高中数学2.4.1等比数列课件新人教A必修5
高中数学人教A版必修5《2.4.1等比数列》课件
等比数列
an q an1
q叫公比 an=a1qn-1 an=amqn-m
例1.一个等比数列的第3项与第4项分 别是12与18,求它的第1项与第2项
a q 解:设这个等比数列的第1项是 1 ,公比是 ,那么
消
a1q 2
a1q
3
12 18
a1
16 3
q
3 2
a2
a1q
16 3
3 2
8
元
答:这个数列的第1项与第2项分别为 16 与 8
其定义式为:
或
注意:
1. 公比是等比数列从第2项起,每一项 与前一项的比,不能颠倒。
2.对于一个给定的等比数列,它的公比 是同一个常数。
思考:
(1) 等比数列中有为0的项吗? (2) 公比为1的数列是什么数列? (3) 既是等差数列又是等比数列的数列
存在吗? (4) 常数列都是等比数列吗?
判定下列数列是否可能是等比数列?
如果将“一尺之棰”视为一份,
则每日剩下的部分依次为:
1 ,1 ,1 ,1 ,1 ,… 2 4 8 16
一种计算机病毒可以查找计算机中的地 址本,通过邮件进行传播。如果把病毒制造 者发送病毒称为第一轮,邮件接收者发送 病毒称为第二轮,依此类推。假设每一轮 每一台计算机都感染20台计算机,那么在 不重复的情况下,这种病毒每一轮感染的 计算机数构成的数列是:
1, 20,202 , 203, …
比一比
(1) 1, 2, 22 , 23 , ……
, 263
(2)
……
以上4个数列有
(3) 1,20,20 2 ,203 什么共同特点?
(4) 9,92,93,94,95,96, 97
人教版数学必修五2.4《等比数列》课件 (共17张PPT)
是
三、等比中项
如果在 a 与 b 中间插入一个数 G ,使 a, G, b 成等比数列, 那么称这个数 G 为 a 与 b 的等比中项.
2 G ab . a , b 即 G ab ( 同号)或
(1)只有两个同号的非零常数才有等比中项, G ab 0
2
(2)等比中项有两个值, G ab
(3)在等比数列中,若 m n p q ,则 am an a p aq .
四、等比数列的性质
(4)若 {an } , {bn } 均为等比数列,则 {an bn } , {k an } (k 0) ,
1 1 { } 仍为等比数列,公比分别为 q1 q2 , q1 , . an q1
32
a15 例 7、在等比数列 {an } 中, a5 a11 3, a3 a13 4 ,则 ( C ) a5
(A) 3
1 (B) 3
1 (C) 3 或 3
1 (D) 3 或 3
例 8、等差数列 an 中, d 0 ,且 a1 , a3 , a9 成等比数列,
a1 a3 a9 求 的值. a2 a4 a10
an 数列的公比,公比通常用字母 q 表示 q 0 ,即 q (q 0) . an 1
(4) 0 q 1 时,当 a1 0 , {an } 递减; a1 0 , {an } 递增;
q 1 时,当 a1 0 , {an } 递增; a1 0 , {an } 递减;
类比思想
an am
an am qnm
例 1、在等比数列 {an } 中
1 (1) a1 , q 3 ,求 a5 . 2
(2) a7 512 , q 2 ,求 a1 .
人教版数学必修五:2.4《等比数列 》ppt课件
.
第二章 2.4 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
注意:(1)等比数列通项公式的推导方法,体现了从特殊到 一般的思想. (2)已知等比数列的首项和公比,可以求得该数列中的任意 一项. (3)在等比数列中,若已知 a1,q,n,an 四个量中的三个, 就可以求出另一个量. a1 n (4)等比数列的通项公式可以变形为 an=( q )q , 因此等比数 列{an}中各项所表示的点(n,an)孤立地分布在第一象限或第四 a1 x 象限,即这些点在曲线 y=( q )q 上,因此可以利用函数思想求 解等比数列的通项公式.
第二章
2.4
第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
1.等比数列的定义 一般地,如果一个数列从第 2 项起,每一项与它的前一项 的比等于同一个常数,那么这个数列就叫做等比数列,这个常 an 数叫做等比数列的公比, 公比通常用字母 q 表示(q≠0). 即: an-1 =q(n≥2,q≠0,n∈N*).
