七年级数学平行线2
数学课件 华东师大版七年级上册 同步教学第5章相交线与平行线第二节平行线
12.在写艺术字时,常常运用画“平行线段”这种基本方法,如图 所示写的是字母“M”.
(1)请从正面、上面、右面三个不同方向上各找出一组平行线段, 并用字母表示出来;
解:正面:AB∥EF;上面:A′B′∥AB; 右面:DD′∥HI.(答案不唯一)
(2)EF 与 A′B′有何位置关系? 解:EF∥A′B′.
8 如图,平面内有A,B,C三点,且三点不在同一条直 线上,过这三点画两条平行线,这样的平行线能画几 种?画图说明.
解:能画三种,如图所示.
9 如图,(1)过BC上一点P画AB的平行线交AC于T; (2)过点C画MN∥AB; 解:(1)如图.(2)如图.
(3)直线PT,MN具有何种位置关系?试说明理由. 解:PT∥MN,理由如下:因为PT∥AB,MN∥AB, 所以PT∥MN.
8 如图,P是线段AB的中点,过点P画BC的平行线交AC 于点Q,再过点Q画AB的平行线交BC于点S. 解:所画图形如图所示.
(1)用刻度尺测量后确定AQ与QC,CS与BS的数量关系; 解:经测量得到AQ=QC,CS=BS.
(2)用刻度尺测量后确定PQ与BC,QS与AB的数量关系,你 发现了什么?用简洁的语言把你发现的规律叙述出来. 经测量得到 PQ=12BC,QS=12AB. 经过三角形一边的中点,画另一边的平行线,则这条
3 如图,将一张长方形纸对折三次,则产生的折痕与折 痕间的位置关系是( C )
A.平行 C.平行或垂直
B.垂直 D.无法确定
4 【原创题】如图,能相交的是___②___,平行的是 __③____.
5 在如图所示的方格纸中,经过点C画与线段AB平行的 直线l1. 略
6 读下列语句,并画出图形. P是直线AB外一点,直线CD经过点P且与直线AB平行, 直线EF也经过点P且与直线AB垂直. 解:如图所示.
七年级下册数学平行线及其判定
七年级下册数学平行线及其判定数学是一门严谨的学科,它涵盖了许多重要的概念和定理。
在这篇文章中,我们将讨论平行线及其判定。
平行线是指在二维平面上没有交点的直线。
在几何学中,平行线的性质和判定方法是非常重要的,我们将通过详细的解释和例子来帮助同学们更深入地理解这一概念。
1.平行线的定义首先,让我们来看一下平行线的定义。
在几何学中,两条直线是平行线,当且仅当它们在同一平面上且永远不相交。
这意味着无论我们如何延长这两条直线,它们也永远不会相交。
通过这个定义,我们可以很容易地理解什么是平行线。
但是,实际中我们如何判断两条直线是否平行呢?接下来,我们将讨论几种常见的平行线判定方法。
2.平行线的判定2.1直线与直线的判定首先,让我们来看一下两条直线是否平行的判定方法。
根据几何学的知识,我们知道,如果两条直线的斜率相等,那么它们就是平行线。
这是因为斜率代表了直线的倾斜程度,如果两条直线的斜率相等,那么它们的倾斜程度也相等,这就意味着它们是平行的。
举个例子,假设我们有两条直线,分别是y=2x+3和y=2x-1。
我们可以很容易地计算出它们的斜率都是2,这意味着这两条直线是平行的。
2.2点与直线的判定除了两条直线的斜率相等之外,我们还可以利用点与直线之间的关系来判定两条直线是否平行。
具体来说,如果一条直线上的一点到另一条直线的距离为0,则这两条直线是平行的。
这是因为如果两条直线是平行的,那么它们的距离永远不会改变,所以一个点到另一条直线的距离也永远是不变的。
举个例子,假设我们有一条直线L:y=2x+3,还有一点A(1,5),我们需要判断这个点到直线L的距离。
我们可以利用点到直线的距离公式来计算,如果计算出来的距离为0,那么这个点和直线是平行的。
2.3垂直线的判定有时候,我们也需要判断两条直线是否是垂直的。
其实,判断两条直线是否垂直与判断两条直线是否平行是类似的。
如果两条直线的斜率的乘积为-1,那么这两条直线是垂直的。
7.2.2 探索平行线的性质 苏科版数学七年级下册教案
b
2
知识点:初识辅助线 例 3、如图所示,AB∥ED,
D=42°,BC 垂直于 CD 吗?
∠B=48°, ∠
A
B
A
B
CF
E
D
图(1)
GC
E
D
图(2)
图(1),过点 C 作 CF∥AB, 则∠BCF=∠B=48° 又∵AB∥ED ∴CF∥ED(平行线传递性) ∴∠FCD=∠D=42° ∴∠BCD=∠BCF+∠FCD =48°+42° =90° ∴BC⊥CD(垂直定义)
作辅助线的时候, 只能说作 CF∥AB, 而不能说作 CF∥AB ∥ED ,而是再证明 CF ∥ED ,利用的是 平行线的传递性.
本题证明方法很 多,还可以延长线段 BC 与 ED 相交,利用 三角形内角和知识也 可解决.
图(2),过点 C 作 CG ∥AB,利用两条直线 平行,同旁内角互补,再利用周角知识,也可求出∠ BCD 度数
通过平行线的性 质转化角度之间的关 系,要寻找已知角与 所求角之间的关联和 变化线路.
C
F
O
已知:BC∥AD,BE∥AF. B A (1)求证:∠A=∠B. (2)若∠DOB=135°,求∠A 度数.
练习 2. 如图,AB∥CD,根据图中标注的角,
由平行线的性质,
下列关系中成立的是( ).
两直线平行,同位角
教法学法
教学过程
教学内容及环节设计 (主备人)
集体备课
二次备课
(思路方法技巧) (个人)
一、知识准备.
1、平行线的判定:
(1)同位角相等,两直线平行.
(2)内错角相等,两直线平行.
(3)同旁内角互补,两直线平行.
人教版七年级下册数学平行线及其判定第2课时平行线的判定——利用同位角、第三直线 同步练习
5.2 平行线及其判定第2课时平行线的判定——利用“同位角、第三直线”基础训练知识点1 由“同位角相等”判定两直线平行1.如图,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为_______________,理由是______________.2.如图,直线a,b被直线c所截,下列条件能使a∥b的是( )A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠73.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠C=∠EBD4.如图,已知∠1=∠2,则下列结论正确的是( )A.AD∥BCB.AB∥CDC.AD∥EFD.EF∥BC5.如图,CD平分∠ACE,且∠B=∠ACD,可以得出的结论是( )A.AD∥BCB.AB∥CDC.CA平分∠BCDD.AC平分∠BAD知识点2 由“第三直线”判定两直线平行6.如图,木工师傅利用直角尺在木板上画出两条线段,则线段AB______CD.7.在每一步推理后面的括号内填上理由.(1)如图①,因为AB∥CD,EF∥CD,所以AB∥EF(____________).(2)如图②,因为AB∥CD,过点F作EF∥AB(____________),所以EF∥CD(____________).8.在同一个平面内,不重合的两个直角,如果它们有一条边共线,那么另一条边( )A.互相平行B.互相垂直C.共线D.互相平行或共线9.三条直线a,b,c,若a∥c,b∥c,则a与b的位置关系是( )A.a⊥bB.a∥bC.a⊥b或a∥bD.无法确定易错点填错理由而致错10.如图,已知AB⊥BD于点B,CD⊥BD于点D,∠1=∠2,试问CD与EF平行吗?为什么?解:CD∥EF.理由:因为∠1=∠2( ),所以AB∥EF( ).因为AB⊥BD,CD⊥BD,所以AB∥CD( ).所以CD∥EF( ).提升训练考查角度1 利用“同位角相等”说明两直线平行11.如图,点B在DC上,BE平分∠ABD,∠ABE=∠C,试说明:BE∥AC. 解:因为BE平分∠ABD,所以∠ABE=∠DBE( ).因为∠ABE=∠C,所以∠DBE=∠C,所以BE∥AC( ).12.如图,已知∠1=68°,∠2=68°,∠3=112°.(1)因为∠1=68°,∠2=68°(已知),所以∠1=∠2.所以∥(同位角相等,两直线平行).(2)因为∠3+∠4=180°(邻补角的定义),∠3=112°,所以∠4=68°.又因为∠2=68°,所以∠2=∠4,所以∥(同位角相等,两直线平行).考查角度2 利用“同位角”“第三直线”(平行或垂直)判定平行13.如图,已知直线a,b,c,d,e,且∠1=∠2,∠3=∠4,则a与c平行吗?为什么?解:a与c平行.理由:因为∠1=∠2( ),所以a∥b( ).因为∠3=∠4( ),所以b∥c( ).所以a∥c( ).14.如图,已知∠1=90°,∠2=90°,试说明:CD∥EF.(1)方法一:用“同位角相等”说明.(2)方法二:用“第三直线”说明.探究培优拔尖角度1 利用平行线、垂线的基本事实说明三点共线15.在同一平面内,已知A,B,C是直线l同旁的三个点.(1)若AB∥l,BC∥l,则A,B,C三点在同一条直线上吗?为什么?(2)若AB⊥l,BC⊥l,则A,B,C三点在同一条直线上吗?为什么?拔尖角度2 利用同位角探究两线段的位置关系16.如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F, 问:CE与DF的位置关系怎样?试说明理由.参考答案1.【答案】AB∥CD;同位角相等,两直线平行2.【答案】B3.【答案】D4.【答案】C解:找出∠1和∠2是直线AD,EF被直线CD所截而形成的同位角,因此由∠1=∠2可得出AD∥EF.5.【答案】B6.【答案】∥7.【答案】(1)平行于同一条直线的两条直线平行(2)过直线外一点,有且只有一条直线与这条直线平行;平行于同一条直线的两条直线平行8.【答案】D9.【答案】B解:由平行于同一条直线的两条直线互相平行知选B.10.已知;同位角相等,两直线平行;在同一平面内,垂直于同一条直线的两条直线互相平行;平行于同一条直线的两条直线互相平行分析:本题学生容易混淆判定两直线平行的几种方法,从而导致错误.11.【答案】角平分线的定义;同位角相等,两直线平行12.【答案】(1)a;b (2)b;c13.【答案】已知;同位角相等,两直线平行;已知;同位角相等,两直线平行;平行于同一条直线的两条直线平行14.解:(1)方法一:因为∠1=90°,∠2=90°,所以∠1=∠2.所以CD∥EF.(2)方法二:因为∠1=90°,∠2=90°,所以CD⊥AB,EF⊥AB.所以CD∥EF.15.解:(1)在同一条直线上.理由:因为直线AB,BC都经过点B,且都与直线l平行,而过直线外一点有且只有一条直线与这条直线平行,所以AB,BC为同一条直线,所以A,B,C三点在同一条直线上.(2)在同一条直线上.理由:因为直线AB,BC都经过点B,且都与直线l垂直,而在同一平面内,过一点有且只有一条直线与已知直线垂直,所以AB,BC为同一条直线,所以A,B,C三点在同一条直线上.16.解:CE∥DF.理由如下:因为BD平分∠ABC,CE平分∠ACB,所以∠DBC=错误!未找到引用源。
