角,121112∴∠D A A=∠B A C=×80°;211同理可得,∠E A A=()2×80°,∠FA A=()3×80°,3243∴第n个三角形中以A为顶点的内角度数是()n﹣1×80°.n∴第5个三角形中以A为顶点的内角度数为:=5°,5故答案为:5°.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA A,∠E A A2132及∠F A A的度数,找出规律是解答此题的关键.43三、解答题(本大题共个小题,共分)66621.定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=,等式右边是通常的加法、减法及除法运算,比如:2⊗1=(1)求5⊗4的值;=0(2)若x⊗2=1(其中x≠0),求x的值是多少?【考点】解分式方程;实数的运算.【专题】新定义.【分析】(1)根据新定义的新运算,即可解答;(2)根据新定义运算得到分式方程,解分式方程即可.【解答】解:(1)根据题意得:5⊗4==0.(2)∵x⊗2=1,∴在方程两边同乘x得:1﹣(x﹣2)=x,解得:x=,检验:当x=时,x≠0,∴分式方程的解为:x=.【点评】本题考查了解分式方程,解决本题的关键是熟记解分式方程的步骤.22.为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:平均分方差2.4中位数合格率91.7%83.3%优秀率16.7%8.3%男生女生6.97771.3(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?【考点】方差;一元一次方程的应用;条形统计图;加权平均数;中位数.【分析】(1)本题需先根据中位数的定义,再结合统计图得出它们的平均分和中位数即可求出答案;(2)本题需先根据以上表格,再结合女生的平均分和方差两方面说出支持女生的观点;(3)根据之前男、女生优秀人数+新增男、女生优秀人数=总人数×50%,列方程求解可得.【解答】解:(1)由条形统计图可知,男生一共2+6+8+4+4=24人,其中位数是第12、第13个数的平均数,第12、13两数均为7,故男生中位数是7;女生成绩平均分为:=7(分),其中位数是:=7(分);补充完成的成绩统计分析表如下:方差2.4中位数合格率91.7%83.3%优秀率16.7%8.3%男生女生6.97771.3(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小;(3)设男生新增优秀人数为x人,则:2+4+x++2x=48×50%,解得:x=6,故6×2=12(人).答:男生新增优秀人数为6人,女生新增优秀人数为12人.【点评】本题考查的是条形统计图的综合运用.熟练进行平均数和中位数的计算是基础,读懂统计图,从统计图中得到必要的信息是解决问题的关键.23.已知:如图1,Rt△A B C中,∠B A C=90°,点D是线段A C的中点,连接B D并延长至点E,使BE=2B D.连接AE,CE.(1)求证:四边形A B C E是平行四边形;(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠M E C=∠E M C,B M交A C于点N.①求证:△A B N≌△M C N;②当点M恰为AE中点时s in∠A B M=.【考点】四边形综合题.【分析】(1)先证B D=D E,再加上A D=D C的条件可直接得出结论;(2)①先C M=C E=B A,然后由“角角边”定理直接得出结论;②由M是AE中点,得出C M=E M=A M,再结合C E=C M,可证得△CE M是等边三角形,从而∠C M A=∠A B M=30°.【解答】解:(1)∵点D是线段A C的中点,BE=2B D,∴A D=C D,D E=B D,∴四边形A B C E是平行四边形.(1)①∵四边形A B C E是平行四边形,∴CE=A B,∵∠M E C=∠E M C,∴C M=A B,在△A B N和△M C N中,,∴△A B N≌△M C N(A AS);②∵∠A CE=∠CA B=90°,M为A E中点,∴C M=E M=A M,∵CE=C M,∴CE=C M=E M,∴△CE M是等边三角形,∴∠C M E=2∠M C A=60°,∴∠M C A=30°,∵△A B N≌△M C N,∴∠A B M=∠M C A=30°,∴s in∠A B M=.【点评】本题为四边形综合题,主要考查了平行四边形的判定与性质、全等三角形的判定与性质、直角三角形斜边中线定理、等边三角形的判定与性质、特殊角的三角函数等知识点,难度不大,属中档题.24.已知函数y=﹣x+4的图象与函数的图象在同一坐标系内.函数y=﹣x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线A B上一点,点N与点M关于y轴对称,线段M N交y 轴于点C.(1)m=2,S△A O B=8;的图象分成两部分,并且这两部分长度的比为1:3,求k的(2)如果线段M N被反比例函数值;(3)如图2,若反比例函数图象经过点N,此时反比例函数上存在两个点E(x,y)、F(x,112y)关于原点对称且到直线M N的距离之比为1:3,若x<x请直接写出这两点的坐标.212【考点】反比例函数综合题.【分析】(1)利用点在函数图象上的特点求出m,以及平面直角坐标系中三角形的面积的计算方法(利用坐标轴或平行于坐标轴的直线上的边作为底).(2)利用点的对称点的坐标特点求出N点的坐标,线段M N的图象分成两部分,并且这两部分长度的比为1:3,且交点为D,分两种情况或计算即可.(3)利用点到平行于坐标轴的直线的距离的计算方法以及和(2)类似的方法分两种情况处理,取绝对值时,也要分情况计算.【解答】解:(1)∵M(2,m)在直线y=﹣x+4的图象上,∴m=﹣2+4=2,函数y=﹣x+4的图象与坐标轴交于A、B两点,∴A(4,0),B(0,4),∴O A=4,O B=4,∴S△A O B=O A×O B=×4×4=8.故答案为m=2,S△A O B=8.(2)∵m=2,∴M(2,2),∵点N与点M关于y轴对称,∴N(﹣2,2),∴M N=4,∵线段M N被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,且交点为D,①当时,即:,∴N D=1,∴D(﹣1,2),∴k=﹣1×2=﹣2,②当时,即:,∴D M=M N=×4=1,∴D(1,2),∴k=1×2=2.故k的值为﹣2或2.(3)反比例函数∴k=﹣2×2=﹣4,图象经过点N,且N(﹣2,2),∵反比例函数上存在两个点E(x,y)、F(x,y),1122∴x y=﹣4x,y=﹣4,1122∵点E(x,y)、F(x,y)关于原点对称,1122∴x=﹣x,y=﹣y,2121∵M(2,2),N(﹣2,2),∴点E到直线M N的距离为|y﹣2|,点F到直线M N的距离为|y+2|,11∵点E(x,y)、F(x,y)到直线M N的距离之比为1:3,1122∴点E(x,y)、F(﹣x,﹣y)到直线M N的距离之比为1:3,1111①当时,即:3|y﹣2|=|y+2|11当y>2时,3y﹣6=y+2,111∴y=4,1∴y=﹣4,x=﹣1,x=1212当﹣2<y≤2时,﹣3y+6=y+2,111∴y=1,1∴y=﹣1,x=﹣4,x=4212当y≤﹣2时,﹣3y+6=﹣y+2,111∴y=2(舍),1②当时,即:3|y+2|=|y﹣2|,11当y>2时,3y+6=y﹣2,111∴y=﹣4(舍),1当﹣2<y≤2时,3y+6=﹣y+2,111∴y=﹣1,1∴y=1,x=4,x=﹣4(∵x<x,舍),21212当y≤﹣2时,﹣3y﹣6=﹣y+2,111∴y=﹣4,1∴y=4,x=1,x=﹣1(∵x<x,舍),21212∴E(﹣4,1),F(1,﹣4)E(﹣4,1),F(4,﹣1)【点评】本题是反比例函数的一道综合题,主要考查了点在函数图象上的特点,如求出m,坐标系中计算三角形面积的方法,利用坐标求两点之间的距离和点到直线的距离,如计算N D,M D,点E,F到直线M N的距离,本题的关键是确定确定两点的距离和点到直线的距离的确定,又用到了分几种情况计算,易丢掉其中一种情况.25.平面上,Rt△A B C与直径为CE的半圆O如图1摆放,∠B=90°,A C=2CE=m,B C=n,半圆O 交B C边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠EC D始终等于∠A C B,旋转角记为α(0°≤α≤180°).(1)①当α=0°时,连接DE,则∠C D E=90°,C D=(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)若m=10,n=8,当α=∠A C B时,线段B D=n;②当α=180°时,=..(4)若m=6,n=,当半圆O旋转至与△A B C的边相切时,线段B D=2或.【考点】圆的综合题.【分析】(1)①根据直径的性质,由DE∥A B得即可解决问题.②求出B D、A E即可解决问题.(2)只要证明△A C E∽△B C D即可.(3)求出A B、A E,利用△A CE∽△B C D即可解决问题.。
河北省2016届中考数学模拟试卷(一)含答案解析
2016年河北省中考数学模拟试卷(一)一、选择题:本大题共16题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算4﹣(﹣4)0的结果是()A.0 B.2 C.3 D.42.下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣103.如图,已知直线a∥b,点A、B、C在直线a上,点D、E、F在直线b上,AB=EF=2,若△CEF 的面积为5,则△ABD的面积为()A.2 B.4 C.5 D.104.下列说法中,不正确的是()A.5是25的算术平方根B.m2n与mn2是同类项C.多项式﹣3a3b+7ab+1的次数是4D.﹣8的立方根为﹣25.已知不等式组,则该不等式组的解集(阴影部分)在数轴上表示正确的是()A.B.C.D.6.如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A′B′C′B.∠BOC=∠B′A′C′C.AB=A′B′D.OA=OA′7.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A.150πcm2B.200πcm2C.300πcm2D.400πcm28.将抛物线y=x2先向右平移2个单位长度,再向上平移4个单位长度,得到的新的抛物线的解析式为()A.y=(x+2)2+4 B.y=(x+2)2﹣4 C.y=(x﹣2)2+4 D.y=(x﹣2)2﹣49.如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()A.B.C.D.10.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π11.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N 两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°12.如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0) B.(0,1) C.(1,﹣1)D.(1,0)13.若关于x的一元二次方程kx2﹣4x+2=0有实数根,则k的非负整数值为()A.1 B.0,1 C.1,2 D.0,1,214.如图,在△ABC中,∠ABC>90°,∠C=30°,BC=12,P是BC上的一个动点,过点P作PD⊥AC 于点D,设CP=x,△CDP的面积为y,则y与x之间的函数图象大致为()A.B.C.D.15.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM 即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确16.如图,四边形OABC是菱形,对角线OB在x轴负半轴上,位于第二象限的点A和第三象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作y轴的垂线,垂足分别为E和F.下列结论:①|k1|=|k2|;②AE=CF;③若四边形OABC是正方形,则∠EAO=45°.其中正确的有()A.0个B.1个C.2个D.3个二、填空题:本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.17.分解因式:x3﹣2x2y+xy2=.18.若x=﹣2,则代数式x2+1的值为.19.如图,鹏鹏从点P出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P时,一共走了100米,则α的度数为.20.如图,在矩形ABCD中,AD=4,AB=2,连接其对边中点,得到四个矩形,顺次连接AF、FG、AE三边的中点,得到三角形①;连接矩形GMCH对边的中点,又得到四个矩形,顺次连接GQ、QP、GN三边的中点,得到三角形②;…;如此操作下去,得到三角形,则三角形的面积为.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.22.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.24.为普及消防安全知识,预防和减少各类火灾事故的发生,2015年11月,河北内丘中学邀请邢台市安全防火中心的相关人员,为全校教师举行了一场以“珍爱生命,远离火灾”为主题的消防安全知识讲座.在该知识讲座结束后,王老师组织了一场消防安全知识竞赛活动,其中九年级有七个班参赛.在竞赛结束后,王老师对九年级的获奖人数进行统计,得到每班平均有10人获奖,王老师将每班获奖人数绘制成如图所示的不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出九年级获奖人数最多的班级是班;(2)求九年级七个班的获奖人数的这组数据的中位数;(3)若八年级参赛的总人数比九年级的多50名,获奖总人数比九年级多10名,但八年级和九年级获奖人数的百分比相同,求八年级参加竞赛的总人数.25.2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?26.四边形ABCD是⊙O的内接正方形,AD=8,EB、EC是⊙O的两条,切点分别为B、C,P是边AB上的动点,连接DP.(1)如图1,当点P与点B重合时,连接OC.①求∠E的度数;②求CE的长度;(2)如图2,当点P在AB上,且AP<AB时,过点P作FP⊥DP于点P,交BE于点F,连接DF.①试判断DP与FP之间的数量关系,并说明理由;②若,求DP的长度.2016年河北省中考数学模拟试卷(一)参考答案与试题解析一、选择题:本大题共16题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算4﹣(﹣4)0的结果是()A.0 B.2 C.3 D.4【考点】零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:原式=4﹣1=3,故选:C.【点评】本题考查了零指数幂,利用非零的零次幂等于1得出(﹣4)0=1是解题关键.2.下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣10【考点】实数大小比较.【分析】根据绝对值、算术平方根、负整数指数幂的性质判断各数的符号,根据正实数大于一切负实数解答即可.【解答】解:∵1、、2×10﹣10都是正数,﹣|﹣2|是负数,∴最小的数是﹣|﹣2|.故选:B.【点评】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.3.如图,已知直线a∥b,点A、B、C在直线a上,点D、E、F在直线b上,AB=EF=2,若△CEF 的面积为5,则△ABD的面积为()A.2 B.4 C.5 D.10【考点】平行线之间的距离;三角形的面积.【分析】△CEF与△ABD是等底等高的两个三角形,它们的面积相等.【解答】解:∵直线a∥b,点A、B、C在直线a上,∴点D到直线a的距离与点C到直线B的距离相等.又∵AB=EF=2,∴△CEF与△ABD是等底等高的两个三角形,∴S△ABD=S△CEF=5,故选:C.【点评】本题考查了平行线间的距离和三角形的面积.注意:平行线间的距离处处相等.4.下列说法中,不正确的是()A.5是25的算术平方根B.m2n与mn2是同类项C.多项式﹣3a3b+7ab+1的次数是4D.﹣8的立方根为﹣2【考点】算术平方根;立方根;同类项;多项式.【分析】分别利用算术平方根以及多项式的次数、同类项的定义、立方根的定义分别分析得出答案.【解答】解:A、5是25的算术平方根,正确,不合题意;B、m2n与mn2不是同类项,故此选项错误,符合题意;C、多项式﹣3a3b+7ab+1的次数是4,正确,不合题意;D、﹣8的立方根为﹣2,正确,不合题意.故选:B.【点评】此题主要考查了算术平方根以及多项式的次数、同类项的定义、立方根的定义等知识,正确掌握相关定义是解题关键.5.