历年中考数学模拟试题(含答案) (118)
中招考试数学模拟考试卷(附答案)
中招考试数学模拟考试卷(附答案)第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如果电梯上升5层记为+5.那么电梯下降2层应记为 A .+2 B .+5C .﹣2D .﹣52.若把分式中的x 和y 同时扩大为原来的3倍,则分式的值A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变3.下列图形是轴对称图形的有A .2个B .3个C .4个D .5个4.暑假期间,“精英”班将组织学生进行研学活动,小雨和小雪两个同学要从“红色抗战足迹”“故宫历史遗迹”“科技成果展览”三个活动中各选择一个参加,则两人恰好选择同一个研学活动的概率是 A . B .C .D .5.如图是某个几何体的三视图,该几何体是A .三棱柱B .三棱锥C .圆柱D .圆锥6.如图,将线段AB 沿箭头方向平移2 cm 得到线段CD ,若AB =3 cm ,则四边形ABDC 的周长为x xy219291323A .8 cmB .10 cmC .12 cmD .20 cm7.如图,⊙O 的弦AB =8,半径ON 交AB 于点M ,M 是AB 的中点,且OM =3,则MN 的长为A .2B .3C .4D .58.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是A .B .30mC .D .40m9.如图,抛物线与轴交于、两点,点在一次函数的图像上,是线段的中点,连结,则线段的最小值是A.B . CD .2144y x =-x A B P 6y x =-+Q PA OQ OQ 21210.如图,▱ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,AB =BC ,连接OE ,下列结论:①∠CAD =30°;②S ▱ABCD =AB •AC ;③OB =AB ;④OE =BC ,成立的个数有A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11.计算:__________.12.不等式组的解集是__________.13.若分式方程的解为正数,则a 的取值范围是__________. 14.如图,已知点C 处有一个高空探测气球,从点C 处测得水平地面上A ,B 两点的俯角分别为30°和45°.若AB =2km ,则A ,C 两点之间的距离为__________km .15.如图,AB 是⊙O 的直径,BC 是⊙O 的弦,∠ABC 的平分线交⊙O 于点D .若AB =6,∠BAC =30°,则的长等于__________.16.如图,在中,,点分别在边上,四边形为矩形,分别为的中点,若,则=__________. 12142933a a a -=++2614x x <⎧⎨+-⎩x a2x 4x 4=+--AD ABC △90AC BC C =∠=︒,D E F ,,BC AC AB ,,DCEFP Q ,DE AB ,12BD DC ==,PQ三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)2a ·(a +1)– a (3a – 2)+2a 2 (a 2–1)18.(本小题满分8分)如图,△ABC 中,CD ⊥AB 于点D ,DE ∥BC 交AC 于点E ,EF ⊥CD 于点G ,交BC 于点F .(1)求证:∠ADE =∠EFC ;(2)若∠ACB =72°,∠A =60°,求∠DCB 的度数.19.(本小题满分8分)朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级、班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩满分为100分如图所示.根据图示填写表格;结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;《》()1()2()()1()2如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.20.(本小题满分8分)如图,已知菱形ABCD 的对角线AC 、BD 相交于点O ,延长AB 至点E ,使BE =AB ,连接CE .(1)求证:四边形BECD 是平行四边形;(2)若∠E =60°,ACABCD的面积.21.(本小题满分8分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,∠1=∠C.(1)求证:CB ∥PD ;(2)若BC =3,sin P =35,求⊙O 的直径.22.(本小题满分10分)随着人们生活水平的提高,对饮水品质的需求也越来越高,某商场购进甲、乙两种型号的净水器,每台甲型净水器比每台乙型净水器进价多200元,已知用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等. (1)求每台甲型,乙型净水器的进价各是多少元?(2)该商场计划花费不超过9.8万元购进两种型号的净水器共50台进行销售,甲型净水器每台销售2500元,乙型净水器每台售价2200元,商场还将从销售甲型净水器的利润中按每台a 元(70<a <80)()3捐献给贫困地区作为饮水改造扶贫资金.设该公司售完50台净水器并捐献扶贫资金后获得的利润为W 元,求W 的最大值. 23.(本小题满分10分)在Rt △ABC 中,∠B =90°,BC =4,AB =8,点D 是边AC 的中点,动点P 在边AB 上(点P 不与点A 重合),连接PD 、PC ,将△PDC 沿直线PD 翻折,点C 落在点E 处得△PDE . (1)如图①,若点E 恰好与点A 重合,求线段AP 的长;(2)如图②,若ED 交AB 于点F ,四边形CDEP 为菱形,求证:△PFE ≌△AFD ; (3)连接AE ,设△PDE 与△ABC 重叠部分的面积为S 1,△P AC 的面积为S 2,若S 1=S 2时,请直接写出tan ∠AED 的值.24.(本小题满分12分)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =﹣x 2+bx +c 经过点A 、C ,与AB 交于点D .(1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,1449设CP =m ,△CPQ 的面积为S . ①求S 关于m 的函数表达式; ②当S 最大时,在抛物线y =﹣x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.参考答案1、C2、D3、C4、A5、A6、B7、A8、B9、A 10、C 11. 12.﹣5≤x <3. 13.a <8,且a ≠4 14.() 15.π16 17.【解析】2a ·(a +1)– a (3a –2)+2a 2 (a 2–1) =2a 2+2a – 3a 2+2a +2a 4 –2a 2=2a 4 –3a 2+4a . 18.【解析】(1)证明:∵DE ∥BC ,∴∠ADE =∠B ,∵CD ⊥AB ,EF ⊥CD ,∴AB ∥EF , ∴∠B =∠EFC ,∴∠ADE =∠EFC ;(2)解:∵∠ACB =72°,∠A =60°,∴∠B =180°72°60°=48°, ∵CD ⊥AB ,∴∠BDC =90°,∴∠DCB =90°48°=42°.19.【解析】九班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九班5位同学的成绩为:70、100、100、75、80,九班的平均数为分,其众数为100分,补全表格如下:493a ----()1()1∴()2∴()270100100758085(5++++=)九班成绩好些,两个班的平均数都相同,而九班的中位数高,在平均数相同的情况下,中位数高的九班成绩好些.九班的成绩更稳定,能胜出.分, 分, , 九班的成绩更稳定,能胜出.20.【解析】(1)证明:∵四边形ABCD 是菱形∴AB =CD ,AB ∥CD 又∵BE =AB , ∴BE =CD ,BE ∥CD∴四边形BECD 是平行四边形(2)解:∵四边形BECD 是平行四边形,∴BD ∥CE , ∵四边形ABCD 是菱形,∴AC ⊥BD , ∴AC ⊥CE ,∴∠ACE =90° , ∵Rt △ACE 中,∠E =60°,AC∴∠EAC =30°,∴AE =2CE , 设CE =x ,AE =2x ,由题意得:(2x )2– x 2)2,解得x =1(负值舍去),∴CE =1,AE =2, ∵四边形BECD 是平行四边形,∴BD =CE =1,()2()1()1∴()1()3()1()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九2)()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦2)()()2212S S 九九∴<∴()1∴菱形ABCD 的面积=. 21.【解析】解:(1)证明:∵∠C =∠P ,∠1=∠C ,∴∠1=∠P.∴CB ∥PD.(2)连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.又∵CD ⊥AB ,∴BC ︵=BD ︵.∴∠P =∠CAB ,∴sin ∠CAB=35,即BC AB =35.又知,BC =3,∴AB =5.∴⊙O 直径为5.22.【解析】(1)设乙型净水器的进价为x 元/台,则甲型净水器的进价为(x +200)元/台,∵用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等, ∴,解得:x =1800,经检验:x =1800是原分式方程的解, ∴x +200=2000,答:甲型净水器的进价为2000元/台,乙型净水器的进价为1800元/台. (2)设购进甲型净水器x 台,则购进乙型净水器为(50–x )台, ∵计划花费不超过9.8万元购进两种型号的净水器共50台进行销售, ∴2000x +1800(50–x )≤98000,解得:x ≤40, ∵x 为整数,∴0≤x ≤40,∵该公司售完50台净水器并捐献扶贫资金后获得的利润为W 元, ∴W =(2500–2000–a )x +(2200–1800)(50–x )=(100–a )x +20000, ∵70<a <80,∴100–a >0,∴W 随x 的增大而增大, ∴当x =40时,W 有最大值24000–40A .23.【解析】【解析】(1)∵△PDE 由△PDC 翻折所得∴AP =PC , 设AP =x , ∵∠B =90°,∴在Rt △PBC 中,PC 2=PB 2+BC 2, 即x 2=(8-x )2+42, 解得x =5, ∴AP =5;11122CE BD ⋅⋅=⨯=5000045000200x x=+(2)∵四边形CDPE 为菱形, ∴PE ∥CD ,PE =CD , ∵D 是AC 的中点, ∴AD =CD , ∴AD =PE , ∵PE ∥CD , ∴PE ∥AC ,∴∠APE =∠P AD ,∠DEP =∠ADE ,在△PFE 与△AFD 中,∴△PFE ≌△AFD ; (3)∵D 是AC 的坐标, ∴S △ADP =S △CDP =S △P AC , 由折叠可得:S △PDE =S △CDP , ∴S △PDF =S △P AC =S △ADP =S △PDE , ∴AF =PF ,EF =DF ,①如图,四边形AEPD 是平行四边形,过D 作DM ⊥AP 于点M ,过C 作CN ⊥PD 于点N , 则∠AED =∠EDP =∠PDC , ∵,∠B =90°,BC =4,AB =8, ∴AC =∴PC =PE=AD =APE PAD PE AD DEP ADE =⎧⎪=⎨⎪=⎩∠∠∠∠12141212∴PB,∴BM =AB =4,DM =BC =2(中位线), ∴PM =BM -PB =2, ∴DP,∴DN,CN∴tan ∠AED =tan ∠PDC ==3, ②如图,过D 作DM ⊥AP 于点M ,∵AP =DE =DC =∴PM =4,∴tan ∠AED =tan ∠DPM =, 综上:tan ∠AED 的值为3.24.【解析】(1)将A 、C 两点坐标代入抛物线,得,解得:, ∴抛物线的解析式为y =﹣x 2+x +8; (2)①∵OA =8,OC =6,∴AC=10,2==1212====CN DN2DM PM ==28436609c b c =⎧⎪⎨-⨯++=⎪⎩438b c ⎧=⎪⎨⎪=⎩4943过点Q 作QE ⊥BC 与E 点,则sin ∠ACB ===, ∴=,∴QE =(10﹣m ), ∴S =•CP •QE =m ×(10﹣m )=﹣m 2+3m ; ②∵S =﹣m 2+3m =﹣(m ﹣5)2+, ∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y =﹣x 2+x +8的对称轴为x =, ∴D 的坐标为(3,8),∵CP =AQ =5,∴CQ =5,过Q 点作QG ⊥x 轴,∴sin ∠ACO ==,即, ∴QG =4,∴CG,∴OG =CO –CG =3,∴Q (3,4), 设F (,n ), 当∠FDQ =90°时,则F 在直线AB 上,∴F 1(,8),当∠FQD =90°时,则F 的纵坐标与Q 点纵坐标相同,∴F 2(,4), 当∠DFQ =90°时,设F (,n ), 则FD 2+FQ 2=DQ 2,即+(8﹣n )2++(n ﹣4)2=16,解得:n =6±, ∴F 3(,6+),F 4(,6﹣), 满足条件的点F 共有四个,坐标分别为F 1(,8),F 2(,4),F 3(,),F 4(,6). QE QC AB AC 3510QE m -3535121235310310310152494332AO QG AC CQ =45455QG =3=323232329494232232232323232。
2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)
2025年陕西中考模拟真题数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、单选题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列实数是无理数的是()AB C .12D .2-2.下列几何体放置在水平面上,其中俯视图是圆的几何体为()A .B .C .D .3.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,1402120∠=︒∠=︒,,则34∠+∠的值为()A .160︒B .150︒C .100︒D .90︒4.如图,墨迹污染了等式中的运算符号,则污染的是()A .+B .-C .×D .÷5.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围()A .2k <-B .2k >-C .0k >D .0k <6.如图,在菱形ABCD 中,延长BC 至点F ,使得2BC CF =,连接AF 交CD 于点E .若2CE =,则菱形ABCD 的周长为()A .12B .16C .20D .247.如图,在O 中,半径OA ,OB 互相垂直,点C 在劣弧A 上.若26BAC ∠=︒,则ABC ∠=()A .17︒B .18︒C .19︒D .20︒8.已知二次函数2(1)5y x =--+,当a x b ≤≤且0ab <时,y 的最小值为2a ,最大值为2b ,则a b +的值为()A .2B .12C .3D .32二、填空题(共5小题,每小题3分,计15分)9小的正整数.10.分解因式:2233m n -=.11.如图,在正五边形ABCDE 内,以CD 为边作等边CDF V ,则BFC ∠的数为.12.已知正比例函数图象与反比例函数图象都经过点()1,2-,那么这两个函数图象必都经过另一个点的坐标为.13.如图,在四边形ABDC 中,90A D ∠=∠=︒,3AC DC ==,5BC =,若点M ,点N 分别在AB 边和CD 边上运动,且AM DN =,连接MN ,则MN 的最小值为.三、解答题(共13小题,计81分,解答应写出过程)14()202441---.15.解方程:32544x x =---.16.解不等式组:322443x x x x ->+⎧⎪-⎨<⎪⎩17.已知:如图,ABC V .求作:以AC 为弦的O ,使O 到AB 和BC的距离相等.18.如图,在矩形ABCD 中,点E ,F 在BC 上,且BE CF =,连接AE DF ,.求证:ABE DCF △≌△.19.《九章算术》中有这样一道题:今有米在十斗桶中,不知其数.满中添粟而舂之,得粟七斗,问故米几何?(粟米之法:粟率五十,粝米三十.)大意为:今有米在容量为10斗的桶中,但不知道数量是多少;再向桶加满粟,再舂成米,共得米7斗.问原来有米多少斗?(出米率为35)请解答上面问题.20.甲、乙、丙三人玩捉迷藏游戏,一人为蒙眼人,捉另外两人,捉到一人,记为捉一次;被捉到的人成为新的蒙眼人,接着捉……一直这样玩(每次捉到一人).请用树状图解决下列问题,(1)若甲为开始蒙眼人,捉两次,求第二次捉到丙的概率;(2)若捉三次,要使第三次捉到甲的概率最小,应该谁为开始蒙眼人?21.电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻1R ,1R 与踏板上人的质量m 之间的函数关系式为1R km b =+(其中k ,b 为常数,0120)m ≤≤,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻0R 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为0U ,该读数可以换算为人的质量m .温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式U I R=;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.图1图2(1)求出1R 与踏板上人的质量m 之间的函数关系式并写出m 的取值范围;(2)求出当电压表显示的读数为2伏时,对应测重人的质量为多少千克?22.如图,某小区内有AB 和CD 两栋家属楼,竖直的移动支架EF 位于两栋楼之间,且高为4m ,点A ,E ,C 在同一条直线上.当移动支架EF 运动到如图所示的位置时,在点F 处测得点B ,D 的仰角分别为45︒、60︒,点A 的俯角为30︒,此时测得支架EF 到楼CD 的水平距离EC 为15m .求两楼的高度差.(结果精确到1m 1.41≈ 1.73≈)23.近日,教育部印发的《2023年全国综合防控儿童青少年近视重点工作计划》明确,要指导地方教育行政部门督促和确保落实学生健康体检制度和每学期视力监测制度,及时把视力监测结果记入儿童青少年视力健康电子档案,并按规定上报全国学生体质健康系统.按照国家视力健康标准,学生视力状况分为:视力正常、轻度视力不良、中度视力不良和重度视力不良四个类别,分别用A,B,C,D表示.某校为了解本校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力状况调查,根据调查结果,绘制了如下尚不完整的统计图.(1)此次调查的学生总人数为______;扇形统计图中,m ______;(2)补全条形统计图.(3)已知重度视力不良的四名学生中,甲、乙为九年级学生,丙、丁分别为七、八年级学生,现学校要从中随机抽取2名学生调查他们对护眼误区和保护视力习惯的了解程度,请用列表法或画树状图法求这2名学生恰好是同年级的概率.24.如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE 于点D.(l)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.25.在山体中修建隧道可以保护生态环境,改善公路技术状态,提高运输效率.某城市道路中一双向行驶隧道(来往方向各一车道,路面用黄色双实线隔开)图片如图所示.隧道的纵截面由一个矩形和一段抛物线构成。
中考数学模拟试题(含答案和解析)
【答案】C
【解析】
【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB= m.证明△AFL≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=( m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP= .FP= m.BP= .即知P为AB中点.CP=AP=BP= .由△CPN∽△FPA.得CN=m.PN= m.即得AN= m.而tan∠BAC= .又△AEC∽△BCH.根据相似三角形的性质列出方程.解方程即可求解.