部编人教版七年级下册数学5.2.2第1课时《平行线的判定2》教案
第1课时平行线的判定教学目标1、通过操作、观察、想象、推理、交流等活动推演出平行线的判定方法;2、会运用转化的思想将新问题转化为已知或者已解决的问题,体会数学的转化思维;3、会运用数学语言描述并证明平行线的判定方法,认识证明的必要性和证明过程的严密性,深刻理解直线平行的判定方法;4、灵活应用判定方法进行直线是否平行或者其它结论的推理判断。
重点:理解直线平行的判定方法,并会根据判定方法进行简单的推理应用。
难点:平行线判定方法的灵活运用和其推导过程中的转化思想的认识。
教学过程一、创设情境,引入课题一个长方形工件,如果需要检验它是否符合设计要求,除了度量它的长和宽的尺寸外,还要检查各面的长宽是否分别平行,而这些实际问题如果根据平行线的定义去判断是不可能的,但又如何判断它们是否平行呢?二、目标导学,探索新知目标导学1:平行的判定方法活动1:如图,三根木条相交成∠1,∠2,固定木条b、c,转动木条a , 观察∠1,∠2满足什么条件时直线a与b平行。
直线a和b不平行直线a∥b得出结论:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.【教学备注】【教师提示】引导学生去发现,两直线之所以平行,是因为同位角相等,进而引导学生用文字述叙概括出判定两直线平行的方法。
活动2图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程。
由此你又得出怎样的平行判定?结论:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.活动3下图中,如果∠4+∠7=180°,能得出AB∥CD?结论:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行学习目标2:平行判定方法的灵活应用活动4 学生讨论完成下面题目。
如图,∠A= 55 °,∠B=125 °,AD与BC平行吗?AB与CD平行吗?为什么?学习目标3:平行判定方法在生活中的应用应用1:在如图所示的图中,甲从A处沿东偏南55°方向行走,乙从B处沿东偏南35°方向行走,(1)他们所行道路可能相交吗?(2)当乙从B处沿什么方向行走,他们所行道路不相交?请说明其中的理由.应用2 如图,有一座山,想从山中开凿一条隧道直通甲、乙两地;在甲地侧得乙为北偏东41.5º方向,如果甲、乙两地同时开工,那么从乙地出发应按北偏西【教师提示】引导学生利用判定1:同位角相等,两直线平行和对顶角相等得出结论。
专题02 平行线及其判定 (题型归纳)【2022春人教七下数学核心考点题型归纳+变式集训】(解析版)
专题02 平行线及其判定(一题三变)【思维导图】◎考点题型1 平面内两直线的位置关系例.(2022·全国·七年级)下列说法正确的是()A.不相交的两条直线是平行线.B.如果线段AB与线段CD不相交,那么直线AB与直线CD平行.C.同一平面内,不相交的两条射线叫做平行线.D.同一平面内,没有公共点的两条直线是平行线.【答案】D【解析】【分析】根据平行线的定义逐项分析即可.【详解】A、同一平面内不相交的两条直线是平行线,故此说法错误;B、两条线段不相交也可以不平行,故此说法错误;C、同一平面内,不相交的两条射线可以平行,也可以既不平行也不相交,故此说法错误;D、同一平面内,没有公共点的两条直线是平行线,此说法正确,故选D.【点睛】本题考查了平行线的定义,理解此定义是关键,属于概念基础题.变式1.(2022·江苏·南京市第二十九中学七年级期末)下列说法正确的是()A.不相交的两条直线叫做平行线B.过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线【答案】B【解析】【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.【详解】解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B.【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.变式2.(2022·江苏江阴·七年级期末)有下列说法:①两条不相交的直线叫平行线;①同一平面内,过一点有且只有一条直线与已知直线垂直;①两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;①有公共顶点的两个角是对顶角.其中说法正确的个数是()A.1B.2C.3D.4【答案】A【解析】【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法①正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法①错误;根据对顶角的定义知,说法①错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.变式3.(2021·湖北汉阳·七年级期中)下列命题不正确的是()A.直线外一点与直线上各点连接的所有线段中,垂线段最短B.在同一平面内,两条不重合的直线位置关系不平行必相交C.两点确定一条直线D.两点之间直线最短.【答案】D【解析】【分析】根据垂线段最短、两直线的位置关系、两点确定一条直线、两点之间线段最短判断.【详解】解:A、直线外一点与直线上各点连接的所有线段中,垂线段最短,本选项说法正确,不符合题意;B、在同一平面内,两条不重合的直线位置关系不平行必相交,本选项说法正确,不符合题意;C、两点确定一条直线,本选项说法正确,不符合题意;D、两点之间线段最短,故本选项说法错误,符合题意;故选:D.【点睛】本题考查的是命题的真假判断,掌握垂线段最短、两直线的位置关系、两点确定一条直线、两点之间线段最短是解题的关键.◎考点题型2立体图形中平面的棱例.(2021·上海市实验学校二模)如图,在长方体ABCD-EFGH中,与棱AD平行的平面共有()A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 先找出不过棱AD 的平面,确定平面内有与AD 平行的直线即可.【详解】解:①在长方体ABCD-EFGH 中,AD //EH ①BC ,①AD ①平面EFGH ,AD ①平面BCGF ,①与棱AD 平行的平面共有2个.故选择:B .【点睛】本题主要考查立体图形与平行线,利用平行线的定义找出与棱AD 平行的平面并准确观察图形是解题的关键.变式1.(2019·全国·七年级单元测试)如图所示,在长方体1111ABCD A B C D 中,与棱AD 异面的棱有( )A .2条B .3条C .4条D .5条【答案】C【解析】【分析】 根据判断异面直线的方法判断即可.【详解】由题意得:与棱AD 异面的棱有:BB 1,CC 1,A 1B 1,C 1D 1故选C.【点睛】本题考查异面直线的概念:过平面外一点和平面内一点与平面内不经过该点的直线是异面直线,熟记概念是本题关键.变式2.(2012·上海奉贤·一模)已知长方体如图所示,那么下列直线中与直线不平行也不垂直的直线是A.B.GH C.HC D.【答案】C【解析】【详解】解:A、EA是长方体的棱,与AB互相垂直,故本选项错误;B、GH是长方体的棱,与AB互相平行,故本选项错误;C、HC不是长方体的棱,与AB不平行也不垂直,故本选项正确;D、EF是长方体的棱,与AB互相平行,故本选项错误.故选C.变式3.(2020·上海浦东新·三模)已知长方体ABCD-EFGH如图所示,那么下列各条棱中与棱GC平行的是()A.棱EA;B.棱AB;C.棱GH;D.棱GF.【答案】A【解析】【分析】首先确定与GC平行的棱,再确定选项即可求解.【详解】解:观察图象可知,与棱GC平行的棱有AE、BF、DH.故选:A.【点睛】本题考查认识立体图形,平行线的判定等知识,解题的关键是理解题意,属于基础题.◎考点题型3用直尺、三角板画平行线例.(2021·吉林九台·八年级期中)在下列各题中,属于尺规作图的是()A.用直尺画一工件边缘的垂线B.用直尺和三角板画平行线C.利用三角板画45 的角D.用圆规在已知直线上截取一条线段等于已知线段【答案】D【解析】【分析】根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.【详解】解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;故选D.【点睛】本题主要考查了尺规作图的定义,解题的关键在于熟知定义.变式1.(2014·山东滨州·中考真题)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】【分析】由已知可知①DPF=①BAF,从而得出同位角相等,两直线平行.【详解】①①DPF=①BAF,①AB①PD(同位角相等,两直线平行).故选A.【点睛】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.变式2.(2011·北京石景山·中考模拟)已知:如图,l①m,等边①ABC的顶点B在直线m 上,边BC与直线m所夹锐角为20°,则①α的度数为A.60°B.45°C.55°D.40°【答案】D【解析】【详解】过C作CE①直线m①l①m,①l①m①CE,①①ACE=①α,①BCE=①CBF=20°,①等边①ABC,①①ACB=60°,①①α+①CBF=①ACB=60°,①①α=40°.故选D.变式3.(2021·辽宁和平·八年级期末)如图,是我们学过的用直尺和三角板画平行线的方法示意图,画图的原理是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.内错角相等,两直线平行D.同旁内角互补,两直线平行【答案】B【解析】【分析】由已知可知①DPF=①BAF,从而得出同位角相等,两直线平行.【详解】解:如图:①①DPF=①BAF,①a①b(同位角相等,两直线平行).