已知不等式组,则该不等式组的解集(阴影部分)在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由x+2>1,得x>﹣1,由x+3≤5,得x≤2,不等式组的解集为﹣1<x≤2,故选:D.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A′B′C′B.∠BOC=∠B′A′C′C.AB=A′B′D.OA=OA′【考点】中心对称.【分析】根据中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解可得即可.【解答】解:因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选B.【点评】本题主要考查了中心对称的定义,解题的关键是熟记中心对称的定义.也可用三角形全等来求解.7.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A.150πcm2B.200πcm2C.300πcm2D.400πcm2【考点】由三视图判断几何体.【分析】首先根据商品的外包装盒的三视图确定几何体的形状是圆柱,然后根据圆柱的侧面积=底面周长×高,求出这个包装盒的侧面积即可.【解答】解:根据图示,可得商品的外包装盒是底面直径是10cm,高是15cm的圆柱,则这个包装盒的侧面积为:10π×15=150π(cm2);故选:A.【点评】此题主要考查了由三视图判断几何体,关键是分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.8.将抛物线y=x2先向右平移2个单位长度,再向上平移4个单位长度,得到的新的抛物线的解析式为()A.y=(x+2)2+4 B.y=(x+2)2﹣4 C.y=(x﹣2)2+4 D.y=(x﹣2)2﹣4【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=x2先向右平移2个单位长度,得:y=(x﹣2)2;再向上平移4个单位长度,得:y=(x﹣2)2+4.故选C.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.9.如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()A.B.C.D.【考点】几何概率.【分析】先求出阴影部分的面积占整个大正方形面积的,再根据概率公式即可得出答案.【解答】解:∵阴影部分的面积占总面积的,∴飞镖落在阴影部分的概率为;故选A.【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比;关键是求出阴影部分的面积.10.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π【考点】弧长的计算;圆内接四边形的性质.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选:B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式l=.11.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N 两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°【考点】勾股定理的逆定理;方向角.【专题】应用题.【分析】求出OM2+ON2=MN2,根据勾股定理的逆定理得出∠MON=90°,根据平角定义求出即可.【解答】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°,故选C.【点评】本题考查了勾股定理的逆定理的应用,能根据勾股定理的逆定理求出∠MON=90°是解此题的关键.12.如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0) B.(0,1) C.(1,﹣1)D.(1,0)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.13.若关于x的一元二次方程kx2﹣4x+2=0有实数根,则k的非负整数值为()A.1 B.0,1 C.1,2 D.0,1,2【考点】根的判别式;一元二次方程的定义.【分析】根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.【解答】解:根据题意得:△=16﹣8k≥0,且k≠0,解得:k≤2且k≠0,则k的非负整数值为1或2.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.如图,在△ABC中,∠ABC>90°,∠C=30°,BC=12,P是BC上的一个动点,过点P作PD⊥AC 于点D,设CP=x,△CDP的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】由含30°角的直角三角形的性质得出PD=PC=x,求出CD=PD=x,由三角形的面积公式得出y=x2(0<x≤12),由二次函数的图象和自变量的取值范围即可得出结果.【解答】解:∵PD⊥AC,∴∠CDP=90°,∵∠C=30°,∴PD=PC=x,∴CD=PD=x,∴△CDP的面积y=PD•CD=×x×x=x2,x的取值范围为:0<x≤12,即y=x2(0<x≤12),∵>0,∴二次函数图形的开口向上,顶点为(0,0),图象在第一象限.故选:A.【点评】本题考查动点问题的函数图象、含30°角的直角三角形的性质、三角形面积的计算、二次函数的图象;求出y是x的二次函数是解决问题的突破口.15.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM 即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确【考点】翻折变换(折叠问题).【分析】在图1中,由BM=2BF推出∠BMF=30°,所以∠MBF=60°,再根据等边三角形的判定方法即可证明.在图2中,证明方法类似.【解答】解:图1中,∵四边形ABCD是正方形,∴AB=AD=BC∵AE=ED=BF=FC,AB=BM,∴BM=2BF,∵∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC,∴△MBC是等边三角形,∴张萌的作法正确.在图2中,∵BM=BC=2BF,∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC∴△MBC是等边三角形,∴小平的作法正确.故选D.【点评】本题考查正方形的性质、翻折不变性、直角三角形的性质,解题的关键是在一个直角三角形中如果斜边是直角边的两倍那么这条直角边所对的锐角是30度.16.如图,四边形OABC是菱形,对角线OB在x轴负半轴上,位于第二象限的点A和第三象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作y轴的垂线,垂足分别为E和F.下列结论:①|k1|=|k2|;②AE=CF;③若四边形OABC是正方形,则∠EAO=45°.其中正确的有()A.0个B.1个C.2个D.3个【考点】反比例函数综合题.【分析】连接AC交OB于D,由菱形的性质得出AC⊥OB,AD=CD,BD=OD,得出△AOD的面积=△COD的面积,由三角形的面积与k的关系即可得出①正确;证出四边形ADOE是矩形,得出AE=DO,同理:CF=DO,得出AE=CF,②正确;若四边形OABC是正方形,则∠AOB=45°,得出∠AOE=45°,求出∠EAO=45°,③正确;即可得出结论.【解答】解:连接AC交OB于D,如图所示:∵四边形OABC是菱形,∴AC⊥OB,AD=CD,BD=OD,∴△AOD的面积=△COD的面积,∵△AOD的面积=|k1|,△COD的面积=|k2|,∴|k1|=|k2|,①正确;∵AE⊥y轴,AC⊥BD,∴∠AEO=∠ADO=90°,∵∠DOE=90°,∴四边形ADOE是矩形,∴AE=DO,同理:CF=DO,∴AE=CF,②正确;若四边形OABC是正方形,则∠AOB=45°,∴∠AOE=90°﹣45°=45°,∵∠AEO=90°,∴∠EAO=45°,③正确;正确的有3个,故选:D.【点评】本题是反比例函数的综合题,考查了反比例函数的图象、反比例函数k的几何意义、菱形的性质、矩形的判定与性质以及正方形的性质;熟练掌握菱形的对角线互相垂直平分的性质是解题的关键.二、填空题:本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.17.分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.若x=﹣2,则代数式x2+1的值为10﹣4.【考点】二次根式的化简求值.【分析】把x的值代入所求的代数式进行化简求值即可.【解答】解:把x=﹣2代入x2+1,得(﹣2)2+1=()2﹣4+4+1=10﹣4.故答案是:10﹣4.【点评】本题考查了二次根式的化简求值.解题的关键是数学完全平方差公式.19.如图,鹏鹏从点P出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P时,一共走了100米,则α的度数为36°.【考点】多边形内角与外角.【分析】第一次回到出发点A时,所经过的路线正好构成一个的正多边形,用100÷10=10,求得边数,再根据多边形的外角和为360°,即可求解.【解答】解:∵第一次回到出发点A时,所经过的路线正好构成一个的正多边形,∴正多边形的边数为:100÷10=10,根据多边形的外角和为360°,∴则他每次转动的角度为:360°÷10=36°,故答案为:36°.【点评】本题考查了多边形的内角与外角,解决本题的关键是明确第一次回到出发点A时,所经过的路线正好构成一个正多边形.20.如图,在矩形ABCD中,AD=4,AB=2,连接其对边中点,得到四个矩形,顺次连接AF、FG、AE三边的中点,得到三角形①;连接矩形GMCH对边的中点,又得到四个矩形,顺次连接GQ、QP、GN三边的中点,得到三角形②;…;如此操作下去,得到三角形,则三角形的面积为.【考点】矩形的性质.【专题】规律型.【分析】根据矩形的性质和三角形的面积公式求出三角形①、②、③的面积,得出规律写出第n 个三角形的面积.【解答】解:∵矩形ABCD的长AD=4,宽AB=2,∴AF=2,AE=1,=×2×=;则S三角形①S=×1×=;三角形②=××=;S三角形③…=,∴S三角形n故答案为:.【点评】本题考查的是矩形的性质,掌握三角形的面积公式、通过计算找出规律是解题的关键.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.【考点】解二元一次方程组;解一元一次方程.【专题】新定义;一次方程(组)及应用.【分析】(1)已知等式根据题中的新定义化简,将x的值代入即可求出y的值;(2)已知等式利用题中的新定义化简组成方程组,求出方程组的解即可得到x与y的值.【解答】解:(1)根据题意得:2◎4=2x+4y=﹣18,把x=﹣5代入得:﹣10+4y=﹣18,解得:y=﹣2;(2)根据题意得:,②﹣①得:x=2,把x=2代入得:y=6.【点评】此题考查了解二元一次方程组,弄清题中的新定义是解本题的关键.22.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.【考点】作图—复杂作图;菱形的判定.【专题】作图题;证明题.【分析】(1)利用基本作图(作已知角的平分线)作AP平分∠DAB;(2)先利用平行线的性质得∠DAP=∠APB=55°,再利用角平分线定义得∠BAP=∠DAP=55°,然后根据三角形内角和计算∠ABP的度数;(2)先由∠BAP=∠APB得到BA=BP,再判断△ABF为等腰三角形得到AB=AF,所以AF=BP,则可判断四边形ABPF是平行四边形,然后加上AB=BP可判断四边形ABPF是菱形.【解答】(1)解:如图,AP为所作;(2)解:∵AD∥BC,∴∠DAP=∠APB=55°,∵AP平分∠DAB,∴∠BAP=∠DAP=55°,∴∠ABP=180°﹣55°﹣55°=70°;(2)证明:∵∠BAP=∠APB,∴BA=BP,∵BE=FE,AE平分∠BAF,∴△ABF为等腰三角形,∴AB=AF,∴AF=BP,而AF∥BP,∴四边形ABPF是平行四边形,∵AB=BP,∴四边形ABPF是菱形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】一次函数图象与几何变换.【分析】(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程;(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可;(3)根据点B的坐标求得直线l2的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.【点评】本题考查了用待定系数法求一次函数的解析式,平移的性质,一次函数图象上点的坐标特征,三角形的面积的应用,能理解每个点的求法是解此题的关键.24.为普及消防安全知识,预防和减少各类火灾事故的发生,2015年11月,河北内丘中学邀请邢台市安全防火中心的相关人员,为全校教师举行了一场以“珍爱生命,远离火灾”为主题的消防安全知识讲座.在该知识讲座结束后,王老师组织了一场消防安全知识竞赛活动,其中九年级有七个班参赛.在竞赛结束后,王老师对九年级的获奖人数进行统计,得到每班平均有10人获奖,王老师将每班获奖人数绘制成如图所示的不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出九年级获奖人数最多的班级是(3)班;(2)求九年级七个班的获奖人数的这组数据的中位数;(3)若八年级参赛的总人数比九年级的多50名,获奖总人数比九年级多10名,但八年级和九年级获奖人数的百分比相同,求八年级参加竞赛的总人数.【考点】折线统计图;中位数.【分析】(1)先求出九年级有七个班的获奖人数,减去给出的6个班的获奖人数,可得(3)班获奖人数,依此将折线统计图补充完整,再比较大小可得九年级获奖人数最多的班级;(2)根据中位数的定义求出九年级七个班的获奖人数的这组数据的中位数;(3)设八年级参加竞赛的总人数为x人,根据等量关系:八年级和九年级获奖人数的百分比相同,列出方程求解即可.【解答】解:(1)10×8﹣(8+11+6+9+12+10)=80﹣66=14(人),如图所示:故九年级获奖人数最多的班级是(3)班;故答案为:(3)(2)从小到大排列为6,8,9,10,11,12,14,正中间的数是10,九年级七个班的获奖人数的这组数据的中位数是10;(3)设八年级参加竞赛的总人数为x人,依题意有=,解得x=400,经检验x=400是原分式方程的解.故八年级参加竞赛的总人数为400人.【点评】本题考查的折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,用到的知识点是中位数的定义.25.2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?。
2016年河北省中考数学考卷+解析
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个图形是轴对称图形?()A. 等边三角形B. 等腰梯形C. 长方形D. 平行四边形2. 下列各数中,无理数是()A. √9B. √16C. πD. √363. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = 1/x4. 下列关于x的不等式中,解集为全体实数的是()A. x² > 0B. x² < 0C. x² ≤ 0D. x² ≥ 05. 下列关于一元二次方程的解法,正确的是()A. 配方法B. 因式分解法C. 公式法二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个平行四边形都是相似的。
()3. 两个等腰三角形的底角相等。
()4. 一元二次方程的解一定是实数。
()5. 两条平行线的斜率相等。
()三、填空题(每题1分,共5分)1. 已知a、b互为相反数,且|a| = 5,则a + b = _______。
2. 一元二次方程x² 2x 3 = 0的解为x₁ = _______,x₂ =_______。
3. 函数y = 2x + 1的图像是一条直线,斜率为_______,截距为_______。
4. 平行四边形的对边相等,若其中一边长为8cm,另一边长为_______cm。
5. 等腰直角三角形的两条腰长分别为_______和_______。
四、简答题(每题2分,共10分)1. 请解释有理数和无理数的区别。
2. 简述一元二次方程的解法。
3. 什么是函数的单调性?4. 请列举三种常见的几何图形及其性质。
5. 如何求解二元一次方程组?五、应用题(每题2分,共10分)1. 某商店举行打折活动,一件商品原价为200元,打八折后售价为多少元?2. 一辆汽车行驶100km,速度为60km/h,求行驶这段路程所需时间。