第二章
2.4
第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
an+1 注意: (1) 等比数列的定义可简述为 a = q(q 为常数, n q≠0). ①由于等比数列的每一项都可能作分母,故每一项均不能 为 0,因此 q 也不能为 0. an+1 ② a 均为同一常数,即比值相等,由此体现了公比的意 n 义,同时还应注意公比是从第 2 项起每一项与其前一项高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
观察下面几个数列,其中一定是等比数列的有哪些? (1)数列 1,2,6,18,54,…; a2 a3 (2)数列{an}中,已知a =2,a =2; 1 2 (3)常数列 a,a,…,a,…; an+1 (4)数列{an}中, a =q,其中 n∈N*. n
【优化方案】2012高中数学 第2章2.4.1等比数列的概念及通项公式课件 新人教A版必修5
2.用函数的观点看等比数列的通项公式 . - 等比数列{a 的通项公式 等比数列 n}的通项公式 an=a1qn 1, 还可以改写 a1 n 当 > , ≠ = 为 an= q q .当 q>0,且 q≠1 时,y=qx 是一个指 a1 n 数函数, 数函数,而 y= q ·q 是一个不为 0 的常数与指数 = 函数的积.因此等比数列{a 的图象是函数 = 函数的积.因此等比数列 n}的图象是函数 y= a1 x ·q 图象上的一些孤立的点. 图象上的一些孤立的点. q
例3
已知数列{a 满足 满足a 已知数列 n}满足 1=1,an+1=2an+1. , +
(1)求证:数列{an+1}是等比数列; 求证:数列 是等比数列; 求证 是等比数列 (2)求数列 n}的通项公式. 求数列{a 的通项公式 的通项公式. 求数列 【思路点拨】 思路点拨】 将递推公式变形, 将递推公式变形,然后利用等比 数列的定义判定. 数列的定义判定. 证明: 【解】 (1)证明:因为 an+1=2an+1, 证明 , 所以 an+1+1=2(an+1). = . , ≠ , ≠ 由 a1=1,知 a1+1≠0,可得 an+1≠0. an+1+1 * 所以 =2(n∈N ). ∈ . an+1 所以数列{a 是等比数列. 所以数列 n+1}是等比数列. 是等比数列
2. 4.1 等 比 数 列 的 概 念 及 通 项 公 式
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基 1.如果一个数列从__________起,每一项与它 .如果一个数列从 第二项 起 的前一项的差都等于__________, 的前一项的差都等于 同一常数 ,那么这个数列 叫做等差数列. 叫做等差数列. a1+(n-1)d 是关 - 2.等差数列的通项公式:an=___________是关 .等差数列的通项公式: 的一次函数式(或常函数 于n的一次函数式 或常函数 . 的一次函数式 或常函数).
2.4等比数列的概念及通项公式(高中数学人教A版必修五)
(1)an am (n m)d
a1 0, q 0
通项 公式
an a1q
n 1
(1)an amqnm
则 am· n=as· r . a a
(3) an2=an-1· n+1 . a (等比中项)
主要 性质
(2)若m+n=s+r (m,n,s,r∈N*) (2)若m+n=s+r (m,n,s,r∈N*)
其中,a1与q均不为0。由于当n=1时上面等式两边均为a1, 即等式也成立,说明上面公式当n∈N*时都成立,因此它 就是等比数列{an}的通项公式。
(1)等比数列的通项公式
通项公式一:
an a1 q
n1
(a1 , q 0)
an a1q n 1、不要错误地写成
2、每一项都可以用a1和q表示,等比数列 由首项和公比确定
1 变式训练 已知数列{an}的前 n 项和为 Sn,Sn= 3 (an-1)(n∈N*). (1)求 a1,a2; (2)求证:数列{an}是等比数列. 1 解:(1)由 S1= (a1-1), 3 1 1 得 a1= (a1-1),∴a1=- . 3 2 1 又 S2= (a2-1), 3 1 1 即 a1+a2= (a2-1),得 a2= . 3 4
an am qn m
(1)等比数列的通项公式 如果数列 an }是等比数列,首项为 1 , 公比为q, { a
①.不完全归纳法 a2=a1q a3=a2q=a1q2 a4=a3q=a1q3 … an=a1qn1
②.叠乘法(累乘法) a2/a1=q a3/a2=q a4/a3=q … an/an-1=q 这n-1个式子相乘得an/a1=qn-1 所以 an=a1qn-1
高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5
名师点评
抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地 解决问题.
1234
4.an=2n+3n,判断数列{an}是不是等比数列? 不是等比数列. ∵a1=21+31=5,a2=22+32=13,a3=23+33=35, ∴a1a3≠a22, ∴数列{an}不是等比数列.
1234
课堂小结
1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中 项等列出方程(组),求出根本量. 3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.
探究点2 等比数列的性质
命题角度1 序号的数字特征 例2 {an}为等比数列. (1)假设an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
a2a4+2a3a5+a4a6=a23+2a3a5+a25 =(a3+a5)2=25, ∵an>0, ∴a3+a5>0, ∴a3+a5=5.
(2)假设an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
方法二 设这四个数依次为2qa-a,aq,a,aq(q≠0),
2qa-a+aq=16, 由条件得aq+a=12,
解得aq==82,
a=3, 或q=13.
当a=8,q=2时,所求的四个数为0,4,8,16;
当 a=3,q=13时,所求的四个数为 15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1.
2.等比数列项的运算性质 在等比数列{an}中,若 m+n=p+q(m,n,p,q∈N*),则 am·an= ap·aq . ①特别地,当 m+n=2k(m,n,k∈N*)时,am·an= a2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的 积 ,
2021_2022学年高中数学第二章数列第4节等比数列第1课时等比数列课件新人教A版必修5
练一练
3.(1)若等比数列的前三项分别为 5,-15,45,则第
5 项是( )
A.405
B.-405
C.135
D.-135
解析:选 A ∴a5=405.
∵a5=a1q4,而 a1=5,q=aa21=-3,
(2) 已知数列{an}为等比数列,a3=2,a2+a4=230,则数列{an} 的通项公式为________________. 解析:设等比数列的公比为 q,则 q≠0,a2=aq3=2q,a4=a3q =2q.∴2q+2q=230,解得 q=13或 q=3. 当 q=13时,a1=18,∴an=18×13n-1=2×33-n; 当 q=3 时,a1=29,∴an=29×3n-1=2×3n-3.
于 同一常数,那么这个数列叫做等比数列,这个常数叫做等比 数列的 公比,公比通常用字母 q 表示(q≠0).