故选:B.【点睛】本题考查了平行线的判定方法,熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.◎考点题型4平行公理的应用例.(2022·江苏玄武·七年级期末)下列说法错误的是()A.经过两点,有且仅有一条直线B.平面内过一点有且只有一条直线与已知直线垂直C.两点之间的所有连线中,线段最短D.平面内过一点有且只有一条直线与已知直线平行【答案】D【解析】【分析】根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.【详解】解:由垂线的性质、线段的性质、直线的性质可知A、B、C正确;A、根据直线的性质可知选项正确,不符合题意;B、根据垂线的性质可知选项正确,不符合题意;C、根据线段的性质可知选项正确,不符合题意;D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;故选:D.【点睛】本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.变式1.(2022·江苏·无锡市东林中学七年级期末)下列说法正确的有()①两点之间的所有连线中,线段最短;①相等的角叫对顶角;①过一点有且只有一条直线与已知直线平行;①若AC=BC,则点C是线段AB的中点;①在同一平面内,经过一点有且只有一条直线与已知直线垂直.A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.【详解】解:①两点之间的所有连线中,线段最短,正确;①相等的角不一定是对顶角,但对顶角相等,故本小题错误;①过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;①若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,①在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有①①共2个.故选:B.【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.变式2.(2021·全国·七年级课时练习)下列说法:(1)两条不相交的直线是平行线;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内两条不相交的线段一定平行;(4)过一点有且只有一条直线与已知直线垂直;(5)两点之间,直线最短;其中正确个数是()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据平面内相交线和平行线的基本性质逐项分析即可.【详解】解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误;(2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;(5)两点之间,线段最短,故原说法错误;故选:B.【点睛】本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.变式3.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)下列说法中正确的有()个①两条直线被第三条直线所截,同位角相等;①同一平面内,不相交的两条线段一定平行;①过一点有且只有一条直线垂直于已知直线;①经过直线外一点有且只有一条直线与这条直线平行;①从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A .1B .2C .3D .4【答案】A【解析】【分析】 根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.【详解】①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;①同一平面内,不相交的两条直线一定平行,故①不正确;①同一平面内,过一点有且只有一条直线垂直于已知直线,故①不正确;①经过直线外一点有且只有一条直线与这条直线平行,故①正确①从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故①不正确. 故正确的有①,共1个,故选A .【点睛】本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.◎考点题型5平行公理推论的应用例.(2021·山东·济宁学院附属中学二模)如图,直线//a b ,将含有45°角的三角板ABC 的直角顶点C 放在直线b 上,若120∠=︒,则2∠的度数是( )A .25°B .20C .35D .30【答案】A【解析】【分析】 过B 作//BE 直线a ,推出////a b BE ,根据平行线性质得出120ABE ∠=∠=︒,2CBE ∠=∠,根据45ABC ∠=︒求出CBE ∠,即可得出答案.【详解】解:过B 作//BE 直线a ,a b,直线//①////a b BE,∴∠=∠=︒,2CBE∠=∠,ABE120∠=︒,45ABC∴∠=∠2CBEABC ABE=∠-∠=︒-︒4520=︒,25故选:A.【点睛】本题考查了平行线性质的应用,解此题的关键是正确作出辅助线.变式1.(2021·河北石家庄·一模)经过直线l 外一点O的四条直线中,与直线l相交的直线至少有()A.1条B.2条C.3条D.4条【答案】C【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线l平行的,只能是一条,即与直线l相交的直线至少有3条,故选:C.【点睛】本题考查了平行公理及推论,注意:经过直线外一点有且只有一条直线和已知直线平行.变式2.(2021·河南邓州·七年级期末)如图,一块直角三角尺的一个顶点落在直尺的一边上,若①2=25°,则①1的度数为()A.45°B.55°C.65°D.75°【答案】C【解析】【分析】如图,过直角顶点O作EF①AB,根据平行公理的推论可得EF①AB①CD,进而可得①2=①3,①1=①4,再结合①3+①4=90°即可求出答案.【详解】解:如图,过直角顶点O作EF①AB,由于AB①CD,则EF①AB①CD,①①2=①3,①1=①4,①①2=25°,①①3=25°,①①3+①4=90°,①①4=65°,①①1=65°.故选:C.【点睛】本题主要考查了平行公理的推论和平行线的性质,属于基本题型,熟练掌握平行线的性质是解题关键.变式3.(2020·湖南望城·七年级期末)直角三角板和直尺如图放置,若①1=70°,则①2的度数为()A.70°B.30°C.20°D.15°【答案】C【解析】【分析】过点F做FH①AD,先求出①3,再根据题意求出①4,最后根据平行线的性质即可求解.【详解】解:如图,过点F做FH①AD,①①1=①3=70°,由题意得①EFG=90°,AD①BC①FH①BC,①4=90°-①3=20°,①①2=①4=20°.故选:C【点睛】本题考查了平行公理推论,平行线的性质.解题关键是熟记相关定理,并能根据题意添加辅助线FH①AD.◎考点题型6同位角相等,两直线平行例.(2021·北京房山·七年级期末)下列图形中,由①1=①2能得到AB∥CD的图形有()个A.4B.3C.2D.1【答案】C【解析】【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此判断即可.【详解】解:第一个图形,①①1=①2,①AC ①BD ;故不符合题意;第二个图形,①①1=①2,①AB ①CD ,故符合题意;第三个图形,①①1=①2,①2=①3,①①1=①3,①AB ①CD ;第四个图形,①①1=①2不能得到AB ①CD ,故不符合题意;故选:C .【点睛】本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角. 变式1.(2022·广东阳山·八年级期末)如图,不能推出a ①b 的条件是( )A .①4=①2B .①3+①4=180°C .①1=①3D .①2+①3=180°【答案】B【解析】【分析】 根据平行线的判定方法,逐项判断即可.【详解】解:A 、2∠和4∠是一对内错角,当42∠=∠时,可判断//a b ,故A 不符合题意;B 、3∠和4∠是邻补角,当34180∠+∠=︒时,不能判定//a b ,故B 符合题意;C 、1∠和3∠是一对同位角,当13∠=∠时,可判断//a b ,故C 不合题意;D 、2∠和3∠是一对同旁内角,当23180∠+∠=︒时,可判断//a b ,故D 不合题意; 故选B .【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.变式2.(2021·重庆实验外国语学校七年级期中)如图,能判断a //b 的条件是( )A .①1=①2B .①2+①4=180°C .①4+①5=180°D .①2=①3【答案】B【解析】【分析】 同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行,再逐一判断各选项即可得到答案.【详解】解:1=2,//,c d ∠∠∴ 故A 不符合题意;2+4=180,//,a b ∠∠︒∴ 故B 符合题意;4+5=180//,c d ∠∠︒∴, 故C 不符合题意;2=3,//,c d ∠∠∴ 故D 不符合题意;故选:.B【点睛】本题考查的是平行线的判定,掌握平行线的判定方法是解题的关键.变式3.(2021·广东·江南外国语学校七年级期中)如图,以下四个条件:①①1=①3,①①2=①4,①①BAD +①D =180°,①①EAD =①B .其中能够判断AB ①DC 的条件有( )A .①①B .①①C .①①D .①①【答案】D【解析】【分析】 根据平行线的判定定理分别进行分析即可.【详解】解:若①1=①3,则AB ①DC ;若①2=①4,则AD ①BC ;若①BAD +①D =180°,则AB ①DC ;若①EAD =①B ,则AD ①BC ;故选:D .【点睛】此题主要考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.◎考点题型7内错角相等,两直线平行例.