2016年河北省邯郸市中考一模各科试题
2016年邯郸市初中毕业生模拟考试(一)理科综合参考答案及评分标准一、选择题(本大题共22个小题,共47分;)二、填空及简答题(本大题共9个小题,34 分)23.(1)流体中流速大的位置压强小(2)飞机在上升过程中能量是如何转化的?内能转化成机械能。
其他正确答案参照给分。
24.图略 增大25.汽化(或蒸发) 凝华 减小26.金属外壳 电能表的标定电流为3A(其他正确答案参照给分) 1kW 27. 不可再生 CH 4+2O2 CO 2+2H 2O 聚变28.(1)2H 2O 2 2H 2O +O 2↑(2)温度没有达到着火点或氧气浓度不够 (3)铁丝燃烧消耗了瓶中的氧气,同时放出大量的热,使气体逸出,冷却后瓶内压强小于外界大气压 29.(1)燃烧,乳化 (2)温度 (3)吸附 (4)涂油 30.(1)氧气 1:2 (2)引流 (3)偏右 是 31.(1)H 2O 高炉炼铁(2)CO 2 Na 2CO 3+Ca(OH)2=CaCO 3↓+2NaOH(其他合理答案也可) 三、实验探究题(本大题共4个小题,共22分)32.(1)匀速直线 二力平衡 (2)①B ②D 33.(1)杠杆平衡条件 3F 1 (2) 水能完全浸没金属块但又没有水溢出 变小 3F 1-3F 2 (3) F 1ρ水/ (F 1−F 2) 34.(1)图略 (2)断开 B (3)A 1.52 (4)不成 灯丝电阻随温度的升高而增大 35. [实验探究1] 氢气 检验纯度[猜想与假设] CuO[实验验证] 稀硫酸或稀盐酸 固体全部溶解形成蓝色溶液 [实验结论] 2NaOH + CuSO 4 = Na 2SO 4 + Cu(OH)2↓[反思与交流] 钠和水反应放热,使氢氧化铜分解,产生氧化铜。
四、计算应用题(本大题共3个小题,共18分。
) 36.解:(1)用这瓶浓盐酸来配制100g 溶质质量分数为7.3%的稀盐酸,需量取这种浓盐酸的质量是=20g ;(2)设 参加反应的碳酸钙的质量为xCaCO 3 + 2HCl = CaCl 2 + H 2O + CO 2↑100 44gx3.344100 MnO 2点燃x 3.3 g x = 7.5gCaCO 3 + 2HCl = CaCl 2 + H 2O + CO 2↑100 73%3.7g 7573100⨯=x x 75g×7.3% x = 7.5g答:该石灰石中碳酸钙的质量为7.5g ; 物23由于重物始终匀速上升,所以在第一阶段中,重物在水中上升的高度为:h 1=υt 1=0.05m/s×40s=2m ...........................................(1分)38. 解:(1)保温状态.......................................................(1分)(2)设加热所需时间为t :热胆内水的质量:m =ρV =1.0×103kg/m 3×2×10﹣3m 3=2kg ................(1分) 由题意得,ηW =Q 吸 即ηPt =cm (t 2﹣t 1)则t =P t t cm η)(12-s 7351000W80%C 20-C (90kg 2C kg J/102.43=⨯︒︒⨯⨯︒∙⨯=))(......(2分)(3)当开关闭合时,R 1被短路,此时处于加热状态,由P =UI =RU 2得,R 2===48.4Ω.................................(1分)S 1断开时,饮水机处于保温状态,两电阻串联,由P =UI =RU 2得,R 总===1210Ω..............................(1分)则R 1=R 总﹣R 2=1210Ω﹣48.4Ω=1161.6Ω.......................(1分)。
2016年河北省初中毕业生升学文化课模拟考试数学试卷(Word版,有答案) Word版含答案
2016年河北省初中毕业生升学文化课模拟考试数学试卷试卷说明:本试卷满分120分,考试时间120分钟.第I卷(选择题共42分)一.选择题(共16小题)1.如果+50m表示向东走50m,那么向西走40m表示为()A.﹣50m B.﹣40m C.+40m D.+50m2.民心胡有5400亩,15亩=10000平方米,用科学记数法表示民心湖面积为()A.8.1×105平方米B.8.1×106平方米C.3.6×105平方米D.3.6×106平方米3.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.20084.要使为整数,a只需为()A.奇数B.偶数C.5的倍数D.个位是5的数5.如图为我省某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),则有()A.x1>x2>x3B.x1>x3>x2C.x2>x3>x1D.x3>x2>x16.下列各式,属于二元一次方程的个数有()①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y ⑦x+y+z=1 ⑧y(y﹣1)=2y2﹣y2+x.A.1 B.2 C.3 D.47.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s (单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣19.在“八一”军事训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于训练有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④10.如图,D、E、F内分正△ABC的三边AB、BC、AC均为1:2两部分,AD、BE、CF相交成的△PQR的面积是△ABC的面积的()A.B.C.D.11.如图,正ABC中,P为正三角形内任意一点,过P作PD⊥BC、PE⊥AB,PF⊥AC,连AP、BP、CP,如果S△AFP+S△PCD+S△BPE=,那么△ABC的内切圆半径为()A.1 B.C.2 D.12.一个正方体的表面涂满了颜色,按如图所示将它切成27个大小相等的小立方块,设其中仅有i个面(i=1,2,3)涂有颜色的小立方块的个数为x i,则x1,x2,x3之间的关系为()A.x1﹣x2+x3=1 B.x1+x2﹣x3=1 C.x1+x2﹣x3=2 D.x1﹣x2+x3=213.正实数a1,a2,…,a2011满足a1+a2+…+a2011=1,设P=,则()A.p>2012 B.p=2012C.p<2012 D.p与2012的大小关系不确定14.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H,以O为圆心,OC为半径的圆弧交OA于D,若直线GH与弧CD所在的圆相切于矩形内一点F,则下列结论:①AG=CH;②GH=;③直线GH的函数关系式y=﹣;④梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,⊙P的半径为.其中正确的有()A.1个B.2个C.3个D.4个15.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是嘉淇、小刚两同学的作业:【嘉淇】①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).【小刚】①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM,则直线PM即为所求(如图2).对于两人的作业,下列说法正确的是()A.嘉淇对,小刚不对B.嘉淇不对,小刚对C.两人都对D.两人都不对16.《歌词古体算题》记载了中国古代的一道在数学史上名扬中外的“勾股容圆”名题,其歌词为:“十五为股八步勾,内容圆径怎生求?有人算得如斯妙,算学方为第一筹.”当中提出的数学问题是这样的:今有股长15步,勾长8步的直角三角形,试求其内切圆的直径.正确的答案是()A.3步B.4步C.5步D.6步第II卷(非选择题共78分)二.填空题(共4小题)17.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.19.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形APEF和正方形PBGH,点O1和O2是这两个正方形的中心,连接O1O2,设O1O2的中点为Q;当点P从点C运动到点D时,则点Q移动路径的长是.20.嘉淇同学在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是.三.解答题(共6小题)21.阅读下列一段话,并解决后面的问题.观察下面一列数:3,5,7,9,…我们发现这一列数从第2项起,每一项与它前一项的差都等于同一个常数2,这一列数叫做等差数列,这个常数2叫做等差数列的公差.(1)等差数列3,7,11,…的第五项是;(2)如果一列数a1,a2,a3,…是等差数列,且公差为d,那么根据上述规定,有a2﹣a1=d a3﹣a2=d a4﹣a3=d …所以,a2=a1+d;a3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d …a n=(用含有a1与d的代数式表示)(3)一个等差数列的第二项是107,第三项是135,则它的公差为,第一项为,第五项为.22.“掷实心球”是我省初中毕业生体育测试项目之一.测试时,老师记录下学生掷实心球的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男试成绩(单位:米)如下:7.398.699.417.508.507.8911.118,31 6.098.11请完成下列问题:(1)求这10名男生掷实心球成绩的平均数;(2)这10名男生掷实心球得分的众数是,中位是;(3)如果将9分(含9分)以上定为“优秀”,请你估计这500名男生在这次模拟测试中得优秀的人数.23.如图1,正方形ABCD中,点E为AD上任意一点,连接BE,以BE为边向BE右侧作正方形BEFG,EF交CD于点M,连接BM,N为BM的中点,连接GN,FN.(1)若AB=4,AE:DE=3:1,求EM的长;(2)求证:GN=FN;(3)如图2,移动点E,使得FN⊥CD于点Q时,请探究CM与DE的数量关系并说明理由.24.A、B两个水管同时开始向一个空容器内注水.如图是A、B两个水管各自注水量y(m3)与注水时间x(h)之间的函数图象,已知B水管的注水速度是1m3/h,1小时后,A水管的注水量随时间的变化是一段抛物线,其顶点是(1,2),且注水9小时,容器刚好注满.请根据图象所提供的信息解答下列问题:(1)直接写出A、B注水量y(m3)与注水时间x(h)之间的函数解析式,并注明自变量的取值范围:y A=y B=()(2)求容器的容量;(3)根据图象,通过计算回答,当y A>y B时,直接写出x的取值范围.25.数学活动课上,嘉淇和同学们共同探究学习了下面的问题,请你按要求解答.【数学思考】如图1,A、B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)【问题解决】如图2,过点B作BB′⊥l2,且BB′等于河宽,连接AB′交l1于点M,作MN⊥l1交l2于点N,则MN就为桥所在的位置.【类比联想】(1)如图3,正方形ABCD中,点E、F、G分别在AB、BC、CD上,且AF⊥GE,求证:AF=EG.(2)如图4,矩形ABCD中,AB=2,BC=x,点E、F、G、H分别在AB、BC、CD、AD上,且EG⊥HF,设y=,试求y与x的函数关系式.【拓展延伸】如图5,一架长5米的梯子斜靠在竖直的墙面OE上,初始位置时OA=4米,由于地面OF较光滑,梯子的顶端A下滑至点C时,梯子的底端B左滑至点D,设此时AC=a米,BD=b米.(3)当a=米时,a=b.(4)当a在什么范围内时,a<b?请说明理由.26.回收废旧物品再利用是我们应养成的好习惯,剪纸课上,小明同学找来一些废旧纸片制作粉笔盒,请根据情境完成下面的探究.【操作】小明同学想制作棱长为1cm的正方体粉笔盒盒,现选用废纸片进行如下设计:【说明】方案一:图形中的圆过点A、B、C;方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点纸片利用率=×100%【发现】(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.说明:方案三中的每条边均过其中两个正方形的顶点.2016年河北省初中毕业生升学文化课模拟考试数学试卷参考答案一.选择题(共16小题)1.B.2.D.3.A.4.A.5.C.6.C.7.D.8.A.9.C.10.D.11.A.12.D.13.A.14.D.15.C.16.D.二.填空题(共4小题)17.y=.18.()n﹣1.19.3.20.10200.三.解答题(共6小题)21.解:(1)等差数列3,7,11,…的公差是4,故第4项是15,第5项是19;故答案为:19;(2)∵a2=a1+d;a3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d …∴a n=a1+(n﹣1)d.故答案为:a1+(n﹣1)d;(3)∵一个等差数列的第二项是107,第三项是135,∴则它的公差为:135﹣107=28,∴第一项为:107﹣28=79,第五项为:79+4×28=191.故答案为,28,79,191.22.解:(1)平均数为:(7.39+8.6)9+9.41+7.5+8.5+.89+11.11+8.31+6.09+8.11)=8.30(m),所以这10名男生掷实心球的成绩的平均数是8.30米;(2)这10名男生掷实心球得分的众数是10分,中位数是9分;故答案为:10,9;(3)因为这10名男生掷实心球得分钟9分及以上的共有6人,所以估计500名男生在本次模拟测试中得优秀的人数为500×=300人.23.解:(1)∵AB=4,AE:DE=3:1,∴AE=3,DE=1,∴BE==5,∵∠BEF=90°,∠BEF=90°,∠BEF=90°,∴△ABE∽△DEM,∴=,即=,解得,EM=;(2)连接EN,∵∠BEF=90°,N为BM的中点,∴EN=BM=BN=NM,∴∠NBE=∠NEB,∴∠NBG=∠NEF,在△NBG和△NEF中,,∴△NBG≌△NEF,∴GN=FN;(3)如图2,延长ED,过点F作FH⊥ED,交ED的延长线于H,∵∠BCD=90°,N为BM的中点,∴CN=BM=BN=NM,∵FN⊥CD,∴CR=MR=CM,∵∠A=∠H=90°,∴∠ABE+∠AEB=90°,∵∠BEF=90°,∴∠AEB+∠FEH=90°,∴∠ABE=∠FEH,在△ABE和△HEF中,,∴△ABE≌△HEF,∴AE=HF,∵∠H=∠RDH=∠DRF=90°,∴四边形DRFH是矩形,∴AE=HF=DR,∴AD﹣AE=CD=DR,即DE=CR,∴DE=CM.24.解:(1)∵A水管的注水速度是1m3/h,∴y A=x(0≤x≤9),;(2)容器的总容量是:x=9时,f(x)=x+(x﹣1)2+2=9+10=19(m3),(3)当x=(x﹣1)2+2时,解得:x1=5﹣2,x2=5+2,利用图象可得出:当y A>y B时,x的取值范围是:5﹣2<x<5+2.25.解:(1)作BH∥EG交CD于点H.则BH=EG.∵AF⊥EG,∴BH⊥AF,∴∠BIF=90°,∴∠IBF+∠AFB=90°,又∵直角△ABF中,∠BAF+∠AFB=90°,∴∠BAF=∠IBF,∴在△ABF和△BCH中,,∴△ABF≌△BCH,∴AF=BH,∴AF=EG;(2)同理作BM∥EG交CD于点M,作AN∥HF交BC于点N.同(1)可得∠BAN=∠MBC,又∵∠ABN=∠C,∴△ABN∽△BCM,∴==,又HF=AN,EG=BM,∴y=;(3)解:∵CO=4﹣a,DO=3+b.∴Rt△DOC中,DC2=(4﹣a)2+(3+b)2,即(4﹣a)2+(3+b)2=52.当a=b时,有(4﹣a)2+(3+a)2=25,解得a=1或a=0(不合).故答案为:1;(4)当0<a<1时,a<b.理由如下:如图5,过点B作DC的平行线,过点C作OF的平行线,两线交于点P,连接AP.∵CD∥BP,PC∥OF,∴DBPC为平行四边形,∴BP=DC,CP=BD.又AB=DC,∴BP=AB.∴∠BAP=∠3+∠1=∠BPA=∠4+∠2.若a<b,即AC<BD=CP,因而在△ACP中,∵∠1>∠2,∴∠3<∠4.又∵∠5=∠4,∴∠3<∠5.∵Rt△ABO中,sin∠3==,同理sin∠5==,∴>,解得,0<a<1.26.解:发现:(1)小明的这个发现正确.理由:解法一:如图一:连接AC、BC、AB,∵AC=BC=,AB=2∴AC2+BC2=AB2,∴∠BCA=90°,∴AB为该圆的直径.解法二:如图二:连接AC、BC、AB.易证△AMC≌△BNC,∴∠ACM=∠CBN.又∵∠BCN+∠CBN=90°,∴∠BCN+∠ACM=90°,即∠BCA=90°,∴AB为该圆的直径.(2)如图三:∵DE=FH,DE∥FH,∴∠AED=∠EFH,∵∠ADE=∠EHF=90°,∴△ADE≌△EHF(ASA),∴AD=EH=1.∵DE∥BC,∴△ADE∽△ACB,∴=,∴=,∴BC=8,∴S△ACB=16.∴该方案纸片利用率=×100%=×100%=37.5%;探究:(3)过点C作CD⊥EF于D,过点G作GH∥AC,交BC于点H,设AP=a,∵PQ∥EK,易得△APQ∽△KQE,△CEF是等腰三角形,△GHL是等腰三角形,∴AP:AQ=QK:EK=1:2,∴AQ=2a,PQ=a,∴EQ=5a,∵EC:ED=QE:QK,∴EC=a,则PG=5a+a=a,GL=a,∴GH=a,∵,解得:GB=a,∴AB=a,AC=a,∴S△ABC=×AB×AC=a2,S展开图面积=6×5a2=30a2,∴该方案纸片利用率=×100%=×100%=49.86%.。