【答案】B
【解析】
【分析】根据四边形的内角和等于360°计算可得∠BAC=50°.再根据圆周角定理得到∠BOC=2∠BAC.进而可以得到答案.
【详解】解:∵OD⊥AB.OE⊥AC.
∴∠ADO=90°.∠AEO=90°.
∵∠DOE=130°.
∴∠BAC=360°-90°-90°-130°=50°.
∴∠BOC=2∠BAC=100°.
A. B.
C. D.
【答案】A
【解析】
【分析】分别对每段时间的路程与时间的变化情况进行分析.画出路程与时间图像.再与选项对比判断即可.
【详解】解:对各段时间与路程的关系进行分析如下:
从家到凉亭.用时10分种.路程600米.s从0增加到600米.t从0到10分.对应图像为
在凉亭休息10分钟.t从10分到20分.s保持600米不变.对应图像为
故选:B.
【点睛】本题考查扇形统计图.解答本题的关键是明确题意.求出本次参加兴趣小组的总人数.
4.化简 的结果是( )
A. B. C. D.
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选、均不给分)1.(4分)给出四个数..其中为无理数的是()A.﹣1B.0C.0.5D.2.(4分)数据35.38.37.36.37.36.37.35的众数是()A.35B.36C.37D.383.(4分)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型.它的主视图是()A.B.C.D.4.(4分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0.4)B.(4.0)C.(2.0)D.(0.2)5.(4分)把a2﹣4a多项式分解因式.结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣46.(4分)小林家今年1﹣5月份的用电量情况如图所示.由图可知.相邻两个月中.用电量变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月7.(4分)已知⊙O1与⊙O2外切.O1O2=8cm.⊙O1的半径为5cm.则⊙O2的半径是()A.13cm B.8cm C.6cm D.3cm 8.(4分)下列选项中.可以用来证明命题“若a2>1.则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=2 9.(4分)楠溪江某景点门票价格:成人票每张70元.儿童票每张35元.小明买20张门票共花了1225元.设其中有x张成人票.y张儿童票.根据题意.下列方程组正确的是()A.B.C.D.10.(4分)如图.在△ABC中.∠C=90°.M是AB的中点.动点P从点A出发.沿AC方向匀速运动到终点C.动点Q从点C出发.沿CB方向匀速运动到终点B.已知P.Q两点同时出发.并同时到达终点.连接MP.MQ.PQ.在整个运动过程中.△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少二、填空题(本题有6小题.每小题5分.共30分)11.(5分)化简:2(a+1)﹣a=.12.(5分)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合.则这个旋转角的最小度数是度.13.(5分)若代数式的值为零.则x=.14.(5分)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况.随机抽取了100份试卷的成绩(满分为120分.成绩为整数).绘制成如图所示的统计图.由图可知.成绩不低于90分的共有人.15.(5分)某校艺术班同学.每人都会弹钢琴或古筝.其中会弹钢琴的人数会比会弹古筝的人数多10人.两种都会的有7人.设会弹古筝的有m人.则该班同学共有人(用含有m的代数式表示)16.(5分)如图.已知动点A在函数的图象上.AB⊥x轴于点B.AC⊥y轴于点C.延长CA至点D.使AD=AB.延长BA至点E.使AE=AC.直线DE分别交x.y轴分别于点P.Q.当QE:DP=4:9时.图中阴影部分的面积等于.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)解方程:x2﹣2x=5.18.(8分)如图.在方格纸中.△PQR的三个顶点及A、B、C、D、E 五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等19.(8分)如图.△ABC中.∠B=90°.AB=6cm.BC=8cm.将△ABC 沿射线BC方向平移10cm.得到△DEF.A.B.C的对应点分别是D.E.F.连接AD.求证:四边形ACFD是菱形.20.(9分)一个不透明的袋中装有红、黄、白三种颜色球共100个.它们除颜色外都相同.其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后.求从剩余的球中摸出一个球是红球的概率.21.(9分)某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况.发现其正北方向的B处有人发出求救信号.他立即沿AB方向径直前往救援.同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海.径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处.再向B处游去.若CD=40米.B在C的北偏东35°方向.甲、乙的游泳速度都是2米/秒.问谁先到达B处?请说明理由.(参考数据:sin55°≈0.82.cos55°≈0.57.tan55°≈1.43)22.(10分)如图.△ABC中.∠ACB=90°.D是边AB上一点.且∠A =2∠DCB.E是BC边上的一点.以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1.BE=EO.求BD的长.23.(12分)温州享有“中国笔都”之称.其产品畅销全球.某制笔企业欲将n件产品运往A.B.C三地销售.要求运往C地的件数是运往A地件数的2倍.各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时.①根据信息填表:A地B地C地合计产品件数(件)x2x200运费(元)30x②若运往B地的件数不多于运往C地的件数.总运费不超过4000元.则有哪几种运输方案?(2)若总运费为5800元.求n的最小值.24.(14分)如图.经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1.m)作直线PM⊥x轴于点M.交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB.CP.(1)当m=3时.求点A的坐标及BC的长;(2)当m>1时.连接CA.问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC.问是否存在m.使得点E落在坐标轴上?若存在.求出所有满足要求的m的值.并定出相对应的点E 坐标;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选、均不给分)1.【分析】根据无理数的三种形式.①开方开不尽的数.②无限不循环小数.③含有π的数.结合选项即可作出判断.【解答】解:结合所给的数可得.无理数有:.【点评】此题考查了无理数的定义.关键要掌握无理数的三种形式.要求我们熟练记忆.2.【分析】众数指一组数据中出现次数最多的数据.根据众数的定义就可以求解.【解答】解:因为37出现的次数最多.所以众数是37;故选:C.【点评】主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据.它反映了一组数据的多数水平.一组数据的众数可能不是唯一的.3.【分析】根据主视图的定义.得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体.进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长.得出此时摆放.圆柱主视图是正方形.得出圆柱以及立方体的摆放的主视图为两列.左边一个正方形.右边两个正方形.故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.4.【分析】在解析式中令x=0.即可求得与y轴的交点的纵坐标.【解答】解:令x=0.得y=﹣2×0+4=4.则函数与y轴的交点坐标是(0.4).【点评】本题考查了一次函数与坐标轴的交点坐标的求法.是一个基础题.掌握y轴上点的横坐标为0是解题的关键.5.【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4).故选:A.【点评】此题主要考查了提公因式法分解因式.关键是掌握找公因式的方法:当各项系数都是整数时.公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母.而且各字母的指数取次数最低的;取相同的多项式.多项式的次数取最低的.6.【分析】根据折线图的数据.分别求出相邻两个月的用电量的变化值.比较即可得解.【解答】解:1月至2月.125﹣110=15千瓦时.2月至3月.125﹣95=30千瓦时.3月至4月.100﹣95=5千瓦时.4月至5月.100﹣90=10千瓦时.所以.相邻两个月中.用电量变化最大的是2月至3月.故选:B.【点评】本题考查折线统计图的运用.折线统计图表示的是事物的变化情况.根据图中信息求出相邻两个月的用电变化量是解题的关键.7.【分析】根据两圆外切时.圆心距=两圆半径的和求解.【解答】解:根据两圆外切.圆心距等于两圆半径之和.得该圆的半径是8﹣5=3(cm).故选:D.【点评】本题考查了圆与圆的位置关系.注意:两圆外切.圆心距等于两圆半径之和.8.【分析】根据要证明一个结论不成立.可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1.则a>1”是假命题的反例可以是:a=﹣2.∵(﹣2)2>1.但是a=﹣2<1.∴A正确;故选:A.【点评】此题主要考查了利用举例法证明一个命题错误.要说明数学命题的错误.只需举出一个反例即可这是数学中常用的一种方法.9.【分析】根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元.儿童票每张35元.共花了1225元”可得方程:70x+35y=1225.把两个方程组合即可.【解答】解:设其中有x张成人票.y张儿童票.根据题意得..故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组.关键是弄清题意.把已知量和未知量联系起来.找出题目中的相等关系.10.【分析】连接CM.根据点M是AB的中点可得△ACM和△BCM 的面积相等.又P.Q两点同时出发.并同时到达终点.所以点P到达AC的中点时.点Q到达BC的中点.然后把开始时、结束时、与中点时的△MPQ的面积与△ABC的面积相比即可进行判断.【解答】解:如图所示.连接CM.∵M是AB的中点.∴S△ACM=S△BCM=S△ABC.开始时.S△MPQ=S△ACM=S△ABC.点P到达AC的中点时.点Q到达BC的中点时.S△MPQ=S△ABC.结束时.S△MPQ=S△BCM=S△ABC.所以.△MPQ的面积大小变化情况是:先减小后增大.故选:C.【点评】本题考查了动点问题的函数图象.根据题意找出关键的开始时.中点时.结束时三个时间点的三角形的面积与△ABC的面积的关系是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】首先把括号外的2乘到括号内.去括号.然后合并同类项即可.【解答】解:原式=2a+2﹣a=a+2.故答案是:a+2.【点评】考查了整式的加减.解决此类题目的关键是熟记去括号法则.熟练运用合并同类项的法则.这是各地中考的常考点.12.【分析】观察图形可得.图形有四个形状相同的部分组成.从而能计算出旋转角度.【解答】解:图形可看作由一个基本图形每次旋转90°.旋转4次所组成.故最小旋转角为90°.故答案为:90.【点评】本题考查了观察图形.确定最小旋转角度数的方法.需要熟练掌握.13.【分析】由题意得=0.解分式方程即可得出答案.【解答】解:由题意得.=0.解得:x=3.经检验的x=3是原方程的根.故答案为:3.【点评】此题考查了分式值为0的条件.属于基础题.注意分式方程需要检验.14.【分析】根据频数分布直方图估计出89.5~109.5.109.5~129.5两个分数段的学生人数.然后相加即可.【解答】解:如图所示.89.5~109.5段的学生人数有24人.109.5~129.5段的学生人数有3人.所以.成绩不低于90分的共有24+3=27人.故答案为:27.【点评】本题考查了读频数分布直方图的能力.根据图形估计出两个分数段的学生人数是解题的关键.15.【分析】根据会弹钢琴的人数比会弹古筝的人数多10人.表示出会弹钢琴的人数为:(m+10)人.再利用两种都会的有7人得出该班同学共有:(m+m+10﹣7)人.整理得出答案即可.【解答】解:∵设会弹古筝的有m人.则会弹钢琴的人数为:m+10.∴该班同学共有:m+m+10﹣7=2m+3.故答案为:(2m+3).【点评】此题主要考查了列代数式.根据已知表示出会弹钢琴的人数与会弹古筝的人数是解题关键.16.【分析】过点D作DG⊥x轴于点G.过点E作EF⊥y轴于点F.令A(t.).则AD=AB=DG=.AE=AC=EF=t.则图中阴影部分的面积=△ACE的面积+△ABD的面积=t2+×.因此只需求出t2的值即可.先在直角△ADE中.由勾股定理.得出DE=.再由△EFQ∽△DAE.求出QE=.△ADE∽△GPD.求出DP =:.然后根据QE:DP=4:9.即可得出t2=.【解答】解:解法一:过点D作DG⊥x轴于点G.过点E作EF⊥y 轴于点F.令A(t.).则AD=AB=DG=.AE=AC=EF=t.在直角△ADE中.由勾股定理.得DE====.∵△EFQ∽△DAE.∴QE:DE=EF:AD.∴QE=.∵△ADE∽△GPD.∴DE:PD=AE:DG.∴DP=.又∵QE:DP=4:9.∴:=4:9.解得t2=.∴图中阴影部分的面积=AC2+AB2=t2+×=+3=;解法二:∵QE:DP=4:9.∴EF:PG=4:9.设EF=4t.则PG=9t.∴A(4t.).由AC=AEAD=AB.∴AE=4t.AD=.DG=.GP=9t.∵△ADE∽△GPD.∴AE:DG=AD:GP.4t:=:9t.即t2=.图中阴影部分的面积=4t×4t+××=.故答案为:.【点评】本题考查了反比例函数的性质.勾股定理.相似三角形的判定与性质.三角形的面积等知识.综合性较强.有一定难度.根据QE:DP=4:9.得出t2的值是解题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)首先计算乘方.进行开方运算.然后合并同类二次根式即可求解;(2)方程两边同时加上1.左边即可化成完全平方式的形式.然后进行开方运算.转化成两个一元一次方程.即可求解.【解答】解:(1)(﹣3)2+(﹣3)×2﹣=9﹣6﹣2=3﹣2;(2)配方得(x﹣1)2=6∴x﹣1=±∴x1=1+.x2=1﹣.【点评】本题考查了实数的混合运算以及利用配方法解一元二次方程.正确进行配方是关键.18.【分析】(1)过A作AE∥PQ.过E作EB∥PR.再顺次连接A、E、B.此题答案不唯一.符合要求即可;(2)△PQR面积是:×QR×PQ=6.连接BA.BA长为3.再连接AD、BD.三角形的面积也是6.但是两个三角形不全等.【解答】解:(1)如图所示:;(2)如图所示:.【点评】此题主要考查了作图.关键是掌握全等三角形的定义:能够完全重合的两个三角形叫做全等三角形;三角形面积的计算公式:S=×底×高.19.【分析】根据平移的性质可得CF=AD=10cm.DF=AC.再在Rt △ABC中利用勾股定理求出AC的长为10.就可以根据四条边都相等的四边形是菱形得到结论.【解答】证明:由平移变换的性质得:CF=AD=10cm.DF=AC.∵∠B=90°.AB=6cm.BC=8cm.∴AC===10.∴AC=DF=AD=CF=10cm.∴四边形ACFD是菱形.【点评】此题主要考查了平移的性质.菱形的判定.关键是掌握平移的性质:各组对应点的线段平行且相等;菱形的判定:四条边都相等的四边形是菱形.20.【分析】(1)根据红、黄、白三种颜色球共有的个数乘以红球的概率即可;(2)设白球有x个.得出黄球有(2x﹣5)个.根据题意列出方程.求出白球的个数.再除以总的球数即可;(3)先求出取走10个球后.还剩的球数.再根据红球的个数.除以还剩的球数即可.【解答】解:(1)根据题意得:100×.答:红球有30个.(2)设白球有x个.则黄球有(2x﹣5)个.根据题意得x+2x﹣5=100﹣30解得x=25.所以摸出一个球是白球的概率P==;(3)因为取走10个球后.还剩90个球.其中红球的个数没有变化.所以从剩余的球中摸出一个球是红球的概率=;【点评】此题考查了概率公式:如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.21.【分析】在直角△CDB中.利用三角函数即可求得BC.BD的长.则求得甲、乙的时间.比较二者之间的大小即可.【解答】解:由题意得∠BCD=55°.∠BDC=90°∵tan∠BCD=∴BD=CD•tan∠BCD=40×tan55°≈57.2cos∠BCD=∴BC=70.2∴t甲==38.6秒.t乙=(秒).∴t甲>t乙.答:乙先到达B处.【点评】本题考查了解直角三角形的应用.理解直角三角形中的边角关系是关键.22.【分析】(1)连接OD.如图1所示.由OD=OC.根据等边对等角得到一对角相等.再由∠DOB为△COD的外角.利用三角形的外角等于与它不相邻的两个内角之和.等量代换可得出∠DOB=2∠DCB.又∠A=2∠DCB.可得出∠A=∠DOB.又∠ACB=90°.可得出直角三角形ABC中两锐角互余.等量代换可得出∠B与∠ODB互余.即OD垂直于BD.确定出AB为圆O的切线.得证;(2)法1:过O作OM垂直于CD.根据垂径定理得到M为DC的中点.由BD垂直于OD.得到三角形BDO为直角三角形.再由BE=OE=OD.得到OD等于OB的一半.可得出∠B=30°.进而确定出∠DOB=60°.又OD=OC.利用等边对等角得到一对角相等.再由∠DOB为三角形DOC的外角.利用外角的性质及等量代换可得出∠DCB=30°.在三角形CMO中.根据30°角所对的直角边等于斜边的一半得到OC=2OM.由弦心距OM的长求出OC的长.进而确定出OD及OB的长.利用勾股定理即可求出BD的长;法2:过O作OM垂直于CD.连接ED.由垂径定理得到M为CD的中点.又O为EC的中点.得到OM为三角形EDC的中位线.利用三角形中位线定理得到OM等于ED的一半.由弦心距OM的长求出ED的长.再由BE=OE.得到ED为直角三角形DBO斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半.由DE的长求出OB 的长.再由OD及OB的长.