【2019-2020】高考物理一轮复习第十章电磁感应本章学科素养提升学案
2020版高考物理一轮复习 第10章 教学案新人教版【共4套47页】
本套资源目录2020版高考物理一轮复习第10章章末检测含解析新人教版2020版高考物理一轮复习第10章第1节电磁感应现象楞次定律教学案新人教版2020版高考物理一轮复习第10章第2节法拉第电磁感应定律自感涡流教学案新人教版2020版高考物理一轮复习第10章第3节电磁感应定律的综合应用教学案新人教版第十章章末检测(45分钟100分)一、选择题(本题共10小题,每小题6分,共60分。
在每小题给出的四个选项中第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求,全选对的得6分,选对但不全的得3分,有选错的得0分)1.(2019·莱芜模拟)如图所示,光滑的水平桌面上放着两个完全相同的金属环a和b,当一条形磁铁的S极竖直向下迅速靠近两环中间时,则( )A.a、b均静止不动B.a、b互相靠近C.a、b均向上跳起D.a、b互相远离D[根据楞次定律可知:当条形磁铁沿轴线竖直向下迅速移动时,闭合导体环内的磁通量增大,因此两线圈产生顺时针方向的感应电流,因为两线圈靠近侧电流方向相反,所以a、b两环互相远离,D项正确。
]2.(2019·重庆模拟)如图所示的条形磁铁的上方放置一矩形线框,线框平面水平且与条形磁铁平行,则线框在由N极匀速平移到S极的过程中,线框中的感应电流的情况是( )A.线框中始终无感应电流B.线框中始终有感应电流C.线框中开始有感应电流,当线框运动到磁铁中部上方时无感应电流,以后又有了感应电流D.开始无感应电流,当运动到磁铁中部上方时有感应电流,后来又没有感应电流B[条形磁铁中部磁性较弱,两极磁性最强,线圈从左向右移动过程中,线圈中磁通量先减小后反方向增大,因此线圈中始终有感应电流,故B项正确。
]3.(2019·杭州模拟)如图所示为航母上电磁弹射装置的等效电路图(俯视图),使用前先给超级电容器C充电,弹射时,电容器释放储存电能所产生的强大电流经过导体棒EF,EF在磁场(方向垂直纸面向外)作用下加速。
高考物理一轮复习 第十章 电磁感应 专题提升(十)电磁感应的综合应用教案 鲁科版-鲁科版高三全册物理
专题提升(十) 电磁感应的综合应用电磁感应中的能量问题(1)能量转化(2)求解焦耳热Q的三种方法(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.角度1 应用能量守恒定律求解电磁感应能量问题[例1]如图所示,两平行金属导轨位于同一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下.一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好.已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g,导轨和导体棒的电阻均可忽略.求:(1)电阻R消耗的功率.(2)水平外力的大小.解析:(1)导体棒切割磁感线产生的电动势E=Blv由于导轨与导体棒的电阻均可忽略,则R两端电压等于电动势U=E则电阻R 消耗的功率P R =2U R综合以上三式可得P R =222B l v R. (2)设水平外力大小为F,由能量守恒有 Fv=P R +μmgv 故得F=22vB l R+μmg. 答案:见解析角度2 应用焦耳定律求解电磁感应能量问题[例2] (2019·东城区模拟)随着新技术的应用,手机不断地更新换代.新机型除了常规的硬件升级外,还支持快充和无线充电.图(甲)为兴趣小组制作的无线充电装置中的输电线圈示意图,已知线圈匝数n=100,电阻r=1.0 Ω,线圈的横截面积S=1.5×10-3m 2,外接电阻R=5.0 Ω.线圈处在平行于线圈轴线的磁场中,磁场的磁感应强度随时间变化如图(乙)所示,求:(1)t=1.0×10-2s 时线圈中的感应电动势E; (2)0~2.0×10-2 s 内通过电阻R 的电荷量q; (3)0~3.0×10-2 s 内电阻R 上产生的热量Q. 解析:(1)由图(乙)可知,t=0.01 s 时刻ΔΔBt=4 T/s 根据法拉第电磁感应定律得E=n ΔΔt Φ=n ΔΔS Bt解得E=0.6 V. (2)0~0.02 s 内,I=ER r+=0.1 A 电荷量q=IΔt 解得q=2.0×10-3 C.(3)0~0.02 s 内,E=0.6 V,I=0.1 A,根据焦耳定律可以得到,R 上产生的焦耳热为 Q 1=I 2Rt 1=1.0×10-3 J0.02~0.03 s内,E′=1.2 V,I′=0.2 A,根据焦耳定律可以得到,R上产生的焦耳热为Q2=I′2Rt2=2.0×10-3 J所以Q=Q1+Q2=3.0×10-3 J.答案:(1)0.6 V (2)2.0×10-3 C (3)3.0×10-3 J求解焦耳热应分清两类情况(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则①利用安培力做的功求解:电磁感应中产生的焦耳热等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的焦耳热;③利用功能关系求解:若除重力、安培力做功外,还有其他力做功,则其他力做功等于增加的机械能和产生的焦耳热.1.(2019·某某七市二模)(多选)在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又恰好以速度v2做匀速直线运动,从ab边越过GH到到达MN与JP的中间位置的过程中,线框的动能变化量为ΔE k,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确的有( CD)A.在下滑过程中,由于重力做正功,所以有v2>v1B.从ab边越过GH到到达MN与JP的中间位置的过程中,线框的机械能守恒C.从ab边越过GH到到达MN与JP的中间位置的过程中,有W1-ΔE k的机械能转化为电能D.从ab边越过GH到到达MN与JP的中间位置的过程中,线框动能的变化量大小ΔE k=W1-W2解析:ab 边越过JP 后回路感应电动势增大,感应电流增大,因此所受安培力增大,安培力阻碍线框下滑,因此ab 边越过JP 后开始做减速运动,使感应电动势和感应电流均减小,安培力减小,当安培力减小到与重力沿斜面向下的分力mgsin θ相等时,以速度v 2做匀速运动,因此v 2<v 1,A 错误;由于有安培力做功,线框机械能不守恒,B 错误;线框克服安培力做功,将机械能转化为电能,克服安培力做了多少功,就有多少机械能转化为电能,由动能定理得W 1-W 2=ΔE k ,W 2=W 1-ΔE k ,故C,D 正确.2.(2019·某某某某二模)(多选)如图所示,质量为3m( ABD )2gh2222B L gh mgC.线框通过磁场的过程中产生的热量Q=2mghD.线框通过磁场的过程中产生的热量Q=4mgh解析:从初始时刻到线框上边缘刚进入磁场,由机械能守恒定律得3mg×2h=mg×2h+242mv ,解得线框刚进入磁场时的速度v=2gh ,故A 正确;线框上边缘刚进磁场时,恰好做匀速直线运动,故受合力为零,3mg=BIL+mg,I=BLv R ,解得线框的电阻R=2222B L gh mg,故B 正确;线框匀速通过磁场的距离为2h,产生的热量等于系统重力势能的减少量,即Q=3mg×2h -mg×2h=4mgh,故C 错误,D 正确.电磁感应中的动量和能量问题角度1 用动量定理解决电磁感应问题 [例3](2019·某某某某模拟)(多选)水平放置的足够长光滑平行导轨,电阻不计,间距为L,左端连接的电源电动势为E 、内阻为r,质量为m 的金属杆垂直静放在导轨上,金属杆处于导轨间的部分的电阻为R.整个装置处在磁感应强度大小为B 、方向竖直向下的匀强磁场中,闭合开关,金属杆沿导轨做变加速运动直至达到最大速度,下列说法正确的是( AC )222mEB L 222mE B L 2222mE B L 解析:开关闭合瞬间,电流通过金属杆,则金属杆在安培力作用下加速运动,同时由于金属杆切割磁感线产生感应电动势,方向与E 相反,故金属杆做加速度减小的加速运动,当感应电动势等于电源电动势E 时,金属杆加速度为0,速度最大,由BLv m =E,得v m =EBL,A 正确;整个过程中对金属杆应用动量定理有B I L·t=mv m ,则q=I t=m mv BL=22mEB L ,B 错误;电源提供的电能为E 电=qE=222mE B L ,C 正确;对整个过程由功能关系可知电源提供的能量转化为金属杆的动能和电路产生的热量,即E 电=Q 总+E k ,得222mE B L =Q 总+12m 222E B L ,故Q 总=Q r +Q R =2222mE B L ,金属杆的热量为Q R =R R r +Q 总=2222mE B L ·R R r+,D 错误. 