2016年武安市中考一模数学试题及参考答案
2016年邯郸市中考模拟(一)数学试卷参考答案及评分标准一.选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.)二.填空题(本大题共4个小题,每小题3分,共12分.) 17、6.96×10518、1 19、53π20、5 三.解答题(本大题共6个小题,共66分.) 21、解: (1)45⊗=51﹣54-5=0 …………………………………………3分 (2)x 1-x2-x =1…………………………………………4分 1-(x -2)= x…………………………………………6分1-x +2=x -2x=-3 X=23…………………………………………8分 检验:当X=23时,原式≠0…………………………………………9分 所以,X=23是原方程的解…………………………………………10分…………………………………………3分 (2) 从平均数上看,女生的平均分高于男生;从方差上看,女生的方差低于男生,波动性较小。
…………………… 5分 (3)设:男生新增优秀人数为x 人 2+4+x +2x=48×50℅ X=6 6×2=12答:男生新增优秀人数为6人,女生新增优秀人数为12人 。
…………………… 10分 23、(1)四边形ABCE 是平行四边形。
…………………… 1分理由:∵点D 是线段AC 的中点,BE =2BD∴AD=CD,DE=BD∴四边形ABCE 是平行四边形 ……………………………………4分( 2 )①∵四边形ABCE 是平行四边形 ∴CE=AB∵∠MEC=∠EMC ∴CM=AB∵∠CMB=∠CAB=90°∠MNC=∠ANB ∴△ABN ≌△MCN ………………………………………… 9分 ②21………………………………………… 10分 24、(1)m=2,S △AOB =8;………………………………………… 2分(2)设:MN 与反比例函数xky =的交点为D 当ND:DN=1:3时,D(﹣1,2),代入x ky =得:k=﹣2 当ND:DN=3:1时,D(1,2) ,代入xky =得:k=2………………… 7分(3)E 1(﹣1,4)F 1, (1,﹣4);E 2(﹣4,1)F 2(4,﹣1)……………………11分(2)∵∠ACB=∠DCE ∴∠ACE=∠BCD ∵CE CD =AC BC =mn∴△ACE ∽△BCD ∴AE BD =mn……………………………………………………………………… 8分 (3)5512 ……………………………………………………………………… 9分 (4)210或31142 …………………………………………………………………… 11分 参考过程:(4)∵m =6,n =24, ∴CE=3,CD=22,AB=22BC AC -=2当α=90°时,半圆O 与AC 相切,如图1; 在R t △ABC 中:BD=22CD BC +=22)22()24(+=210当α=90°+∠ACB 时,当α=90°时;半圆O 与BC 相切,如图2; 过点E 作EM ⊥AB 延长线于点M ,垂足为M ; ∵BC ⊥AB ,∴四边形BCEM 为矩形, ∴BM=EC=3,ME=24 ∴AM=5 ∴AE=22ME AM +=57由问题2可知AE BD =332 , ∴BD=3114226、探究:(1)每个围巾所获得的利润是(20+x )元,这种围巾的销售量是(400-10x )个 。
河北2016中考试题数学卷(解析版)
2016年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-(-1)=()A.±1B.-2 C.-1 D.1【答案】D.【解析】试题分析:利用“负负得正”的口诀,可得-(-1)=1,故答案选D.考点:有理数的运算.2.计算正确的是()A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a【答案】D.考点:整式的运算.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D【答案】A.【解析】试题分析:根据轴对称图形和中心对称图形的定义可得,只有选项A符合要求,故答案选A.考点:轴对称图形和中心对称图形的定义.4.下列运算结果为x-1的是()A.11x-B.211x xx x-∙+C.111xx x+÷-D.2211x xx+++【答案】B. 【解析】试题分析:选项A ,原式=x x 12-;选项B ,原式=x-1;选项C ,原式=xx 12-;选项D ,原式=x+1,故答案选B. 考点:分式的计算.5.若k ≠0,b <0,则y =kx +b 的图象可能是( )【答案】B.考点:一次函数图象与系数的关系.6.ABCD 的叙述,正确的是( )A .若AB ⊥BC ,则ABCD 是菱形 B .若AC ⊥BD ,则ABCD 是正方形C .若AC =BD ,则ABCD 是矩形 D .若AB =AD ,则ABCD 是正方形【答案】C. 【解析】试题分析:根据矩形的判定可得A 、C 项应是矩形;根据菱形的判定可得B 、D 项应是菱形,故答案选C.考点:矩形、菱形的判定.7...的是( )A B .面积为12CD【答案】A. 【解析】A 项错误,故答案选A. 考点:无理数.8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的○1○2○3○4某一位置,所组成的图形不能..围成正方体的位置是()图1 图2第8题图A.○1B.○2C.○3D.○4【答案】A.考点:几何体的侧面展开图.9.图示为4×4的网格图,A,B,C,D,O均在格点上,点O是()第9题图A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心【答案】B.【解析】试题分析:点O在△ABC外,且到A、B、C三点距离相等,所以点O为△ABC的外心,故答案选B.考点:三角形的外心.10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A .BH 垂直分分线段ADB .AC 平分∠BADC .S △ABC =BC ·AHD .AB =AD【答案】A.考点:线段垂直平分线的性质.11.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:第11题图 甲:b -a <0;乙:a +b >0; 丙:|a |<|b |;丁:0ba>. 其中正确的是( ) A .甲乙B .丙丁C .甲丙D .乙丁【答案】D. 【解析】试题分析:观察数轴可得,a+b <0,0 ab,故答案选D. 考点:数轴.12.在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( ) A .11538x x =- B .11538x x =+ C .1853x x =- D .1853x x =+【答案】B. 【解析】试题分析:根据题意,3X 的倒数比8X 的倒数大5,故答案选B.考点:倒数.13.ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°【答案】C.考点:平行线的性质;折叠的性质.14.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0【答案】B.【解析】试题分析:由(a-c)2>a2+c2得出-2ac>0,因此△=b2-4ac>0,所以方程有两个不相等的实数根,故答案选B.考点:根的判别式.15.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是()第15题图【答案】C.考点:相似三角形的判定.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()第16题图A.1个B.2个C.3个D.3个以上【答案】d.【解析】试题分析:M、N分别在AO、BO上,一个;M、N其中一个和O点重合,2个;反向延长线上,有一个,故答案选D.考点:等边三角形的判定.卷II(非选择题,共78分)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根为_______.【答案】2.【解析】试题分析:根据立方根的定义可得8的立方根为2.考点:立方根.18.若mn=m+3,则2mn+3m-5nm+10=_____.【答案】1.考点:整体思想;求代数式的值.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.第19题图当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=_____°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=_______°.【答案】76°,6°.【解析】试题分析:先求∠2=83°,∠AA1A2=180°-83°×2=14°,,进而求∠A=76°;根据题意可得原路返回,那么最后的线垂直于BO,中间的角,从里往外,是7°的2倍,4倍,8倍......,2∠1=180°-14°×n ,在利用外角性质,∠A=∠1-7°=83°-7°×n,当n=11时,∠A=6°。
河北省2016年中考数学试卷解析
2016年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-(-1)=()A.±1 B.-2 C.-1 D.1答案:D解析:利用“负负得正”的口诀,就可以解题。
知识点:有理数的运算2.计算正确的是()A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a答案: D解析:除0以外的任何数的0次幂都等于1,故A项错误;x2+x3的结果不是指数相加,故B 项错误;(ab2)3的结果是括号里的指数和外面的指数都相乘,结果是a3b6,故C项错误;2a2·a-1的结果是2不变,指数相加,正好是2a。
知识点:x0=0(x≠0);(a m b n)p=a mp b np;a m a n=a m+n3.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D答案:A解析:先根据轴对称图形,排除C、D两项,再根据中心对称,排除B项。
知识点:轴对称,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形。
4.下列运算结果为x-1的是()A.1 1x -B.211x xx x-•+C.111xx x+÷-D.2211x xx+++答案:B解析:挨个算就可以了,A项结果为——, B项的结果为x-1,C项的结果为——D项的结果为x+1。
知识点:(x+1)(x-1)=x2-1;(x+1)2=x2+2x+1,(x-1)2=x2-2x+1。
5.若k≠0,b<0,则y=kx+b的图象可能是()答案:B解析:一次函数,k≠0,不可能与x轴平行,排除D选项;b<0,说明过3、4象限,排除A、C选项。
河北省邯郸市中考数学一模试卷
河北省邯郸市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) x<0,y>0时,则x,x+y,x﹣y,y中最小的数是()A . xB . x﹣yC . x+yD . y2. (2分)一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的()A . ①②B . ③②C . ①④D . ③④3. (2分) (2020七上·开远期末) 据统计,2019年某市初中七年级学生为25000余人,25000用科学记数法表示为()A .B .C .D .4. (2分)(2016·苏州) 下列运算结果正确的是()A . a+2b=3abB . 3a2﹣2a2=1C . a2•a4=a8D . (﹣a2b)3÷(a3b)2=﹣b5. (2分)(2017·柘城模拟) 如图,有16个格点,每个格点小正方形的面积为1,给图中间的小正方形内任意投点P,则点P落在图中阴影部分的概率为()A .B .C .D .6. (2分)据报道,投资270亿元的西环高铁预计今年底建成通车,通车后能使西环高铁经过的市县约4360000人受益,数据4360000用科学记数法表示为()A . 436×104B . 4.36×105C . 4.36×106D . 4.36×1077. (2分)(2017·龙岗模拟) 如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD 于点F,则△DEF的面积与△BAF的面积之比为()A . 3:4B . 9:16C . 4:9D . 1:38. (2分)在平面直角坐标系中,点A(3,20)绕原点旋转180°后所得点的坐标为()A . (-3,20)B . (3,-20)C . (-3,-20)D . (20,-3)9. (2分)若甲数的比乙数的4倍多1,设甲数为x ,乙数为y ,列出的二元一次方程应是()A .B .C .D .10. (2分) (2016七下·太原期中) 足球比赛时,守门员大脚开出去的球的高度h随时间t变化而变化,下列各图中,能刻画以上h与t的关系的是()A .B .C .D .二、填空题 (共6题;共7分)11. (2分)已知|a|- =0,则a的值是________若 =3,则a=________12. (1分)(2019·曲靖模拟) 在实数范围内因式分解:2x3+8x2+8x=________13. (1分)一个反比例函数的图象位于第二、四象限.请你写出一个符合条件的解析式是________ .14. (1分) (2016八上·道真期末) 如图:CD平分∠ACB,DE∥AC且∠1=30°,则∠2=________°.15. (1分) (2016九上·溧水期末) 如图是某拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10米,则桥面离水面的高度AC为________米.16. (1分)将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A与DC边的中点M重合,折痕为EF;②翻折纸片,使C落在ME上,点C的对应点为H,折痕为MG;③翻折纸片,使B落在ME上,点B的对应点恰与H重合,折痕为GE.根据上述过程,长方形纸片的长宽之比=________ .三、计算 (共9题;共112分)17. (30分)计算.(1)﹣10﹣2﹣1×3﹣1×[2﹣(﹣3)2];(2)(a﹣b)2•(a﹣b)n•(b﹣a)3;(3)(﹣0.25)100×4101;(4)24×3×54;(5)﹣8a2b•(﹣a3b2)• b2;(6) x(2x﹣5)+3x(x+2)﹣5x(x﹣1).18. (10分) (2017八下·南通期中) 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.19. (10分)(2017·陕西) 端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.20. (15分)(2017·桂林) “初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为为多少;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是多少.21. (5分) (2016八上·怀柔期末) 列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?22. (2分) (2016九上·石景山期末) 阅读下面材料:小天在学习锐角三角函数中遇到这样一个问题:在Rt△ABC中,∠C=90°,∠B=22.5°,则tan22.5°=小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题.于是小天尝试着在CB边上截取CD=CA,连接AD(如图2),通过构造有特殊角(45°)的直角三角形,经过推理和计算使问题得到解决.请回答:tan22.5°=________.参考小天思考问题的方法,解决问题:如图3,在等腰△ABC 中,AB=AC,∠A=30°,请借助△ABC,构造出15°的角,并求出该角的正切值.________23. (15分)如图①,正方形AOCD的顶点O为原点建立直角坐标系,点A、C、D的坐标分别为(0,2)、(2,0)、(2,2),点P(m,0)是x轴上一动点,m是大于0的常数,以AP为一边作正方形APQR(QR落在第一象限),连接CQ.(1)连接RD,请判断△ARD的形状,并用图①说明理由;(2)如图②,随着点P(m,0)的运动,正方形APQR的大小会发生改变,若设CQ所在直线的表达式为y=kx+b(k≠0),求k的值;(3)求DQ的最小值并求此时点Q的坐标.24. (10分) (2017九上·北海期末) 已知:如图,在正方形ABCD中,F是AB上一点,延长CB到E,使BE=BF,连接CF并延长交AE于G.(1)求证:△ABE≌△CBF;(2)将△ABE绕点A逆时针旋转90°得到△ADH,请判断四边形AFCH是什么特殊四边形,并说明理由.25. (15分)(2016·日照) 如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、计算 (共9题;共112分)17-1、17-2、17-3、17-4、17-5、17-6、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