利用勾股定理即可求出BD的长.【解答】(1)证明:连接OD.如图1所示:∵OD=OC.∴∠DCB=∠ODC.又∠DOB为△COD的外角.∴∠DOB=∠DCB+∠ODC=2∠DCB.又∵∠A=2∠DCB.∴∠A=∠DOB.∵∠ACB=90°.∴∠A+∠B=90°.∴∠DOB+∠B=90°.∴∠BDO=90°.∴OD⊥AB.又∵D在⊙O上.∴AB是⊙O的切线;(2)解法一:过点O作OM⊥CD于点M.如图1.∵OD=OE=BE=BO.∠BDO=90°.∴∠B=30°.∴∠DOB=60°.∵OD=OC.∴∠DCB=∠ODC.又∵∠DOB为△ODC的外角.∴∠DOB=∠DCB+∠ODC=2∠DCB.∴∠DCB=30°.∵在Rt△OCM中.∠DCB=30°.OM=1.∴OC=2OM=2.∴OD=2.BO=BE+OE=2OE=4.∴在Rt△BDO中.根据勾股定理得:BD=2;解法二:过点O作OM⊥CD于点M.连接DE.如图2.∵OM⊥CD.∴CM=DM.又O为EC的中点.∴OM为△DCE的中位线.且OM=1.∴DE=2OM=2.∵在Rt△OCM中.∠DCB=30°.OM=1.∴OC=2OM=2.∵Rt△BDO中.OE=BE.∴DE=BO.∴BO=BE+OE=2OE=4.∴OD=OE=2.在Rt△BDO中.根据勾股定理得BD=2.【点评】此题考查了切线的性质.垂径定理.勾股定理.含30°直角三角形的性质.三角形的中位线定理.三角形的外角性质.以及直角三角形斜边上的中线性质.熟练掌握定理及性质是解本题的关键.23.【分析】(1)①运往B地的产品件数=总件数n﹣运往A地的产品件数﹣运往B地的产品件数;运费=相应件数×一件产品的运费;②根据运往B地的件数不多于运往C地的件数.总运费不超过4000元列出不等式组.求得正整数解的个数即可;(2)总运费=A产品的运费+B产品的运费+C产品的运费.进而根据函数的增减性及(1)中②得到的x的取值求得n的最小值即可.【解答】解:(1)①根据信息填表A地B地C地合计产品件数200﹣3x(件)运费1600﹣24x50x56x+1600②由题意.得.解得40≤x≤42.∵x为正整数.∴x=40或41或42.∴有三种方案.分别是(i)A地40件.B地80件.C地80件;(ii)A地41件.B地77件.C地82件;(iii)A地42件.B地74件.C地84件;(2)由题意.得30x+8(n﹣3x)+50x=5800.整理.得n=725﹣7x.∵n﹣3x≥0.∴725﹣7x﹣3x≥0.∴﹣10x≥﹣725.∴x≤72.5.又∵x≥0.∴0≤x≤72.5且x为正整数.∵n随x的增大而减少.∴当x=72时.n有最小值为221.【点评】考查一次函数的应用;得到总运费的关系式是解决本题的关键;注意结合自变量的取值得到n的最小值.24.【分析】(1)把m=3.代入抛物线的解析式.令y=0解方程.得到的非0解即为和x轴交点的横坐标.再求出抛物线的对称轴方程.进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH =90°.利用已知条件证明△ACH∽△PCB.根据相似的性质得到:.再用含有m的代数式表示出BC.CH.BP.代入比例式即可求出m的值;(3)存在.本题要分当m>1时.BC=2(m﹣1).PM=m.BP=m﹣1和当0<m<1时.BC=2(1﹣m).PM=m.BP=1﹣m.两种情况分别讨论.再求出满足题意的m值和相对应的点E坐标.【解答】解:(1)当m=3时.y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0.x2=6.∴A(6.0)当x=1时.y=5∴B(1.5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B.C关于对称轴对称∴BC=4.(2)连接AC.过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB又∵∠AHC=∠PBC=90°∴△ACH∽△PCB.∴.∵抛物线y=﹣x2+2mx的对称轴为直线x=m.其中m>1.又∵B.C关于对称轴对称.∴BC=2(m﹣1).∵B(1.2m﹣1).P(1.m).∴BP=m﹣1.又∵A(2m.0).C(2m﹣1.2m﹣1).∴H(2m﹣1.0).∴AH=1.CH=2m﹣1.∴.∴m=.(3)∵B.C不重合.∴m≠1.(I)当m>1时.BC=2(m﹣1).PM=m.BP=m﹣1.(i)若点E在x轴上(如图1).∵∠CPE=90°.∴∠MPE+∠BPC=∠MPE+∠MEP=90°.PC=EP.在△BPC和△MEP中..∴△BPC≌△MEP.∴BC=PM.∴2(m﹣1)=m.∴m=2.此时点E的坐标是(2.0);(ii)若点E在y轴上(如图2).过点P作PN⊥y轴于点N.易证△BPC≌△NPE.∴BP=NP=OM=1.∴m﹣1=1.∴m=2.此时点E的坐标是(0.4);(II)当0<m<1时.BC=2(1﹣m).PM=m.BP=1﹣m.(i)若点E在x轴上(如图3).易证△BPC≌△MEP.∴BC=PM.∴2(1﹣m)=m.∴m=.此时点E的坐标是(.0);(ii)若点E在y轴上(如图4).过点P作PN⊥y轴于点N.易证△BPC≌△NPE.∴BP=NP=OM=1.∴1﹣m=1.∴m=0(舍去).综上所述.当m=2时.点E的坐标是(2.0)或(0.4).当m=时.点E的坐标是(.0).【点评】此题主要考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和相似三角形的性质以及全等三角形的性质和全等三角形的判定、需注意的是(3)题在不确E点的情况下需要分类讨论.以免漏解.题目的综合性强.难度也很大.有利于提高学生的综合解题能力.是一道不错的题目.。
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题本题有10小题.每小题4分.共40分.1.计算(﹣2)2的结果是()A.4B.﹣4C.1D.﹣12.直六棱柱如图所示.它的俯视图是()A.B.C.D.3.第七次全国人口普查结果显示.我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为()A.218×106B.21.8×107C.2.18×108D.0.218×109 4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人.则初中生有()A.45人B.75人C.120人D.300人5.解方程﹣2(2x+1)=x.以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=xD.﹣4x﹣2=x6.如图.图形甲与图形乙是位似图形.O是位似中心.点A.B的对应点分别为点A′.则A′B′的长为()A.8B.9C.10D.157.某地居民生活用水收费标准:每月用水量不超过17立方米.每立方米a元;超过部分每立方米(a+1.2).则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元8.图1是第七届国际数学教育大会(ICME)会徽.在其主体图案中选择两个相邻的直角三角形.∠AOB=α.则OC2的值为()A.+1B.sin2α+1C.+1D.cos2α+1 9.如图.点A.B在反比例函数y=(k>0.x>0).AC⊥x轴于点C.BD ⊥x轴于点D.连结AE.若OE=1.OC=.AC=AE.则k的值为()A.2B.C.D.210.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G.连结CG.延长BE交CG于点H.若AE=2BE.则()A.B.C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:2m2﹣18=.12.(5分)一个不透明的袋中装有21个只有颜色不同的球.其中5个红球.7个白球.13.(5分)若扇形的圆心角为30°.半径为17.则扇形的弧长为.14.(5分)不等式组的解集为.15.(5分)如图.⊙O与△OAB的边AB相切.切点为B.将△OAB绕点B按顺时针方向旋转得到△O′A′B.边A′B交线段AO于点C.若∠A′=25°.则∠OCB=度.16.(5分)图1是邻边长为2和6的矩形.它由三个小正方形组成.将其剪拼成不重叠、无缝隙的大正方形(如图2);记图1中小正方形的中心为点A.B.C.图2中的对应点为点A′.B′.则当点A′.B′.圆的最小面积为.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:4×(﹣3)+|﹣8|﹣.(2)化简:(a﹣5)2+a(2a+8).18.(8分)如图.BE是△ABC的角平分线.在AB上取点D(1)求证:DE∥BC;(2)若∠A=65°.∠AED=45°.求∠EBC的度数.19.(8分)某校将学生体质健康测试成绩分为A.B.C.D四个等级.依次记为4分.2分.1分.为了解学生整体体质健康状况(1)以下是两位同学关于抽样方案的对话:小红:“我想随机抽取七年级男、女生各60人的成绩.”小明:“我想随机抽取七、八、九年级男生各40人的成绩.”根据如图学校信息.请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩.请给出抽样方案.(2)现将随机抽取的测试成绩整理并绘制成如图统计图.请求出这组数据的平均数、中位数和众数.20.(8分)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案.它由7个图形组成.请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中.使点P为它的一个顶点.并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形.将它的各边长扩大到原来的倍.画在图3中.21.(10分)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2.0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4.m).B(n.7).n为正数.若点P 在抛物线上且在直线l下方(不与点A.B重合).分别求出点P横坐标与纵坐标的取值范围.22.(10分)如图.在▱ABCD中.E.F是对角线BD上的两点(点E在点F左侧)(1)求证:四边形AECF是平行四边形;(2)当AB=5.tan∠ABE=.∠CBE=∠EAF时23.(12分)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍.用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元.且生产的营养品当日全部售出.若A的数量不低于B的数量.则A为多少包时24.(14分)如图.在平面直角坐标系中.⊙M经过原点O(2.0).B(0.8).连结AB.直线CM分别交⊙M于点D.E(点D在左侧).交x轴于点C(17.0)(1)求⊙M的半径和直线CM的函数表达式;(2)求点D.E的坐标;(3)点P在线段AC上.连结PE.当∠AEP与△OBD的一个内角相等时.求所有满足条件的OP的长.参考答案与试题解析一、选择题本题有10小题.每小题4分.共40分.1.计算(﹣2)2的结果是()A.4B.﹣4C.1D.﹣1【分析】(﹣2)²表示2个(﹣2)相乘,根据幂的意义计算即可.【解答】解:(﹣2)²=(﹣2)×(﹣6)=4,故选:A.2.直六棱柱如图所示.它的俯视图是()A.B.C.D.【分析】根据简单几何体的三视图进行判断即可.【解答】解:从上面看这个几何体.看到的图形是一个正六边形.故选:C.3.第七次全国人口普查结果显示.我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为()A.218×106B.21.8×107C.2.18×108D.0.218×109【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n 为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时.n是正数;当原数的绝对值<1时.n是负数.【解答】解:将218000000用科学记数法表示为2.18×108.故选:C.4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人.则初中生有()A.45人B.75人C.120人D.300人【分析】利用大学生的人数以及所占的百分比可得总人数.用总人数乘以初中生所占的百分比即可求解.【解答】解:参观温州数学名人馆的学生人数共有60÷20%=300(人).初中生有300×40%=120(人).故选:C.5.解方程﹣2(2x+1)=x.以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=xD.﹣4x﹣2=x【分析】可以根据乘法分配律先将2乘进去.再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x.去括号得:﹣3x﹣2=x.故选:D.6.如图.图形甲与图形乙是位似图形.O是位似中心.点A.B的对应点分别为点A′.则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式.代入计算即可.【解答】解:∵图形甲与图形乙是位似图形.位似比为2:3.∴=.即=.解得.A′B′=9.故选:B.7.某地居民生活用水收费标准:每月用水量不超过17立方米.每立方米a元;超过部分每立方米(a+1.2).则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元【分析】应缴水费=17立方米的水费+(20﹣17)立方米的水费。
中考数学模拟测试试卷(附含有答案)
中考数学模拟测试试卷(附含有答案)学校:___________班级:___________姓名:___________考号:___________本试题分试卷和答题卡两部分、第1卷满分为40分;第11卷满分为110分,本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将试卷、答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是()A.2B.﹣12C.-2 D.122.如图是《九章算术》中"堑堵"的立体图形,它的左视图为()3.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为()A.4x105B.4x106C.40x104D.0.4x1064.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°(第4题图)5.下列校徽的图案是轴对称图形的是()6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。
两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.12(第8题图) (第9题图)9.用尺规作一个角等于已知角,已知∠AOB、求作:∠DEF,使∠DEF=∠AOB.作法如下:(1)作射线EG:(2)①为圆心,任意长为半径画弧,交OA于点P、交OB于点Q:(3)以点E为圆心,以②为半径画强交EG于点D:(4)以点D为圆心,以③为半径画弧交前面的弧于点片:(5)过点F作④,∠DEF即为所求作的角.以上作图步骤中,序号代表的内容错误的是()A.①表示点OB.②表示OPC.③表示OQD.④表示射线EF10.在平面直角坐标系中,对点M(a,b)和点M'(a,b')给出如下定义:若b'={b-4(a≥0)|a|(a<0),则称点M'(a,b')是点M(a,b)的伴随点,如:点A(1,-2)的伴随点是A'(1,-6),B(-1,-2)的伴随点是B'(-1,2).若点Q(m,n)在二次函数y=x2-4x-2的图象上,则当﹣2≤m<5时,其伴随点Q'(m,n')的纵坐标n'的值不可能是( )A.-10B.-1C.1D.10第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向平行四边形ABCD内部投掷飞镖,飞镖恰好落在阴影区域的概率为。
中考数学模拟考试卷(附带有答案解析)