(2)等比中项
如果在 a 与 b 中间插入一个数 G,使 a,G,b 成 等比数列,
那么 G 叫做 a,b 的等比中项,这三个数满足关系式 G=± ab. (3)等比数列{an}的首项为 a1,公比为 q(q≠0),则通项公式
第1课时 等比数列
[核心必知]
1.预习教材,问题导入 根据以下提纲,预习教材 P48~P49,回答下列问题: (1)观察下面的各组数据 ①由细胞分裂问题,得到数列:1,2,4,8,…; ②由“一尺之棰,日取其半,万世不竭”,得到数列:1,12,14,18,…; ③由计算机病毒的传播,得到数列:1,20,202,203,…; ④由银行的一种计息方式“复利”,得到数列:10 000×1.019 8, 10 000×1.019 82,10 000×1.019 83,10 000×1.019 84,10 000× 1.019 85.这些数列有什么共同特点? 提示:从第 2 项起,每一项与前一项的比都等于一个常数.
高中数学新人教A版必修5第二章 2.4 第二课时 等比数列的性质
第二课时 等比数列的性质预习课本P53练习第3、4题,思考并完成以下问题 等比数列项的运算性质是什么?[新知初探] 等比数列的性质(1)若数列{a n },{b n }是项数相同的等比数列,则{a n ·b n }也是等比数列.特别地,若{a n }是等比数列,c 是不等于0的常数,则{c ·a n }也是等比数列.(2)在等比数列{a n }中,若m +n =p +q ,则a m a n =a p a q .(3)数列{a n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项的积. (4)在等比数列{a n }中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等比数列,公比为q k +1.(5)当m ,n ,p (m ,n ,p ∈N *)成等差数列时,a m ,a n ,a p 成等比数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积( ) (2)当q >1时,{a n }为递增数列.( ) (3)当q =1时,{a n }为常数列.( )解析:(1)正确,根据等比数列的定义可以判定该说法正确. (2)错误,当q >1,a 1>0时,{a n }才为递增数列.(3)正确,当q =1时,数列中的每一项都相等,所以为常数列. 答案:(1)√ (2)× (3)√2.由公比为q 的等比数列a 1,a 2,…依次相邻两项的乘积组成的数列a 1a 2,a 2a 3,a 3a 4,…是( )A .等差数列B .以q 为公比的等比数列C .以q 2为公比的等比数列D .以2q 为公比的等比数列解析:选C 因为a n +1a n +2a n a n +1=a n +2a n =q 2为常数,所以该数列为以q 2为公比的等比数列.3.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( )A .35B .63C .21 3D .±21 3解析:选B ∵{a n }成等比数列. ∴a 4,a 6,a 8成等比数列∴a 26=a 4·a 8,即a 8=2127=63.4.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________.解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41,又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49,∵数列各项都是正数, ∴a 4+a 8=7. 答案:7等比数列的性质[典例] (1)在1与100之间插入n 个正数,使这n +2个数成等比数列,则插入的n 个数的积为( )A .10nB .n 10C .100nD .n 100(2)在等比数列{a n }中,a 3=16,a 1a 2a 3…a 10=265,则a 7等于________. [解析] (1)设这n +2个数为a 1,a 2,…,a n +1,a n +2, 则a 2·a 3·…·a n +1=(a 1a n +2)n 2=(100)n 2=10n .(2)因为a 1a 2a 3…a 10=(a 3a 8)5=265,所以a 3a 8=213, 又因为a 3=16=24,所以a 8=29. 因为a 8=a 3·q 5,所以q =2. 所以a 7=a 8q =256.[答案] (1)A (2)256有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项的“下标”的指导作用.[活学活用]1.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7解析:选D 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7=-8,联立⎩⎪⎨⎪⎧a 4+a 7=2,a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以q 3=-12或q 3=-2,故a 1+a 10=a 4q3+a 7·q 3=-7.2.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,则a 10=________. 解析:由a 4·a 7=-512,得a 3·a 8=-512.由⎩⎪⎨⎪⎧a 3·a 8=-512,a 3+a 8=124, 解得⎩⎪⎨⎪⎧ a 3=-4,a 8=128或⎩⎪⎨⎪⎧a 3=128,a 8=-4.(舍去). 所以q =5a 8a 3=-2.所以a 10=a 3q 7=-4×(-2)7=512. 答案:512灵活设元求解等比数列问题[典例] (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们之和为12,求这四个数.[解析] (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6,解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45. [答案] 45(2)解:法一:设前三个数为aq ,a ,aq ,则a q ·a ·aq =216, 所以a 3=216.所以a =6. 因此前三个数为6q ,6,6q . 由题意知第4个数为12q -6. 所以6+6q +12q -6=12,解得q =23.故所求的四个数为9,6,4,2.法二:设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2,由题意知14(4-d )2×(4-d )×4=216,解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.几个数成等比数列的设法(1)三个数成等比数列设为aq ,a ,aq . 推广到一般:奇数个数成等比数列设为: …a q 2,aq,a ,aq ,aq 2… (2)四个符号相同的数成等比数列设为: a q 3,aq,aq ,aq 3. 推广到一般:偶数个符号相同的数成等比数列设为: …a q 5,a q3,aq ,aq ,aq 3,aq 5… (3)四个数成等比数列,不能确定它们的符号相同时,可设为:a ,aq ,aq 2,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.等比数列的实际应用问题[典例] 某工厂2018年1月的生产总值为a 万元,计划从2018年2月起,每月生产总值比上一个月增长m %,那么到2019年8月底该厂的生产总值为多少万元?[解] 设从2018年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %.∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列.∴a n =a (1+m %)n -1.∴2019年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用] 如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝⎛⎭⎫22n ,故a 7=2×⎝⎛⎭⎫226=14. 答案:14层级一 学业水平达标1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24解析:选A 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D.3.