2016年河北省中学考试数学精彩试题及问题详解
2016年省初中毕业升学文化课考试 数学试卷一、选择题(本大题有16个小题,共42分.1—10小题各3分;11—16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-(-1)= ( )A.±1B.-2C.-1D.12.计算正确的是 ( )A.0)5(0=-B.532x x x =+C.5332)(b a ab =D.a a a 2212=⋅-3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.4.下列运算结果为1-x 的是 ( ) A.x 11- B.112+⋅-x x x x C.111-÷+x x x D.1122+++x x x 5.若00<≠b k ,,则b kx y +=的图象可能是 ( )6.关于□ABCD 的叙述,正确的是 ( )A.若AB ⊥BC ,则□ABCD 是菱形B.若AC ⊥BD ,则□ABCD 是正方形C.若AC=BD ,则□ABCD 是矩形D.若AB=AD ,则□ABCD 是正方形7.关于12的叙述,错误..的是 ( ) A.12是有理数 B.面积为12的正方形边长是12C.3212=D.在数轴上可以找到表示12的点8.图1-1和图1-2中所有的正方形都全等,将图1-1的正方形放在图1-2中的①②③④某一位置,所组成的图形不能围成正方体的位置是 ( )A.①B.②C.③D.④9.图2为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是 ( )A.△ACD 的外心B.△ABC 的外心C.△ACD 的心D.△ABC 的心①③ ②④图1-2 图1-110.如图3,已知钝角△ABC ,依下列步骤尺规作图,并保留痕迹.步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,点交弧①于点D ;步骤3:连接AD ,交BC 延长线于点H.下列叙述正确的是 ( )A.BH 垂直平分线段ADB.AC 平分∠BADC.AH BC S ABC ⋅=∆D.AB=AD11.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论: 甲:0<-a b ; 乙:0>+b a ; 丙:b a <; 丁:0>ab .其中正确的是( ) A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5,依上述情形,所列关系式成立的是( )A.58131-=x xB.58131+=x xC.5831-=x xD.5831+=x x13.如图5,将□ABCD 沿对角线AC 折叠,使点B 落在点B ′处,若∠1-∠2=44°,则∠B 为( )A.66°B.104°C.114°D.124°14.a ,b ,c 为常数,且222)(c a c a +>-,则关于x 的方程02=++c bx ax 根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为015.如图6,△ABC 中,∠A=78°,AB=4,AC=6,将△ABC 沿图示中的虚线剪开,剪下的阴影图5 图2图3图4三角形与原三角形不相似...的是( )16.如图7,∠AOB=120°,OP 平分∠AOB ,且OP=2,若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A.1个B.2个C.3个D.3个以上二、填空题(本大题共3个小题,共10分,17-18小题各3分;19小题有2个空,每空2分,把答案写在题中横线上)17.8的立方根为 18.若3+=m mn ,则=+-+10532mn m mn19.如图8,已知∠AOB=7°,一条光线从点A 发出后射向OB 边,若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB 边上的点1A 后,经OB 反射到线段AO 上的点2A ,易知∠1=∠2,若AO A A ⊥21,光线又会沿A A A →→12原路返回到点A ,此时∠A= °.……若光线从点A 发出后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值= °三、解答题(本大题有7个小题,共68分。
河北省邯郸市2016年初中毕业生升学模拟考试(二)数学试卷
2016年邯郸市中毕业生升学模拟考试(二)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-2的相反数是A .2B .21C .21-D .2-2.下列图形中,是图1所示几何体的俯视图的是A .B .C .D .3.下列计算正确的是A .3632)(b a b a = B .326a a a =÷C . 532)(a a = D .333)(b a ab =-4.如图2,DE 是△ABC 的中位线,若BC =8,则DE 的长为A .2B .4C .6D .8图1BDAE C图25.对于一组统计数据:3,3,6,3,5,下列说法中正确的是A .中位数是6B .众数是3C .平均数是3D .方差是86.如图3,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A . 75°B . 55°C . 40°D . 35°7.已知直线l 的解析式为b kx y +=,如图4所示,则下列结论 正确的是A .00>>b k ,B .00<<b k ,C .00><b k ,D .00<>b k ,8.如果211-=m ,那么m 的取值范围是A .10<<mB .21<<mC .32<<mD .43<<m9.如图5,△ABC 中,∠ABC =63°,点D ,E 分别是△ABC 的边BC ,AC 上的点,且AB =AD =DE =EC ,则∠C 的度数是 A .21° B .19° C .18°D .17°10. 不等式组⎩⎨⎧≤-≤-31242x x 的整数解共有A .3个B .4个C .5个D .6个图313ab2图4D B图511.如图6,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b (a < b ),则b -a 的值为 A .5 B .6 C .7D .812.计算aa a a 2422+-+的结果是 ABCD13.如图7,画线段AB 的垂直平分线交AB 于点O ,在这条垂直平分线上截取OC =OA ,以A 为圆心,AC 为半径画弧于AB 与点P ,则线段AP 与AB 的比是 A .2:2 B .1:3 C .2:3D .3:214.已知关于x 的方程012=-+mx x 的根的判别式的值为5,则m 的值为 A .±3 B .3C .1D .±115.如图8,点P 是等边三角形ABC 外接圆⊙O 上点,在以下判断中:①PB 平分∠APC ;②当弦PB 最长时,△APC 是等腰三角形; ③若△APC 是直角三角形时,则PA ⊥AC ;④当∠ACP =300时,△BPC 是直角三角形.其中正确的有 A .①②③ B .①③④C .②③④D .①②④图6图7 CBAOPA16.如图9,在平面直角坐标系中,直线y =-3x +3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,双曲线xky(k>0)经过点D ,将四边形ABCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线上则a 的值是 A .1 B .2C .3D .4图9x2016年邯郸市中考模拟(二)数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若式子1-x 在实数范围内有意义,则x 的取值范围是 . 18.分式方程112=-x 的解是 .19.如图10,已知ABC △的周长是20,OB OC ,分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是 .20.如图11,在直角坐标系中,从原点O 开始沿x 轴正半轴取线段OA =1,依次截取AB =2,BC =4,CD =8…截取的每条线段长是前一条线段的2倍(如DE =2CD ),然后分别以OA ,AB ,BC ,CD,…为直径画半圆,依次记为第1,2,3,4…个半圆,按此规律,继续画半圆,过第4个和第5个两个半圆的中点作直线l ,则直线l 与y 轴交点的纵坐标是 .图10 D三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我(1)若小明同学心里想的是数9,请帮他计算出最后结果:[]925)19()19(22÷⨯--+(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a ()0≠a ,请你帮小明完成这个验证过程.22.(本小题满分10分)2016年4月15日至5月15日,邯郸市约12万名初三毕业生参加了中考体育测试,为了了解今年初三毕业学生的体育成绩,从某校随机抽取了60名学生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A 、B 、C 、D 表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题: (1) m = ,n = ,x = ,y = ; (2) 在扇形图中,B 等级所对应的圆心角是 度;(3) 请你估计邯郸市这12万名初三毕业生成绩等级达到优秀和良好的大约有多少人? (4) 初三(1)班的甲、乙、丙、丁四人的成绩均为A ,现决定从这四名同学中选两名参加学校组织的体育活动,直接写出恰好选中甲、乙两位同学的概率.23.(本小题满分10分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到(1)甲队单独完成这项工程所需天数n = ,乙队每天修路的长度m = (米); (2)甲队先修了x 米之后,甲、乙两队一起修路,又用了y 天完成这项工程(其中x ,y为正整数).①当x=90时,求出乙队修路的天数;②求y 与x 之间的函数关系式(不用写出x 的取值范围); ③若总费用不超过22800元,求甲队至少先修了多少米.24.(本小题满分11分)如图12-1,△ABC 中,AC =BC ,∠A =30°,点D 在AB 边上且∠ADC =45°. (1)求∠BCD 的度数;(2)将图12-1中的△BCD 绕点B 顺时针旋转α(0°< α ≤360°)得到△BC′D′.①当点D′恰好落在BC 边上时,如图12-2所示,连接C′C 并延长交AB 于点E .求证:AE =B D′;②连接D D′,如图12-3所示,当△DB D′与△ACB 相似时,直接写出α的度数.DCBA图12-1图12-2EC'D'DCBA图12-3C' D' DCBA25.(本小题满分11分)如图13,抛物线l :c bx x y ++-=2 (b ,c 为常数),其顶点E 在正方形ABCD 内或边上,已知点A (1,2),B (1,1),C (2,1). (1)直接写出点D 的坐标;(2)若l 经过点B ,C ,求l 的解析式;(3)设l 与x 轴交于点M ,N ,当l 的顶点E 与点D 重合时,求线段MN 的值;当顶点E 在正方形ABCD 内或边上时,直接写出线段MN 的取值范围;(4)若l 经过正方形ABCD 的两个顶点,直接写出所有符合条件的c 的值.26.(本小题满分14分)如图14-1,矩形ABCD 中,AB =8,BC =38,半径为3的⊙P 与线段BD 相切于点M ,圆心P 与点C 在直线BD 的同侧,⊙P 沿线段BD 从点B 向点D 滚动. 发现: BD =______;∠CBD 的度数为_______;拓展:①当切点M 与点B 重合时,求⊙P 与矩形ABCD 重叠部分的面积②在滚动过程中如图14-2,求AP 的最小值;B (图14-1B 图14-2探究:①若⊙P 与矩形ABCD 的两条对角线都相切,求此时线段BM 的长, 并直接写出tan ∠PBC 的值.②在滚动过程中如图14-3,点N 是AC 上任意一点,直接写出BP +PN 的最小值.河北省邯郸市2016年初中毕业生升学模拟考试(二)数学试卷参考答案及评分标准 一.选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.)图14-3二.填空题(本大题共4个小题,每小题3分,共12分.) 17、1≥x 18、3=x19、30 20、15-三.解答题(本大题共6个小题,共66分.)21、解:(1)解原式=(100-64)×25÷9=100 …………………………………………………………4分 (2)()()a a a ÷⨯--+25]11[22…………………………………………………6分()()[]a a a a a ÷⨯+--++=25121222 ……………………………………8分a a ÷⨯=254100= …………………………………………………………………………10分注:其他计算方法结果正确均可得分22、解:(1)24, 12, 0.4, 0.2 ………………………………………………………4分(2)144 ……………………………………………………………6分 (3)由上表可知达到优秀和良好的共有21+24=45人,9604512=⨯万人. ………………………………………………………………8分 (4)61………………………………………………………………10分23、解:(1)35, 50;……………………………………………………………2分(2)①乙队修路的天数为125030901050=+-(天) ……………………5分②由题意,得10505030=++y x )( ∴y 与x 之间的函数关系式为: 801050xy -=810580+-=x y …………………………8分注:函数关系式没有化简不扣分③由题意,得22800)1160600(30600≤⨯++⨯y x22800801050176020≤-⨯+xx 解得x ≥150,答:若总费用不超过22800元,甲队至少先修了150米。
2016年河北省中考数学试卷及答案