角度2 用动量守恒定律解决电磁感应问题[例4] (2019·丰台期末)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L,导轨上平行放置两根导体棒ab 和cd,构成矩形回路.已知两根导体棒的质量均为m 、电阻均为R,其他电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B,导体棒均可沿导轨无摩擦的滑行.开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触.求:(1)开始时,导体棒ab 中电流的大小和方向;(2)从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热; (3)当ab 棒速度变为34v 0时,cd 棒加速度的大小. 解析:(1)ab 棒产生的感应电动势E ab =BLv 0 ab 棒中电流I=2ab E R=02BLv R 方向由a→b.(2)当ab 棒与cd 棒速度相同时,cd 棒的速度最大,设最大速度为v 由动量守恒定律得mv 0=2mv 解得v=12v 0由能量守恒定律得Q=12m 20v -12(2m)v 2解得Q=14m 20v .(3)设ab 棒的速度为34v 0时,cd 棒的速度为v′ 由动量守恒定律得mv 0=m 34v 0+mv′ 解得v′=14v 0. E ab =BL 34v 0; E cd =BL 14v 0;I=2ab cdE E R-=0031()442BL v v R- 解得I=4BLv Rcd 棒受力为F=IBL=2204B L v R; 此时cd 棒加速度为a==.答案:见解析动量定理及动量守恒定律在电磁感应中的应用技巧(1)在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.①求电荷量或速度:B I lΔt=mv 2-mv 1,q=I t. ②求时间:Ft-I 冲=mv 2-mv 1,I 冲=BIlΔt=Bl ΔR Φ总. ③求位移:-BIlΔt=-=0-mv 0,即-22B l R 总s=m(0-v 0). (2)电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题.1.滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1 解析:杆2固定:对回路:q 1=Δ2R Φ=12Bds R. 对杆1:-B 1I d·Δt=0-mv 0,q 1=·Δt 联立解得s 1=222mRv B d . 杆2不固定:q 2=22Bds R对杆2:Bd·Δt=mv 2-0 全程动量守恒:mv 0=mv 1+mv 2 末态两棒速度相同,v 1=v 2,q 2=·Δt 联立解得s 2=22mRv B d . s 1∶s 2=2∶1,C 正确.2.(2019·某某黔东南二模)如图所示,宽度为L 的平行光滑的金属轨道,左端为半径为r 1的四分之一圆弧轨道,右端为半径为r 2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B 的竖直向上的匀强磁场.一根质量为m 的金属杆a 置于水平轨道上,另一根质量为M 的金属杆b 由静止开始自左端轨道最高点滑下,当b 滑入水平轨道某位置时,a 就滑上了右端半圆轨道最高点(b 始终运动且a,b 未相撞),并且a 在最高点对轨道的压力大小为mg,此过程中通过a 的电荷量为q,a,b 杆的电阻分别为R 1,R 2,其余部分电阻不计.在b 由静止释放到a 运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b 的最大加速度是多大;(2)自b 释放到a 到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少; (3)a 刚到达右端半圆轨道最低点时b 的速度是多大. 解析:(1)由机械能守恒定律得12M 21b v =Mgr 1 解得v b112grb 刚滑到水平轨道时加速度最大,E=BLv b1,I=12ER R +, 由牛顿第二定律有F 安=BIL=Ma 解得221122B L gr .(2)由动量定理有-B I Lt=Mv b2-Mv b1, 即-BLq=Mv b2-Mv b1 解得v b212gr -BLqM根据牛顿第三定律得:a 在最高点受支持力N=N′=mg,mg+N=m 212a v r解得v a122gr 由能量守恒定律得Mgr 1=12M 22b v +12m 21a v +mg2r 2+Q 解得Q=BLq 12gr -3mgr 2-2222B L q M. (3)由能量守恒定律有2mgr 2=12m 22a v -12m 21a v 解得v a2=26gr由动量守恒定律得Mv b1=Mv b3+mv a2 解得v b3=12gr -26m gr M.答案:(1)221122()B L gr M R R +(2)BLq 12gr -3mgr 2-2222B L q M(3)12gr -26m gr M1.( AD )A.物块c 的质量是2msin θB.b 棒放上导轨前,物块c 减少的重力势能等于a,c 增加的动能C.b 棒放上导轨后,物块c 减少的重力势能等于回路消耗的电能D.b 棒放上导轨后,a 棒中电流大小是sin mg BLθ解析:b 棒静止说明b 棒受力平衡,即安培力和重力沿斜面向下的分力平衡,a 棒匀速向上运动,说明a 棒受细线的拉力和重力沿斜面向下的分力大小以及沿斜面向下的安培力三个力平衡,c 匀速下降则c 所受重力和细线的拉力大小平衡.由b 平衡可知,安培力大小F 安=mgsin θ,由a 平衡可知F 线=F 安+mgsin θ=2mgsin θ,由c 平衡可知F 线=m c g;因为线中拉力大小相等,故2mgsin θ=m c g,即物块c 的质量为2msin θ,故A 正确;b 放上之前,a,c 系统的机械能守恒,c 减少的重力势能转化为a,c 的动能和a 的重力势能,故B 错误;放上b 后,a 匀速上升重力势能在增加,根据能量守恒知c 减小的重力势能等于回路消耗的电能和a 增加的重力势能之和,C 错误;根据b 棒的平衡可知F 安=mgsin θ,又因为F 安=BIL,故I=sin mg BL,故D 正确. 2.(2018·某某卷,9)(多选)如图所示,竖直放置的“( BC )A.刚进入磁场Ⅰ时加速度方向竖直向下B.穿过磁场Ⅰ的时间大于在两磁场之间的运动时间D.释放时距磁场Ⅰ上边界的高度h 可能小于2244g 2m R B L 解析:穿过磁场Ⅰ后,金属杆在磁场之间做加速运动,在磁场Ⅱ上边缘速度大于从磁场Ⅰ出来时的速度,即进入磁场Ⅰ时速度等于进入磁场Ⅱ时速度且大于从磁场Ⅰ出来时的速度,故金属杆在刚进入磁场Ⅰ中时做减速运动,加速度方向向上,选项A 错误. 金属杆刚进入磁场Ⅰ中时,由牛顿第二定律知BIL-mg=22vB L R-mg=maa 随着减速过程逐渐变小,即在前一段做加速度减小的减速运动,若出磁场Ⅰ前a 减为零则再做匀速运动.金属杆在磁场之间做加速度为g 的匀加速直线运动,两个过程位移大小相等,由v t 图象(以金属杆在磁场Ⅰ中一直减速为例),如图所示,可以看出前一段用时多于后一段用时(若金属杆在磁场Ⅰ中先减速再匀速可以得出同样的结论),选项B 正确.由于进入两磁场时速度相等,从金属杆刚进入磁场Ⅰ到刚进入磁场Ⅱ的过程,由动能定理知, W 安1+mg·2d=0, 则W 安1=-2mgd,可知通过磁场Ⅰ产生的热量为2mgd,故穿过两磁场产生的总热量为4mgd,选项C 正确. 设刚进入磁场Ⅰ时速度为v,则由机械能守恒定律知mgh=12mv 2,进入磁场时BIL-mg=22v B L R -mg=ma 解得v=22()m a g R B L +, 联立得h=22244(a g)2gm R B L +>2244g 2m R B L ,选项D 错误. 3.(2019·某某某某二模)如图所示,质量M=1 kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=1 kg 的导体棒自ce 端的正上方h=2 m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于X 围足够大的竖直方向的匀强磁场中,导体棒在凹槽内运动过程中与导轨接触良好.已知磁场的磁感应强度B=0.5 T,导轨的间距与导体棒的长度均为L=0.5 m,导轨的半径r=0.5 m,导体棒的电阻R=1 Ω,其余电阻均不计,重力加速度g=10 m/s 2,不计空气阻力.