(2021·重庆·七年级期中)如图,点E 在CD 延长线上,下列条件中不能判定//AB CD 的是( )A .12∠=∠B .34∠=∠C .5B ∠=∠D .180B BDC ∠+∠=︒【答案】A【解析】【分析】 根据平行线的判定方法直接判定即可.【详解】解:选项B 中,34∠∠=,//AB CD ∴(内错角相等,两直线平行),所以正确; 选项C 中,5B ∠=∠,//AB CD ∴(内错角相等,两直线平行),所以正确;选项D 中,180B BDC ∠+∠=︒,//AB CD ∴(同旁内角互补,两直线平行),所以正确; 而选项A 中,1∠与2∠是直线AC 、BD 被AD 所截形成的内错角,因为12∠=∠,所以应是//AC BD ,故A 错误.故选:A .【点睛】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.变式1.(2022·辽宁丹东·八年级期末)如图,①13∠=∠,①23∠∠=,①14∠=∠,①25180+=︒∠∠可以判定b c ∥的条件有( ).A .①①①B .①①①C .①①①D .①①①①【答案】A【解析】【分析】 根据平行线的判定定理逐个排查即可.【详解】解:①由于①1和①3是同位角,则①可判定b c ∥;①由于①2和①3是内错角,则①可判定b c ∥;①①由于①1和①4既不是同位角、也不是内错角,则①不能判定b c ∥;①①由于①2和①5是同旁内角,则①可判定b c ∥;即①①①可判定b c ∥.故选A .【点睛】本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.变式2.(2021·上海·七年级期末)如图,一定能推出AB CD ∥的条件是( )A .DAC ACB ∠=∠ B .ADC DCE ∠=∠ C .ABC ACD ∠=∠ D .ABC DCE ∠=∠【解析】【分析】平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.【详解】解:A .DAC ∠和ACB ∠是直线AD 和BC 被直线AC 所截所成的内错角,DAC ACB ∴∠=∠不能推出AB CD ∥,故本选项不符合题意;B .ADC ∠和DCE ∠是直线AD 和BC 被直线DC 所截所成的内错角,ADC DCE ∴∠=∠不能推出AB CD ∥,故本选项不符合题意;C .ACD ∠和BAC ∠是直线AB 和CD 被直线AC 所截所成的内错角,但不能判定ABC BAC ∠=∠,∴不能判定ACD BAC ∠=∠,ABC ∠和DCE ∠是直线AB 和CD 被直线BC 所截所成的同位角,但不能判定ACD DCE ∠=∠,∴不能判定ABC DCE ∠=∠,ABC ACD ∴∠=∠不能推出AB CD ∥,故本选项不符合题意;D .ABC ∠和DCE ∠是直线AB 和DC 被直线BC 所截所成的同位角,ABC DCE ∴∠=∠能推出AB CD ∥,故本选项符合题意;故选:D .【点睛】本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键. 变式3.(2021·山东郯城·七年级期末)下列图形中,由①1=①2,能得到AB ①CD 的是( )A .B .C .D .【答案】C【分析】根据平行线的判定定理逐项分析即可.【详解】解:A 、①1=①2,不能判断//AB CD ,故该选项不正确,不符合题意;B 、12∠=∠,//AC BD ∴,故该选项不正确,不符合题意;C 、①12∠=∠,∴//AB CD ,故该选项正确,符合题意;D 、①1=①2,不能判断//AB CD ,故该选项不正确,不符合题意.故选C .【点睛】本题考查了内错角相等,两直线平行,掌握平行线的判定定理是解题的关键.◎考点题型8同旁内角互补,两直线平行例.(2021·安徽长丰·七年级期末)如图,点D ,E 分别是AB ,AC 上的点,连接DE ,CD ,则下列条件不能判定DE ①BC 的是( )A .①AED =①ACDB .①ADE =①BC .①EDC =①DCBD .①DEC +①ACB =180°【答案】A【解析】【分析】 同位角相等,则两直线平行;内错角相等,则两直线平行 ;同旁内角互补,则两直线平行;根据这三点对四个选项逐一判断.【详解】A 、∠AED =∠ACD ,不能判定DE ∥BC ,不符合题意;B 、∠ADE =∠B ,同位角相等,则两直线平行,能判定DE ∥BC ,符合题意; C 、∠EDC =∠DCB ,内错角相等,则两直线平行,能判定DE ∥BC ,符合题意;D 、∠DEC +∠ACB =180°,同旁内角互补,则两直线平行,能判定DE ∥BC ,符合题意. 故选:A .【点睛】本题考查两直线平行的判定,掌握相关角度之间的关系推断平行时本题解题关键. 变式1.(2021·全国·七年级课时练习)如图所示,下列条件( )成立时,//AD BC .A .23∠∠=B .14∠=∠C .1234∠+∠=∠+∠D .180A C ∠+∠=︒ 【答案】A【解析】【分析】根据平行线的判定定理逐一判断,排除错误答案.【详解】解:A 、正确,根据内错角相等,两直线平行;B 、错误,由内错角相等,两直线平行,得出AB //CD ,而不是//AD BC ;C 、错误,①1+①2=①3+①4,即①ABC =①ADC ,无法说明//AD BC ;D 、错误,①A +①C =180°,但这两个角不是同旁内角,所以无法说明//AD BC . 故选:A .【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.变式2.(2020·贵州·铜仁一中实验学校八年级阶段练习)下列图形中,由①1=①2,能得到AB ①CD 的是( ).A .B .C.D.【答案】C【解析】【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【详解】解:A、①1、①2是同旁内角,由①1=①2不一定能判定AB①CD,故本选项错误;B、①1、①2是内错角,由①1=①2能判定AC①BD,故本选项错误;C、①1、①2是内错角,由①1=①2能判定AB①CD,故本选项正确;D、①1、①2是四边形中的对角,由①1=①2不能判定AB①CD,故本选项错误;故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.变式3.(2021·广东·佛山市华英学校七年级阶段练习)如图,在下列给出的条件中,不能判定AB∥EF的是()A.∠B+∠2=180°B.∠1=∠4C.∠B=∠3D.∠1=∠B【答案】D【解析】【分析】根据平行线的判定逐项进行判断即可.【详解】解:A、①①B+①2=180,①AB ①EF (同旁内角互补,两直线平行),不符合题意;B 、①①1=①4,①AB ①EF (内错角相等,两直线平行),不符合题意;C 、①①B =①3,①AB ①EF (同位角相等,两直线平行),不符合题意;D 、①①1=①B ,①BC ①DF (同位角相等,两直线平行),不能证出AB ①EF ,符合题意.故选:D .【点睛】本题主要考查平行线的判定方法,掌握平行线的判定方法是解题的关键,即①同位角相等⇔两直线平行,①内错角相等⇔两直线平行,①同旁内角互补⇔两直线平行.◎考点题型9垂直于同一直线的两直线平行例.(2021·河北·石家庄外国语学校七年级期末)如图所示,AC BC ⊥,DE BC ⊥,CD AB ⊥,40ACD ∠=︒,则BDE ∠等于( )A .40︒B .50︒C .60︒D .不能确定【答案】B【解析】【分析】 利用AC BC ⊥,DE BC ⊥推出DE ①AC ,求出①EDC 的度数,再根据CD AB ⊥求出答案.【详解】AC BC ⊥,DE BC ⊥,//DE AC ∴,40EDC ACD ∴∠=∠=︒又CD AB ⊥,90BDE EDC ∴∠=︒-∠904050=︒-︒=︒,故选:B .【点睛】此题考查两直线平行内错角相等,垂直于同一条直线的两直线平行,互余角的求法,正确理解平行线的性质是解题的关键.变式1.(2019·上海虹口·七年级阶段练习)下列推理判断正确的是( )A .a①b ,b①c ,c①d ,∴a①dB .1l ①2l ,2l 3l ⊥,1l ∴①3l (123l l l 在同一平面内)C .如图,AB①CD,12∠∠∴=D .如图,AD①BC,34∴∠=∠【答案】A【解析】【分析】根据平行线的判定与性质进行判断即可.【详解】 A.a①b ,b①c ,c①d ,∴a①d ,正确; B. 1l ①2l ,2l 3l ⊥,1l ∴①3l (123l l l 在同一平面内),故此选项错误;C. 如图,AB①CD,34∴∠=∠,故此选项错误;D. 如图,AD①BC,12∠∠∴=,故此选项错误.故选A.【点睛】本题主要考查了平行线的判定与性质,熟练掌握判定与性质是解决问题的关键.变式2.(2021·辽宁营口·七年级期末)如图,①ABC 中,AH①BC ,BF 平分①ABC ,BE①BF ,EF①BC ,以下四个结论:①AH①EF ,①①ABF=①EFB ,①AC①BE ,①①E=①ABE ,正确的是( )A .①①①①B .①①C .①①①D .①①①【答案】D【解析】【详解】 解:①AH①BC ,EF①BC ,①①AH①EF正确;①BF平分①ABC,①①ABF=①CBF,①EF①BC,①①EFB=①CBF,①①①ABF=①EFB正确;①BE①BF,而AC与BF不一定垂直,①BE①AC不一定成立,故①错误;①BE①BF,①①E和①EFB互余,①ABE和①ABF互余,而①EFB=①ABF,①①①E=①ABE正确.故选D.变式3.(2020·辽宁黑山·七年级期中)如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;①内错角相等,两直线平行;①同旁内角互补,两直线平行;①平面内垂直于同一直线的两条直线平行.A.①①①B.①①①C.①①①D.①①【答案】C【解析】【详解】解:如图①①1=①2=90°①①1+①2=180°,①a//b;①①1=①3=90°①a//b;①a①c,b①c,①a//b故①①①正确;故选C考点:平行线的判定。
浙教版七年级数学下册第一章《平行线复习》优课件 (2)
10.如图,AB∥CD, ∠1=50 °,∠2=110°,
∠3=( B)
A.50° B.60° C.70° D.80°
A
13
D
2
l1
B
24
C1
3
4
l2
11.如图,直线l1 ∥ l2,一块含30 °角 的直角三角板如图放置,若∠1=25 °,
则∠2等于( D ) A.20° B.25° C.30° D.35°
角.