2016年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-(-1)=()A.±1 B.-2 C.-1 D.12.计算正确的是()A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a3.下列图形中,既是轴对称图形,又是中心对称图形的是(A)A B C D4.下列运算结果为x-1的是()A.11x-B.211x xx x-•+C.111xx x+÷-D.2211x xx+++5.若k≠0,b<0,则y=kx+b的图象可能是(B)6.关于ABCD的叙述,正确的是(C)A.若AB⊥BC,则ABCD是菱形B.若AC⊥BD,则ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD,则ABCD是正方形7.关于12的叙述,错误..的是()A.12是有理数B.面积为12的正方形边长是12C.12=23D.在数轴上可以找到表示12的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的○1○2○3○4某一位置,所组成的图形不能..围成正方体的位置是(A)图1 图2第8题图A.○1B.○2C.○3D.○49.图示为4×4的网格图,A,B,C,D,O均在格点上,点O是(B)第9题图A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是(A)第10题图 A .BH 垂直分分线段AD B .AC 平分∠BAD C .S △ABC =BC ·AHD .AB =AD11.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:第11题图 甲:b -a <0; 乙:a +b >0; 丙:|a |<|b |;丁:0ba>. 其中正确的是( ) A .甲乙B .丙丁C .甲丙D .乙丁12.在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( C ) A .11538x x=- B .11538x x=+ C .1853x x=- D .1853x x=+ 13.如图,将ABCD 沿对角线AC 折叠,使点B 落在点B ’处.若∠1=∠2=44°,则∠B 为( C )第13题图 A .66°B .104°C .114°D .124°14.a ,b ,c 为常数,且(a -c )2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( B )A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是(C)第15题图16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有(D)第16题图A.1个B.2个C.3个D.3个以上卷II(非选择题,共78分)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根为_______.18.若mn=m+3,则2mn+3m-5nm+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.第19题图当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A 1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__76___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___6____°.三、解答题(本大题有7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15)-999×31185.21.(本小题满分9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.第21题图22.(本小题满分9分)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.(本小题满分9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.图1 图2第23题图如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法...求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.(本小题满分10分)某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x (元)满足一次函数关系,如下表:第1个第2个第3个第4个…第n个调整前单价x (元)x1x2=6 x3=72 x4…x n调整后单价x (元)y1y2=4 y3=59 y4…y n(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为_x,_y,猜想_y与_x的关系式,并写出推导出过.25.(本小题满分10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在AQ (弧)上且不.与A点重合,但Q点可与B点重合.发现AP(弧)的长与QB(弧)的长之和为定值l,求l;思考点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.探究当半圆M与AB相切时,求AP(弧)的长.(注:结果保留π,cos 35°=6,cos 55°=3)第25题图备用图26.(本小题满分12分)如图,抛物线L: 1()(4)2y x t x t =---+(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线(0,0)k y k x x=>>于点P ,且OA ·MP =12. (1)求k 值;(2)当t =1时,求AB 长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接..写出t 的取值范围.第26题图。
河北省邯郸市中考数学一模试卷
河北省邯郸市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在﹣3、0、1、﹣2四个数中,最小的数为()A . -3B . 0C . 1D . -22. (2分)(2017·黄冈模拟) 如图所示的工件的主视图是()A .B .C .D .3. (2分) (2016七上·阜康期中) 太阳的半径约为696000千米,用科学记数法可表示为()A . 6.96×103千米B . 6.96×104千米C . 6.96×105千米D . 6.96×106千米4. (2分)(2017·江北模拟) 如图,在矩形ABCD内放入六个小正方形后形成一个中心对称图形,其中顶点E、F分别在边BC、AD上,则长AD与宽AB的比值为()A . 6:5B . 13:10C . 8:7D . 4:35. (2分)下列运算正确的是()A .B .C .D .6. (2分) (2016九上·温州期末) 如图,已知直线l∥m∥n,直线a分别与l,m,n交于点A,B,C,过点B作直线b交直线l,n于点D,E,若AB=2,BC=1,BD=3,则BE的长为()A . 4B . 2C .D .7. (2分)甲、乙两人在相同的条件下,各射靶 10 次,经过计算:甲、乙射击成绩的平均数都是 8 环,甲射击成绩的方差是 1.2,乙射击成绩的方差是 1.8.下列说法中不一定正确的是()A . 甲、乙射击成绩的众数相同B . 甲射击成绩比乙稳定C . 乙射击成绩的波动比甲较大D . 甲、乙射中的总环数相同8. (2分)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R 与小圆半径r之间的关系满足()A . R=2rB . R=3rC . R=rD . R=r9. (2分)在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,应选择的关系式是()A .B .C . atanAD .10. (2分) (2020九上·德清期末) 如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A . 7B .C .D .二、填空题 (共7题;共10分)11. (1分)计算:|π﹣3.14|0﹣ +(﹣)﹣2+2sin45°=________.12. (1分) (2019八上·灌云月考) 已知实数x,y满足 +(y+1)2=0,则x-y的立方根是________.13. (1分) (2020八上·苍南期末) 点M(3,-2)关于x轴的对称点M1的坐标是________。
邯郸市初三中考数学第一次模拟试题【含答案】
邯郸市初三中考数学第一次模拟试题【含答案】一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=.12.(3分)不等式组的解集是.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S S;比较3月份与5月份,月份的更稳定.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.【分析】根据:a0=1(a≠0)可得结论.【解答】解:20=1,故选:B.【点评】本题考查了零指数幂的计算,比较简单,熟练掌握公式是关键.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a6【分析】直接利用完全平方公式以及积的乘方运算法则分别判断得出答案.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a2b2=(ab)2,故此选项错误;D、(a3)2=a6,正确.故选:D.【点评】此题主要考查了完全平方公式以及积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.5.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=6【分析】根据一元一次方程的解法即可求出答案.【解答】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点评】本题考查一元一次方程,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣2x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=,k=2>0,在每个象限里,y随x的增大而减小,故B错误;C、y=﹣2x2+1(x>0),二次函数,a<0,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故C错误;D、y=2x,一次函数,k>0,故y随着x增大而增大,故D正确.故选:D.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.【分析】根据四边形CDEF是正方形,即可得出CD==2,根据矩形ABCD的面积为6,即可得出AD=3,再根据勾股定理即可得到AC的长.【解答】解:由折叠可得,∠DEF=∠DCF=∠CDE=90°,∴四边形CDEF是矩形,由折叠可得,CD=DE,∴四边形CDEF是正方形,∴CD==2,又∵矩形ABCD的面积为6,∴AD=3,∴Rt△ACD中,AC==,故选:C.【点评】本题主要考查了折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC【分析】根据梯形的性质和相似三角形的判定和性质解答即可.【解答】解:∵CD∥AB,∴△AOB∽△COD,故A正确;∵CD∥BE,DB∥CE,∴四边形BDCE是平行四边形,故C正确;∵△ABC的面积=△BOC的面积+△AOB的面积=△ADB的面积=△AOD的面积+△AOB的面积,∴△AOD的面积=△BOC的面积,故D正确;∵∠AOB=∠COD,∴∠DOC=∠OCE>∠ACB,故B错误;故选:B.【点评】此题考查相似三角形的判定,关键是根据梯形的性质和相似三角形的判定和性质解答.9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.【分析】具体折一折,从中发挥想象力,可得正确的答案.【解答】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.【点评】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx﹣k过一、三、四象限;y=过一、三象限;②当k<0时,y=kx﹣k过一、二、四象象限;y=过二、四象限.观察图形可知,只有A选项符合题意.故选:A.【点评】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=2b.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2b,故答案为:2b【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)不等式组的解集是x>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣x<0得x>0,解不等式3x+5>0得x>﹣,所以不等式组的解集为x>0,故答案为:x>0.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=15.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AE∥BD,CD=20,CE=36,AC=27,∴,即,解得:BC=15,故答案为:15【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是0.28.【分析】直接利用5各小组的频率之和为1,进而得出答案.【解答】解:∵某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,∴第4组和第5组的频率和为:1﹣0.3﹣0.14=0.56,∵第4组和第5组的频率相等,∴第5组的频率是:0.28.故答案为:0.28.【点评】此题主要考查了频率的意义,正确得出第4组和第5组的频率和是解题关键.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了19道题.【分析】设他做对了x道题,则小英做错了(25﹣x)道题,根据总得分=4×做对的题数﹣1×做错的题数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.【点评】本题考查了一元一次方程的应用,根据总得分=4×做对的题数﹣1×做错的题数列出关于x的一元一次方程是解题的关键.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是2.【分析】连接DF,过E作EG⊥BD于G,当E,F,D三点共线时,EF+BF的最小值等于DE的长,利用勾股定理求得DE的长,即可得出EF+BF的最小值.【解答】解:如图所示,连接DF,过E作EG⊥BD于G,∵AC垂直平分BD,∴FB=FD,AB=AD,∴EF+BF=EF+FD,当E,F,D三点共线时,EF+BF的最小值等于DE的长,∵∠BAD=120°,∴∠ABD=30°,又∵AB=4,点E是AB的中点,∴EG=BE=1,AH=AB=2,∴BG=,BH=2,GH=,∴DH=2,DG=3,∴Rt△DEG中,DE===2,故答案为:2.【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣(﹣2)﹣6=1+2﹣6=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.【分析】在▱ABCD中,AD=BC,又BE=DF,可得AF=EC,得出AF平行且等于EC,根据平行四边形的判定,可得出四边形AECF是平行四边形.【解答】证明:∵四边形ABCD平行四边形∴AD=BC.又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.【点评】此题主要要掌握平行四边形的判定与性质;熟练掌握平行四边形的判定与性质是解决问题的关键.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.【分析】利用平方差公式可将原式化简成a+b,再根据方程的系数结合根的判别式可得出a+b=5,此题得解.【解答】解:﹣=,=,=a+b.∵a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,∴a+b=5,∴原式=a+b=5.【点评】本题考查了根与系数的关系以及平方差公式,利用平方差公式将原式化简成a+b是解题的关键.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是3℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S<S;比较3月份与5月份,3月份的更稳定.【分析】(1)最低气温14℃的有3天,据此补充频数分布直方图;(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃);(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定.【解答】解:(1)最低气温14℃的有3天,所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃),故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定,故但为<,3.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【解答】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴,解得,k1=﹣6,b=240,∴w=﹣6t+240.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B 点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)【分析】过点B作BF⊥AD、BE⊥CD,垂足分别为E、F,已知AD=AF+FD,则分别求得AF、DF的长即可求得AD的长.【解答】解:过点B作BF⊥AD、BE⊥CD,垂足分别为E、F.在Rt△ABF中,∵∠F AB=60°,AB=20,∴AF=AB cos∠F AB=20×=10.在Rt△BCE中,∵∠EBC=45°,BC=40,∴BE=BC cos∠EBC=40×=20.在矩形BEDF中,FD=BE=20,∴AD=AF+FD=10+20.答:AD的长为(10+20)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.【分析】(1)令y=0,得kx﹣8k=0,解出即可;(2)作OD⊥AB,垂足为D.