(1)求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16 J,求导体棒第一次通过最低点时回路中的电功率.解析:(1)根据机械能守恒定律,得mgh=12mv 2解得10 m/s.Q=mg(h+r)=25 J.(3)设导体棒第一次通过最低点时速度大小为v 1,凹槽速度大小为v 2,导体棒在凹槽内运动时系统在水平方向动量守恒,故有mv1=Mv2由能量守恒,得12m21v+12M22v=mg(h+r)-Q1导体棒第一次通过最低点时感应电动势E=BLv1+BLv2回路电功率P=2ER联立解得P=94W.答案:(1)210 m/s (2)25 J (3)94W4.(2019·某某某某调研)如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q31P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;(2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡,则有Bcos θ·dI m=mgsin θ此时杆CD切割磁感线产生的感应电动势为E=Bcos θ·dv m由欧姆定律可得I m=ER,解得v m =222sin cos θmgR B d θ. (2)在杆CD 沿倾斜导轨下滑的过程中,根据动量定理有 mgsin θ·Δt 1-Bcos θ1I d·Δt 1=mv m -01I =E R =1ΔΔRt Φ=1cos ΔR B Ld t θ 解得Δt 1=222cos θmR B d +222Lcos θsin B d mgR θ在杆CD 沿水平导轨运动的过程中,根据动量定理有 -B 2I d·Δt 2=0-mv m该过程中通过R 的电荷量为q 2=2I Δt 2,得q 2=m mv Bd杆CD 沿水平导轨运动的过程中,通过的平均电流为 2I =E R =2ΔBsd R t ,q 2=2I Δt 2=Bds R解得s=22442g sin cos θm R B d θ. 答案:(1)222sin cos θmgR B d θ (2)222cos θmR B d +222Lcos θsin B d mgR θ22442g sin cos θm R B d θ。
2019年高考物理一轮复习第十章电磁感应本章学科素养提升学案
第十章 电磁感应1.“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“杆+导轨”模型又分为“单杆”型和“双杆”型(“单杆”型为重点);导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速、匀变速、非匀变速运动等.2.该模型的解题思路(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;(2)求回路中的电流大小;(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向);(4)列动力学方程或平衡方程求解.例1 如图1甲所示,两根足够长平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角为α,金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m .导轨处于匀强磁场中,磁场的方向垂直于导轨平面向上,磁感应强度大小为B .金属导轨的上端与开关S 、定值电阻R 1和电阻箱R 2相连.不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g .现在闭合开关S ,将金属棒由静止释放.图1(1)判断金属棒ab 中电流的方向;(2)若电阻箱R 2接入电路的阻值为0,当金属棒下降高度为h 时,速度为v ,求此过程中定值电阻上产生的焦耳热Q ;(3)当B =0.40T ,L =0.50m ,α=37°时,金属棒能达到的最大速度v m 随电阻箱R 2阻值的变化关系,如图乙所示.取g =10m/s 2,sin37°=0.60,cos37°=0.80.求R 1的阻值和金属棒的质量m .答案 (1)b →a (2)mgh -12mv 2 (3)2.0Ω 0.1kg 解析 (1)由右手定则可知,金属棒ab 中的电流方向为由b 到a .(2)由能量守恒定律知,金属棒减少的重力势能等于增加的动能和电路中产生的焦耳热,即 mgh =12mv 2+Q则Q =mgh -12mv 2.(3)金属棒达到最大速度v m 时,切割磁感线产生的感应电动势:E =BLv m由闭合电路的欧姆定律得:I =ER 1+R 2从b 端向a 端看,金属棒受力如图所示金属棒达到最大速度时,满足:mg sin α-BIL =0由以上三式得v m =mg sin αB 2L 2(R 2+R 1)由图乙可知:斜率k =60-302m·s -1·Ω-1=15m·s -1·Ω-1,纵轴截距v =30m/s所以mg sin αB 2L 2R 1=v ,mg sin αB 2L 2=k解得R 1=2.0Ω,m =0.1kg.解决此类问题要抓住三点1.杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零);2.整个电路产生的电能等于克服安培力所做的功;3.电磁感应现象遵从能量守恒定律.分析电磁感应图象问题的思路例2如图2,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气的影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律( )图2答案 A解析线框在0~t1这段时间内做自由落体运动,v-t图象为过原点的倾斜直线,t2之后线框完全进入磁场区域中,无感应电流,线框不受安培力,只受重力,线框做匀加速直线运动,v-t图象为倾斜直线.t1~t2这段时间线框受到安培力作用,线框的运动类型只有三种,即可能为匀速直线运动、也可能为加速度逐渐减小的加速直线运动,还可能为加速度逐渐减小的减速直线运动,而A选项中,线框做加速度逐渐增大的减速直线运动是不可能的,故不可能的v-t图象为A选项中的图象.。
一轮复习新人教版第十章磁场素养提升学案
章末素养提升[科学小报] 电流天平是用以测量两平行通电导体之间的力或用以测量磁感应强度的仪器。
天平横臂用环氧树脂敷铜板制成横臂上的“U”形导体,一端直接与一个黄铜刀口相通,另一端通过转换开关与另一个刀口连通。
改变转换开关的位置,可选择“U”形导体受力部分的长度。
横臂上的两个刀口在使用时各放在一个黄铜刀槽上,刀槽装在铜支架的上部,起着支承天平横臂和通电触点的双重作用。
铜支架的下端分别用导线与底座左边的两接线柱连接。
激磁线圈接在底座右边的两接线柱下端。
装在转换开关旁边的平衡螺母兼做转换开关旋钮。
用平衡螺母可以调节横臂的重心位置。
当重心位置低于两把刀口的支点所连成的直线时,重心愈往下移,横臂的稳定性愈好,但灵敏度降低;重心愈接近支点连线,横臂灵敏度愈高,但愈不易稳定。
横臂上还装有平衡螺母、砝码挂钩和一个指针。
[原创新题1] (多选)利用如图所示的电流天平,可以测量匀强磁场中的磁感应强度B。
它的右臂挂着矩形线圈,匝数为n,b段导线长为l,导线a、b、c段处于匀强磁场中,磁感应强度方向与线圈平面垂直。
当线圈没有通电时,天平处于平衡状态。
当线圈中通入逆时针方向的电流I时,通过在右盘加质量为m的砝码(或移动游码)使天平重新平衡。
下列说法中正确的是( BCD )A.若仅将电流反向,线圈仍保持平衡状态B.线圈通电后,a、c段导线受到的安培力等大反向,b段导线的安培力向上D.由以上测量数据可以求出磁感应强度大小为 B=mgnIl解析:线圈通电后,根据左手定则可知a、c段导线受到的安培力等大反向,b段导线的安培力向上;当线圈没有通电时,天平处于平衡状态,设左盘质量为m1,右盘质量为m2,有m1gL1=m2gL2,当线圈中通入电流I 时,向上的安培力大小为F=nBIl,在右盘加质量为m的砝码(或移动游码)使天平重新平衡,则有m1g·L1=(m2g+mg-nBIl)·L2,可得mg=nBIl,,若仅将电流反向,则安培力方向向下,其则磁感应强度大小为B=mgnIl他条件不变,由以上分析可知,线圈不能保持平衡状态,故A错误,B、C、D正确。
2019版高考物理一轮复习第十章电磁感应第1讲电磁感应定律楞次定律学案
第1讲电磁感应定律楞次定律★★★考情微解读★★★微知识1 磁通量2.磁通量的意义:可以用磁感线形象地说明,即穿过磁场中某个面的磁感线的条数。
对于同一个平面,当它跟磁场方向垂直时,穿过它的磁感线条数最多,磁通量最大。
当它跟磁场方向平行时,没有磁感线穿过它,则磁通量为零。