②∠1 和 ∠ 3 是 直 线 __A_B__
A
和直线__A_C__被直线_D_E___ 所截而成的_同__位_角.
B
D1 7 26
3E 4
5C
③∠4和∠5是直线__D_E___和直线__B_C___
被直线__A_C__所截而成的_内__错_角.
④∠2和∠5是直线__A_B___和直线__A_C___ 被直线__B_C__所截而成的_同__旁__内___角.
若AB∥CD, 则∠ 1=∠ 。2
A
A1
B
32 4
D
C
E
1 B
2F
43
D
C
2.在下列给出的条件中,不能判定AB∥DF
的是( D)
A.∠A+∠2=180° B. ∠A=∠3
C. ∠1=∠4 D. ∠1=∠A
3.∠ABC=70°,∠ACB=50°,BO、CO
分别平分∠ABC和∠ACB,DE过点O与BC
AC
l1
A
C
l1
P
B
D l2
B
D
l2
P
15.如图,平面镜OA,OB的夹角为50度,
若要使一条光线经两个镜面反射后沿与OA
七年级数学下册 平行线的性质2
5.3.1 平行线的性质(2)教学目标1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.重点、难点重点:平行线性质和判定综合应用难点:平行线性质和判定灵活运用.教学过程一、复习引入问题:(1)平行线的三条性质分别是什么?(2)平行线的三条性质运用的前提是什么?二、新课教学练一练:1.如左下图,AB ,CD 被EF 所截,AB//CD.按要求填空:若∠1=120°,则∠2= °( );∠3=___- ∠1=__° ( )2.如右上图,已知AB//CD ,AD//BC .填空:(1)∵ AB//CD (已知),∴ ∠1= ∠ ( );(2) ∵ AD//BC (已知)∴ ∠2= ∠ ( )∠1= ∠ ( )探究点一:先用判定再用性质如图,C ,D 是直线AB 上两点,∠1+∠2=180°,DE 平分∠CDF ,EF ∥AB .(1)CE 与DF 平行吗?为什么?(2)若∠DCE =130°,求∠DEF 的度数.解析:(1)由∠1+∠DCE =180°,∠1+∠2=180°,可得∠2=∠DCE ,即可证明CE ∥DF ;(2)由平行线的性质,可得∠CDF =50°.由DE 平分∠CDF ,可得∠CDE =12∠CDF =25°.最后根据“两直线平行,内错角相等”,可得到∠DEF 的度数.解:(1)CE ∥DF .理由如下:∵∠1+∠2=180°,∠1+∠DCE =180°,∴∠2=∠DCE ,∴CE ∥DF ;(2)∵CE ∥DF ,∠DCE =130°,∴∠CDF =180°-∠DCE =180°-130°=50°.∵DE平分∠CDF ,∴∠CDE =12∠CDF =25°.∵EF ∥AB ,∴∠DEF =∠CDE =25°. 方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.练一练:3. 如图,AB ∥CD ,BE 平分∠ABC ,CF 平分∠BCD ,你能发现BE 与CF 的位置关系吗?说明理由探究点二:先用性质再用判定如图,已知DF ∥AC ,∠C =∠D ,CE 与BD 有怎样的位置关系?说明理由.解析:由图可知∠ABD 和∠ACE 是同位角,只要证得同位角相等,则CE ∥BD .由平行线的性质结合已知条件,稍作转化即可得到∠ABD =∠C .解:CE ∥BD .理由如下:∵DF ∥AC ,∴∠D =∠ABD .∵∠C =∠D ,∴∠ABD =∠C ,∴CE ∥BD .方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB ∥CD ,E ,F 分别是AB ,CD 之间的两点,且∠BAF =2∠EAF ,∠CDF =2∠EDF .(1)判定∠BAE ,∠CDE 与∠AED 之间的数量关系,并说明理由;(2)∠AFD 与∠AED 之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED =∠BAE +∠CDE .理由如下:如图,过点E 作EG ∥AB .∵AB ∥CD ,∴AB ∥EG ∥CD ,∴∠AEG =∠BAE ,∠DEG =∠CDE .∵∠AED =∠AEG +∠DEG ,∴∠AED =∠BAE +∠CDE ;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE+∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD . 方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.F E D C B A三、课堂小结:说说这节课的收获四、布置作业:课堂作业:P24 8、13 家庭作业:基础训练。
北师大版七下数学2.3.2平行线的性质教案
北师大版七下数学2.3.2平行线的性质教案一. 教材分析《北师大版七下数学》2.3.2平行线的性质是学生在学习了直线、射线、线段以及平行线的基本概念之后的一个单元。
本节课主要引导学生探究平行线的性质,让学生通过观察、猜想、验证、归纳等过程,理解和掌握平行线的性质,培养学生的逻辑思维能力和空间想象力。
教材中提供了丰富的素材,通过学生的自主探究和合作交流,使学生能够深刻理解并熟练运用平行线的性质。
二. 学情分析学生在进入七年级之前,已经初步学习了直线、射线、线段等基本概念,对图形有了一定的认识。
但是,对于平行线的性质,他们可能还停留在直观的感受上,缺乏系统的理论支持。
因此,在教学过程中,教师需要从学生的实际出发,通过引导、启发、激励,让学生主动参与学习,提高他们的自主学习能力。
三. 教学目标1.理解平行线的性质,并能够熟练运用。
2.培养学生的观察能力、猜想能力、验证能力和归纳能力。
3.培养学生的逻辑思维能力和空间想象力。
4.培养学生的合作意识和团队精神。
四. 教学重难点1.重点:平行线的性质。
2.难点:平行线性质的证明和运用。
五. 教学方法1.引导法:教师通过提出问题,引导学生思考,激发学生的学习兴趣。
2.探究法:学生通过观察、猜想、验证、归纳等过程,自主探究平行线的性质。
3.合作交流法:学生分组进行讨论,分享学习心得,互相学习,共同进步。
六. 教学准备1.准备相关的图形素材,如直线、射线、线段、平行线等。
2.准备黑板、粉笔等教学工具。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段等基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示直线、射线、线段和平行线的图形,让学生观察并猜想平行线的性质。
3.操练(10分钟)教师引导学生进行小组讨论,分享各自的猜想,并尝试用已知知识验证平行线的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师挑选一些典型的题目让学生进行练习,巩固对平行线性质的理解和运用。
第二节 平行线的性质和判定(含答案)...七年级数学 学而思
第二节 平行线的性质和判定1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a∥b; 注:必须强调在同一平面内,否则无法说明平行.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行,注:点必须在直线外,而不能在直线上; (3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也相互平行,即“平行于同一条直线的两直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行,注:判断同一平面内两条直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行. 3.两直线平行的判定方法 (1)平行线的定义; (2)平行公理的推论;(3)同位角相等,两直线平行; (4)内错角相等,两直线平行; (5)同旁内角互补,两直线平行. 4.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.1.平行的判定和证明:证明平行一般从寻找相等的同位角,内错角或互补的同旁内角 出发,而这些角关系的获得条件一般有: ①已知平行条件; ②三角形内角和; ③角平分线; ④垂直;⑤互余互补关系.例1.如图5-2-1所示,如果,//,//CD EF EF AB 请写出一个关于3,2,1∠∠∠的等量关系125-- 225-- 325--检测1.如图5-2-2所示,已知a ‖b,0701=∠,,402ο=∠则=∠3 例2.如图5-2-3所示,已知,9021ο=∠+∠,,//AG CD FC DE ⊥求证:.//FH AG检测2.如图5-2-4所示,直线a ,b 被直线c 所截,下列条件能使b a //的是;61∠=∠①;62∠=∠②;31∠=∠③;75∠=∠④+∠2⑤;1807ο=∠.71∠=∠⑥例3.(江西兴国县期末)学习了平行线后,小龙同学想出了“过已知直线m 外一点P 画这条直线的平行线的新方法”,他是通过折一张半透明的正方形纸得到的.525--观察图5-2-5所示,经两次折叠展开后折痕CD 所在的直线即为过点P 的已知直线m 的平行线.从图中可知,小明画平行线的依据有( )①两直线平行,同位角相等; ②两直线平行,内错角相等; ③同位角相等,两直线平行; ④内错角相等,两直线平行. A.①② B.②③ C .③④ D .①④425--检测3.如图5-2-6所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在C D ,的位置,若,60ο=∠EFB 则=∠AED例4.已知,,100,//ο=∠=∠A B OA BC 试回答下列问题:725-- 825-- 925--(1)如图5-2-7所示,求证:;//AC OB(2)如图5-2-8所示,若点E ,F 在线段BC 上,且满足,AOC FOC ∠=∠并且OE 平分.BOF ∠则EOC ∠的度数等于 (在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC ,如图5-2-9,那么OFB OCB ∠∠:的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值; (4)在(3)的条件下,如果平行移动AC 的过程中,若使,OCA OEB ∠=∠此时OCA ∠度数等于 (在横线上填上答案即可).