可知点O到直线AB的距离为线段OD的长度,利用勾股定理可得OD的长;(3)介绍两种方法:方法一,先根据勾股定理计算DN的长,证明Rt△OMD∽Rt△NOD,列比例式求OM的长,可得结论;方法二:先得∠OND=30°.根据30度的正切列式可得OM的长,可得结论.【解答】解:(1)令y=0,得kx﹣8k=0,∵k≠0,解得x=8,∴直线l与x轴的交点N的坐标为(8,0).(2)连接OB,过点O作OD⊥AB,垂足为D.∴点O到直线AB的距离为线段OD的长度,∵⊙O的半径为5,∴OB=5.又∵AB=6,∴BD=AB==3.在Rt△OBD中,∵∠ODB=90°,∴OD===4.答:点O到直线AB的距离为4.(3)由(1)得N的坐标为(8,0),∴ON=8.由(2)得OD=4.方法一:∴在Rt△ODN中,DN===4.又∵∠OMD+∠MOD=90°,∠NOD+∠MOD=90°,∴∠OMD=∠NOD.∵∠ODM=∠ODN,∴Rt△OMD∽Rt△NOD,∴.∴OM=•NO=×8=.∴直线AB与y轴的交点为(0,).方法二:∴在Rt△OND中,sin∠OND==.∴∠OND=30°.∵在Rt△OMN中,tan30°=∴OM=ON•tan∠OND,∴OM=8tan30°=.∴直线AB与y轴的交点为(0,).【点评】此题考查了一次函数的综合题,考查了待定系数法和解直角三角形,三角形相似的性质和判定,同时也利用了垂径定理和勾股定理解决问题,难度适中.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)【分析】(1)通过解直角三角形可求出点A,B,C的坐标,根据点A,B,C的坐标,利用待定系数法可求出a,b,c的值;(2)求出当等腰直角△DEF的直角顶点F在y轴负半轴时点E,F的坐标,结合点B的坐标可得出将△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度可使点E与点B 重合,再结合点F的坐标即可得出平移后点F的坐标;(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,分两种情况考虑:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,则四边形Q1CR1P1是正方形,设Q1C=CR1=R1P1=P1Q1=r1,在Rt△P1R1B中通过解直角三角形BR1=r1,进而可得出BC=(+1)r1,结合BC=6可求出r1的值,由BR1=r1,结合OP1=OB﹣BP1可求出点P1的坐标,再结合点E的坐标即可得出把△DEF 沿x轴负方向(向左)平移(3﹣3)个单位长度可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,则四边形Q2CR2P2是正方形,同理,可求出点P2的坐标,再结合点E的坐标即可得出把△DEF沿x轴负方向(向左)平移(9+3)个单位长度可使⊙E与直线AC 和BC均相切.综上,此题得解.【解答】解:(1)在Rt△ABC中,∠CAB=60°,∠ACB=90°,BC=6,∴∠ABC=30°,OC=BC•sin∠ABC=6×sin30°=3,∴点C的坐标为(0,3);在Rt△COB中,OC=3,∠OBC=30°,∴OB=OC•cot∠OBC=3×cot30°=3,∴点B的坐标为(3,0);在Rt△AOC中,OC=3,∠CAO=60°,∴AO=OC•cot∠CAO=3×cot60°=,∴点A的坐标为(﹣,0).将A(﹣,0),B(3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴a=﹣,b=,c=3.(2)当等腰直角△DEF的直角顶点F在y轴负半轴时,∵DE=6,∴OE=OF=DE=×6=3,∴点F起始位置的坐标为(0,﹣3),点E起始位置的坐标为(3,0).∵点B的坐标为(3,0),∴BE=OB﹣OE=3﹣3,∴△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度,可使点E与点B重合,∴当点E与点B重合时,点F的坐标为(3﹣3,﹣3).(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,有两种情况:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,如图③所示.∵∠ACB=90°,∴四边形Q1CR1P1是矩形.∵⊙P1与AC、BC相切于点Q1、R1,∴R1P1=P1Q1,∴矩形Q1CR1P1是正方形.设Q1C=CR1=R1P1=P1Q1=r1,∴在Rt△P1R1B中,BR1=R1P1cot∠CBA=r1cot30°=r1,∴BC=CR1+BR1=r1+r1=(+1)r1,又∵BC=6,∴(+1)r1=6,∴r1===3(﹣1)=3﹣3.∴P1B=2R1P1=2r1=2(3﹣3)=6﹣6,∴OP1=OB﹣BP1=3﹣(6﹣6)=6﹣3,∴P1的坐标为(6﹣3,0).∵OE=3,∴EP1=OE﹣OP1=3﹣(6﹣3)=3﹣3,∴把△DEF沿x轴负方向(向左)平移(3﹣3)个单位长度,可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,如图④所示.∵∠ACB=90°,∴∠R2CQ2=90°,∵⊙P2与AC、BC相切于点Q2、R2,∴矩形Q2CR2P2是正方形.设Q2C=CR2=R2P2=P2Q2=r2,∴在Rt△P2R2B中,BR2=R2P2cot∠CBA=r2cot30°=r2,∴BC=BR2﹣CR2 =r2 ﹣r2=(﹣1)r2,又∵BC=6,∴(﹣1)r2=6,∴r2===3(+1)=3+3,∴P2B=2R2P2=2r2=2(3+3)=6+6,∴OP2=BP2﹣OB=6+6﹣3=6+3,∴P2的坐标为(﹣6﹣3,0).∵OE=3,OP2=6+3,∴EP2=OE+OP2=3+(6+3)=9+3,∴把△DEF沿x轴负方向(向左)平移(9+3)个单位长度,可使⊙E与直线AC和BC均相切.综上所述,把△DEF沿x轴负方向(向左)平移(3﹣3)或(9+3)个单位长度,可使⊙E与直线AC和BC均相切.【点评】本题考查了解直角三角形、待定系数法求二次函数解析式、等腰直角三角形、正方形的判定与性质以及平移的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出a,b,c的值;(2)利用等腰直角三角形的性质求出点E,F的坐标;(3)分两种情况求出点P的坐标(即点E移动到的位置).25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.【分析】(1)根据正方形的性质和全等三角形的判定解答即可;(2)①根据全等三角形的性质和等腰直角三角形的判定和性质解答即可;②在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H,根据全等三角形的判定和性质以及等腰直角三角形的判定解答即可.【解答】(1)证明:∵四边形ABCD和四边形CGFE是正方形,∴CE=FE,AD=DC,∠CEF=90°,AD∥EF.∴∠1=∠2.在△AMD和△FMN中,∵∴△AMD≌△FMN(ASA)(2)答:△DEM是等腰直角三角形.由(1)得△AMD≌△FMN,∴MD=MN,AD=FN.在正方形ABCD中,∵AD=DC,∴DC=NF,又∵EC=EF,∴EC﹣DC=EF﹣NF,即ED=EN.又∵∠DEN=90°,∴△DEN是等腰直角三角形.∴EM⊥MD,ME=MD.∴△DEM是等腰直角三角形;(3)答:仍然成立.如图,在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H.在△AMD和△FMP中,∵∴△AMD≌△FMP(SAS).∴∠3=∠4,AD=PF,又∵四边形ABCD、四边形CGFE均为正方形,∴CE=FE,AD=DC,∠ADC=90°,∠CEF=∠ADC=∠EFG=∠ECG=90°.∴DC=PF.∵∠3=∠4,∴AD∥FH.∴∠H=∠ADC=90°.∵∠G=90°,∠5=∠6,∠GCH=180°﹣∠H﹣∠5,∠GFH=180°﹣∠G﹣∠6,∴∠GCH=∠GFH.∵∠GCH+∠DCE=∠GFH+∠PFE=90°,∴∠DCE=∠PFE,在△DCE和△PFE中,∵∴△DCE≌△PFE(SAS).∴ED=EP,∠DEC=∠PEF,∵∠CEF=90°,∴∠DEP=90°.∴△DEP是等腰直角三角形.∴EM⊥MD,ME=MD,∴△DEM是等腰直角三角形.【点评】本题考查的是四边形的综合题,关键是根据正方形的性质、全等三角形的判定定理和性质定理以及等腰直角三角形的判定进行解答.中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年河北省邯郸市中考数学一模试卷一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题3分,共42分.1.在3,﹣1,0,﹣2这四个数中,最大的数是( ) A .0B .6C .﹣2D .32.如图所示的几何体的俯视图是( )A .B .C .D .3.一元一次不等式x+1<2的解集在数轴上表示为( )A .B .C .D .4. 如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( )A .40°B .35°C .50°D .45°5.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为( )A .B .C .D .6.下列计算正确的是( )A .|﹣a|=aB .a 2•a 3=a 6C .D .()0=07.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形 B.菱形 C.正方形D.等腰梯形8.已知:是整数,则满足条件的最小正整数n为()A.2 B.3 C.4 D.59.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°10.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+111.下列命题中逆命题是真命题的是()A.对顶角相等B.若两个角都是45°,那么这两个角相等C.全等三角形的对应角相等D.两直线平行,同位角相等12.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>413.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C.3 D.14.如图,在平面直角坐标系中,过点A与x轴平行的直线交抛物线y=于点B、C,线段BC的长度为6,抛物线y=﹣2x2+b与y轴交于点A,则b=()A.1 B.4.5 C.3 D.615.已知△ABC在正方形网格中的位置如图所示,点A、B、C、P均在格点上,则点P叫做△ABC的()A.外心 B.内心 C.重心 D.无法确定16.如图是小李销售某种食品的总利润y元与销售量x千克的函数图象(总利润=总销售额﹣总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中利润与销售量的函数图象,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.太阳的半径约为696 000千米,用科学记数法表示数696 000为.18.若m、n互为倒数,则mn2﹣(n﹣1)的值为.19.如图所示,正五边形ABCDE的边长为1,⊙B过五边形的顶点A、C,则劣弧AC的长为.20.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第5个三角形中以A5为顶点的内角度数是.三、解答题(本大题共6个小题,共66分)21.定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=,等式右边是通常的加法、减法及除法运算,比如:2⊗1==0(1)求5⊗4的值;(2)若x⊗2=1(其中x≠0),求x的值是多少?22.为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:平均分方差中位数合格率优秀率男生 6.9 2.4 91.7% 16.7%女生 1.3 83.3% 8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?23.已知:如图1,Rt△ABC中,∠BAC=90°,点D是线段AC的中点,连接BD并延长至点E,使BE=2BD.连接AE,CE.(1)求证:四边形ABCE是平行四边形;(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠MEC=∠EMC,BM交AC于点N.①求证:△ABN≌△MCN;②当点M恰为AE中点时sin∠ABM=.24.已知函数y=﹣x+4的图象与函数的图象在同一坐标系内.函数y=﹣x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN交y轴于点C.(1)m=,S△AOB=;(2)如果线段MN被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,求k的值;(3)如图2,若反比例函数图象经过点N,此时反比例函数上存在两个点E(x1,y1)、F(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.25.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD 始终等于∠ACB,旋转角记为α(0°≤α≤180°).(1)①当α=0°时,连接DE,则∠CDE=°,CD=;②当α=180°时,=.(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)若m=10,n=8,当α=∠ACB时,线段BD=.(4)若m=6,n=,当半圆O旋转至与△ABC的边相切时,线段BD=.四、解答题(共1小题,满分14分)26.【探究】:某商场秋季计划购进一批进价为每条40元的围巾进行销售根据销售经验,应季销售时,若每条围巾的售价为60元,则可售出400条;若每条围巾的售价每提高1元,销售量相应减少10条.(1)假设每条围巾的售价提高x元,那么销售每条围巾所获得的利润是元,销售量是条(用含x的代数式表示).(2)设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每条围巾的售价.【拓展】:根据销售经验,过季处理时,若每条围巾的售价定为30元亏本销售,可售出50条;若每条围巾的售价每降低1元,销售量相应增加5条,(1)若剩余100条围巾需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每条围巾的售价应是元.(2)若过季需要处理的围巾共m条,且100≤m≤300,过季亏损金额最小是元;(用含m的代数式表示)【延伸】:若商场共购进了500条围巾且销售情况满足上述条件,如果应季销售利润在不低于8000元的条件下:(1)没有售出的围巾共m条,则m的取值范围是:;(2)要使最后的总利润(销售利润=应季销售利润﹣过季亏损金额)最大,则应季销售的售价是元.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.2016年河北省邯郸市中考数学一模试卷参考答案与试题解析一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题3分,共42分.1.在3,﹣1,0,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:3>0>﹣2>﹣1,故选:D.【点评】本题考查了有理数大小比较,正数大于0,0大于负数是解题关键.2.如图所示的几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看左边一个正方形,右边一个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,注意所有看到的线的都用实线表示.3.一元一次不等式x+1<2的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题;一元一次不等式(组)及应用.【分析】求出不等式的解集,表示出数轴上即可.【解答】解:不等式x+1<2,解得:x<1,如图所示:故选B【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°【考点】平行线的性质.【分析】根据角平分线定义求出∠BAC,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可.【解答】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°﹣∠BAC=40°,故选:A.【点评】本题考查了角平分线定义和平行线的性质的应用,关键是求出∠BAC的度数,再结合∠ACD+∠BAC=180°.5.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.