中考数学模拟考试卷(附带有答案解析)(满分:120分考试时间:120分钟)一选择题(本大题共8小题共24分)1.下列各组数中相加等于0的是()A. −(−1)与1B. (−1)2与1C. |−1|与1D. −12与12.自从扫描隧道显微镜发明后世界上便诞生了一门新科学这就是纳米技术.1纳米=0.000000001米则25纳米用科学记数法应表示为()A. 2.5×10−8米B. 25×10−8米C. 25×10−9米D. 2.5×10−9米3.下表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率则这5种疫苗有效率的中位数是()疫苗名称克尔来福阿斯利康莫德纳辉瑞卫星V有效率79%76%95%95%92%A. 79%B. 92%C. 95%D. 76%4.如图是由4个完全相同的正方体组成的几何体它的左视图是()A. B. C. D.5.一个零件的形状如图所示AB//DE AD//BC∠CBD=60°∠BDE=40°则∠A的度数是()A. 70°B. 80°C. 90°D. 100°6.如图点B C D在⊙O上若∠BCD=130°则∠BOD的度数是()A. 50°B. 60°C. 80°D. 100°7.若a=√10则实数a在数轴上对应的点的大致位置是A. B.C. D.8.百位数字是十位数字是个位数字是则这个三位数是()A. B. C. D.二填空题(本大题共8小题共24分)9.分解因式:3mn2−12m2n=______.10.已知一组数据83m2的众数为3则这组数据的平均数是______.11.圆锥母线长为6底面半径为2则该圆锥的侧面积为______(结果用带π的数的形式表示).12.如图D E分别是△ABC边AB AC上的点DE//BC AD=5BD=3BC=4则DE长为______ .13.如图△ABC的面积为1第一次操作:分别延长AB BC CA至点A1B1C1使A1B=AB B1C=2BC C1A=2CA顺次连接A1B1C1得到△A1B1C1.第二次操作:分别延长A1B1B1C1C1A1至点A2B2C2使A2B1=A1B1B2C1=2B1C1C2A1=2C1A1顺次连接A2B2C2得到△A2B2C2按此规律要是得到的三角形的面积为38416需要经过______ 次操作.14.P是反比例函数y=k的图象上一点过P点分别向x轴y轴作垂线所得的图中阴影部分的面积为6x则这个反比例函数的解析式为______ .15.如图抛物线y=ax2+bx+c与x轴交于点A(−1,0)顶点坐标(1,n)与y轴的交点在(0,2)(0,3)之间(包含端点)则下列结论:①3a+b>0②−1≤a≤−23③对于任意实数m a+b≥am2+bm总成立④关于x的方程ax2+bx+c=n−1有两个不相等的实数根.其中正确结论为______.(只填序号)16.∠A=32°则∠A的补角等于______ °.三计算题(本大题共1小题共8分)17.如图AC是我市某大楼的高在地面上B点处测得楼顶A的仰角为45°沿.现打算从大楼顶端A点悬挂一BC方向前进18米到达D点测得tan∠ADC=53幅庆祝建国60周年的大型标语若标语底端距地面15m请你计算标语AE的长度应为多少?四解答题(本大题共10小题共58分)18.小明将一块含45°角的直角三角板按如图①所示的方式放置其中直角顶点A落在直线l上.由B C两点分别向直线l作垂线垂足分别为D E.(1)试猜想△ACE与______ 全等并说明理由.(2)小明改变三角板的位置如图②所示上述结论还成立吗?请说明理由.19.九(1)班同学为了解2020年某小区家庭月均用水情况随机调查了该小区部分家庭并将调查数据进行整理:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请解答以下问题:(1)这里采用的调查方式是______ (填“普查”或“抽样调查”)样本容量是______(2)填空:m=______ n=______ 若将月均用水量的频数绘成扇形统计图则月均用水量“15<x≤20”的圆心角的度数是______(3)若该小区有1000户家庭求该小区月均用水量超过10t的家庭大约有多少户?20.某学校甲乙两名同学去爱国主义教育基地参观该基地与学校相距2400米.甲从学校步行去基地出发5分钟后乙再出发乙从学校骑自行车到基地.乙骑行到一半时发现有东西忘带立即返回拿好东西之后再从学校出发.在骑行过程中乙的速度保持不变最后甲乙两人同时到达基地.已知乙骑行的总时间是甲步行时间的23.设甲步行的时间为x(分)图中线段OA表示甲离开学校的路程y(米)与x(分)的函数关系的图象.图中折线B−C−D表示乙离开学校的路程y(米)与x(分)函数关系的部分图象.根据图中所给的信息解答下列问题:(1)甲步行的速度为______ 米/分乙骑行的速度为______ 米/分(2)请求出甲出发多少时间后甲乙两人第二次相遇(3)请补全乙离开学校的路程y(米)与x(分)的函数关系图象.(4)若s(米)表示甲乙两人之间的距离当15≤x≤30时直接写出s(米)关于x(分)的函数关系式.21.先化简再求代数式x2−4x2−4x+4÷x+2x+1−xx−2的值其中x=2+√2.22.一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行已知高铁列车比动车组列车平均速度每小时快99千米且高铁列车比动车组列车全程运行时间少3小时求这辆高铁列车全程运行的时间和平均速度.23.在一个不透明的布袋里有3个标有123的小球它们的形状大小完全相同小明从布袋中随机取出一个小球记下数字为x小红在剩下的2个小球中随机取出一个小球记下数字为y这样确定了点Q的坐标(x,y).(1)画树状图或列表写出点Q所有可能的坐标(2)小明和小红约定做一个游戏其规则为:若x y满足xy>4则小明胜若x y满足xy<4则小红胜这个游戏公平吗?说明理由.24.如图在所给的方格纸中每个小正方形的边长都是1点A B C位于格点处请按要求画出格点四边形.(1)在图1中画出格点P使AC=CP且以点A B C P为顶点的四边形面积为3(2)在图2中画出一个以点A B C P为顶点的格点四边形使AP2+CP2=15.25. 如图 抛物线y =ax 2+bx +2经过点A(−1,0) B(4,0) 交y 轴于点C(1)求抛物线的解析式(用一般式表示)(2)若点E 在抛物线上 且△BCE 是以BC 为底的等腰三角形 求点E 的横坐标.26. (1)计算:|√2−√3|+2√2 (2)计算:√0.04+√−83−√14+√0.49(3)解方程组:{m −n =22m +3n =14(4)解不等式:x 2−5x+73>1−3x−54(5)根据题意填空∵∠B =∠BCD(已知)∴AB//CD(______)∵∠BCD=∠CGF(已知)∴______//______(______)27.如图在△ABC中tanB=1∠C=45°AD=6AD⊥BC于点D动点E从点D出发沿2DB向点B以每秒1个单位长度的速度运动.将线段DE绕点D顺时针旋转90°得到线段DF过点F作FG//AC交射线DC于点G以EG FG为邻边▱EGFP▱EGFP与△ABC重叠部分面积为S.当点E与点B重合时停止运动设点E的运动时间为t秒(t>0).(1)求BC的长.(2)当点P落到AB边上时求t的值.(3)当点F在线段AD上时求S与t之间的函数关系式.(4)▱EGFP的边PE被AB分成1:3两部分时直接写出t的值.参考答案和解析1.【答案】D【解析】解:A−(−1)+1=2B(−1)2+1=2C|−1|+1=2D−12+1=0.故选:D.根据相反数的定义求解即可.本题考查了有理数的乘方实数的性质只有符号不同的数互为相反数.2.【答案】A【解析】解:25纳米用科学记数法应表示为25×10−9=2.5×10−8(米).故选:A.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B【解析】解:从小到大排列此数据为:76%79%92%95%95%其中92%处在第3位为中位数.故选:B.找中位数要把数据按从小到大的顺序排列位于最中间的一个数(或两个数的平均数)为中位数.本题考查了中位数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后最中间的那个数(最中间两个数的平均数)叫做这组数据的中位数如果中位数的概念掌握得不好不把数据按要求重新排列就会错误地将这组数据最中间的那个数当作中位数.4.【答案】B【解析】解:从左边看是竖着叠放的2个正方形故选:B.细心观察图中几何体中正方体摆放的位置根据左视图是从左面看到的图形判定则可.本题考查了由三视图判断几何体和简单组合体的三视图解题的关键是掌握几何体的三视图及空间想象能力.5.【答案】B【解析】解:∵AB//DE AD//BC∴∠ABD=∠BDE∠ADB=∠CBD∵∠CBD=60°∠BDE=40°∴∠ADB=60°∠ABD=40°∴∠A=180°−∠ADB−∠ABD=80°故选:B.根据平行线的性质可以得到∠ADB=60°和∠ABD的度数再根据三角形内角和即可得到∠A的度数.本题考查平行线的性质三角形内角和解答本题的关键是明确题意利用数形结合的思想解答.6.【答案】D【解析】此题考查了圆周角定理与圆的内接四边形的性质.此题比较简单解题的关键是注意数形结合思想的应用注意辅助线的作法.首先圆上取一点A连接AB AD根据圆的内接四边形的性质即可得∠BAD+∠BCD=180°即可求得∠BAD的度数再根据圆周角定理即可求得答案.【解答】解:如图圆上取一点A连接AB AD∵点A B C D在⊙O上∠BCD=130°∴∠BAD=50°∴∠BOD=100°故选:D.7.【答案】C【解析】本题考查了实数与数轴的对应关系以及估算无理数大小的能力.本题利用实数与数轴的关系解答首先估计√10的大小进而找到其在数轴的位置即可得答案.【解答】解:a=√10有3<a<4可得其在点3与4之间并且靠近3分析选项可得C符合.故选C.8.【答案】D【解析】三位数的表示方法:三位数=百位数字×100+十位数字×10+个位数字.由题意得这个三位数为100a+10b+c.故答案是:D.9.【答案】3mn(n−4m)【解析】解:3mn2−12m2n=3mn(n−4m).故答案为:3mn(n−4m).直接提取公因式3mn进而分解因式得出答案.此题主要考查了提取公因式法分解因式正确找出公因式是解题关键.10.【答案】4【解析】解:∵一组数据83m2的众数为3∴m=3=4∴这组数据的平均数:8+3+3+24故答案为:4.直接利用众数的定义得出m的值进而求出平均数此题考查了平均数和众数解题的关键是正确理解各概念的含义.11.【答案】12π【解析】解:圆锥的侧面积=2π×2×6÷2=12π故答案为:12π.圆锥的侧面积=底面周长×母线长÷2把相应数值代入即可求解.本题考查了圆锥的计算解题的关键是牢记圆锥的侧面积的计算方法.12.【答案】52【解析】解:∵DE//BC∴ADAB=DEBC∴58=DE4∴DE=5 2故答案为:52.根据平行线分线段成比例定理列出比例式求解即可得到答案.此题考查了平行线分线段成比例定理的运用利用平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例是解答此题的关键.13.【答案】4【解析】解:连接A1C B1A BC1S△AA1C=2S△ABC=2∴S△A1BC=1S△A1B1C=2S△CC1B1=6S△AA1C1=2S△AA1C=4所以S△A1B1C1=6+4+4=14同理得S△A2B2C2=14×14=361S△A3B3C3=196×14=6859从中可以得出一个规律延长各边后得到的三角形是原三角形的14倍所以延长第n次后得到△A nB nC n则其面积S n=14n⋅S1=14n=38416解得:n=4.故答案是:4.连接A1C B1A BC1找出延长各边后得到的三角形是原三角形的14倍的规律利用规律求延长第n 次后的面积为38416求出n即可.本题考查了三角形的面积.注意找到规律:S n=14n S1是解此题的关键.14.【答案】y=−6x的图象上一点过P点分别向x轴【解析】解:∵P是反比例函数y=kxy轴作垂线所得的图中阴影部分的面积为6∴|k|=6又∵函数图象位于二四象限k<0∴k=−6∴该反比例函数的表达式为y=−6.x故答案为y=−6.x由于图中阴影部分的面积为|k|=6且函数图象位于二四象限k<0则该反比例函数的表达式即可求出.本题考查反比例函数系数k的几何意义过双曲线上的任意一点分别向两条坐标轴作垂线与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点同学们应高度关注.15.【答案】②③④【解析】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时抛物线向上开口当a<0时抛物线向下开口一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时对称轴在y轴左侧当a与b异号时对称轴在y轴右侧.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2−4ac>0时抛物线与x轴有2个交点△=b2−4ac=0时抛物线与x轴有1个交点△=b2−4ac<0时抛物线与x轴没有交点.利用抛物线开口方向得到a<0再由抛物线的对称轴方程得到b=−2a则3a+b=a于是可对①进行判断利用2≤c≤3和c=−3a可对②进行判断利用二次函数的性质可对③进行判断根据抛物线y=ax2+bx+c与直线y=n−1有两个交点可对④进行判断.【解答】解:∵抛物线开口向下∴a<0=1即b=−2a而抛物线的对称轴为直线x=−b2a∴3a+b=3a−2a=a<0所以①错误把点A(−1,0)带入解析式可得a−b+c=0所以c=−3a∵2≤c≤3∴2≤−3a≤3∴−1≤a≤−23所以②正确∵抛物线的顶点坐标(1,n)∴x=1时二次函数值有最大值n=a+b+c∴a+b+c≥am2+bm+c即a+b≥am2+bm所以③正确∵抛物线的顶点坐标(1,n)∴抛物线y=ax2+bx+c与直线y=n−1有两个交点∴关于x的方程ax2+bx+c=n−1有两个不相等的实数根所以④正确.故答案为②③④.16.【答案】148【解析】解:∵∠A=32°∴∠A的补角=180°−32°=148°.故答案为:148.根据互为补角的两个角的和等于180°列式计算即可得解.本题考查了补角的定义是基础题熟记概念是解题的关键.17.【答案】解:在Rt△ABC中∠ACB=90°∠ABC=45°∴Rt△ABC是等腰直角三角形AC=BC.在Rt△ADC中∠ACD=90°tan∠ADC=ACDC =53∴DC=35AC.∵BC−DC=BD即AC−35AC=18∴AC=45.则AE=AC−EC=45−15=30.答:标语AE的长度应为30米.【解析】首先分析图形 根据题意构造直角三角形.本题涉及到两个直角三角形 即△ABC 和△ADC.根据已知角的正切函数 可求得BC 与AC CD 与AC 之间的关系式 利用公共边列方程求AC 后 AE 即可解答.本题要求学生借助仰角关系构造直角三角形 并结合图形利用三角函数解直角三角形.18.【答案】△BAD【解析】解:(1)△BAD .理由:∵含45°角的直角三角板ABC 为等腰直角三角形∴AC =BA ∠CAB =90°又∵∠CAE +∠CAB +∠BAD =180°∴∠CAE +∠BAD =90°.∵CE 是直线l 的垂线∴∠AEC =90°∴∠ACE +∠CAE =90°∴∠ACE =∠BAD .∵CE BD 分别垂直于直线l∴∠AEC =∠ADB =90°在△ACE 和△BAD 中{∠ACE =∠BAD∠AEC =∠ADB AC =BA∴△ACE ≌△BAD(AAS).故答案为△BAD .(2)成立.证明:∵∠CAE +∠BAD =∠BAD +∠ABD =90°∴∠CAE =∠ABD在△ACE 和△BAD 中{∠CAE =∠ABD∠AEC =∠ADB AC =AB∴△ACE ≌△BAD(AAS).(1)由直角三角形的性质得出∠ACE =∠BAD 根据AAS 可证明△ACE ≌△BAD(2)方法同(1).根据AAS 可证明△ACE ≌△BAD .本题考查全等三角形的判定与性质余角的性质关键是根据AAS证明三角形全等.19.【答案】抽样调查50120.0872°【解析】解:(1)由题意可得本次调查采用的调查方式是抽样调查样本容量是6÷0.12=50故答案为:抽样调查50=0.08(2)m=50×0.24=12n=450月均用水量“15<x≤20”的圆心角的度数是:360°×0.20=72°故答案为:120.0872°(3)1000×(0.32+0.20+0.08+0.04)=1000×0.64=640(户)答:该小区月均用水量超过10t的家庭大约有640户.(1)根据题意可以得到本次调查采用的调查方式再根据“0<x≤5”的频数和频率可以计算出样本容量(2)根据(1)中的结果和频数分布表中的数据可以计算出m n的值根据月均用水量“15<x≤20”的频率计算出月均用水量“15<x≤20”的圆心角度数(3)根据频数分布表中的数据可以计算出该小区月均用水量超过10t的的频率即可得该小区月均用水量超过10t的家庭大约有多少户.本题考查频数分布表扇形统计图用样本估计总体解答本题的关键是明确题意掌握频数÷频率=数据总数的计算方法.20.【答案】80240【解析】解:(1)由题意得:甲步行的速度为:2400÷30=80(米/分)=240(米/分)乙骑行的速度为:1200÷15−52故答案为:80240(2)由题意可得:C(10,1200)D(15,0)A(30,2400)设线段CD的解析式为:y=kx+b则{10k +b =120015k +b =0解得{k =−240b =3600∴线段CD 的解析式为:y =−240x +3600 线段OA 的解析式为:y =80x 根据题意得:−240x +3600=80x解得:x =454 ∴甲出发454分后 甲 乙两人第二次相遇(3)由题意得:甲步行时间为30分∴乙骑行的总时间为30×23=20(分)∴乙拿东西的时间为30−20−5=5(分)补全乙离开学校的路程y(米)与x(分)的函数关系图象如图(4)∵E(20,0) A(30,2400)设线段EA 的解析式为:y =mx +n{20m +n =030m +n =2400解得{m =240n =−4800∴线段EA 的解析式为:y =240x −4800∴当15≤x ≤20时 s =80x当20<x ≤30时 s =80x −(240x −4800)=−160x +4800∴s ={80x(15≤x ≤20)−160x +4800(20<x ≤30). (1)根据题意结合图象解答即可(2)根据题意得出点C D A 的坐标 进而得出线段CD 与线段OA 的解析式 联立成方程组解答即可(3)根据乙骑行的总时间是甲步行时间的23求出乙骑行的总时间.从而可得拿东西的时间 即可补全乙离开学校的路程y(米)与x(分)的函数关系图象(4)根据线段OA与线段EA的解析式解答即可.本题考查一次函数的应用解题的关键是明确题意认真分析图中的数量关系找出所求问题需要的条件利用数形结合的思想解答问题.21.【答案】解:x2−4x2−4x+4÷x+2x+1−xx−2=(x+2)(x−2)(x−2)2⋅x+1x+2−xx−2=x+1x−2−xx−2=1x−2当x=2+√2时原式=2+√2−2=√22.【解析】根据分式的除法和减法可以化简题目中的式子然后将x的值代入即可解答本题.本题考查分式的化简求值解答本题的关键是明确分式化简求值的计算方法.22.【答案】解:设动车组列车的平均速度为x千米/小时则高铁列车的平均速度为(x+99)千米/小时根据题意得:1320x −1320x+99=3解得:x1=165x2=−264(不合题意舍去)经检验x=165是原方程的解∴x+99=2641320÷(x+99)=5.答:这辆高铁列车全程运行的时间为5小时平均速度为264千米/小时.【解析】本题考查了分式方程的应用找准等量关系正确列出分式方程是解题的关键.设动车组列车的平均速度为x千米/小时则高铁列车的平均速度为(x+99)千米/小时根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时即可得出关于x的分式方程解之经检验后即可得出结论.23.【答案】解:(1)画树状图为:所以点Q所有坐标为(1,2)(1,3)(2,1)(2,3)(3,1)(3,2)(2)不公平由树状图知共有6种等可能结果其中xy>4的有2种结果xy<4的有4种结果∴小明获胜的概率为26=13小红胜的概率为46=23∵13≠23∴此游戏不公平.【解析】(1)先利用树状图展示所有6种等可能的结果数即可得出点Q所有可能的坐标(2)找到所列6种等可能结果中xy>4和xy<4的结果数再利用概率公式求出两人获胜的概率比较大小即可得出答案.本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n再从中选出符合事件A或B的结果数目m求出概率.24.【答案】解:(1)如图1中四边形即为所求(答案不唯一).(2)如图2中四边形即为所求(答案不唯一).【解析】(1)根据要求利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计三角形的面积等知识解题的关键是熟练掌握基本知识属于中考常考题型.25.【答案】解:(1)∵抛物线y =ax 2+bx +2经过点A(−1,0) B(4,0)∴{16a +4b +2=0a −b +2=0 解得{a =−12b =32∴抛物线解析式为y =−12x 2+32x +2①(2)由抛物线的表达式知 点C(0,2)设BC 的中点为H(2,1) 过点H 作BC 的中垂线交x 轴于点F 交抛物线于点E 则点E 为所求点在Rt △BOC 中 tan ∠CBO =OC OB =12 则tan ∠HFB =2故设直线EF 的表达式为y =2x +t将点H 的坐标代入上式得:1=2×2+t 解得t =−3故直线EF 的表达式为y =2x −3②联立①②并解得{x =−1+√412y =√41−4或{x =−1−√412y =−√41−4故点E 的坐标为(−1+√412,√41−4)或(−1−√412,−√41−4).【解析】(1)用待定系数法即可求解(2)设BC 的中点为H(2,1) 过点H 作BC 的中垂线交x 轴于点F 交抛物线于点E 则点E 为所求点 进而求解.本题是二次函数综合题 主要考查了一次函数的性质 解直角三角形 等腰三角形的性质等 有一定的综合性 但难度不大.26.【答案】内错角相等 两直线平行 EF CD 同位角相等 两直线平行【解析】解:(1)原式=√3−√2+2√2=√3+√2(2)原式=0.2−2−12+0.7=0.9−2.5=−1.6(3){m −n =2①2m +3n =14② ①×3+② 得:5m =20解得:m =4将m =4代入① 得:4−n =2解得:n =2∴{m =4n =2(4)去分母 得:6x −4(5x +7)>12−3(3x −5)去括号 得:6x −20x −28>12−9x +15移项 得:6x −20x +9x >12+15+28合并同类项 得:−5x >55系数化为1 得:x <−11(5)∵∠B =∠BCD(已知)∴AB//CD(内错角相等 两直线平行)∵∠BCD =∠CGF(已知)∴EF//CD(同位角相等 两直线平行)故答案为:内错角相等 两直线平行 EF CD 同位角相等 两直线平行.(1)根据绝对值性质去绝对值符号 再合并可得(2)先计算平方根 立方根 再计算加减可得(3)加减消元法求解可得(4)根据解不等式的基本步骤依次进行即可(5)根据平行线的判定和性质可得.本题主要考查解方程组 不等式 绝对值性质 平方根和立方根及平行线的判定和性质 掌握基本的运算和性质是解题的关键.27.【答案】解:(1)如图1中∵AD⊥BC∴∠ADB=∠ADC=90°∵∠C=45°∴∠DAC=∠C=45°∴AD=DC=6∵tanB=AD BD=12∴BD=12∴BC=BD+CD=18.(2)如图2中当点P落在AB上时则有6−t2t =12解得t=3.(3)当0<t≤3时如图1中重叠部分是平行四边形PFEG S=2t⋅t=2t2.当3<t≤6如图3中重叠部分是五边形MNFGE过点M作MH⊥PN于H则有PH=MH NH= 2MH∴MH =13PN =13[2t −2(6−t)]=13(4t −12) ∴S =S 平行四边形PFEG −S △MPN =2t 2−12×13(4t −12)2=−23t 2+16t −24.(4)如图4中 由题意PM :ME =1:3或PM :ME =3:1∵PN//BE∴PN BE =PM ME ∴4t−1212−t =13或4t−1212−t =3解得t =4813或487。