检测4.(广东澄海区期末)如图5 -2 -10所示,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由; (2)如图5-2 -11所示,BEF ∠与FFD ∠的角平分线交于点P ,EP 与CD 交于点G .点H 是MN 上一点,且GHlEG ,求证:;//GH PF(3)如图5-2 -12所示,在(2)的条件下,连接PH ,K 是GH 上一点使=∠PHK ,HPK ∠作PQ 平分EPK ∠问HPQ ∠的大小是否发生变化?若不变,请求出其值;若变化,说明理由,625---122-5-5--1110225-第二节平行线的性质和判定(建议用时 35分钟)实战演练1.(浙江绍兴期末)如图5-2-1所示,,//,////DB EG DC EF AB 则图中与1∠相等的角(1∠除外)共有( )6.A 个 5.B 个 4.C 个 3.D 个2.(浙江金华中考)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线以,6互相平行的是( )125-- 225-- 325-- 425-- 525--A .如图5-2-2所示,展开后测得21∠=∠B .如图5-2-3所示,展开后测得4321∠=∠∠=∠且C .如图5-2-4所示,测得21∠=∠D .如图5-2-5所示,展开后再沿CD 折叠,两条折痕的交点为0,测得,OB OA =OD =OC3.如图5-2-6所示是五条胡同的路线图,),(F F D C B A →--→→→经过测量得到C B ∠=∠,70ο=,110ο=∠=∠E D 则图中互相平行的线有( )A .1对B .2对C .3对D .4对625-- 725-- 825-- 925--4.(山东聊城中考)如图5-2-7所示,,//CD AB ,68ο=∠B ,20ο=∠E 则D ∠的度数为( )ο28.A o B 38. ο48.C ο88.D5.如图5-2-8所示,HG EF BC AD ,,//交于点HI P ,平分,GHF ∠PM 平分EPH ∠HI 交PM 的反向延长线于Q ,//PN,HI 下列结论:,GEP EGP ∠=∠①若则;//AD PM 2=∠GEP ②;MPN ∠,2Q FPN ∠=∠③其中正确的是( )①②③.A ①③.B ②③.C ①②.D6,(山东聊城模拟)如图5-2-9所示,在四边形ABCD 中,=∠B ,120ο,50oD =∠将C ∠向内折出一个,PRC ∆恰好使,//AB CP //CR ,AD 则C ∠的度数是( )ο80.A ο85.B ο95.C o D 110.7.如图5 -2 - 10所示,已知,AB GF ⊥,21∠=∠,B AGH ∠=∠则下列结论:;//BC GH ①;HGM D ∠=∠②;//FG DE ③,AB HE ⊥④其中正确的是( )①②⋅A ③ ②③④⋅B ①③④⋅C ①②③④⋅D1125-- 1225--8.(广西玉州区期末)如图5 -2 - 11所示,已知BAD CD AB ∠,//和BCD ∠的平分线交于点E .,1001ο=∠,m BAD =∠ο则EC A ∠的度数为9,如图5 -2 - 12所示,直线,//21l l 若,125ο=∠A ,85ο=∠B 则=∠+∠21 10.如图 5 -2 - 13所示,已知,180ο=∠+∠BCD B .D B ∠=∠求证:.DFE E ∠=∠证明:οΘ180=∠+∠BCD B ( )CD AB //∴( )=∠∴B (两直线平行,同位角相等), D B ∠=∠Θ(已知), D DCE ∠=∠∴(等量代换), BF AD //∴( )DFE E ∠=∠∴( )11.如图5 -2 - 14所示,直线AB ,CD 被EF 所截,,21∠=∠,BME CNF ∠=∠求证:AB ,//CD .//NQ MP12.(山东招远市期耒)如图5-2 -15所示,点D ,E 分别在ABC ∆的边AB ,AC 上,点F 在DC 上,且,18021ο=∠+∠.3B ∠=∠求证:.//BC DE1325--1425--1525--13.小明将一直角三角板(ο30=∠A )放在如图5 -2 - 16所示的位置,且.21C ∠=∠+∠ (1)证明:;//b a(2)经测量知,1A ∠=∠求;2∠(3)如图5-2 - 17所示,将三角板进行适当转动,直角顶点始终在两直线间,M 在线段CD 上,且CEH CEM ∠=∠给出下列结论:BDFMEG∠∠①的值不变:BDF MEG ∠-∠②的值不变,可以证明,其中只有一个是正确的,请你作出正确的选择并直接写出此值,1625-- 1725--14.如图5-2-18所示,.F D B E C A ∠+∠+∠=∠+∠+∠求证:.//CD AF15.问题情景:如图5-2 - 19所示,,//CD AB ,130oPAB =∠,120ο=∠PCD 求APC ∠的度数. (1)天天同学看过图形后立即口答出:,110oAPC =∠请你补全他的推理依据.如图5 -2 - 20所示,过点P 作,//AB PE,//CD AB ΘCD AB PE ////∴( .180ο=∠+∠∴APE Aο180=∠+∠CPE C ( ),120,130οΘ=∠=∠PCD PAB O.60.50ο=∠=∴⊥CPE APE o1825--ο110=∠+∠=∠∴CPE APE APC ( )问题迁移:(2)如图5-2- 21所示,,//BC AD 当点P 在A ,B 两点之间运动时,,α∠=∠ADP ,β∠=∠BCP 求βα∠∠∠,与CPD 之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P 在A ,B 两点外侧运动时(点P 与点A ,B ,0三点不重合),请你直接写出CPD ∠与βα∠∠,之间的数量关系.1925-- 2025-- 2125--拓展创新16.(辽宁鞍山期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图5 -2 - 22所示,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被6反射出的光线n 与光线m 平行,且,381ο=∠则=∠2 ;=∠3(2)在(1)中,若ο551=∠则=∠3 ;若,401ο=∠则=∠3(3)由(1).(2)猜想:当两平面镜a ,b 的夹角=∠3 时,可以使任何射到平面镜a 上的光线m ,经过平面镜a ,b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?拓展1.有一款灯,内有两面镜子AB ,BC ,当光线经过镜子反射时,入射角等于反射角,即图5 -2 - 23、图5-2 -24中的.43,21∠=∠∠=∠2225--2325-- 2425--(1)如图5 -2 - 23所示,当BC AB ⊥时,说明为什么进入灯内的光线EF 与离开灯的光线GH 互相平行; (2)如图5-2 - 24所示,若两面镜子的夹角为)900(οο<<αα时,进入灯内的光线与离开灯的光线的夹角为),900(οο<<ββ试探索α与β的数量关系;(3)若两面镜子的夹角为),18090(οο<<αα进入灯内的光线与离开灯的光线所在直线的夹角为).900(οο<<ββ直接写出α与β的数量关系.拓展2.(湖北武昌区期末)一个长方形台球桌面ABCD )90,//,//(ο=∠A BC AD DC AB 如图5 -2 - 25所示,已知台球在与台球桌边沿碰撞的过程中,撞击线路与桌边的夹角等于反射线路与桌边的夹角,即.21∠=∠(1)台球经过如图5 -2 - 26所示的两次反弹后,撞击线路EF ,第二次反弹线路GH , 求证:;//GH EF(2)台球经过如图5 -2 - 27所示的两次反弹后,撞击线路EF 和第二次反弹线路GH 是否仍然平行,给出你的结论并说明理由.2525-- 2625-- 2725--极限挑战17.平面上有100条直线,其中有20条是互相平行的,问这100条直线最多能将平面分成部分,课堂答案培优答案。
七年级下册数学平行线及其判定
七年级下册数学平行线及其判定平行线及其判定一、什么是平行线在数学中,平行线指的是两条线段在共线的情况下,两条线段的端点不重合,其余点在这两条线段上都存在。
它们在每一条垂直于这两条线段的直线上,都有两个相对对称的直线,这样它们才能称之为平行线。
二、平行线判定1、直角三角形平行线判定一个直角三角形有两条斜边,如果其中任意一条斜边与直角边平行,则另外一条斜边也必定与直角边平行,因此斜边两条线段相互也是平行的。
2、锐角三角形平行线判定对于锐角三角形,根据角平行定理,其中任意两条边所对的角是相等的,那么当两条边所在的直线交于相同的角点时,这两条边所在的线段就是平行线。
3、同长角相等平行线判定倘若一个四边形有两条对角线,其中任意两个角的长度和两个角的大小都相等,那么对角线所在的线段便是平行的。
4、直角三角形内连接平行线判定如果一个三角形是直角三角形,它的两个斜边上各准备了一条连接线,则两条连接线在垂直于直角边的水平线上,一定是平行的,因为斜边所在的两条线段也是平行线。
三、平行线的性质(1)平行线恒有相同距离,任何两个任意点(包括其端点)到平行线的投影都有相同的距离;(2)平行线内任何一条线段,到两个平行线的投影都有相同的距离;(3)平行线之间任何一点的投影到平行线的端点都有相同的距离;(4)在两个平行的线段上的一点,它到两条平行线的距离都是相等的。
四、结论平行线是数学中一个重要的概念,它在解决几何问题中有着重要的作用。
因为之前的分析,我们可以得出,平行线有其特殊的性质,其中比较重要的是恒有相同距离,可以给几何问题带来极大的方便,可以帮助我们准确地判断两条线段是否是平行线。
人教版数学七年级下册平行线教学课件2
不努力,理想与现实永远不会相交;
平行线定义:在同一平面内,不相交的两条直线叫做平行线。
03课堂练习 那么过直线外一点作直线的平行线能画几条呢?