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56B.65C.23D.32解析:选D 设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6.∴a 5=6,a 4+a 6=6q+6q =5. 解得q =26,∴a 5a 7=1q 2=⎝⎛⎭⎫622=32.4.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( )A.13 B .3 C .±13D .±3解析:选B 设等差数列为{a n },公差为d ,d ≠0.则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )·(a 1+5d ),化简得d 2=-2a 1d , ∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3.5.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100 B .-100 C .10 000D .-10 000解析:选C ∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6.∴a 8=100.又a 1a 15=a 28=10000,故选C.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,(a -6)2=3b , 解得⎩⎪⎨⎪⎧ a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27. 答案:3或277.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________.解析:由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18. 答案:188.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048. 答案:2 0489.在由实数组成的等比数列{a n }中,a 3+a 7+a 11=28,a 2·a 7·a 12=512,求q . 解:法一:由条件得⎩⎪⎨⎪⎧a 7q -4+a 7+a 7q 4=28, ①a 7q -5·a 7·a 7q 5=512, ② 由②得a 37=512,即a 7=8. 将其代入①得2q 8-5q 4+2=0.解得q 4=12或q 4=2,即q =±142或q =±42.法二:∵a 3a 11=a 2a 12=a 27, ∴a 37=512,即a 7=8.于是有⎩⎪⎨⎪⎧a 3+a 11=20,a 3a 11=64,即a 3和a 11是方程x 2-20x +64=0的两根,解此方程得x =4或x =16.因此⎩⎪⎨⎪⎧ a 3=4,a 11=16或⎩⎪⎨⎪⎧a 3=16,a 11=4.又∵a 11=a 3·q 8,∴q =±⎝⎛⎭⎫a 11a 318=±418=±42或q =±⎝⎛⎭⎫1418=±142. 10.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解:∵a 1a 5=a 23,a 3a 7=a 25, ∴由题意,得a 23-2a 3a 5+a 25=36, 同理得a 23+2a 3a 5+a 25=100,∴⎩⎪⎨⎪⎧ (a 3-a 5)2=36,(a 3+a 5)2=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧ a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧ a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =2n-2或a n =26-n .层级二 应试能力达标1.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1解析:选B 由题意,可得a 1·a 2·a 3·a 4·a 5=1,即(a 1·a 5)·(a 2·a 4)·a 3=1,又a 1·a 5=a 2·a 4=a 23,所以a 53=1,得a 3=1.2.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.3.已知数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 1=1,则a 2 016=( ) A .5B .1C .0D .-1解析:选B 设等差数列{a n }的公差为d ,则由a 1,a 2,a 3成等比数列得(1+d )2=1+2d ,解得d =0,所以a 2 016=a 1=1.4.设各项为正数的等比数列{a n }中,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( )A .230B .210C .220D .215解析:选C ∵a 1·a 2·a 3·…·a 30=230,∴a 301·q1+2+3+…+29=a 301·q29×302=230, ∴a 1=2-272,∴a 3·a 6·a 9·…·a 30=a 103·(q 3)9×102=(2-272×22)10×(23)45=220. 5.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27,∴a 1a 2a 3…a 13=(a 27)6·a 7=a 137, 而a 7=-2.∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-2136.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则a 2-a 1b 2=________.解析:由题意,知a 2-a 1=-1-(-7)3=2,b 22=(-4)×(-1)=4.又因为b 2是等比数列中的第三项,所以b 2与第一项同号,即b 2=-2,所以a 2-a 1b 2=2-2=-1. 答案:-17.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=5,b 3=17.求数列{b n }的通项公式.解:依题意a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),所以a 1d =2d 2,因为d ≠0,所以a 1=2d ,数列{ab n }的公比q =a 5a 1=a 1+4d a 1=3,所以ab n =a 13n -1,①又ab n =a 1+(b n -1)d =b n +12a 1,② 由①②得a 1·3n -1=b n +12·a 1. 因为a 1=2d ≠0,所以b n =2×3n -1-1.8.容器A 中盛有浓度为a %的农药m L ,容器B 中盛有浓度为b %的同种农药m L ,A ,B 两容器中农药的浓度差为20%(a >b ),先将A 中农药的14倒入B 中,混合均匀后,再由B倒入一部分到A 中,恰好使A 中保持m L ,问至少经过多少次这样的操作,两容器中农药的浓度差小于1%?解:设第n 次操作后,A 中农药的浓度为a n ,B 中农药的浓度为b n ,则a 0=a %,b 0=b %.b 1=15(a 0+4b 0),a 1=34a 0+14b 1=15(4a 0+b 0);b 2=15(a 1+4b 1),a 2=34a 1+14b 2=15(4a 1+b 1);…;b n =15(a n -1+4b n -1),a n =15(4a n -1+b n -1).∴a n -b n =35(a n -1-b n -1)=…=35(a 0-b 0)·⎝⎛⎭⎫35n -1. ∵a 0-b 0=15,∴a n -b n =15·⎝⎛⎭⎫35n .依题意知15·⎝⎛⎭⎫35n <1%,n ∈N *,解得n ≥6.故至少经过6次这样的操作,两容器中农药的浓度差小于1%.。
人教A版高中数学高二必修5课件2.4等比数列(二)
2.4 等比数列(二)
6
(6)等比数列的项的对称性:在有穷等比数列中,与首末两项
“等距离”的两项之积等于首末两项的积,即a1·an=
2.4 等比数列(二)
29
规律方法 (1)在等差数列与等比数列的综合问题中, 特别要注意它们的区别,避免用错公式.(2)方程思想的 应用往往是破题的关键.