中考数学模拟试题(含答案)
中考数学模拟试题(含答案)中考数学模拟试题本试卷共8页,考试时间100分钟,满分120分。
选择题(共10小题,每小题3分,共30分)1.求-3的倒数。
()A。
-1/3 B。
-1/-3 C。
1/-3 D。
1/32.函数y=1/(x-8),x的取值范围是()。
A。
x8 D。
x≥83.国家游泳中心“水立方”的外层膜展开面积约为平方米,科学记数法表示为()。
A。
2.6×10^5 B。
26×10^4 C。
0.26×10^6 D。
2.6×10^64.下列简单几何体的左视图是()。
A。
B。
C。
D.5.某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数和众数分别是()。
A。
32、31 B。
31、32 C。
31、31 D。
32、356.下列命题中,错误的是()。
A。
矩形的对角线互相平分且相等 B。
对角线互相垂直的四边形是菱形 C。
等腰梯形的两条对角线相等 D。
等腰三角形两底角相等7.下列图形中,能肯定∠1>∠2的是()。
A。
B。
C。
D.8.下列各式计算结果正确的是()。
A。
2a+a=3a B。
(3a)^2=9a^2 C。
(a-1)^2=a^2-1 D。
a×a=a^2非选择题9.已知△ABC中,∠A=60°,AB=√3,AC=2.求BC的长度。
10.已知函数y=2x^2-x-3,求其对称轴的方程。
答案区:1.1/(-3)2.x>83.2.6×10^54.C5.31、316.A7.D8.a×a=a^29.BC=210.x=1/49、在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为12.10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为8π cm²。
11、一对互为相反数的数为x和-x。
12、b²-2b可以分解为b(b-2)。
九年级中考数学模拟考试卷(附答案)
九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。
2023年中考数学模拟试卷(附答案)
2023年中考数学模拟试卷(附答案)第一部分:选择题(共40分)1. 以下选项中,哪一个是素数?- a. 16- b. 21- c. 29- d. 36答案:c. 292. 若直角三角形的两个直角边长分别为3cm和4cm,求斜边长。
- a. 5cm- b. 7cm- c. 9cm- d. 12cm答案:a. 5cm3. 已知一辆车从A地到B地的距离为120 km,如果车辆的速度恒定为60 km/h,则车辆从A地到B地的时间是多少?- a. 1 hour- b. 2 hours- c. 3 hours- d. 4 hours答案:b. 2 hours...第二部分:填空题(共30分)1. 将 3/4 化简为最简分数形式,分子是___,分母是___。
答案:3,42. 苹果的原价是40元,现在打8折出售,打折后的价格是___元。
答案:32元3. 一条矩形长边长为5cm,宽度为3cm,它的面积是___平方厘米。
答案:15平方厘米...第三部分:解答题(共30分)1. 一根电线长9米,需要被剪成3段,第一段比第二段长1米,第二段比第三段长2米。
请分别计算出这三段电线的长度。
解答:令第一段电线长度为x,则第二段电线长度为(x-1)米,第三段电线长度为(x-1-2)=x-3米。
根据题意,有:x + (x-1) + (x-3) = 9解方程得:3x - 4 = 9x = 13/3所以,第一段电线长度为13/3米,第二段电线长度为13/3-1米,第三段电线长度为13/3-3米。
...参考答案第一部分:1. c2. a3. b第二部分:1. 3, 42. 323. 15第三部分:1. 解答略。
中考数学模拟卷(含答案)
中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4 3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.56.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm28.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是.10.(3分)写分解因式a2﹣8ab+16b2的结果.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=度.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.18.(6分)化简:19.(6分)解不等式组:20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4【解答】解:A、2+和2不相等,故本选项不符合题意;B、a和a2不能合并,故本选项不符合题意;C、2a•3a=6a2,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意;故选:D.3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.【解答】解:俯视图是三角形的是选项D,故选:D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm【解答】解:同一尺寸最多的是39cm,共有5件,所以众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸都是40cm,所以中位数是(40+40)=40cm.故选:A.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选:C.6.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:抛物线y=﹣(x+1)2+3的顶点坐标是(﹣1,3).故选:B.7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm2【解答】解:连接OB,作BH⊥OA于H,如图,∵圆锥的母线AB与⊙O相切于点B,∴OB⊥AB,在Rt△AOB中,OA=18﹣5=13,OB=5,∴AB==12,∵OA•BH=OB•AB,∴BH==,∵圆锥形纸帽的底面圆的半径为BH=,母线长为12,∴形纸帽的表面=×2π××12=π(cm2).故选:C.8.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是x≥﹣2.【解答】解:根据题意得:4+2x≥0,解得:x≥﹣2.故答案为:x≥﹣2.10.(3分)写分解因式a2﹣8ab+16b2的结果(a﹣4b)2.【解答】解:原式=(a﹣4b)2,故答案为:(a﹣4b)2.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为 6.7×106.【解答】解:6700000=6.7×106.故答案为:6.7×106.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=40度.【解答】解:∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∴∠D=40°.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为35°.【解答】解:∵AB⊥BC,∠1=55°,∴∠2=90°﹣55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.【解答】解:圆心角的度数是:360°×=240°,弧长是=cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是y=.【解答】解:∵点B坐标为(3,1),∴AO=3,AB=CO=1,∵矩形OABC和OA′B′C′全等,∴OA′=OA=3,A′B′=AB=1,∵∠A′=∠DCO=90°,∠DOC=∠B′OA′,∴△CDO∽△A′B′O,∴=,即=,∴CD=,∴D(,1),设经过点D的反比例函数解析式为y=,∴k=×1=,∴经过点D的反比例函数解析式为:y=,故答案为:y=.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是+1.【解答】解:如图所示,当点D运动到(﹣1,0)时,BD最长,此时,正方形面积最大,∠CDO=45°,∴∠CDO=45°,又∵∠FDO=45°,∴CD经过点F,同理可得,AD经过点E,∴正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,即×2×1+×π×12=1+,故答案为:+1.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.【解答】解:原式=4﹣5﹣5=﹣6.18.(6分)化简:【解答】解:原式=•=•=.19.(6分)解不等式组:【解答】解:,解不等式①,得x≥﹣4,解不等式②,得x>﹣,故不等式的解集为x>﹣.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).【解答】解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10,∴CD=BC•cos45°=10×≈7.0,∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.∴AC=AD+CD=11.9+7.0=18.9≈19.答:小船到码头的距离约为19海里.24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【解答】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+82.综上所述:y与x之间的函数关系式为y=.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.【解答】(1)解:四边形ABCO是菱形,理由如下:∵AO∥BC,AB∥OC,∴四边形ABCO是平行四边形,∵OA=OC,∴平行四边形ABCO是菱形;(2)证明:连接OB,∵四边形ABCO是菱形,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴△BOC为等边三角形,同理,△BOA为等边三角形,∴∠AOB=60°,∠BOC=60°,∴∠AOC=120°,∵∠AOF=30°,∴∠COF=90°,∵CD∥OF,∴∠OCD=180°﹣90°=90°,∴CD是⊙O的切线;(3)解:∵CD∥OF,AB∥OC,∠OCD=90°,∴四边形OCDE为矩形,∴DE=OC,∠AEO=90°,∵∠AOF=30°,∴AE=OA=OC=DE,∵CD∥OF,∴==,∴EF=.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+m与抛物线y=x2+nx﹣8都经过A点,∴m=﹣8,∵直线y=x+m经过x轴上的B点,∴点B(8,0),又∵抛物线y=x2+nx﹣8经过B点,∴n=﹣7,∴抛物线为:y=x2﹣7x﹣8;(2)设点C为:(x,0),则点D为(x,x﹣8),点E为(x,x2﹣7x﹣8),∵DE=12,∴(x﹣8)﹣(x2﹣7x﹣8)=12,解得:x1=2,x2=6,当x=2时,x2﹣7x﹣8=﹣18,∴CE=18,四边形CAEB的面积=OB×CE=72,当x=6时,x2﹣7x﹣8=﹣14,∴CE=14,四边形CAEB的面积=OB×CE=56;(3)存在,当AC∥BE时,△DEB∽△DCA,过点A作AF⊥CE于点F,=,即=,∴x2+x﹣8=0,解得:x1=,x2=(舍去),当=时,△DEB∽△DAC,即=,∴x2﹣6x=0,解得:x1=6,x2=0(舍去),综上所述:当x=或x=6时,△DEB和△DAC相似,则x﹣8=或﹣2,此时点D的坐标为:(,)或(6,﹣2).27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.【解答】解:(1)①如图1中,由旋转可知:CA=CD,∵∠ACB=90°,∠B=30°,∴∠CAD=60°,∴△ADC是等边三角形,∴∠DCA=60°,∵∠ECD=90°,∠DEC=30°,∴∠CDE=60°,∴∠EDC=∠DCA,∴DE∥AC,②∵AB=2AC,AD=AC,∴AD=BD,∴S△BDC=S△ADC,∵DE∥AC,∴S△ADC=S△ACE,∴S1=S2.故答案为:DE∥AC,S1=S2.(2)如图3中,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴S△BDC=S△AEC.(3)如图4中,作DF∥BC交AB于F.延长CD交AB于H.∵DF∥BE,DE∥BF,∴四边形DEBF是平行四边形,∴S△BDF=S△BDE,S△BDF=S△DFC,∴S△DFC=S△BDE,∵∠ABC=60°,BD平分∠ABC,∴∠ABD=∠DBE=30°,∵DF∥BE,∴∠FDB=30°,∴∠FBD=∠FDB=30°,∴FB=FD,∴四边形DEBF是菱形,∵BD=CD=6,∴∠DBC=∠DCB=30°,∵∠DEC=∠ABC=60°,∴∠CDE=90°,∴DE=CD•tan30°=6×=2,∴BF=DE=2,∵DE∥AB,∴∠BHC=∠EDC=90°,∴CH⊥AB,作点F关于CH的对称点F′,连接DF′,易知S△DFC=S△DF′C,在Rt△DFH中,FH=HF′=DF•sin30°=,∴BF′=4,综上所述,满足条件的BF的值为2或4.。
中考数学模拟考试卷(附答案)
中考数学模拟考试卷(附答案)一选择题(共8小题,每小题3分,计24分。
每个小题只有一一个选项是符合题意的)1.(3分)−34的倒数是()A.43B.−43C.34D.−342.(3分)如图是某个几何体的展开图,该几何体是()A.圆锥B.四棱柱C.圆台D.圆柱3.(3分)下列运算正确的是()A.5a+3a=8 B.3ab﹣ab=2abC.2a+3b=5ab D.﹣(a﹣b)=﹣a﹣b4.(3分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=160°,则∠C的度数是()A.130°B.140°C.150°D.160°5.(3分)如图是一次函数y=ax+b的图象,则关于x的方程ax+b=1的解为()A.0 B.2 C.4 D.66.(3分)在矩形ABCD中有一个菱形BEDF(点E,F分别在线段AB CD上),记它们的面积分别为S矩形ABCD和S菱形BEDF,若S矩形ABCD:S菱形BEDF=(2+√3):2,则tan∠EDF=()A.√3B.2√3C.√33D.√327.(3分)如图,在圆O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD 的中点,则AC的长是()A.4 B.2√3C.4√33D.8√338.(3分)在平面直角坐标系中,将抛物线y=x2+(m+2)x+3m﹣3(m>0)向上(下)或向左(右)平移,平移后的抛物线恰好经过原点,且平移的最小距离是2,则m的值为()A.1 B.2 C.3 D.6二填空题(共5小题,每小题3分,计15分)9.(3分)在﹣2 −√3227√6π中,无理数有个.10.(3分)如图,AC是正五边形ABCDE的对角线,则∠ACD为度.11.(3分)定义新运算:对于任意实数a b,都有a⊗b=13a﹣b,则x⊗1﹣x⊗2的值为.12.(3分)若点A(﹣1,y1)B(−14,y2)C(1,y3)都在反比例函数y=k2+1x(k为常数)的图象上,则y1y2y3的大小关系为.13.(3分)在菱形ABCD中,∠D=60°,CD=4,E为菱形内部一点,且AE=2,连接CE,点F为CE中点,连接BF,取BF中点G,连接AG,则AG的最大值为.三解答题(共13小题,计81分。
中招考试数学模拟考试卷(附带答案解析)