经过直线外一点,有且只有一条直线与这条直线平行.(平行公理)
因为AB//EF,CD//EF
因为AB//EF,CD//EF
也就是说,AB与CD不能相交,只能平行。
经过直线外一点有且只有一条直线与已知直线平行
2.相交、垂直 人教版七年级数学下册第五章相交线与平行线
经过直线外一点,有且只有一条直线与这条直线平行.(平行公理)
那么直线AB与CD可能相交吗?
3.平行、垂直 说明:人们在长期实践中总结出来的结论叫基本
如图:AB与CD平行吗?这又说明了什么? 如何表示它们之间的位置关系呢?
平行线画法:一贴、二靠、三移、四画。
4.相交、垂直、平行 完成下列推理,并在括号内
人教版七年级数学下册第五章相交线与平行线
那么过直线外一点作直线的平行线能画几条呢?
∴A、B、C三点______(
)
如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
探究二:平行线的画法(画一画)
(1)贴 (2)靠 (3)移 (4)画
平行公理:经过直线外一点,有且只有一条直线 与这条直线平行(唯一性)。
平行公理的推论:如果两条直线都和第三条直线 平行,那么这两条直线也互相平_EF(
)
寄语
每个图形中的两条直线会相交吗?
平行于同一直线的两条直线平行.
完成下列推理,并在括号内
因为AB//EF,CD//EF
现实 只要努力,理想也会变成现实. 作图:会用直尺和三角板画平行线,会根据几何语句画出图形;
平行线定义:在同一平面内,不相交的两条直线叫做平行线。
七年级数学平行线的判定和性质(二)(北师版)(含答案)
学生做题前请先回答以下问题问题1:在同一平面内,__________的两条直线叫做平行线.问题2:平行线的判定定理:①____________________,两直线平行;②____________________,两直线平行;③____________________,两直线平行.问题3:平行线的性质定理:①两直线平行,____________________;②两直线平行,____________________;③两直线平行,____________________.问题4:平行线的判定定理是用来判定两条直线平行的定理,即已知角的关系证明平行,用平行线的判定定理.平行线的性质定理是由直线平行,可以得到的结论,即已知平行求角的关系,用平行线的性质定理.请根据下面推理,填写推理的依据.①已知:如图,直线a和直线b被直线c所截,∠1=∠2.求证:a∥b.证明:∵∠1=∠2(已知)∴a∥b(_______________________________)①已知:如图,直线a和直线b被直线c所截,a∥b.求证:∠1=∠2.证明:∵a∥b(已知)∴∠1=∠2(_______________________________)平行线的判定和性质(二)(北师版)一、单选题(共10道,每道10分)1.如图,直线DE经过点A,若∠B=∠DAB,则DE∥BC,其依据是( )A.两直线平行,内错角相等B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.内错角相等答案:B解题思路:条件是∠B=∠DAB,结论是DE∥BC,且∠B和∠DAB是直线DE和直线BC被直线AB所截得到的内错角,由内错角相等得到两直线平行,依据是内错角相等,两直线平行,故选B.试题难度:三颗星知识点:平行线的判定2.如图,已知D,E在△ABC的边上,DE∥BC,可得∠ADE=∠B,依据是( )A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等D.同位角相等,两直线平行答案:A解题思路:条件是DE∥BC,结论是∠ADE=∠B.∠ADE和∠B是直线DE和直线BC被直线AB所截得到的同位角,由两直线平行得到同位角相等,依据是两直线平行,同位角相等,故选A.试题难度:三颗星知识点:平行线的性质3.如图,直线,分别与直线,相交,若∥,则∠1=_________,依据是_____________.( )A.∠2;两直线平行,内错角相等B.∠3;两直线平行,内错角相等C.∠2;内错角相等,两直线平行D.∠3;内错角相等,两直线平行答案:B解题思路:由平行得角的关系,先找截线,观察图形,与∠1有关的截线是直线,∠1和∠3是由直线和直线被直线所截得到的内错角,由∥,可以得到∠1=∠3,依据是两直线平行,内错角相等,故选B.试题难度:三颗星知识点:平行线的性质4.如图,若AB∥EF,则∠ADE=_________,依据是_____________.( )A.∠B;两直线平行,同位角相等B.∠DEF;内错角相等,两直线平行C.∠DEF;两直线平行,内错角相等D.∠CEF;两直线平行,同位角相等答案:C解题思路:由平行得角的关系,先找截线,观察图形,与∠ADE有关的截线是直线DE,∠ADE和∠DEF是由直线AB和EF被直线DE所截得到的内错角,若AB∥EF,则∠ADE=∠DEF,理由是两直线平行,内错角相等,故选C.试题难度:三颗星知识点:平行线的性质5.如图,两直线a,b被直线c所截形成八个角,若a∥b,则下列结论错误的是( )A.∠1=∠2B.∠3+∠8=180°C.∠5=∠6D.∠7+∠8=180°答案:D解题思路:A选项:∵a∥b(已知)∴∠1=∠2(两直线平行,内错角相等)故A选项结论正确;B选项:∵a∥b(已知)∴∠3+∠2=180°(两直线平行,同旁内角互补)∵∠8=∠2(对顶角相等)∴∠3+∠8=180°(等量代换)故B选项结论正确;C选项:∵a∥b(已知)∴∠3=∠6(两直线平行,同位角相等)∵∠3=∠5(对顶角相等)∴∠5=∠6(等量代换)故C选项结论正确;D选项:∵a∥b(已知)∴∠1=∠8(两直线平行,同位角相等)∵∠1=∠7(对顶角相等)∴∠7=∠8(等量代换)故D选项结论错误.故选D.试题难度:三颗星知识点:平行线的性质6.如图,若AD∥BC,则一定正确的是( )A.∠1=∠2B.∠3=∠4C.∠1=∠2,∠3=∠4D.∠2=∠3答案:B解题思路:根据平行线的性质,由AD∥BC,要找角之间的关系,需要找两条平行直线AD和BC被第三条直线所截得到的角,四个选项中,只有∠3和∠4是两条平行直线AD和BC被直线BD所截得到的内错角,根据两直线平行,内错角相等,得∠3=∠4,故选B.试题难度:三颗星知识点:平行线的性质7.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE答案:D解题思路:要证平行,考虑找同位角,内错角,同旁内角,分析可得只有选项D中,∠A与∠ABE是直线EB和直线AC被直线AB所截的内错角,根据内错角相等,两直线平行,可以判定EB∥AC,故选D.试题难度:三颗星知识点:平行线的判定8.如图,若BE∥CF,则一定正确的是( )A.∠1=∠2B.∠3=∠4C.AB∥CDD.∠ABC=∠BCD答案:B解题思路:根据平行线的性质,由BE∥CF,可以得到角之间的关系,需要找两条平行直线BE和CF被第三条直线所截得到的角,只有∠3和∠4是两条平行直线BE和CF被直线BC所截得到的内错角,根据两直线平行,内错角相等,得∠3=∠4,故选B.试题难度:三颗星知识点:平行线的性质9.如图,DE∥BC,则下列结论正确的( )A.∠1=∠3B.∠2=∠3C.∠4=∠CD.∠2=∠C答案:B解题思路:根据平行线的性质,由DE∥BC,可以得到角之间的关系,需要找两条平行直线DE和BC被第三条直线所截得到的角,分析可得只有∠2和∠3是两条平行线DE和BC被直线BE所截得到的内错角,根据两直线平行,内错角相等,得∠2=∠3,故选B.试题难度:三颗星知识点:平行线的性质10.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,则∠1的度数为( )A.35°B.40°C.45°D.50°答案:B解题思路:解:如图,∵AD平分∠BAC(已知)∴∠BAC=2∠BAD(角平分线的定义)∵∠BAD=70°(已知)∴∠BAC=2×70°=140°(等量代换)∵AB∥CD(已知)∴∠1+∠BAC=180°(两直线平行,同旁内角互补)∴∠1=40°(等式的性质)故选B.试题难度:三颗星知识点:平行线的性质。
专题02 平行线的判定与性质(原卷版)七年级数学下册
专题02平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴∥()∴∠EDC=∠DCB()又∠EDC=∠GFB(已知)∴∠DCB=(等量代换)∴∥()2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE(①),因为EF平分∠CED(已知),所以∠DEF=②(角平分线的定义),所以∠CFE=∠CEF(③),因为∠A=∠CFE(已知),所以∠A=④(等量代换),所以EF∥AB(⑤).3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD()∴∠BEF=()∵∠B=∠ADG(添加条件)∴BC∥()∴∠CDG=()∴∠BEF=∠CDG().5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3,∴∠2=,(等量代换)∴AE∥FD∴∠A=∠BFD∵∠A=∠D(已知)∴∠D=(等量代换)∴∥CD∴∠B=∠C.6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE=,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC=(),∴EF∥(),又∵AB∥EF,∴AB∥CD().12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°(),∠AMC+∠AMD=180°(),所以∠BAM=∠AMC().因为AE平分∠BAM,所以().因为MF平分∠AMC,所以,得(),所以().13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC()∴∠1=()∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°()∴∠BDF=∠EFC=90°∴BD∥EF()∴∠2=()∴∠1=∠2()14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ=;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E=90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α=°时,DE∥BC,当∠α=°时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.。
平行线的判定(第2课时)平行线判定方法的综合运用-七年级数学下册讲练课件(人教版)
2. 用两块相同的三角板按如图所示的方式作平行线,能解释其中 道理是什么?