2.4 等比数列(二)
30
跟踪演练4 已知{an}是首项为19,公差为-2的等差数列, Sn为{an}的前n项和. (1)求通项公式an及Sn; 解 因为{an}是首项为19,公差为-2的等差数列,所以an =19-2(n-1)=-2n+21,
的m的个数;若不存在,请说明理由.
解 若存在m,使b1,b4,bt成等差数列, 则2b4=b1+bt,
∴ 7 ×2= 1 + 2t-1 ,
7+m
1+m 2t-1+m
2.4 等比数列(二)
28
7m+1 7m-5+36
∴t=
=
=7+
36
,
m-5
m-5
m-5
由于m、t∈N*且t≥5. 令m-5=36,18,9,6,4,3,2,1, 即m=41,23,14,11,9,8,7,6时,t均为大于5的整数. ∴存在符合题意的m值,且共有8个.
2.4 等比数列(二)
26
(1)由 bn=an+an m(m∈N*)知 b1=1+1 m,b2=3+3 m,b8=151+5 m,
∵b1,b2,b8成等比数列,
2.4等比数列 课件 (人教A版必修5)
解析:∵a1=1,a2=2,a3=4,仅给出了数列前3项, 后边各项不知有何规律,给出不同的值会得出不同结论.
答案:D
3.等比数列{an}中,a1=
1 8
,q=2,则a4与a8的等比中
项是( )
A.±4
B.4
C.±14
[例2]
已知a,-
3 2
,b,-
243 32
,c五பைடு நூலகம்数成等比数
列,试求a,b,c的值.
[解] ∵b2=(-32)×(-23423)=(32)6, ∴b=±287. 当b=287时,∵ab=(-32)2,∴a=23. 由bc=(-23423)2=(32)10及b=287,得c=2112887=(32)7.
2.4 等比数列
第1课时 等比数列
课前自主预习
课堂互动探究
随堂知能训练
课时作业
目标了然于胸,让讲台见证您的高瞻远瞩
1.掌握等比数列的通项公式,体会等比数列的通项公式
与指数函数的关系.
2.掌握等比中项的定义,能够应用等比中项的定义解 决问题.
课前 自 主 预 习
课 前 预 习 ········································· 明 确 目 标
D.①②③④
解析:根据等比数列的定义,从第2项起检查每一项与 其前一项的比是否为同一个常数.
①中数列是等比数列,公比q=-2;②中数列是等比 数列,公比q=- 2;③中数列当x=0时,不是等比数列; ④中数列是等比数列,公比q=1a.
答案:C
2.在数列{an}中,a1=1,a2=2,a3=4,…,那么数 列{an}是( )
高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质
-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.
-
1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,
人教版高中数学必修5《等比数列》PPT课件
二、基础知识讲解
1、等比数列的定义:
一般地,如果一个数列从第二项起,每一项与它
的前一项的比都等于同一个常数,那么这个数列就叫
做等比数列。这个常数就叫做等比数列的公比, 公比
通常用字母 q 表示。 (q≠0) 等比数列的每一
思考:用数学符号语言(递推公式)项怎都样不表为示0等,比即
在等比数列{an}中 (1)an=akqn-k; (2)若m+n=k+l,则am·an =ak·al 在等比数列{an}中,若m+n=k+l,则am·an =ak·al
特别地,若m n 2k(m, n, k N * ), 则aman ak2
例1、在等比数列{an}中,an 0,且a1a9 64, a3 a7 20,求a11。
成等差数列的三个正数之和为15,若这三个数分别 加上1,3,9后又成等比数列,求这三个数。
一、复习回顾 1、等比数列的定义: 或
2、等比数列的通项公式: an=a1qn-1 3、等比数列的性质: ①an=a1qn-1=akqn-k;
a1q2 12 ①
a1,公比是
q,那么
设
a1q3 18 ②
把②的两边分别除以①的两边,得
q
3
③
把③代入①,得
a1
6 3
2
方
程列
思 想
因此,a2
a1q
16 3
3 2
8
求
二、基础知识讲解
3、等比数列的通项公式: an=a1qn-1
练习2:在等比数列{an}中,
(1)a1=3,an=192,q=2,求n;n=7
a3 a7 20,求a11。
解:依题意可得
高中数学 2.4.2 等比数列的性质课件 新人教A版必修5
6-2log 8 = 0,
= 2,
∴
= 11.
2 + 3log 8 = m.
故存在常数 c=2,使得对任意 n∈N*,an+logcbn 恒为常数 11.
第二十一页,共30页。
问题
(wèntí)导
学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
KETANG HEZUO TANJIU
当堂(dānɡ
tánɡ)检测
三个数或四个数成等比数列的设元技巧:
(1)若三个数成等比数列,可设三个数为 a,aq,aq2 或,a,aq;
(2)若四个数成等比数列,可设 a,aq,aq2,aq3;若四个数均为正(负)数,
可设 3 , ,aq,aq3.