中招考试数学模拟考试卷(附带答案解析)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.) 1.(4分)(﹣2)3的值等于( ) A .﹣6B .6C .8D .﹣82.(4分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .3.(4分)下列运算正确的是( ) A .2a +3b =5ab B .(﹣ab )2=a 2b C .a 2•a 4=a 8D .2a 6a 3=2a 34.(4分)三通管的立体图如图所示,则这个几何体的主视图是( )A .B .C .D .5.(4分)下列说法中不正确的是( ) A .对角线垂直的平行四边形是菱形 B .对角线相等的平行四边形是矩形 C .菱形的面积等于对角线乘积的一半 D .对角线互相垂直平分的四边形是正方形6.(4分)如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF ∥BC 时,∠EGB 的度数是( )A .135°B .120°C .115°D .105°7.(4分)定义新运算:a ⊕b ={ab (b >0)−a b(b <0)例如:4⊕5=45,4⊕(﹣5)=45.则函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .8.(4分)如图,AB 是半圆O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△ABD 相似,可以添加一个条件.下列添加的条件其中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD 2=BD •CDD .AD •BD =AC •AB9.(4分)如图,平行于x 轴的直线与函数y =k1x (k 1>0,x >0),y =k2x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为4,则k 1﹣k 2的值为( )A .8B .﹣8C .4D .﹣410.(4分)关于x的方程ax2+(1﹣a)x﹣1=0,下列结论正确的是()A.当a=0时,方程无实数根B.当a=﹣1时,方程只有一个实数根C.当a=1时,有两个不相等的实数根D.当a≠0时,方程有两个相等的实数根11.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)8a+7b+2c>0;(3)若点A(﹣3,y1)、点B(−12,y2)、C(72,y3)在该函数图象上,则y1<y3<y2;(4)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.1个B.2个C.3个D.4个12.(4分)如图,在正方形ABCD中,点M是AB上一动点,点E是CM的中点,AE绕点E顺时针旋转90°得到EF,连接DE,DF.给出结论:①DE=EF;②∠CDF=45°;③若正方形的边长为2,则点M在射线AB上运动时,CF有最小值√2.其中结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(本大题共6小题,共计24分,只要求填写最后结果,每小题填对4分.)13.(4分)不等式组{1−2x<5x−1<1的解集是.14.(4分)如图,在宽为4、长为6的矩形花坛上铺设两条同样宽的石子路,余下部分种植花卉,若种植花卉的面积15,设铺设的石子路的宽为x,依题意可列方程.15.(4分)要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为 .16.(4分)如图,在大楼AB 的正前方有一斜坡CD ,CD =4米,坡角∠DCE =30°,小红在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A 、C 、E 在同一直线上.则大楼AB 的高度 .(结果保留根号)17.(4分)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2),反比例函数y =kx(k ≠0)的图象经过▱OABC 的顶点C ,则k = .18.(4分)有一科技小组进行了机器人行走性能试验.在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7min 同时到达C 点,甲机器人前3分钟以am /min 的速度行走,乙机器人始终以60m /min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的函数图象,请结合图象,完成下列填空:A 、B 两点之间的距离是 m ,a = m /min ,点F 的坐标 .三、解答题(本大题共7小题,共计78分.解答要写出必要的文字说明、证明过程或演算步骤.) 19.(10分)(1)计算:2sin45°+(3﹣π)0+|√2−√83|﹣(12)﹣1.(2)先化简:(2a+2+a2−4a2+4a+4)÷a2−2aa+2,再从﹣2,﹣1,0,1中选出合适的数代入求值.20.(8分)下列数据是甲、乙、丙三人各10轮投篮的得分(每轮投篮10次,每次投中记1分):丙得分的平均数与众数都是7,得分统计表如下:测试序号 1 2 3 4 5 6 7 8 9 10得分7 6 8 a7 5 8 b8 7(1)丙得分表中的a=,b=;(2)若在他们三人中选择一位投篮得分高且较为稳定的投手作为主力,你认为选谁更合适?请用你所学过的统计知识加以分析说明(参考数据:S甲2=0.81,S乙2=0.4,S丙2=0.8);(3)甲、乙、丙三人互相之间进行传球练习,每个人的球都等可能的传给其他两人,球最先从乙手中传出,经过三次传球后球又回到乙手中的概率是多少?(用树状图或列表法解答)21.(10分)小云在学习过程中遇到一个函数y=16|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x0 121 322 523 …y0 116167161 954872…结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=16|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.22.(12分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.23.(12分)某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?24.(13分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.(13分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.参考答案与解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.)1.(4分)(﹣2)3的值等于()A.﹣6 B.6 C.8 D.﹣8【分析】根据有理数的乘方的运算法则即可得到结果.【解答】解:(﹣2)3=﹣8;故选:D.2.(4分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.3.(4分)下列运算正确的是()A.2a+3b=5ab B.(﹣ab)2=a2bC .a 2•a 4=a 8D .2a 6a 3=2a 3【分析】根据合并同类项法则,同底数幂的乘法以及幂的乘方与积的乘方法则解答. 【解答】解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误; C 、原式=a 6,故本选项错误; D 、原式=2a 3,故本选项正确.故选:D .4.(4分)三通管的立体图如图所示,则这个几何体的主视图是( )A .B .C .D .【分析】根据从正面看得到的图形是主视图,可得答案. 【解答】解:从正面看是一个倒写的“T ”字; 故选:B .5.(4分)下列说法中不正确的是( ) A .对角线垂直的平行四边形是菱形 B .对角线相等的平行四边形是矩形 C .菱形的面积等于对角线乘积的一半 D .对角线互相垂直平分的四边形是正方形【分析】根据矩形、菱形、正方形的判定定理即可作出判断.【解答】解:A 、对角线垂直的平行四边形是菱形,正确,故不符合题意;B 、对角线相等的平行四边形是矩形,正确,故不符合题意;C 、菱形的面积等于对角线乘积的一半,正确;故不符合题意;D 、对角线互相垂直平分且相等的四边形是正方形,故选项错误,故符合题意.故选:D .6.(4分)如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF ∥BC 时,∠EGB 的度数是( )A .135°B .120°C .115°D .105°【分析】过点G 作HG ∥BC ,则有∠HGB =∠B ,∠HGE =∠E ,又因为△DEF 和△ABC 都是特殊直角三角形,∠F =30°,∠C =45°,可以得到∠E =60°,∠B =45°,有∠EGB =∠HGE +∠HGB 即可得出答案.【解答】解:过点G 作HG ∥BC ,∵EF ∥BC ; ∴GH ∥BC ∥EF ;∴∠HGB =∠B ,∠HGE =∠E ;∵在Rt △DEF 和Rt △ABC 中,∠F =30°,∠C =45° ∴∠E =60°,∠B =45°∴∠HGB =∠B =45°,∠HGE =∠E =60° ∴∠EGB =∠HGE +∠HGB =60°+45°=105° 故∠EGB 的度数是105°; 故选:D .7.(4分)定义新运算:a ⊕b ={ab (b >0)−a b (b <0)例如:4⊕5=45,4⊕(﹣5)=45.则函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .【分析】根据题意可得y =2⊕x ={2x (x >0)−2x (x <0),再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】解:由题意得:y =2⊕x ={2x (x >0)−2x (x <0);当x >0时,反比例函数y =2x在第一象限; 当x <0时,反比例函数y =−2x在第二象限; 又因为反比例函数图象是双曲线,因此D 选项符合. 故选:D .8.(4分)如图,AB 是半圆O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△ABD 相似,可以添加一个条件.下列添加的条件其中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD 2=BD •CDD .AD •BD =AC •AB【分析】利用有两组角对应相等的两个三角形相似可对A 进行判定;先利用等腰三角形的性质和圆周角定理得到∠DAC =∠B ,然后利用有两组角对应相等的两个三角形相似可对B 进行判定;利用两组对应边的比相等且夹角对应相等的两个三角形相似可对C 、D 进行判定.【解答】解:A 、因为∠ADC =∠BDA ,∠ACD =∠DAB ,所以△DAC ∽△DBA ,所以A 选项添加的条件正确;B 、由AD =DE 得∠DAC =∠E ,而∠B =∠E ,所以∠DAC =∠B ,加上∠ADC =∠BDA ,所以△DAC ∽△DBA ,所以B 选项添加的条件正确;C 、由AD 2=DB •CD ,即AD :DB =DC :DA ,加上∠ADC =∠BDA ,所以△DAC ∽△DBA ,所以C 选项添加的条件正确;D 、由AD •BD =AC •AB ,不能确定∠ABD =∠DAC ,即不能确定点D 为弧AE 的中点,所以不能判定△DAC ∽△DBA ,所以D 选项添加的条件错误. 故选:D .9.(4分)如图,平行于x 轴的直线与函数y =k 1x (k 1>0,x >0),y =k2x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为4,则k 1﹣k 2的值为( )A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=12AB•y A=12(a﹣b)h=12(ah﹣bh)=12(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴;∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=12AB•y A=12(a﹣b)h=12(ah﹣bh)=12(k1﹣k2)=4;∴k1﹣k2=8.故选:A.10.(4分)关于x的方程ax2+(1﹣a)x﹣1=0,下列结论正确的是()A.当a=0时,方程无实数根B.当a=﹣1时,方程只有一个实数根C.当a=1时,有两个不相等的实数根D.当a≠0时,方程有两个相等的实数根【分析】直接利用方程解的定义根的判别式分析求出即可.【解答】解:A、当a=0时,方程为x﹣1=0;解得x=1;故当a=0时,方程有一个实数根;不符合题意;B、当a=﹣1时,关于x的方程为﹣x2+2x﹣1=0;∵Δ=4﹣4=0;∴当a=﹣1时,方程有两个相等的实数根,故不符合题意;C、当a=1时,关于x的方程x2﹣1=0;故当a=1时,有两个不相等的实数根,符合题意;D、当a≠0时,Δ=(1﹣a)2+4a=(1+a)2≥0;∴当a≠0时,方程有相等的实数根,故不符合题意;故选:C.11.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a +b =0;(2)8a +7b +2c >0;(3)若点A (﹣3,y 1)、点B (−12,y 2)、C (72,y 3)在该函数图象上,则y 1<y 3<y 2;(4)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .1个B .2个C .3个D .4个【分析】根据抛物线的对称轴为直线x =2,则有4a +b =0;由于x =﹣1时,y =0,则a ﹣b +c =0,易得c =﹣5a ,所以8a +7b +2c =8a ﹣28a ﹣10a =﹣30a ,再根据抛物线开口向下得a <0,于是有8a +7b +2c >0;利用抛物线的对称性得到(12,y 3),然后利用二次函数的增减性求解即可,作出直线y =﹣3,然后依据函数图象进行判断即可. 【解答】解:∵x =−b2a =2; ∴4a +b =0,故①正确.∵抛物线与x 轴的一个交点为(﹣1,0); ∴a ﹣b +c =0 又∵b =﹣4a ;∴a +4a +c =0,即c =﹣5a ;∴8a +7b +2c =8a ﹣28a ﹣10a =﹣30a ; ∵抛物线开口向下; ∴a <0;∴8a +7b +2c >0,故②正确;∵抛物线的对称轴为x =2,C (72,y 3);∴(12,y 3).∵﹣3<−12<12,在对称轴的左侧; ∴y 随x 的增大而增大; ∴y 1<y 2<y 3,故③错误.方程a (x +1)(x ﹣5)=0的两根为x =﹣1或x =5;过y =﹣3作x 轴的平行线,直线y =﹣3与抛物线的交点的横坐标为方程的两根;依据函数图象可知:x1<﹣1<5<x2,故④正确.故选:C.12.(4分)如图,在正方形ABCD中,点M是AB上一动点,点E是CM的中点,AE绕点E顺时针旋转90°得到EF,连接DE,DF.给出结论:①DE=EF;②∠CDF=45°;③若正方形的边长为2,则点M在射线AB上运动时,CF有最小值√2.其中结论正确的是()A.①②③B.①②C.①③D.②③【分析】延长AE交DC的延长线于点H,由“AAS”可证△AME≌△HCE,可得AE=EH,由直角三角形的性质可得AE=EF=EH,可判断①;由四边形内角和定理可求2∠ADE+2∠EDF=270°,可得∠ADF=135°,可判断②;连接FC,过点C作CF'⊥DF于F',由∠CDF=45°,知点F在DF上运动,即得当CF⊥DF时,CF有最小值为CF'的长度,而CF'=√2,即CF有最小值为√2,可判断③正确.【解答】解:如图,延长AE交DC的延长线于点H;∵点E是CM的中点;∴ME=EC;∵AB∥CD;∴∠MAE=∠H,∠AME=∠HCE;∴△AME≌△HCE(AAS);∴AE =EH ; 又∵∠ADH =90°; ∴DE =AE =EH ;∵AE 绕点E 顺时针旋转90°得到EF ; ∴AE =EF ,∠AEF =90°; ∴AE =DE =EF ,故①正确; ∵AE =DE =EF ;∴∠DAE =∠ADE ,∠EDF =∠EFD ;∵∠AEF +∠DAE +∠ADE +∠EDF +∠EFD =360°; ∴2∠ADE +2∠EDF =270°; ∴∠ADF =135°;∴∠CDF =∠ADF ﹣∠ADC =135°﹣90°=45°,故②正确; 如图,连接FC ,过点C 作CF '⊥DF 于F ';∵∠CDF =45°; ∴点F 在DF 上运动;∴当CF ⊥DF 时,CF 有最小值为CF '的长度; ∵CD =2,∠CDF =45°; ∴CF '=√2=√2,即CF 有最小值为√2,故③正确; 故选:A .二、填空题(本大题共6小题,共计24分,只要求填写最后结果,每小题填对4分.) 13.(4分)不等式组{1−2x <5x −1<1的解集是 ﹣2<x <2 .【分析】分别求出每一个不等式的解集,从而确定不等式组的解集. 【解答】解:{1−2x <5①x −1<1②;解不等式①得:x >﹣2; 解不等式②得:x <2;故不等式组的解集为﹣2<x <2. 故答案为:﹣2<x <2.14.(4分)如图,在宽为4、长为6的矩形花坛上铺设两条同样宽的石子路,余下部分种植花卉,若种植花卉的面积15,设铺设的石子路的宽为x,依题意可列方程(4﹣x)(6﹣x)=15 .【分析】首先设铺设的石子路的宽应为x米,由题意得等量关系:(长方形的宽﹣石子路的宽)×(长方形的长﹣石子路的宽)=15,根据等量关系列出方程即可.【解答】解:设铺设的石子路的宽应为x米,由题意得:(4﹣x)(6﹣x)=15;故答案为:(4﹣x)(6﹣x)=15.15.(4分)要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为288°.【分析】设底面圆的半径为4x,则母线长为5x,设圆心角为n°,根据题意列方程求解即可.【解答】解:∵底面圆的半径与母线长的比是4:5;∴设底面圆的半径为4x,则母线长为5x,设圆心角为n°;根据题意得2π×4x=nπ×5x 180;解得n=288;故答案为:288°.16.(4分)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.则大楼AB的高度(6+4√3)米.(结果保留根号)【分析】在直角三角形DCE中,利用锐角三角函数定义求出DE的长,过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设BF=DF=x(米),表示出BC,BD,DC,由题意得到三角形BCD 为直角三角形,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°;∴DE=12DC=2米;过D作DF⊥AB,交AB于点F;∵∠BFD=90°,∠BDF=45°;∴∠FBD=45°,即△BFD为等腰直角三角形;设BF=DF=x米;∵四边形DEAF为矩形;∴AF=DE=2米,即AB=(x+2)米;在Rt△ABC中,∠ABC=30°;∴BC=ABcos30°=√32=√3=√3(2x+4)3(米);BD=√2BF=√2x米,DC=4米;∵∠DCE=30°,∠ACB=60°;∴∠DCB=90°;在Rt△BCD中,根据勾股定理得:2x2=(2x+4)23+16;解得:x=4+4√3;则AB=(6+4√3)米;故答案为:(6+4√3)米.17.