【考点】概率公式.【专题】计算题.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是黄球的概率==.故选C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.下列计算正确的是()A.|﹣a|=a B.a2•a3=a6C.D.()0=0【考点】负整数指数幂;绝对值;同底数幂的乘法;零指数幂.【分析】分别根据绝对值的性质、同底数幂的乘法法则、0指数幂及负整数指数幂的计算法则对各选项进行逐一判断即可.【解答】解:A、当a<0时,|﹣a|=﹣a,故本选项错误;B、a2•a3=a5,故本选项错误;C、(﹣2)﹣1=﹣,故本选项正确;D、()0=1,故本选项错误.故选C.【点评】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.7.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形 B.菱形 C.正方形D.等腰梯形【考点】菱形的判定;线段垂直平分线的性质.【专题】压轴题.【分析】根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.【解答】解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选:B.【点评】此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.8.已知:是整数,则满足条件的最小正整数n为()A.2 B.3 C.4 D.5【考点】二次根式的定义.【分析】因为是整数,且==2,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故本题选D.【点评】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.9.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【考点】圆内接四边形的性质;圆周角定理.【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】分别利用公式法以及提取公因式法分解因式得出答案.【解答】解:A、m2+n2无法分解因式,故此选项错误;B、x2+2x﹣1无法分解因式,故此选项错误;C、a2﹣a=a(a﹣1),正确;D、a2+2a+1=(a+1)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.11.下列命题中逆命题是真命题的是()A.对顶角相等B.若两个角都是45°,那么这两个角相等C.全等三角形的对应角相等D.两直线平行,同位角相等【考点】命题与定理.【分析】互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、逆命题是相等的角是对顶角,是假命题,故A错误;B、逆命题是如过两个角相等,那么这两个角是对顶角,是假命题,故B错误;C、逆命题是对应角相等的三角形全等,是假命题,故C错误;D、逆命题是同位角相等,两直线平行,故D正确;故选:D.【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>4【考点】根的判别式.【专题】计算题.【分析】由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.【解答】解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.13.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C.3 D.【考点】轴对称-最短路线问题.【专题】计算题;压轴题.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:A.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.14.如图,在平面直角坐标系中,过点A与x轴平行的直线交抛物线y=于点B、C,线段BC的长度为6,抛物线y=﹣2x2+b与y轴交于点A,则b=()A.1 B.4.5 C.3 D.6【考点】二次函数的性质.【分析】根据题意知点A(0,b),设点C(x1,b)、点B(x2,b),则x1、x2是方程=b 的两根,根据BC长度可得x1﹣x2=6即(x1+x2)2﹣4x1x2=36,由韦达定理将x1+x2、x1x2代入求解可得.【解答】解:根据题意点A(0,b),设点C(x1,b)、点B(x2,b),抛物线y=中,当y=b时,有=b,即:x2+2x+1﹣3b=0,∴x1+x2=﹣2,x1x2=1﹣3b,∵BC=6,即x1﹣x2=6,∴(x1﹣x2)2=36,即(x1+x2)2﹣4x1x2=36,则:4﹣4(1﹣3b)=36,解得:b=3,故选:C.【点评】本题考查了二次函数性质,根据二次函数与一元二次方程间的关系,结合平行于x 轴上的两点之间的距离是解决本题的关键.15.已知△ABC在正方形网格中的位置如图所示,点A、B、C、P均在格点上,则点P叫做△ABC的()A.外心 B.内心 C.重心 D.无法确定【考点】三角形的重心.【专题】网格型.【分析】根据三角形的重心的概念进行判断即可.【解答】解:由网格中图可知,点D为AC的中点,点E为BC的中点,则AE、BD的交点P是△ABC的重心.故选:C.【点评】本题考查的是三角形的重心的概念,掌握三角形的重心是三角形三边中线的交点是解题的关键.16.如图是小李销售某种食品的总利润y元与销售量x千克的函数图象(总利润=总销售额﹣总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中利润与销售量的函数图象,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②【考点】一次函数的应用.【分析】逐条分析4个图象的变化得知:①售价不变,总成本减少;②售价不变,总成本增加;③总成本不变,售价增加;④总成本不变,售价减少,对照制定的两个方案即可得出结论.【解答】解:①根据函数图象可知,斜率不变,与y轴交点上移,即售价不变,总成本减少;②根据函数图象可知,斜率不变,与y轴交点下移,即售价不变,总成本增加;③根据函数图象可知,斜率变大,与y轴交点不变,即总成本不变,售价增加;④根据函数图象可知,斜率变小,与y轴交点不变,即总成本不变,售价减少.表示方案(1)的图象为①,表示方案(2)的图象为③.故选B.【点评】本题考查了一次函数的应用,解题的关键是根据函数的性质分析4个图象.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的性质分析图象是关键.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.太阳的半径约为696 000千米,用科学记数法表示数696 000为 6.96×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:696 000=6.96×105,故答案为:6.96×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.若m、n互为倒数,则mn2﹣(n﹣1)的值为1.【考点】代数式求值;倒数.【分析】由m,n互为倒数可知mn=1,代入代数式即可.【解答】解:因为m,n互为倒数可得mn=1,所以mn2﹣(n﹣1)=n﹣(n﹣1)=1.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;19.如图所示,正五边形ABCDE的边长为1,⊙B过五边形的顶点A、C,则劣弧AC的长为π.【考点】正多边形和圆;弧长的计算.【分析】由正五边形的性质好内角和定理得出∠B=108°,然后由弧长公式即可得出结果.【解答】解:∵五边形ABCDE是正五边形,∴∠B=(5﹣2)×180°=108°,∴劣弧AC的长==π;故答案为:.【点评】本题考查了正五边形的性质、多边形内角和定理、弧长公式;熟练掌握正五边形的性质,由内角和定理求出∠B的度数是解决问题的关键.20.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第5个三角形中以A5为顶点的内角度数是5°.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=20°,A1B=CB,∴∠BA1C==80°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×80°;同理可得,∠EA3A2=()2×80°,∠FA4A3=()3×80°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×80°.∴第5个三角形中以A5为顶点的内角度数为:=5°,故答案为:5°.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.三、解答题(本大题共6个小题,共66分)21.定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=,等式右边是通常的加法、减法及除法运算,比如:2⊗1==0(1)求5⊗4的值;(2)若x⊗2=1(其中x≠0),求x的值是多少?【考点】解分式方程;实数的运算.【专题】新定义.【分析】(1)根据新定义的新运算,即可解答;(2)根据新定义运算得到分式方程,解分式方程即可.【解答】解:(1)根据题意得:5⊗4==0.(2)∵x⊗2=1,∴在方程两边同乘x得:1﹣(x﹣2)=x,解得:x=,检验:当x=时,x≠0,∴分式方程的解为:x=.【点评】本题考查了解分式方程,解决本题的关键是熟记解分式方程的步骤.22.为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:平均分方差中位数合格率优秀率男生 6.9 2.4 791.7% 16.7%女生7 1.3 783.3% 8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?【考点】方差;一元一次方程的应用;条形统计图;加权平均数;中位数.【分析】(1)本题需先根据中位数的定义,再结合统计图得出它们的平均分和中位数即可求出答案;(2)本题需先根据以上表格,再结合女生的平均分和方差两方面说出支持女生的观点;(3)根据之前男、女生优秀人数+新增男、女生优秀人数=总人数×50%,列方程求解可得.【解答】解:(1)由条形统计图可知,男生一共2+6+8+4+4=24人,其中位数是第12、第13个数的平均数,第12、13两数均为7,故男生中位数是7;女生成绩平均分为:=7(分),其中位数是:=7(分);补充完成的成绩统计分析表如下:平均分方差中位数合格率优秀率男生 6.9 2.4 7 91.7% 16.7%女生7 1.3 7 83.3% 8.3%(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小;(3)设男生新增优秀人数为x人,则:2+4+x++2x=48×50%,解得:x=6,故6×2=12(人).答:男生新增优秀人数为6人,女生新增优秀人数为12人.【点评】本题考查的是条形统计图的综合运用.熟练进行平均数和中位数的计算是基础,读懂统计图,从统计图中得到必要的信息是解决问题的关键.23.已知:如图1,Rt△ABC中,∠BAC=90°,点D是线段AC的中点,连接BD并延长至点E,使BE=2BD.连接AE,CE.(1)求证:四边形ABCE是平行四边形;(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠MEC=∠EMC,BM交AC于点N.①求证:△ABN≌△MCN;②当点M恰为AE中点时sin∠ABM=.【考点】四边形综合题.【分析】(1)先证BD=DE,再加上AD=DC的条件可直接得出结论;(2)①先CM=CE=BA,然后由“角角边”定理直接得出结论;②由M是AE中点,得出CM=EM=AM,再结合CE=CM,可证得△CEM是等边三角形,从而∠CMA=∠ABM=30°.【解答】解:(1)∵点D是线段AC的中点,BE=2BD,∴AD=CD,DE=BD,∴四边形ABCE是平行四边形.(1)①∵四边形ABCE是平行四边形,∴CE=AB,∵∠MEC=∠EMC,∴CM=AB,在△ABN和△MCN中,,∴△ABN≌△MCN(AAS);②∵∠ACE=∠CAB=90°,M为AE中点,∴CM=EM=AM,∵CE=CM,∴CE=CM=EM,∴△CEM是等边三角形,∴∠CME=2∠MCA=60°,∴∠MCA=30°,∵△ABN≌△MCN,∴∠ABM=∠MCA=30°,∴sin∠ABM=.【点评】本题为四边形综合题,主要考查了平行四边形的判定与性质、全等三角形的判定与性质、直角三角形斜边中线定理、等边三角形的判定与性质、特殊角的三角函数等知识点,难度不大,属中档题.24.已知函数y=﹣x+4的图象与函数的图象在同一坐标系内.函数y=﹣x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN交y轴于点C.(1)m=2,S△AOB=8;(2)如果线段MN被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,求k的值;(3)如图2,若反比例函数图象经过点N,此时反比例函数上存在两个点E(x1,y1)、F(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.【考点】反比例函数综合题.【分析】(1)利用点在函数图象上的特点求出m,以及平面直角坐标系中三角形的面积的计算方法(利用坐标轴或平行于坐标轴的直线上的边作为底).(2)利用点的对称点的坐标特点求出N点的坐标,线段MN被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,且交点为D,分两种情况或计算即可.(3)利用点到平行于坐标轴的直线的距离的计算方法以及和(2)类似的方法分两种情况处理,取绝对值时,也要分情况计算.【解答】解:(1)∵M(2,m)在直线y=﹣x+4的图象上,∴m=﹣2+4=2,函数y=﹣x+4的图象与坐标轴交于A、B两点,∴A(4,0),B(0,4),∴OA=4,OB=4,∴S△AOB=OA×OB=×4×4=8.故答案为m=2,S△AOB=8.(2)∵m=2,∴M(2,2),∵点N与点M关于y轴对称,∴N(﹣2,2),∴MN=4,∵线段MN被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,且交点为D,①当时,即:,∴ND=1,∴D(﹣1,2),∴k=﹣1×2=﹣2,②当时,即:,∴DM=MN=×4=1,∴D(1,2),∴k=1×2=2.故k的值为﹣2或2.(3)反比例函数图象经过点N,且N(﹣2,2),∴k=﹣2×2=﹣4,∵反比例函数上存在两个点E(x1,y1)、F(x2,y2),∴x1y1=﹣4x2,y2=﹣4,∵点E(x1,y1)、F(x2,y2)关于原点对称,∴x2=﹣x1,y2=﹣y1,∵M(2,2),N(﹣2,2),∴点E到直线MN的距离为|y1﹣2|,点F到直线MN的距离为|y1+2|,∵点E(x1,y1)、F(x2,y2)到直线MN的距离之比为1:3,∴点E(x1,y1)、F(﹣x1,﹣y1)到直线MN的距离之比为1:3,①当时,即:3|y1﹣2|=|y1+2|当y1>2时,3y1﹣6=y1+2,∴y1=4,∴y2=﹣4,x1=﹣1,x2=1当﹣2<y1≤2时,﹣3y1+6=y1+2,∴y1=1,∴y2=﹣1,x1=﹣4,x2=4当y1≤﹣2时,﹣3y1+6=﹣y1+2,∴y1=2(舍),②当时,即:3|y1+2|=|y1﹣2|,当y1>2时,3y1+6=y1﹣2,∴y1=﹣4(舍),当﹣2<y1≤2时,3y1+6=﹣y1+2,∴y1=﹣1,∴y2=1,x1=4,x2=﹣4(∵x1<x2,舍),当y1≤﹣2时,﹣3y1﹣6=﹣y1+2,∴y1=﹣4,∴y2=4,x1=1,x2=﹣1(∵x1<x2,舍),∴E(﹣4,1),F(1,﹣4)E(﹣4,1),F(4,﹣1)【点评】本题是反比例函数的一道综合题,主要考查了点在函数图象上的特点,如求出m,坐标系中计算三角形面积的方法,利用坐标求两点之间的距离和点到直线的距离,如计算ND,MD,点E,F到直线MN的距离,本题的关键是确定确定两点的距离和点到直线的距离的确定,又用到了分几种情况计算,易丢掉其中一种情况.25.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD 始终等于∠ACB,旋转角记为α(0°≤α≤180°).(1)①当α=0°时,连接DE,则∠CDE=90°,CD=n;②当α=180°时,=.(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)若m=10,n=8,当α=∠ACB时,线段BD=.(4)若m=6,n=,当半圆O旋转至与△ABC的边相切时,线段BD=2或.。