微知识2 电磁感应现象1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
2.产生感应电流的条件(2)特例:闭合电路的一部分导体在磁场内做切割磁感线的运动。
3.产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合,则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
4.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
微知识3 楞次定律一、思维辨析(判断正误,正确的画“√”,错误的画“×”。
)1.磁通量等于磁感应强度B与面积S的乘积。
(×)2.磁通量、磁通量变化、磁通量的变化率的大小均与匝数无关。
(√)3.只要回路中的磁通量变化,回路中一定有感应电流。
(×)4.由楞次定律知,感应电流的磁场一定与引起感应电流的磁场方向相反。
(×)5.当导体做切割磁感线运动时,一定产生感应电动势。
(√)二、对点微练1.(磁通量的理解)如图所示的磁场中,有三个面积相同且相互平行的线圈S1、S2和S3,穿过S1、S2和S3的磁通量分别为Φ1、Φ2和Φ3,下列判断正确的是( )A.Φ1最大B.Φ2最大C.Φ3最大D.Φ1=Φ2=Φ3解析三个线圈的面积相同,由图可看出第三个线圈所在处磁感线最密,即磁感应强度最强,所以Φ3最大。
答案 C2.(电磁感应现象)如图所示,矩形线框在磁场内做的各种运动中,能够产生感应电流的是( )解析根据产生感应电流的条件,闭合回路内磁通量变化产生感应电流,能够产生感应电流的是图B。
答案 B3.(楞次定律)如图所示,一个有界匀强磁场区域,磁场方向垂直纸面向外。
物理学案 人教版高考一轮复习第10章电磁感应学案及实验教学
第2讲 法拉第电磁感应定律 自感 涡流一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。
(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r 。
3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv 。
(2)v ∥B 时,E =0。
二、自感、涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。
(2)自感电动势①定义:在自感现象中产生的感应电动势叫作自感电动势。
②表达式:E =L ΔIΔt。
(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。
②单位:亨利(H),1 mH =10-3H,1 μH=10-6H 。
2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。
授课提示:对应学生用书第196页命题点一 对法拉第电磁感应定律的理解及应用 自主探究1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,磁通量Φ较大或磁通量的变化量ΔΦ较大时,感应电动势不一定较大。
(2)ΔΦΔt 为单匝线圈产生的感应电动势大小。
2.法拉第电磁感应定律的三个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB·S,E =n ΔBΔt S 。
(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B·ΔS,E =nB ΔSΔt。
(3)磁通量的变化是由面积和磁场变化共同引起时,则ΔΦ=Φ末-Φ初,E =n B 2S 2-B 1S 1Δt ≠n ΔB·ΔSΔt。
2020版高考物理一轮复习第10章第3节电磁感应定律的综合应用教学案新人教版(最新整理)
第3节电磁感应定律的综合应用知识点一|电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源。
(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路。
2.电源电动势和路端电压(1)电动势:E=Blv或E=n错误!。
(2)路端电压:U=IR=E-Ir。
[判断正误](1)闭合电路的欧姆定律同样适用于电磁感应电路。
(2)“相当于电源"的导体棒两端的电压一定等于电源的电动势。
(3)电流一定从高电势流向低电势。
1.电磁感应中电路知识的关系图2.解决电磁感应中的电路问题三步曲[典例] 在同一水平面的光滑平行导轨P、Q相距l= 1 m,导轨左端接有如图所示的电路。
其中水平放置的平行板电容器两极板M、N相距d=10 mm,定值电阻R1=R2=12 Ω,R3=2 Ω,金属棒ab的电阻r=2 Ω,其他电阻不计。
磁感应强度B=0。
5 T的匀强磁场竖直穿过导轨平面,当金属棒ab沿导轨向右匀速运动时,质量m=1×10-14kg、电荷量q =-1×10-14C的微粒悬浮于电容器两极板之间恰好静止不动.取g=10 m/s2,在整个运动过程中金属棒与导轨接触良好,且速度保持恒定。
试求:(1)匀强磁场的方向;(2)金属棒ab两端的路端电压;(3)金属棒ab运动的速度.解析:(1)负电荷受到重力和电场力的作用处于静止状态,因为重力方向竖直向下,所以电场力方向竖直向上,故M板带正电。
ab棒向右做切割磁感线运动产生感应电动势,ab棒等效于电源,感应电流方向由b→a,其a端为电源的正极,由右手定则可判断,磁场方向竖直向下。
(2)微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg=Eq又E=错误!,所以U MN=错误!=0。
1 VR3两端电压与电容器两端电压相等,由欧姆定律得通过R3的电流为I=错误!=0。
05 A则ab棒两端的电压为U ab=U MN+IR1R2R1+R2=0。
人教版高三物理一轮专题复习第十章电磁感应专题三电磁感应规律的应用导学案
人教版高三物理一轮专题复习第十章电磁感应专题三电磁感应规律的应用导学案【温习目的】1、熟练掌握感应电动势大小的计算方法和方向的判定方法;2、熟习电磁感应综分解绩类型及其处置思绪和本卷须知,可以较好地处置近几年高考在电磁感应综合局部的热点效果。
【重点难点】电流电压电量的计算、静态效果剖析、安培力的功和焦耳热的计算【学法指点】养成画等效电路图的习气和严谨细致的思想习气;多作研讨和训练,把基本思绪练熟。
【知识回忆】1、穿过闭合回路的,就可以在闭合回路发生感应电动势,进而构成感应电流;2、感应电流的方向由定律来判定,导体棒垂直切割磁感线发生的感应电流的方向还可由定那么来判定。
3、感应电动势的大小由定律来计算,计算式为;感应电动势因发生方式不同而分为两类状况:①B不变而S变化,从而发生的电动势叫做动生电动势,可用计算,导体棒垂直切割磁感线发生的感应电动势的还可用公式来计算;②S不变而B变化,从而发生的电动势叫做电动势,可用计算。
【经典例题】如下图,电阻不计的润滑金属导轨ac、bd水平平行放置,处在方向竖直向下、磁感应强度为B 的匀强磁场中,导轨左侧接有阻值为R=2r的定值电阻,导轨间距为L. 一质量为m、电阻为r、长度也为L的金属导体棒MN垂直导轨放置在导轨上,在水平向右的拉力作用下向右匀速运动,速度为v。
〔1〕R中电流的大小是多少?方向如何?〔2〕M、N两点哪点电势高?M、N两点间电势差R是多少?〔3〕水平拉力是多大?〔4〕假定某时辰撤去水平拉力,那么尔后的进程中,导体棒将做什么运动?最终速度是多少?〔5〕假定撤去水平拉力后,导体棒向右运动的最远距离为x,那么此进程中经过导体棒的电荷量是多大?〔6〕假定某时辰撤去水平拉力,那么尔后的进程中,R中发生的焦耳热是多少?【课堂反应】【练1】粗细平均的电阻丝围成的正方形框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的某条边重合,如以下图所示.现使线框以异样大小的速度沿四个不同方向平移出磁场,那么在移出进程中()A.四种状况下流过ab边的电流的方向都相反B.四种状况下ab两端的电势差都相等C.四种状况下流过线框横截面的电量都相等D.四种状况下线框中发生的焦耳热都不相反【练2】如下图,电阻不计的润滑金属导轨ac、bd水平平行放置,处在方向竖直向下、磁感应强度为B 的匀强磁场中,导轨左侧接有阻值为R=2r 的定值电阻,导轨间距为L . 一质量为m 、电阻为r 、长度也为L 的金属导体棒MN 运动垂直放置在导轨上。
【高中教育】高考物理大一轮复习第10单元电磁感应学案