第 2 课时
等比数列的性质
第一页,共30页。
目标(mùbiāo)
导航
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
预习(yùxí)
引导
学习目
记住等比数列的常见性质,并会用这些性质解答一些简单的等比数
标
列问题.
重点难
重点:等比数列的性质及应用;
点
难点:对等比数列性质的理解.
已知条件进行推理,从而得出结论.
第十八页,共30页。
问题(wèntí)
导学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂(dānɡ
tánɡ)检测
高中数学人教版必修5课件:2.4.1等比数列(共21张PPT)
自主学习(2min)
• 仿照“等差数列通项公式的推导”,完成任务:
已知数列{an}是首项为a1,公比为q的等比数列,
你能写出这个等比数列的第n项吗?
a1=a1 a2=a1 q a3=a2 q=a1q2 a4=a3q=a1q3 …
不完全归纳法
an=
.
3、等比数列的通项公式:
• 一般地,如果等比数列{an}的首项为a1,公
请说出公比q。
√(1)2,8,32,128,…
q=4
(√2)-1,-0.5,-0.25,-0.125,… q=0.5
(√3)2,2,2,2,…
q=1
(√4)1,-3,9,-27,…
q=-3
×(5)1,2,4,16,64,…
×(6)1, 0, 1, 0, 1
先抢为快
抢答1:公比q的取值范围是什么呢? 正数、负数,但是不能为零。
抢答2:当公比q=1时的等比数列是什么样的数列?
常数列 抢答3:常数列一定是等差数列吗?一定是等比数
列吗?为什么?
常数列都是等差数列,但却不一定都是等比列。 如数列0,0,0,0,…是等差不是等比数列。
抢答4:既是等差数列,又是等比数列的数列存 在吗?举例说明。
2、等比数列中项:
• 与等差中项类似,如果在a与b中间插入一 个数G,使a,G,b成等比数列,那么G叫 做a与b的等比中项。
3、等比数列的通项公式:an= a1qn-1
4、学习的思想方法:类比思想方法
课后作业
• 1.P53 A组第1(1)~(3)题
1、等比数列的定义:
• 一般地,如果一个数列从第2项起, 每一项
与它的前一项的比等于同一个常数,这个
2.4.1《等比数列》课件(人教A版必修5)
n n
列
an bn
是等比数列吗?
解 : 设数列a n 的公比为p, 数列b n 的公比为q, 那么数列a n bn 的第n项与第n 1项分别为: a1 p n 1 b1q n 1与a1 p n b1q n a n 1 bn 1 因为 pq(常数) a n bn
不是
类型二、等比数列通项公式的应用
2、一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项以 及通项公式. 解:设这个等比数列的第1项是a1,公比是q,那么 a1q2 12, a1q3 18. 两 3 16 16 3 式相除得 q . 代入上式得 a1 .因此,a2 a1q 8. , 3 3 2 2 n 1 通项公式为 a 16 3 n 3 2 n 1 16 16 3 与8 答:这个数列的第1项和第2项分别是 3 ,a n 3 2 .
(2)等比数列通项公式
an 的首项为a1,公比为q,则它的通项公式 设等比数列 n1 an= a1q (定义式) 设等比数列an 的第m项为am(m<n),公比为q,则它的 nm a q 通项公式为an= m
(3)等比数列的等比中项
如果在a与b 中间插入一个数G,使a,G,b成等比数列,那么 G叫做a与b 的 , 其中,a,b (同号,异号),且G2= ,即G=__ ___.
§2.4.1等比数列
(第一课时)
【学习目标】 1、理解等比数列定义,会用定义判断
等比数列.
2、掌握等比数列的通项公式.
3、掌握等比中项的定义和性质,并能
解决相应问题.
一、复习回顾: (1)等差数列的定义:
2018秋数学人教A版必修5课件:第二章2-4第1课时等比数列的概念与通n项公式 精品
类型 2 等比中项 [典例 2] 已知等比数列的前三项和为 168,a2-a5 =42,求 a5,a7 的等比中项. 解:设该等比数列的公比为 q,首项为 a1,
a1+a1q+a1q2=168, 因为
a1q-a1q4=42.
a1(1+q+q2)=168.
①
所以
a1q(1-q3)=42.
②
因为 1-q3=(1-q)(1+q+q2),
等比中项为:± 22.
答案:±
2 2
类型 3 等比数列的判定(互动探究)
[典例 3] (1)已知{an},{bn}都是等比数列,那么( ) A.{an+bn},{an·bn}都一定是等比数列 B.{an+bn}一定是等比数列,但{an·bn}不一定是等 比数列 C.{an+bn}不一定是等比数列,但{an·bn}一定是等 比数列 D.{an+bn},{an·bn}都不一定是等比数列
pq≠0,所以{an·bn}一定是等比数列.
(2)证明:法一:因为 an>0,所以 an+3>0.
又因为 an+1=2an+3,
an+1+3 2an+3+3 2(an+3)
所以
=
=
=2.
an+3
an+3
an+3
所以数列{an+3}是首项为 a1+3,公比为 2 的等比数
列.