(4分)如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2),反比例函数y=kx(k≠0)的图象经过▱OABC的顶点C,则k=﹣2 .【分析】连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【解答】解:连接OB,AC,交点为P;∵四边形OABC是平行四边形;∴AP =CP ,OP =BP ; ∵O (0,0),B (1,2); ∴P 的坐标(12,1);∵A (3,1);∴C 的坐标为(﹣2,1);∵反比例函数y =kx(k ≠0)的图象经过点C ; ∴k =﹣2×1=﹣2; 方法二:∵四边形OABC 是平行四边形; ∴OA ∥BC ,OC ∥AB ; ∵O (0,0),A (3,1).∴A 向下平移1个单位,再向左平移3个单位与O 重合; ∴B 向下平移1个单位,再向左平移3个单位与C 重合; ∵B (1,2); ∴C (﹣2,1);∵反比例函数y =k x (k ≠0)的图象经过点C ; ∴k =﹣2×1=﹣2; 故答案为:﹣2.18.(4分)有一科技小组进行了机器人行走性能试验.在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7min 同时到达C 点,甲机器人前3分钟以am /min 的速度行走,乙机器人始终以60m /min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的函数图象,请结合图象,完成下列填空:A 、B 两点之间的距离是 70 m ,a = 95 m /min ,点F 的坐标 (3,35) .【分析】结合图象得到A 、B 两点之间的距离,甲机器人前2分钟的速度即a 的值,以及3分钟时甲、乙机器人之间的距离.【解答】解:由图象可知,A 、B 两点之间的距离是70m ; 甲机器人前2分钟的速度为:(70+60×2)÷2=95(m /min ); 即a =95m /min ;由图象可知3min 后甲、乙机器人之间的距离为:95×3﹣60×3﹣70=35(m ); ∴点F 的坐标为(3,35); 故答案为:70,95,(3,35).三、解答题(本大题共7小题,共计78分.解答要写出必要的文字说明、证明过程或演算步骤.) 19.(10分)(1)计算:2sin45°+(3﹣π)0+|√2−√83|﹣(12)﹣1.(2)先化简:(2a+2+a 2−4a 2+4a+4)÷a 2−2aa+2,再从﹣2,﹣1,0,1中选出合适的数代入求值. 【分析】(1)代入特殊角的三角函数值,化简零指数幂,算术平方根,立方根,负整数指数幂,绝对值,然后算乘法,再算加减;(2)先将小括号内的式子进行通分计算,然后算括号外面的除法,最后根据分式有意义的条件选取合适的a 的值,代入求值. 【解答】解:(1)原式=2×√22+1+|√2−2|﹣2=√2+1+2−√2−2 =1; (2)原式=[2a+2+(a+2)(a−2)(a+2)2]•a+2a(a−2)=(2a+2+a−2a+2)•a+2a(a−2)=2+a−2a+2•a+2a(a−2)=aa+2•a+2a(a−2)=1a−2;∵a+2≠0,a(a﹣2)≠0;∴a≠±2且a≠0;∴a可以取1或﹣1;当a=1时,原式=11−2=−1;当a=﹣1时,原式=1−1−2=−13.20.(8分)下列数据是甲、乙、丙三人各10轮投篮的得分(每轮投篮10次,每次投中记1分):丙得分的平均数与众数都是7,得分统计表如下:测试序号 1 2 3 4 5 6 7 8 9 10得分7 6 8 a7 5 8 b8 7(1)丙得分表中的a=7 ,b=7 ;(2)若在他们三人中选择一位投篮得分高且较为稳定的投手作为主力,你认为选谁更合适?请用你所学过的统计知识加以分析说明(参考数据:S甲2=0.81,S乙2=0.4,S丙2=0.8);(3)甲、乙、丙三人互相之间进行传球练习,每个人的球都等可能的传给其他两人,球最先从乙手中传出,经过三次传球后球又回到乙手中的概率是多少?(用树状图或列表法解答)【分析】(1)根据众数、得到a、b中至少有一个为7,再根据平均数进而确定a=b=7;(2)求出甲、乙、丙的平均数、众数,通过平均数、众数比较得出乙、丙较好,再根据方差,得出乙的成绩较好,较稳定;(3)用树状图表示所有可能的情况,从中得出第三轮又回到乙手中的概率.【解答】解:(1)由众数的意义可知,a、b中至少有一个为7,又平均数是7,即(7+6+8+7+5+8+8+7+a+b)÷10=7;因此,a=7,b=7;故答案为:7,7;(2)甲的平均数为:110(5×2+6×4+7×3+8)=6.3分,众数是6分;乙的平均数为:110(6×2+7×6+8×2)=7分,众数为7分;丙的平均数为:x 丙=7分,众数为7分;从平均数上看,乙、丙的较高,从众数上看乙、丙较高; 但S 乙2=0.4<S 丙2=0.8; 因此,综合考虑,选乙更合适.(3)根据题意画树状图如下::共有8种等情况数,其中经过三次传球后球又回到乙手中的有2种; 则经过三次传球后球又回到乙手中的概率是:28=14.21.【答案】解:(1)当﹣2≤x <0时,对于函数y 1=|x |,即y 1=﹣x ,当﹣2≤x <0时,y 1随x 的增大而减小,且y 1>0;对于函数y 2=x 2﹣x +1,当﹣2≤x <0时,y 2随x 的增大而减小,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当﹣2≤x <0时,y 随x 的增大而减小. 故答案为:减小,减小,减小. (2)函数图象如图所示:(3)∵直线l 与函数y =16|x |(x 2﹣x +1)(x ≥﹣2)的图象有两个交点; 观察图象可知,x =﹣2时,m 的值最大,最大值m =16×2×(4+2+1)=73; 故答案为:73.22.【答案】解:(1)如图; 连接BD ,∵∠BAD =90°;∴点O必在BD上,即:BD是直径;∴∠BCD=90°;∴∠DEC+∠CDE=90°;∵∠DEC=∠BAC;∴∠BAC+∠CDE=90°;∵∠BAC=∠BDC;∴∠BDC+∠CDE=90°;∴∠BDE=90°,即:BD⊥DE;∵点D在⊙O上;∴DE是⊙O的切线;(2)∵DE∥AC;∵∠BDE=90°;∴∠BFC=90°;∴CB=AB=8,AF=CF=12AC;∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°;∴∠CDE=∠CBD;∵∠DCE=∠BCD=90°;∴△BCD∽△DCE;∴BCCD=CDCE;∴8CD=CD2;∴CD=4;在Rt△BCD中,BD=√BC2+CD2=4√5同理:△CFD∽△BCD;∴CFBC=CDBD;∴CF8=4√5;∴CF=8√5 5;∴AC=2CF=16√5 5.23.【答案】解:(1)设每台B 型空气净化器的进价为x 元,则每台A 型净化器的进价为(x +300)元; 根据题意得:6000x =7500x+300;解得:x =1200;经检验,x =1200是原方程的根;∴x +300=1500.答:每台B 型空气净化器的进价为1200元,每台A 型空气净化器的进价为1500元.(2)设B 型空气净化器的售价为x 元;根据题意得:(x ﹣1200)(4+1800−x 50)=3200; 整理得:(x ﹣1600)2=0;解得:x 1=x 2=1600.答:电器商社应将B 型空气净化器的售价定为1600元.24.【答案】【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC =∠A ,可证DF ∥AB ;(2)过点D 作DM ⊥AB 交AB 于点M ,由题意可得点F 在以D 为圆心,DF 为半径的圆上,由△ACD 的面积为S 1的值是定值,则当点F 在DM 上时,S △ABF 最小时,S 最大;(3)过点D 作DG ⊥EF 于点G ,过点E 作EH ⊥CD 于点H ,由勾股定理可求BG 的长,通过证明△BGD ∽△BHE ,可求EC 的长,即可求AE 的长.【解答】解:(1)∵△ABC 是等边三角形∴∠A =∠B =∠C =60°由折叠可知:DF =DC ,且点F 在AC 上∴∠DFC =∠C =60°∴∠DFC =∠A∴DF ∥AB ;(2)存在;过点D作DM⊥AB交AB于点M;∵AB=BC=6,BD=4;∴CD=2∴DF=2;∴点F在以D为圆心,DF为半径的圆上;∴当点F在DM上时,S△ABF最小;∵BD=4,DM⊥AB,∠ABC=60°∴MD=2√3∴S△ABF的最小值=12×6×(2√3−2)=6√3−6∴S最大值=12×2×3√3−(6√3−6)=﹣3√3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H;∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=√3FG=√3∵BD2=BG2+DG2;∴16=3+(BF+1)2;∴BF=√13−1∴BG=√13∵EH⊥BC,∠C=60°∴CH=EC2,EH=√3HC=√32EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD ∽△BHE∴DG BG =EH BH ∴√3√13=√32EC 6−EC 2 ∴EC =√13−1∴AE =AC ﹣EC =7−√1325.【答案】【分析】(1)已知点A 坐标可确定直线AB 的解析式,进一步能求出点B 的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B 的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C 的坐标,在△POB 和△POC 中,已知的条件是公共边OP ,若OB 与OC 不相等,那么这两个三角形不能构成全等三角形;若OB 等于OC ,那么还要满足的条件为:∠POC =∠POB ,各自去掉一个直角后容易发现,点P 正好在第二象限的角平分线上,联立直线y =﹣x 与抛物线的解析式,直接求交点坐标即可,同时还要注意点P 在第二象限的限定条件.(3)分别以A 、B 、Q 为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A (1,﹣4)代入y =kx ﹣6,得k =2;∴y =2x ﹣6;令y =0,解得:x =3;∴B 的坐标是(3,0).∵A 为顶点;∴设抛物线的解析为y =a (x ﹣1)2﹣4;把B (3,0)代入得:4a ﹣4=0;解得a =1;∴y =(x ﹣1)2﹣4=x 2﹣2x ﹣3.(2)存在.∵OB =OC =3,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC ;此时PO 平分第二象限,即PO 的解析式为y =﹣x .设P (m ,﹣m ),则﹣m =m 2﹣2m ﹣3,解得m =1−√132(m =1+√132>0,舍); ∴P (1−√132,√13−12).(3)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB ;∴ADOD =DQ 1DB ,即√56=13√5,∴DQ 1=52;∴OQ1=72,即Q1(0,−72);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB;∴OBOD=OQ2OB,即36=OQ23;∴OQ2=32,即Q2(0,32);③如图,当∠AQ3B=90°时,作AE⊥y轴于E;则△BOQ3∽△Q3EA;∴OBQ3E=OQ3AE,即34−OQ3=OQ31;∴OQ32﹣4OQ3+3=0,∴OQ3=1或3;即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,−72)或(0,32)或(0,﹣1)或(0,﹣3).。
中考数学模拟试题及答案
中考数学模拟试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方等于它本身,这个数可能是:A. 1B. -1C. 0D. 以上都是答案:D3. 计算下列算式的结果:(3x - 2) - (x + 4) =A. 2x - 6B. 2x + 2C. x - 6D. x + 2答案:C4. 一个直角三角形的两条直角边长分别为3和4,斜边长为:A. 5B. 6C. 7D. 8答案:A5. 下列哪个函数是二次函数?A. y = xB. y = x^2C. y = 2x + 1D. y = x^3答案:B6. 一个数的立方等于它本身,这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D7. 计算下列算式的结果:(2x + 3)(2x - 3) =A. 4x^2 - 9B. 4x^2 + 9C. 9 - 4x^2D. 9 + 4x^2答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C9. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 计算下列算式的结果:(a^2 - b^2) / (a - b) =A. a + bB. a - bC. a^2 - b^2D. a^2 + b^2答案:B二、填空题(每题2分,共20分)1. 一个数的平方根是它本身,这个数是________。
答案:0或12. 一个数的立方根是它本身,这个数是________。
答案:0,1,-13. 一个数的相反数是它本身,这个数是________。
答案:04. 一个数的倒数是它本身,这个数是________。
答案:1或-15. 一个数的绝对值是它本身,这个数是________。
答案:非负数6. 一个数的平方是25,这个数是________。
答案:5或-57. 一个数的立方是-8,这个数是________。
中考数学仿真模拟测试题(附答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
中考数学模拟试卷(附含答案)
中考数学模拟试卷(附含答案)(满分:120分 ;考试时间:120分钟)第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列各数中是负数的是( )A .-(-3)B .-(-3)2C .-(-2)3D .|-2| 2、下列运算正确的是( )A .2142-⎛⎫=- ⎪⎝⎭B .235325a a a +=C .2(5)5-=-D . 2a ²·3a ³=6a 53、 下列四个图形:从中任取一个是中心对称图形的概率是( )A .B .1C .D .4、如图,在△ABC 中,∠A=36°,AB=AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD ,下列结论错误的是( ) A . ∠C=2∠A B . BD 平分∠ABC C . S △BCD =S △BOD D . CD AC AD ⋅=25、如图,扇形AOB 的半径为1,∠AOB=90°,以AB 为直径画半圆,则图中阴影部分的面积为( ) A π41 B 21-π C 21 D 2141+π(第4题图) (第5题图)6、下面四个几何体中,左视图是四边形的几何体共有( )A . 1个B . 2个C . 3个D . 4个7.若A (1,413y -)、B (2,45y -)、C (3,41y )为二次函数245y x x =+-图象上的三点,则 的大小关系是( ) A .123y y y << B .213y y y <<C .312y y y <<D .132y y y <<8、我校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( ) A .=B .=C .=D .=9、若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是A .76<<mB .76<≤mC .76≤≤mD .76≤<m10.如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①BM=DM. ②tan∠AEC=CDBC;③S ⊿ABC +S ⊿CDE ≧S ⊿ACE ; ④ BM⊥DM;正确的结论个数是( ) A .4个 B .3个 C .2个 D .1个二、填空题:(本大题共8个小题,只要求填写最后结果,每小题填对的3分,满分24分) 11、抛物线y=1)2(212-+x 的顶点坐标是___________ 12、分解因式:ab 4−4ab 3+4ab 2=______.13、用一个圆心角为120,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为___________ 14、关于x 的一元二次方程()01452=---x x a 有实数根,则a 的取值范围是__________15、如图,两个反比例函数x y x y 36==和在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于MEDCBA 第10题图y y y 321、、点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ; 则四边形PAOB的面积为 .16、如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为_____________ 17.如图,直线434--=x y 交x 轴与A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的坐标是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年湖北省随州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一个是正确的)1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)下列运算正确的是()A.a3+a3=a6 B.(a﹣b)2=a2﹣b2 C.(﹣a3)2=a6D.a12÷a2=a63.(3分)如图是某几何体的三视图,这个几何体是()A.圆锥B.长方体C.圆柱D.三棱柱4.(3分)一组数据2,3,5,4,4的中位数和平均数分别是()A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.65.(3分)某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行6.(3分)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧7.(3分)小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x元,每本笔记本y元,则可列方程组()A.B.C.D.8.(3分)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株9.