——教学资料参考参考范本——【高中教育】高考物理大一轮复习第10单元电磁感应学案______年______月______日____________________部门高考热点统计要求20xx年20xx年20xx年20xx年高考基础要求Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ及冷点统计电磁感应现象 Ⅰ 14 18 20 15 自感、涡流(Ⅰ)高考对于自感、涡流的考查属于冷点,一般不单独出题.可以与物理学史结合考查电磁感应现象.如20xx 年全国卷Ⅰ第19题.磁通量 Ⅰ 19 25 18 法拉第电磁感应定律 Ⅱ 18 25 15 24 20 21、25 18 20 15 楞次定律 Ⅱ 25 19 24 20 25 20 15 考情分析 1.高考着重考查的知识点有:电磁感应现象、产生感应电流的条件、楞次定律、法拉第电磁感应定律. 2.从近年来高考命题趋势看,结合图像综合考查楞次定律和电磁感应定律的应用为选择题的命题热点;以导轨+导体棒模型为载体,以近代科技、生活实际为背景,考查电磁感应规律与力学、电路知识的综合应用,是计算题(或选择题)的命题热点. 第26讲 电磁感应现象、楞次定律一、磁通量1.磁通量(1)定义:磁感应强度B 与垂直于磁场方向的面积S 的 .(2)公式:Φ= (B⊥S);单位:韦伯(Wb).(3)矢标性:磁通量是 ,但有正负.2.磁通量的变化量:ΔΦ= .3.磁通量的变化率(磁通量变化的快慢): 与所用时间的比值,即,与线圈的匝数无关.二、电磁感应现象1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有 产生的现象.2.产生感应电流的条件(1)闭合电路;(2) 发生变化.三、感应电流的方向1.楞次定律:感应电流的磁场总要 引起感应电流的 的变化.适用于一切电磁感应现象.2.右手定则:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向 的方向,这时四指所指方向就是感应电流的方向.适用于判断导线时感应电流的方向.【思维辨析】(1)闭合电路内只要有磁通量,就有感应电流产生. ( )(2)穿过线圈的磁通量和线圈的匝数无关. ( )(3)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生. ( )(4)当导体切割磁感线时,一定产生感应电动势. ()(5)由楞次定律知,感应电流的磁场一定与引起感应电流的磁场方向相反. ( )(6)磁通量变化量越大,感应电动势越大. ( )(7)自感现象是电磁感应现象的应用. ( )考点一电磁感应现象的理解与判断1.磁通量发生变化的三种常见情况(1)磁场强弱不变,回路面积改变.(2)回路面积不变,磁场强弱改变.(3)回路面积和磁场强弱均不变,但二者的相对位置发生改变.2.判断是否产生感应电流的流程(1)确定研究的回路.(2)弄清楚回路内的磁场分布,并确定穿过该回路的磁通量Φ.(3)Φ不变→无感应电流Φ变化→1 [20xx·全国卷Ⅰ] 扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图26-1所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是图26-2中的( )图26-1A B C D图26-2式题1 图26-3中能产生感应电流的是 ( )图26-3式题2 利用所学物理知识,可以初步了解常用的公交一卡通(IC卡)的工作原理及相关问题.IC卡内部有一个由电感线圈L和电容器C构成的LC振荡电路,公交卡上的读卡机(刷卡时“滴”的响一声的机器)向外发射某一特定频率的电磁波.刷卡时,IC卡内的线圈L中产生感应电流,给电容器C充电,达到一定的电压后,驱动卡内芯片进行数据处理和传输.下列说法正确的是( )A.IC卡工作所需要的能量来源于卡内的电池B.仅当读卡机发射该特定频率的电磁波时,IC卡才能有效工作C.若读卡机发射的电磁波偏离该特定频率,则线圈L中不会产生感应电流D.IC卡只能接受读卡机发射的电磁波,而不能向读卡机传输自身的数据信息考点二楞次定律的理解与应用考向一应用楞次定律判断感应电流方向的“四步法”2 [20xx·全国卷Ⅲ] 如图26-4所示,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是 ( )图26-4A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向式题 [20xx·哈尔滨六中二模] 如图26-5所示,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距.两导线中通有大小相等、方向均向下的恒定电流,则()图26-5A.金属环向上运动时,环上的感应电流方向为顺时针B.金属环向下运动时,环上的感应电流方向为顺时针C.金属环向左侧直导线靠近时,环上的感应电流方向为逆时针D.金属环向右侧直导线靠近时,环上的感应电流方向为逆时针■方法技巧楞次定律中“阻碍”的含义考向二利用楞次定律的推论速解电磁感应问题电磁感应现象中因果相对的关系恰好反映了自然界的这种对立统一规律,对楞次定律中“阻碍”的含义可以推广为感应电流的“效果”总是阻碍产生感应电流的原因,可由以下四种方式呈现:(1)阻碍磁通量的变化,即“增反减同”.(2)阻碍相对运动,即“来拒去留”.(3)使线圈面积有扩大或缩小的趋势,即“增缩减扩”.(4)阻碍原电流的变化(自感现象),即“增反减同”.3 如图26-6所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时(重力加速度为g) ( )图26-6A.P、Q将互相靠拢B.P、Q将互相远离C.磁铁的加速度仍为gD.磁铁的加速度大于g式题 [20xx·上海静安质检] 如图26-7所示,在同一水平面内有两根光滑平行金属导轨MN和PQ,在两导轨之间竖直放置通电螺线管,ab和cd是放在导轨上的两根金属棒,它们分别放在螺线管的左、右两侧,保持开关闭合,最初两金属棒处于静止状态.当滑动变阻器的滑片向左滑动时,两根金属棒与导轨构成的回路中感应电流方向(俯视图)及ab、cd 两棒的运动情况是( )图26-7A.感应电流为顺时针方向,两棒相互靠近B.感应电流为顺时针方向,两棒相互远离C.感应电流为逆时针方向,两棒相互靠近D.感应电流为逆时针方向,两棒相互远离考点三左手定则、右手定则、楞次定律、安培定则1.规律比较名称基本现象因果关系应用的定则或定律电流的磁效应运动电荷、电流产生磁场因电生磁安培定则洛伦兹力、安培力磁场对运动电荷、电流有作用力因电受力左手定则电磁感应部分导体做切割磁感线运动因磁生电右手定则闭合回路磁通量变化因磁生电楞次定律2.相互联系(1)应用楞次定律时,一般要用到安培定则.(2)研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论确定.4 (多选)如图26-8所示,水平放置的两条光滑的金属轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路.当PQ在一外力的作用下运动时,MN向右运动,则PQ所做的运动可能是( )图26-8A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动式题 (多选)如图26-9所示装置中,cd金属杆原来静止.当ab杆做如下哪些运动时,cd金属杆将向右移动( )图26-9A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动■方法技巧左、右手定则巧区分(1)右手定则与左手定则的区别:抓住“因果关系”才能无误,“因动而电”——用右手;“因电而动”——用左手.(2)左手定则和右手定则很容易混淆,为了便于区分,可把两个定则简单地总结为“通电受力用左手,运动生电用右手”.第27讲法拉第电磁感应定律、自感和涡流一、法拉第电磁感应定律1.感应电动势(1)定义:在中产生的电动势.(2)产生条件:穿过回路的发生改变,与电路是否闭合无关.(3)方向判断:感应电动势的方向用或判断.2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一回路的成正比.(2)公式:E= .二、自感和涡流1.自感现象(1)由于导体本身的电流发生变化时而产生的现象.由于自感而产生的感应电动势叫作自感电动势.(2)自感电动势E= .(3)自感系数L与线圈的大小、形状、圈数、是否有铁芯等有关,单位是.2.涡流:块状金属在磁场中运动,或者处在变化的磁场中,金属块内部会产生感应电流,这种电流在整块金属内部自成闭合回路,叫作.