法二:因为 an>0,所以 an+3>0. 又因为 an+1=2an+3, 所以 an+2=4an+9. 所以(an+2+3)(an+3)=(4an+12)(an+3)=(2an+6)2 =(an+1+3)2. 即 an+3,an+1+3,an+2+3 成等比数列, 所以数列{an+3}是等比数列.
(2) 在 数 列 {an} 中 , 若 an > 0 , 且 an + 1 = 2an + 3(n∈N*).证明:数列{an+3}是等比数列.
高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5
2.等比中项 如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项,这三个数满足关系式 ab=G2.
思考 1 若 G2=ab,则 a,G,b 一定成等比数列吗?
提示:不一定.因为若 G=0,则 a,b 中至少有一个为 0,使 G2=ab,根据等比 数列的定义,a,G,b 不成等比数列.当 a,G,b 全不为零时,若 G2=ab,则 a,G,b 成
探究四
探究二 等比中项的应用
若 a,G,b 成等比数列,则 G 叫做 a 与 b 的等比中项,此时 G=± ������������. 注意:(1)在 a,b 同号时,a,b 的等比中项有两个,异号时,没有等比中项. (2)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是 它的前一项与后一项的等比中项. (3)“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),可以用它来判断 或证明三个数成等比数列. 同时还要注意到“a,G,b 成等比数列”与“G= ������������”不是等价的.
探究一
探究二
探究三
探究四
解:(1)∵a1=-1,an=3an-1-2n+3,∴a2=3a1-2×2+3=-4,a3=3a2-2×3+3=-15.
下面证明{an-n}是等比数列:
������������+1-(n + ������������-n
1)
=
3������������-2(n
+ 1) + ������������-n
是等比数列. (3)通项公式法:若数列{an}的通项公式为 an=a1qn-1(a1≠0,q≠0),则数列
人教A版高中数学必修五2.4《等比数列的性质》教学课件PPT(32张)
6. 3 2 与 3 2 的等比中项是______1_____.
3 2 3 2
7.已知正数等比数列{an }中,a n a n 1 a n 2
5 1
对所有的自然数 n 都成立,则公比 q =_____2______.
8.(2014·广东高考)等比数列{an}的各项均为正数,且
a1a5=4,则 log2a1+log2a2+log2a3+log2a4+log2a5=
等比数列,则{can}(c为不等于0的常数)是公比为
qq{a的n2等}是比公数比列为,{qa2n的• 等bn比}是数公列比,数为列qq′abn的n 是等公比比数为列,
q' 的等比数列,数列 an 是公比为 q 的等比数列.
(7)数列
1 an
是公比为
1 q
的等比数列.
(8)在{an}中,每隔k(k∈N*)项取出一项,按原来顺序
或a4 2, a7 4, a4 4, a7 2 a1 8, a10 1 a1 a10 7, a4 2, a7 4 a10 8, a1 1 a1 a10 7.
2.如果-1,a,b,c,-9成等比数列,那么( B )
A.b=3,ac=9
B.b=-3,ac=9
C.b=3,ac=-9
等比 数列
an1 q(q为常数, an q 0)
a2 n 1
an
a n2
(n N *,an 0)
3.等比数列的性质: (1)an=amqn-m(n,m∈N*) (2)若m+n=p+q,则aman= apaq(m,n,p,q∈N*) (3)等比数列中,每隔k项取一项,按原来顺序排 列,所得的新数列仍为等比数列. (4)a1a2, a3a4, a5a6, …仍为等比数列. (5)在等比数列中,从第二项起,每一项都是它等 距离的前后两项的等比中项.
人教A版高中数学必修五2.4数学等比数列 课件
an1 q an
当 q>1,a1>0,或 0<q<1,a1<0 时,数列是递增数列. 当 q>1,a1<0,或 0<q<1,a1>0 时,数列是递减数列.
当q=1时,数列是常数数列.
思考2:等比数列的通项公式与函数有怎样的关系?
例如:数列{an}的首项是a1=1,公比q=2,
……
由此归纳等差数列
由此归纳等比数列的通项公式可得:
的通项公式可得:
ana1(n1)d
an a1qn1
3、等比数列的通项公式:
法二:迭加法
等 a2a1d
差 数
a3a2 d
类比
列 a4a3 d ……
+)anan1d
a2 q
等 比 数 列
a1
a3 q a2
a4 q
…a 3 …
×) a n q
a n1
2
图象上一群孤立的点
2
1
O 1234567
n
等差数列
等差数列通项公式:
a n = a 1 + ( n-1 ) d,n ∈N +
①函数观点; 一次函数形式:
a n = pn + q,n ∈N +
d=p a1=p+q ②方程思想. 方程中有四个量,知 三求一,这是公式最 简单的应用.
等比数列
等比数列通项公式: a n= a 1 q n-1
例1:某种放射性物质不断变化为其他物质,每经过一年
剩留的这种物质是原来的84%,这种物质的半衰期为多
长(精确到1年) ?
放射性物质衰变到
解:设这种物质最初分的析质: 量是1,经过n年,剩留量原是来a的n.一半所需时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是a与b的等比中项,显然等比中项有两个,它们互为相反数.
2.通项公式的应用 等比数列的通项公式an=a1qn-1,图象是指数型曲线上一些 孤立的点.另外公式中的四个量a1,an,q,n中,知三可求第 四个量. 注意 由等比数列的通项公式可知,对数列中任两项am与 am a2 m-n an,有 =q ,等比数列通项公式的推导可用累乘法: = an a1 a3 an an q,a =q,…, =q,以上各式相乘得 a =qn-1,即an=a1qn- an-1 2 1
∴n-1=3,∴n=4.