(3分)对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小10.(3分)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF 交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(本小题共6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号的横线上.)11.(3分)根据中央“精准扶贫”规划,每年要减贫约11 700 000人,将数据11 700 000用科学记数法表示为.12.(3分)“抛掷一枚质地均匀的硬币,正面向上”是事件(从“必然”、“随机”、“不可能”中选一个).13.(3分)如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=度.14.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.15.(3分)如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为.16.(3分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是(填写所有正确结论的序号).三、解答题(本题共9小题,共72分,解答应写出必要演算步骤、文字说明或证明过程.)17.(5分)计算:()﹣2﹣(2017﹣π)0+﹣|﹣2|.18.(6分)解分式方程:+1=.19.(6分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.20.(7分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B 组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.(8分)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A 的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).23.(10分)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x<99≤x<15x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.(10分)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.25.(12分)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c (a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.2017年湖北省随州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一个是正确的)1.(3分)(2017•随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2017•随州)下列运算正确的是()A.a3+a3=a6 B.(a﹣b)2=a2﹣b2 C.(﹣a3)2=a6D.a12÷a2=a6【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a3,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=a6,符合题意;D、原式=a10,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)(2017•随州)如图是某几何体的三视图,这个几何体是()A.圆锥B.长方体C.圆柱D.三棱柱【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:这个几何体是圆柱体.故选C.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.4.(3分)(2017•随州)一组数据2,3,5,4,4的中位数和平均数分别是()A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.6【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按从大到小的顺序排列是:2,3,4,4,5,故这组数据的中位数是:4.平均数=(2+3+4+4+5)÷5=3.6.故选B.【点评】本题考查了中位数的定义和平均数的求法,解题的关键是牢记定义,此题比较简单,易于掌握.5.(3分)(2017•随州)某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据两点之间,线段最短进行解答.【解答】解:某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.(3分)(2017•随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.【点评】本题考查的是作图﹣基本作图,熟知作一个角等于一直角的步骤是解答此题的关键.7.(3分)(2017•随州)小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x元,每本笔记本y元,则可列方程组()A.B.C.D.【分析】设每支铅笔x元,每本笔记本y元,根据购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元可列出方程组.【解答】解:设每支铅笔x元,每本笔记本y元,根据题意得.故选B.【点评】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.8.(3分)(2017•随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株【分析】根据题目中的图形,可以发现其中的规律,从而可以求得当n=11时的芍药的数量.【解答】解:由图可得,芍药的数量为:4+(2n﹣1)×4,∴当n=11时,芍药的数量为:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故选B.【点评】本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律.9.(3分)(2017•随州)对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小【分析】直接利用二次函数与x轴交点个数、二次函数的性质以及二次函数与方程之间关系分别分析得出答案.【解答】解:A、∵b2﹣4ac=(2m)2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故此选项正确,不合题意;B、方程x2﹣2mx=3的两根之积为:=﹣3,故此选项正确,不合题意;C、m的值不能确定,故它的图象的对称轴位置无法确定,故此选项错误,符合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x的增大而减小,故此选项正确,不合题意;故选:C.【点评】此题主要考查了抛物线与x轴的交点以及二次函数的性质、根与系数的关系等知识,正确掌握二次函数的性质是解题关键.10.(3分)(2017•随州)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【分析】根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据当AB=BC时,四边形ABCD为正方形进行判断,即可得出当AB<BC时,AM=DE+BM不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM成立;根据N不是AM的中点,可得点N 不是△ABM的外心.【解答】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;当AB=BC时,即四边形ABCD为正方形时,设DE=EC=1,BM=a,则AB=2,BF=4,AM=FM=4﹣a,在Rt△ABM中,22+a2=(4﹣a)2,解得a=1.5,即BM=1.5,∴由勾股定理可得AM=2.5,∴DE+BM=2.5=AM,又∵AB<BC,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,=<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,故选:B.【点评】本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.二、填空题(本小题共6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号的横线上.)11.(3分)(2017•随州)根据中央“精准扶贫”规划,每年要减贫约11 700 000人,将数据11 700 000用科学记数法表示为 1.17×107.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:11700000=1.17×107.故答案为:1.17×107.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.(3分)(2017•随州)“抛掷一枚质地均匀的硬币,正面向上”是随机事件(从“必然”、“随机”、“不可能”中选一个).【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“抛掷一枚质地均匀的硬币,正面向上”是随机事件,故答案为:随机.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.(3分)(2017•随州)如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=35度.【分析】首先利用垂径定理证明,=,推出∠AOC=∠COB=70°,可得∠ADC=AOC=35°.【解答】解:如图,连接OA.∵OC⊥AB,∴=,∴∠AOC=∠COB=70°,∴∠ADC=AOC=35°,故答案为35.【点评】本题考查圆周角定理、垂径定理等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题.14.(3分)(2017•随州)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=或时,以A、D、E为顶点的三角形与△ABC相似.【分析】若A,D,E为顶点的三角形与△ABC相似时,则=或=,分情况进行讨论后即可求出AE的长度.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.【点评】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法,解题的关键是分两种情况进行讨论.15.(3分)(2017•随州)如图,∠AOB的边OB与x轴正半轴重合,点P是OA 上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为(,).【分析】作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.【解答】解:作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M是ON的中点,∴OM=1.5,∴PM=,∴P(,).故答案为:(,).【点评】本题考查了轴对称﹣最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.16.(3分)(2017•随州)在一条笔直的公路上有A、B、C三地,C地位于A、B 两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h 时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是②③④(填写所有正确结论的序号).【分析】①观察函数图象可知,当t=2时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2h时,两车相遇,结论③正确;④结合函数图象可知当甲到C地时,乙车离开C地0.5小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.【解答】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;③∵(240+200﹣60)÷(60+80)=2(h),∴乙车出发2h时,两车相遇,结论③正确;④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.【点评】本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.三、解答题(本题共9小题,共72分,解答应写出必要演算步骤、文字说明或证明过程.)17.(5分)(2017•随州)计算:()﹣2﹣(2017﹣π)0+﹣|﹣2|.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及绝对值的代数意义化简,即可得到结果.【解答】解:原式=9﹣1+3﹣2=9.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.(6分)(2017•随州)解分式方程:+1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3+x2﹣x=x2,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(6分)(2017•随州)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.【分析】(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第四象限.利用反比例函数的性质即可解决问题;【解答】解:(1)由题意B(﹣2,),把B(﹣2,)代入y=中,得到k=﹣3,∴反比例函数的解析式为y=﹣.(2)结论:P在第二象限,Q在第四象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第四象限.【点评】此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(7分)(2017•随州)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G 处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)【分析】作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan ∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.【解答】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=63,答:塔杆CH的高为63米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.21.(8分)(2017•随州)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有40名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.【分析】(1)用A组人数除以A组所占百分比得到参加初赛的选手总人数,用总人数乘以B组所占百分比得到B组人数,从而补全频数分布直方图;(2)用360度乘以C组所占百分比得到C组对应的圆心角度数,用E组人数除以总人数得到E组人数占参赛选手的百分比;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案.【解答】解:(1)参加初赛的选手共有:8÷20%=40(人),B组有:40×25%=10(人).频数分布直方图补充如下:故答案为40;(2)C组对应的圆心角度数是:360°×=108°,E组人数占参赛选手的百分比是:×100%=15%;(3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为=.【点评】此题考查了树状图法与列表法求概率以及频率分布直方图.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2017•随州)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB 上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).【分析】(1)连接DE,OD.利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明∠DAO=∠CAD,进而得出结论;(2)根据等腰三角形的性质得到∠B=∠BAC=45°,由BC相切⊙O于点D,得到∠ODB=90°,求得OD=BD,∠BOD=45°,设BD=x,则OD=OA=x,OB=x,根据勾股定理得到BD=OD=,于是得到结论.【解答】(1)证明:连接DE,OD.∵BC相切⊙O于点D,∴∠CDA=∠AED,∵AE为直径,∴∠ADE=90°,∵AC⊥BC,∴∠ACD=90°,∴∠DAO=∠CAD,∴AD平分∠BAC;(2)∵在Rt△ABC中,∠C=90°,AC=BC,∴∠B=∠BAC=45°,∵BC相切⊙O于点D,∴∠ODB=90°,∴OD=BD ,∴∠BOD=45°, 设BD=x ,则OD=OA=x ,OB=x ,∴BC=AC=x +1, ∵AC 2+BC 2=AB 2, ∴2(x +1)2=(x +x )2,∴x=,∴BD=OD=,∴图中阴影部分的面积=S △BOD ﹣S 扇形DOE =﹣=1﹣.【点评】本题主要考查了切线的性质,角平分线的定义,扇形面积的计算和勾股定理.熟练掌握切线的性质是解题的关键.23.(10分)(2017•随州)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?时间x (天) 1≤x <9 9≤x <15 x ≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤) 80﹣3x 120﹣x 储存和损耗费用(元)40+3x3x 2﹣64x +400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5。