【思维辨析】(1)穿过线圈的磁通量越大,产生的感应电动势越大. ( )(2)穿过线圈的磁通量变化越大,产生的感应电动势越大. ( )(3)穿过线圈的磁通量变化越快,产生的感应电动势越大. ( )(4)线圈匝数n越多,磁通量越大,产生的感应电动势也越大. ( )(5)对于同一线圈,电流变化越快,线圈中的自感电动势越大. ( )(6)自感电动势阻碍电流的变化,但不能阻止电流的变化. ( )考点一法拉第电磁感应定律的理解和应用1.法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系.(2)磁通量的变化率对应Φ-t图线上某点切线的斜率.2.应用法拉第电磁感应定律的三种情况(1)磁通量的变化是由面积变化引起时,ΔΦ=B·ΔS,则E=n;(2)磁通量的变化是由磁场变化引起时,ΔΦ=S·ΔB,则E=n;(3)磁通量的变化是由面积和磁场共同变化引起时,则根据定义,ΔΦ=|Φ末-Φ初|,E=n.1 [20xx·重庆卷] 图27-1为无线充电技术中使用的受电线圈示意图,线圈匝数为n,面积为S.若在t1到t2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B1均匀增加到B2,则该段时间线圈两端a和b之间的电势差φa-φb ( )图27-1A.恒为B.从0均匀变化到C.恒为-D.从0均匀变化到-式题 [20xx·合肥一中段考] 在半径为r、电阻为R的圆形导线框内,以直径为界,左、右两侧分别存在着方向如图27-2甲所示的匀强磁场,以垂直于纸面向外为磁场的正方向,两部分磁场的磁感应强度B随时间t的变化规律分别如图乙所示,则0~t0时间内,导线框中( )图27-2A.感应电流方向为顺时针B.感应电流方向为逆时针C.感应电流大小为■方法技巧应用法拉第电磁感应定律应注意的三个问题(1)公式E=n求解的是一个回路中某段时间内的平均感应电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E=nS求感应电动势时,S为线圈在磁场范围内的有效面积.考点二导体棒切割磁感线引起的感应电动势的计算2(多选)[20xx·全国卷Ⅱ] 两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图27-3甲所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图乙所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )图27-3A.磁感应强度的大小为0.5 TB.导线框运动速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N■题根分析分析导体棒切割磁感线产生的感应电动势时应注意,一是导体棒切割磁感线有平动切割和转动切割两种,二是要将其与根据法拉第电磁感应定律计算的感应电动势区别开.(1)E=Blv的三个特性①正交性:本公式要求磁场为匀强磁场,而且B、l、v三者互相垂直.②有效性:公式中的l为导体棒切割磁感线的有效长度.图27-4中,导体棒的有效长度为ab间的距离.图27-4③相对性:E=Blv中的速度v是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系.(2)导体棒转动切割磁感线当导体棒在垂直于磁场的平面内绕一端以角速度ω匀速转动时,产生的感应电动势为E=BlBl2ω,如图27-5所示.图27-5■变式网络式题1 [20xx·安徽卷] 如图27-6所示,abcd为水平放置的平行“”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计.已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好),则( )图27-6A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的热功率为式题2 [20xx·全国卷Ⅱ] 如图27-7所示,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为φa、φb、φc.已知bc边的长度为l.下列判断正确的是( )图27-7A.φa>φc,金属框中无电流B. φb>φc,金属框中电流方向沿a-b-c-aC.Ubc=-Bl2ω,金属框中无电流D.Ubc=Bl2ω,金属框中电流方向沿a-c-b-a式题3 (多选)[2016·全国卷Ⅱ] 法拉第圆盘发电机的示意图如图27-8所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是( )图27-8A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍式题4 (多选)如图27-9所示,半径为R的半圆形硬导体杆AB以速度v在水平U形金属框架上匀速滑动,且彼此接触良好.匀强磁场的磁感应强度为B,U形框架中接有电阻R0,则AB进入磁场的过程中 ( )图27-9A.R0中电流的方向由上到下B.感应电动势的平均值为BπRvC.感应电动势的最大值为2BRvD.感应电动势的最大值为BπRv考点三涡流、自感现象的理解及应用考向一通电自感与断电自感现象对比通电自感断电自感自感电路器材规格A1、A2灯规格相同,R=R L,L较大L很大(有铁芯)自感现象在S闭合瞬间,A2灯立即亮起来,A1灯逐渐变亮,最终两灯一样亮在开关S断开时,A灯逐渐变暗直至熄灭产生原因开关闭合时,流过电感线圈的电流迅速增大,线圈中产生自感电动势,阻碍了电流的增大,流过A1灯的电流比流过A2灯的电流增加得慢断开开关S时,流过线圈L的电流减小,自感电动势阻碍电流的减小,通过L的电流通过A灯,A灯不会立即熄灭,若R L<R A,原来的电流I L>I A,则A灯熄灭前要闪亮一下,若R L≥R A,原来的电流I L≤I A,则A灯逐渐变暗直至熄灭,不会闪亮一下3[20xx·北京卷]图27-10甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是()甲乙图27-10A.图甲中,A1与L1的电阻值相同B.图甲中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图乙中,变阻器R与L2的电阻值相同D.图乙中,闭合S2瞬间,L2中电流与变阻器R中电流相等考向二对涡流的考查4 (多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图27-11所示,实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( )图27-11A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动电磁感应中的电路和图像问题热点一电磁感应中的电路问题(1)对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体相当于电源.如:切割磁感线的导体棒、内有磁通量变化的线圈等.(2)对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈;除电源外其余部分是外电路,外电路由电阻、电容器等电学元件组成.在外电路中,电流从高电势处流向低电势处;在内电路中,电流则从低电势处流向高电势处.(3)分析电磁感应电路问题的基本思路1 如图Z10-1甲所示,水平放置的两根平行金属导轨间距L=0.3 m,导轨左端连接阻值R=0.6 Ω的电阻,区域abcd内存在垂直于导轨平面、磁感应强度B=0.6 T的匀强磁场,磁场区域宽D=0.2 m.细金属棒A1和A2用长为2D=0.4 m的轻质绝缘杆连接,放置在导轨平面上,均与导轨垂直且接触良好,每根金属棒在导轨间的电阻均为r=0.3 Ω.导轨电阻不计.使金属棒以恒定速度v=1.0 m/s沿导轨向右穿过磁场.计算从金属棒A1进入磁场(t=0)到A2离开磁场的时间内,不同时间段通过电阻R的电流,并在图乙中画出.图Z10-1式题如图Z10-2所示,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ在水平拉力作用下沿ab、dc以速度v 匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中( )图Z10-2A.PQ中电流先增大后减小B.PQ两端电压先减小后增大C.PQ上拉力的功率先减小后增大D.线框消耗的电功率先减小后增大■规律总结电磁感应中电路知识的关系图热点二电磁感应中的图像问题考向一感生类图像问题总结(1)问题类型①给定电磁感应过程,选出或画出正确的图像.②由给定的有关图像分析电磁感应过程,求解相应物理量.(2)分析方法①电动势大小:E=n,取决于磁通量的变化率.