规律技巧
(1)中解法1是基本方法,称为通法,不能忽
略.解法2是利用等比数列中任两项之间的关系作答,灵活简 便.
二
等比中项的应用
【例2】
已知等比数列的前三项和为168,a2-a5=42,求
a5,a7的等比中项.
【解】
设该等比数列的公比为q,首项为a1,
2 a1+a1q+a1q =168, ∵ 4 a q - a q 1 1 =42, 2 a11+q+q =168, ∴ 3 a q 1 - q =42. 1
1 1 (2)证明:当n≥2时,an=Sn-Sn-1= (an-1)- (an-1-1), 3 3 an 1 得 =- , 2 an-1 1 1 ∴{an}是首项为-2,公比为-2的等比数列. 规律技巧 与an-1的关系. (1)已知Sn与an的关系,在n≥2时,往往得到an
(2)证明数列是等比数列常用的方法. an+1 an ①定义法: a =q(常数)或 =q(常数)(n≥2)⇔{an}为等 a - n n 1 比数列. ②等比中项法:a 数列. ③通项法:an=a1qn-1(其中a1,q为非零常数,n∈N*)⇔{an} 为等比数列.
∵1-q3=(1-q)(1+q+q2), 1 1 上述两式相除,得q(1-q)=4⇒q=2,
42 42 ∴a1= = =96. q-q4 1 14 - 2 2 若G是a5,a7的等比中项,则应有 G =a5· a7=a1q · a1q
2 4 6 2 10 2 1 10 =9, =a1q =96 ·
3.如果三个数a、G、b组成________,则G叫做a和b的 G b ________,由 a =G推得G2=________,因此G=________.
自 1.第二项 前一项 同一个 等比数列 公比 我 q(q≠0) 校 2.a1qn-1 对 3.等比数列 等比中项 ab ± ab
名师讲解 1.等比数列及等比中项的概念 等比数列{an}从第二项起的每一项与它的前一项的比为同 一常数,也就是 an =q(n≥2).若G=± ab (要求ab>0),则G an-1
解得a1=1,a3=4. ∵a3=a1q2,∴q2=4,∴q=± 2. ∴an=2n-1,或an=(-2)n-1.
第二章 数列
§2.4
等比数列
第一课时
等比数列
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
自学导引 1.理解等比数列的定义,能用定义判定一个数列是否为等比 数列. 2.掌握等比数列的通项公式,体会它与指数函数的关系. 3.掌握等比中项的定义,能用等比中项的定义解决问题.
课前热身 1.一般地,如果一个数列从________起,每一项与它的 ________的比都等于________常数,那么这个数列就叫做 ________.这个常数叫做等比数列的________,公比通常用字 母________表示. 2.设等比数列{an}的首项为a1,公比为q,则它的通项an =________.
3
∴a5=a1q4=1×34=81. a6 243 解法2:∵a6=a3q ,∴q =a = 9 =27,∴q=3. 3
3 3
∴a5=a3q2=9×32=81.
9 2 1 (2)∵a1= ,q= ,an= , 8 3 3 1 9 2n-1 ∴3=8×3 .
2 - 8 23 n 1 ∴3 =27=3 .
【例1】
(1)已知a3=9,a6=243,求a5; 9 1 2 (2)已知a1= ,an= ,q= ,求n. 8 3 3 【分析】 组求解. 由已知条件列出有关量(如a1,q)的方程或方程
【解】
(1)解法1:由a3=9,a6=243,
得a1q2=9,a1q5=243. 243 ∴q = =27,∴q=3.a1=1. 9
2
∴a5,a7的等比中项是± 3.
规律技巧
(1)首项a1和q是构成等比数列的基本量,从基本
量入手解决相关问题是研究等比数列的基本方法. (2)本题要注意同号的两个数的等比中项有两个,它们互为 相反数,而异号的两个数没有等比中项.
三
等比数列的判定
1 【例3】 已知数列{an}的前n项和为Sn,Sn= 3 (an-1)(n∈ N*). (1)求a1,a2; (2)求证:数列{an}是等比数列. 【分析】 先利用an=
S1 n=1, Sn-Sn-1 n≥2.
求a1,a2,an,
再利用定义证明{an}是等比数列.
【ቤተ መጻሕፍቲ ባይዱ】
1 1 (1)由S1= (a1-1),得a1= (a1-1), 3 3
1 ∴a1=- . 2 1 又S2=3(a2-1), 1 1 即a1+a2=3(a2-1),得a2=4.
2 n+1
=an· an+2(an≠0,n∈N*)⇔{an}为等比
易错探究 已知等比数列{an},若a1+a2+a3=7,a1a2a3=8,求an. 【错解】
2 ∵a1,a2,a3成等比数列,∴a1· a3=a2 .
∴a1a2a3=a3 2=8,∴a2=2.
a1+a3=5, 从而 a3=4. a1·
1
,此方法也是求具有这种特征数列通项的一种重要方法.
3.等比数列的判断 要证明或判断一个数列是否为等比数列,必须依靠定义, an+1 an 即对任意n∈N , =q(与n无关),或 =q(n≥2)都成立. an an-1
*
课堂互动探究
剖析归纳 触类旁通
一
典 例 剖 析 通项公式的应用
在等比数列{an}中,