②电动势方向:注意感应电流的实际方向是否与规定情况一致,同向取正,反向取负.(3)注意问题①关注初始时刻:如初始时刻感应电流是否为零,是正方向还是负方向.②关注变化过程:看电磁感应发生过程分为几个阶段,这几个阶段是否和图像变化相对应.③关注大小、方向的变化趋势,看图像斜率大小、图像的曲直和物理过程是否相对应.④求F-t图像时,不但要注意i-t变化,还需要关注B-t变化.有时I≠0,但B=0,所以F=0.2 将一段导线绕成如图Z10-3甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab边置于垂直于纸面向里的匀强磁场Ⅰ 中.回路的圆环区域内有垂直于纸面的磁场Ⅱ ,以向里为磁场Ⅱ 的正方向,其磁感应强度B随时间t变化的图像如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图像是图Z10-4中的( )图Z10-3图Z10-4式题 (多选)如图Z10-5甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t=0时刻,磁感应强度B的方向垂直于纸面向里,设产生的感应电流以顺时针方向为正,竖直边cd所受安培力的方向以水平向左为正.关于感应电流i和cd边所受安培力F随时间t变化的图像,正确的是图Z10-6中的( )图Z10-5图Z10-6考向二动生类图像问题总结(1)问题类型由闭合线圈的运动过程画出i-t图像或E-t图像.(2)分析方法①电动势大小:E=Blv.要注意是单边切割还是双边切割(感应电流同向相加、反向相减),等效长度为在磁场中导线首尾相连在垂直于速度方向的分量.②电动势方向:用右手定则判断.3 如图Z10-7所示,一个矩形匀强磁场区域内,磁场方向垂直于纸面向里.一个三角形闭合导线框在纸面内由位置1(左)匀速运动到位置2(右).取线框刚到达磁场左边界的时刻为计时起点(t=0),规定逆时针方向为电流的正方向,则能正确反映线框中电流与时间关系的图像是图Z10-8中的 ( )图Z10-7图Z10-8式题如图Z10-9所示,有两个相邻的有界匀强磁场区域,磁感应强度的大小均为B,方向相反,且与纸面垂直,磁场区域在x轴方向宽度均为a,在y轴方向足够宽.现有一高为a的正三角形导线框从图示位置开始向右匀速穿过磁场区域.若以逆时针方向为电流的正方向,则线框中感应电流i与线框移动距离x的关系图像正确的是图Z10-10中的( )图Z10-9图Z10-10热点三电磁感应中电路与图像的综合4 匀强磁场的磁感应强度B=0.2 T,磁场宽度L=3 m,一正方形金属框边长ab=l=1 m,每边电阻r=0.2 Ω,金属框以v=10 m/s的速度匀速穿过磁场区域,其平面始终保持与磁感线方向垂直,如图Z10-11所示. (1)画出金属框穿过磁场区域的过程中金属框内感应电流的I-t图像;(以逆时针方向为I的正方向)(2)画出ab两端电压的U-t图像.图Z10-11式题1 [20xx·南昌十校二模] 如图Z10-12甲所示,光滑平行金属导轨水平放置在竖直向下的匀强磁场中,轨道左侧连接一定值电阻R,导体棒ab垂直于导轨并与导轨接触良好,导体棒和导轨的电阻不计.导体棒ab在向右的水平外力作用下运动,外力F随时间t变化关系如图乙所示,已知导体棒在0~t0时间内从静止开始做匀加速直线运动,则在t0以后,导体棒ab的运动情况为( )图Z10-12A.一直做匀加速直线运动B.做匀减速直线运动,直到速度为零C.先做加速运动,最后做匀速直线运动D.一直做匀速直线运动式题2 如图Z10-13甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5 m,电阻不计,左端通过导线与阻值R=2 Ω的电阻连接,右端通过导线与阻值RL=4 Ω的小灯泡L连接.在CDFE矩形区域内有垂直于导轨平面向上的匀强磁场,CE长l=2 m,有一阻值r=2 Ω的金属棒PQ放置在靠近磁场边界CD处(恰好不在磁场中),与导轨垂直并接触良好.CDFE区域内磁场的磁感应强度B随时间变化的图像如图乙所示.在t=0至t=4 s时间内,金属棒PQ保持静止,在t=4 s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化.求:(1)通过小灯泡的电流;(2)金属棒PQ在磁场区域中运动的速度大小.图Z10-131.(多选)[20xx·四川卷] 如图Z10-14所示,电阻不计、间距为l的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F 与金属棒速度v的关系是F=F0+kv(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,受到的安培力大小为FA,电阻R两端的电压为UR,感应电流的功率为P,它们随时间t变化图像可能正确的是图Z10-15中的( )图Z10-14图Z10-152.(多选)[20xx·上海卷] 如图Z10-16甲所示,螺线管内有平行于轴线的外加匀强磁场,以图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间按图乙所示规律变化时( )图Z10-16A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C.在t2~t3时间内,L内有逆时针方向的感应电流D.在t3~t4时间内,L内有顺时针方向的感应电流3.(多选)[20xx·宁夏石嘴山三中期末] 如图Z10-17甲所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接一电阻R,金。
2019年高考物理一轮复习第十章电磁感应第3讲电磁感应规律的综合应用学案
第3讲电磁感应规律的综合应用微知识1 电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源。
(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路。
2.电源电动势和路端电压(1)电动势:E=BLv或E=n ΔΦΔt。
(2)电源正、负极:用右手定则或楞次定律确定。
(3)路端电压:U=E-Ir=IR。
微知识2 电磁感应图象问题微知识3 感应电流在磁场中所受的安培力 1.安培力的大小由感应电动势E =BLv ,感应电流I =E R 和安培力公式F =BIL 得F =B 2L 2vR。
2.安培力的方向判断微知识4 电磁感应中的能量转化与守恒 1.能量转化的实质电磁感应现象的能量转化实质是其他形式能和电能之间的转化。
2.能量的转化感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能(或其他形式的能)。
3.热量的计算电流(恒定)做功产生的热量用焦耳定律计算,公式Q =I 2Rt 。
一、思维辨析(判断正误,正确的画“√”,错误的画“×”。
) 1.闭合电路的欧姆定律同样适用于电磁感应电路。
(√)2.在闭合回路中切割磁感线的那部分导体两端的电压一定等于产生的感应电动势。
(×) 3.电路中电流一定从高电势流向低电势。
(×)4.克服安培力做的功一定等于回路中产生的焦耳热。
(×) 5.有安培力作用时导体棒不可能做加速运动。
(×) 二、对点微练1.(电磁感应中的电路问题)如图所示,两个互连的金属圆环,小金属环的电阻是大金属环电阻的二分之一,磁场垂直穿过大金属环所在区域,当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )A.12EB.13EC.23E D .E 解析 a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故a 、b 间电势差为U=13E ,B 项正确。
高考物理一轮复习第十单元电磁感应核心素养提升__科学思维系列十一学案新人教版
核心素养提升——科学思维系列(十一)楞次定律的拓展应用电磁感应现象中因果相对的关系恰好反映了自然界的这种对立统一规律,对楞次定律中“阻碍”的含义可以推广为感应电流的“效果”总是阻碍产生感应电流的原因,可由以下四种方式呈现:(1)阻碍磁通量的变化,即“增反减同”.(2)阻碍相对运动,即“来拒去留”.(3)使线圈面积有扩大或缩小的趋势,即“增缩减扩”.(4)阻碍原电流的变化(自感现象),即“增反减同”.题型1 来拒去留如图所示,质量为m的铜质闭合线圈静置于粗糙水平桌面上.当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、匀速经过时,线圈始终保持不动.则关于线圈在此过程中受到的支持力F N和摩擦力F f的情况,以下判断正确的是( )A.F N先大于mg,后小于mgB.F N一直大于mgC.F f先向左,后向右D.线圈中的电流方向始终不变【解析】根据“来拒去留”,磁铁靠近线圈时受到斜向上的斥力,由牛顿第三定律知,线圈受到斜向下的斥力,故它受到的支持力F N大于重力mg,磁铁远离线圈时受到斜向下的引力作用,线圈受到斜向上的引力,支持力F N小于重力mg,故A对,B错;整个过程磁铁对线圈的作用力都有向右的分量,即线圈有向右运动的趋势,摩擦力的方向始终向左,C错;由于线圈中的磁通量先变大后变小,方向不变,故线圈中电流前后方向相反,D错.【答案】 A1.两个闭合的金属环,穿在一根光滑的绝缘杆上,如图所示,当条形磁铁的S极自右向左插向圆环时,环的运动情况是( B )A.两环同时向左移动,间距增大B.两环同时向左移动,间距变小C.两环同时向右移动,间距变小D.两环同时向左移动,间距不变解析:当磁铁的S极靠近时,穿过两圆环的磁通量变大,由楞次定律可得两圆环的感应电流方向都是顺时针方向(从右向左看),根据左手定则可知两圆环受到磁铁向左的安培力,远离磁铁,即向左移.由于两圆环的电流方向相同,所以两圆环相互吸引,即相互合拢,间距变小,故B项正确,A、C、D项错误.题型2 增缩减扩如图所示,A为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A的正上方用绝缘丝线悬挂一个金属圆环B,使B的环面水平且与胶木圆盘面平行,其轴线与胶木圆盘A的轴线OO′重合.现使胶木圆盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则( )A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大【解析】使胶木圆盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,通过金属环B内的磁通量增大,根据楞次定律,金属环B的面积有缩小的趋势,且B有向上升高的趋势,丝线受到的拉力减小,故B项正确.【答案】 B2.如图所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑片P自左向右滑动的过程中,线圈ab将( B )A.静止不动B.顺时针转动C.逆时针转动D.发生转动,但电源的极性不明,无法确定转动方向解析:图中的两个通电的电磁铁之间的磁场方向总是水平的,在滑动变阻器R的滑片P从左向右滑动的过程中,电路中电流增大,两个电磁铁之间的磁场增强,穿过闭合导体线圈中的磁通量增大,线圈只有顺时针转动才能阻碍磁通量增大.。
2019届高考物理一轮复习课件: 第十章 电磁感应核心素养提升课件
2019届高考物理一轮复习 第十章 电磁感应学案
第十章电磁感应[全国卷5年考情分析]基础考点常考考点20172016201520142013命题概率磁通量(Ⅰ)自感、涡流(Ⅰ) 以上2个考点未曾独立命题电磁感应现象(Ⅰ)Ⅰ卷T18(6分)——Ⅰ卷T14(6分)Ⅱ卷T19(6分)独立命题概率60% 法拉第电磁感应定律(Ⅱ)Ⅱ卷T20(6分)Ⅱ卷T20(6分)Ⅱ卷T24(12分)Ⅰ卷T24(14分)Ⅲ卷T25(20分)Ⅰ卷T19(6分)Ⅱ卷T15(6分)Ⅰ卷T18(6分)Ⅱ卷T25(19分)Ⅰ卷T17(6分)Ⅰ卷T25(19分)Ⅱ卷T16(6分)综合命题概率100% 楞次定律(Ⅱ)Ⅲ卷T15(6分)常考角度(1)根据楞次定律判断感应电流的方向(2)结合安培定则、左手定则、楞次定律判断导体受力或运动方向(3)法拉第电磁感应定律E=nΔΦΔt和E=Blv的比较应用(4)电磁感应与电路的结合,自感、涡流(5)电磁感应的图像、受力、运动、能量等综合问题(6)电磁感应的科技应用问题第1节电磁感应现象__楞次定律(1)闭合电路内只要有磁通量,就有感应电流产生。
(×)(2)穿过线圈的磁通量和线圈的匝数无关。
(√)(3)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生。
(√)(4)当导体切割磁感线时,一定产生感应电动势。
(√)(5)由楞次定律知,感应电流的磁场一定与引起感应电流的磁场方向相反。
(×)(6)感应电流的磁场一定阻碍引起感应电流的磁场的磁通量的变化。
(√)◎物理学史判断(1)1831年,英国物理学家法拉第发现了——电磁感应现象。
(√)(2)1834年,俄国物理学家楞次总结了确定感应电流方向的定律——楞次定律。
(√)1.磁通量没有方向,但有正、负之分。
2.感应电流的产生条件表述一、表述二本质相同。
3.右手定则常用于感应电流产生条件表述一对应的问题,楞次定律对表述一、表述二对应的问题都适用。
4.楞次定律的本质是能量守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2019-2020】高考物理一轮复习第十章电磁感应本章学科素养提升
学案
1.“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“杆+导轨”模型又分为“单杆”型和“双杆”型(“单杆”型为重点);导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速、匀变速、非匀变速运动等.
2.该模型的解题思路
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;
(2)求回路中的电流大小;
(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向);
(4)列动力学方程或平衡方程求解.
例1 如图1甲所示,两根足够长平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角为α,金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m .导轨处于匀强磁场中,磁场的方向垂直于导轨平面向上,磁感应强度大小为B .金属导轨的上端与开关S 、定值电阻R 1和电阻箱R 2相连.不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g .现在闭合开关S ,将金属棒由静止释放.
图1
(1)判断金属棒ab 中电流的方向;
(2)若电阻箱R 2接入电路的阻值为0,当金属棒下降高度为h 时,速度为v ,求此过程中定值电阻上产生的焦耳热Q ;
(3)当B =0.40T ,L =0.50m ,α=37°时,金属棒能达到的最大速度v m 随电阻箱R 2阻值的变化关系,如图乙所示.取g =10m/s 2
,sin37°=0.60,cos37°=0.80.求R 1的阻值和金属棒的质量m .
答案 (1)b →a (2)mgh -12
mv 2 (3)2.0Ω 0.1kg 解析 (1)由右手定则可知,金属棒ab 中的电流方向为由b 到a .
(2)由能量守恒定律知,金属棒减少的重力势能等于增加的动能和电路中产生的焦耳热,即
mgh =12
mv 2+Q
则Q =mgh -12
mv 2. (3)金属棒达到最大速度v m 时,切割磁感线产生的感应电动势:E =BLv m
由闭合电路的欧姆定律得:I =E
R 1+R 2
从b 端向a 端看,金属棒受力如图所示
金属棒达到最大速度时,满足:
mg sin α-BIL =0
由以上三式得v m =
mg sin αB 2L 2(R 2+R 1) 由图乙可知:
斜率k =60-302
m·s -1·Ω-1=15m·s -1·Ω-1, 纵轴截距v =30m/s
所以mg sin αB 2L 2R 1=v ,mg sin αB 2L 2=k 解得R 1=2.0Ω,
m =0.1kg.
解决此类问题要抓住三点
1.杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零);
2.整个电路产生的电能等于克服安培力所做的功;
3.电磁感应现象遵从能量守恒定律.
分析电磁感应图象问题的思路
例2如图2,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气的影
响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律( )
图2
答案 A
解析线框在0~t1这段时间内做自由落体运动,v-t图象为过原点的倾斜直线,t2之后线框完全进入磁场区域中,无感应电流,线框不受安培力,只受重力,线框做匀加速直线运动,v-t图象为倾斜直线.t1~t2这段时间线框受到安培力作用,线框的运动类型只有三种,即可能为匀速直线运动、也可能为加速度逐渐减小的加速直线运动,还可能为加速度逐渐减小的减速直线运动,而A选项中,线框做加速度逐渐增大的减速直线运动是不可能的,故不可
能的v-t图象为A选项中的图象.。