解:内错角相等,两直线平行
当堂巩固
1. 如图所示,已知∠D=∠A,∠B=∠FCB,试问ED与CF平行吗?为什么?
解:ED与CF平行.理由如下: ∵∠D =∠A ∴ED // AB (内错角相等Байду номын сангаас两直线平行) ∵∠B =∠FCB ∴AB // CF(内错角相等,两直线平行) ∴ED // CF (如果两条直线都和第三条直线平行,那么这两条直线互相平行)
证明:∵∠1=∠2(已知) ∠ABF=∠1(对顶角相等) ∠BFG=∠2(____________) ∴∠ABF=______(等量代换) ∵BE 平分∠ABF(已知) ∴ EBF 1 ______(____________)
2 ∵FC 平分∠BFG(已知) ∴ CFB 1 ______(____________)
人教版 七年级数学下册 第5章 相交线与平行线
5.2.2 平行线的判定
第2课时 平行线判定方法的综合运用
学习目标
1. 会综合运用平行线的判定定理. 2. 会选择合适的判定定理解决问题.
知识回顾 到目前为止,判定两直线平行的方法有哪些?
(1)定义法:(这条不实用) (2)平行公理的推论:若a //b,b //c,则a //c. (3)判定方法1:同位角相等,两直线平行. (4)判定方法2:内错角相等,两直线平行. (5)判定方法3:同旁内角互补,两直线平行.
结合图形回答问题:
①如果∠1=∠2,能判定哪两条直线平行?为什么?
答: AB //CD .根据内错角相等,两直线平行.
DF 2
C
A
1 E
3B
结合图形回答问题: ②如果∠1=∠3,能判定哪两条直线平行?为什么?
七年级下数学知识点平行线
七年级下数学知识点平行线七年级下数学知识点:平行线
在中学数学中,平行线是一个十分重要的概念,不仅在初中数学中有所涉及,在高中数学中也有广泛的应用。
那么,究竟什么是平行线?如何判断两条线是否平行?下面让我们一起来学习。
一、平行线的定义
平行线是指在同一个平面内,方向相同且不相交的两条直线。
平行线的符号是“//”。
二、平行线的性质
1. 若直线AB // 直线CD,直线EF // 直线CD,则直线AB // 直线EF。
2. 若直线AB // 直线CD,则它们之间的夹角相等。
3. 若直线AB与直线CD平行,直线EF与直线CD相交,则∠AEF=∠BED。
4. 若直线AB与直线CD平行,直线EF与直线CD交于点O,则AO:OE=BO:OD。
5. 直线与平面相交,所成角的对顶边平行于平面的交线。
三、判断平行线的方法
1. 两条直线的斜率相等时,它们是平行线。
2. 如果两条直线上的任意一对相对角是对应角、平行角、内错角或外错角,则这两条直线是平行的。
3. 在同一直线上,若有两点分别在另一直线同侧,且副角分别为180度,则这两条直线平行。
四、平行线的应用
1. 向量的平移、伸缩、旋转都涉及到平行线的性质。
2. 解解三角形题目时,通过平行线应用于副角及相交线段上,可以简化题目,提高解题效率。
以上就是有关平行线的知识点及其应用,初中数学中,平行线的考试题目常见且不可避免。
因此,我们要熟练掌握平行线的定义、性质和判断方法,以及它在各类数学题目中的应用。
只有这样,我们才能在数学竞赛中有不错的表现,也可以更好地应对中考、高考等重要考试。
最新人教版七年级数学下册相交线与平行线试题(带答案)(二)解析
一、选择题1.为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒 2.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒3.给出下列说法: (1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条.其中真命题的有( )A .0个B .1个C .2个D .3个4.如下图,在“A ”字型图中,AB 、AC 被DE 所截,则A ∠与4∠是( )A .同位角B .内错角C .同旁内角D .邻补角 5.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒6.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,CH =2cm ,EF =4cm ,下列结论:①BH //EF ;②AD =BE ;③DH =CH ;④∠C =∠BHD ;⑤阴影部分的面积为6cm 2.其中正确的是( )A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤ 7.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒8.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个 9.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 10.如图,已知AB ∥CD ,BE 和DF 分别平分∠ABF 和∠CDE ,2∠E-∠F=48°,则∠CDE 的度数为( ).A .16°B .32°C .48°D .64°二、填空题11.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点,若:5:2BAE CAE ∠∠=,则CAE ∠的度数为__________.(用含α的代数式表示).12.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.13.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.14.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.15.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)16.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.17.一副三角板按如图所示(共定点A)叠放在一起,若固定三角板ABC,改变三角板ADE的位置(其中A点位置始终不变),当∠BAD=___°时,DE∥AB.18.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论:(1)'32C EF ∠=︒;(2)148AEC ∠=︒;(3)64BGE ∠=︒;(4)116BFD ∠=︒.正确的有________个.19.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∠1=28°,则∠2的度数是______.20.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.三、解答题21.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.22.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数. 23.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数;(3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.24.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)25.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒.(1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设A 灯旋转的时间为t 秒,求出t 的取值范围为016t <≤,再分①06t <≤,②612t <≤和③1216t <≤三种情况,先分别求出MAM '∠和PBP '∠的度数,再根据平行线的性质可得MAM PBP ''∠=∠,由此建立方程,解方程即可得.【详解】解:设A 灯旋转的时间为t 秒,A 灯光束第一次到达AN 所需时间为180630︒=︒秒,B 灯光束第一次到达BQ 所需时间为1801810︒=︒秒, B 灯先转动2秒,A 灯才开始转动,0182t ∴<≤-,即016t <≤,由题意,分以下三种情况:①如图,当06t <≤时,//AM BP '',30,10(2)MAM t PBP t ''∴∠=︒∠=︒+,//,//MN PQ AM BP '',1,1MAM PBP ''∴∠=∠∠=∠,MAM PBP ''∴∠=∠,即3010(2)t t ︒=︒+,解得1t =,符合题设;②如图,当612t <≤时,//AM BP '',18030(6)36030,10(2)MAM t t PBP t ''∴∠=︒-︒-=︒-︒∠=︒+,//,//MN PQ AM BP '',2180,2180MAM PBP ''∴∠+∠=︒∠+∠=︒,MAM PBP ''∴∠=∠,即3603010(2)t t ︒-︒=︒+,解得8.5t =符合题设;③如图,当1216t <≤时,//AM BP '',30(12)30360,10(2)MAM t t PBP t ''∴∠=︒-=︒-︒∠=︒+,同理可得:MAM PBP ''∠=∠,即3036010(2)t t ︒-︒=︒+,解得1916t =>,不符题设,舍去;综上,A 灯旋转的时间为1秒或8.5秒,故选:C .【点睛】本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间t 的取值范围,并据此分三种情况讨论是解题关键.2.B解析:B【分析】过点P 作MN ∥AB ,结合垂直的定义和平行线的性质求∠EPF 的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.3.B解析:B【详解】试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确;同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确;从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确;过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.故选B.4.A解析:A【分析】根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“A”字型图中,两条直线AB、AC被DE所截形成的角中,∠A与∠4都在直线AB、DE的同侧,并且在第三条直线(截线)AC的同旁,则∠A与∠4是同位角.故选:A.【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.5.B解析:B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.D解析:D【分析】根据平移的性质直接可判断①②;先根据线段的和差可得2cm BH =,再根据直角三角形的斜边大于直角边即可判断③;根据平行线的性质可判断④;根据阴影部分的面积等于直角梯形BEFH 的面积即可判断⑤.【详解】解:由题意得:90ABC ∠=︒,由平移的性质得:,4cm,2cm AB DE BC EF AD BE =====,//,//,90BH EF AC DF E ABC ∠=∠=︒,则结论①②正确;2cm CH =,2cm BH BC CH CH ∴=-==,在Rt BDH 中,斜边DH 大于直角边BH ,DH CH ∴>,即结论③错误;//AC DF ,C BHD ∴∠=∠,即结论④正确;由平移的性质得:ABC 的面积等于DEF 的面积,则阴影部分的面积为ABC BDH DEF BDH S S S S -=-,BEFH S =直角梯形,2BH EF BE +=⋅, 2422+=⨯, 26(cm )=,即结论⑤正确;综上,结论正确的是①②④⑤,故选:D .【点睛】本题考查了平移的性质、平行线的性质等知识点,熟练掌握平移的性质是解题关键. 7.B解析:B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 8.D解析:D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB //CD ,∴∠1=∠2,∵AC 平分∠BAD ,∴∠2=∠3,∴∠1=∠3,∵∠B =∠CDA ,∴∠1=∠4,∴∠3=∠4,∴BC //AD ,∴①正确;∴CA 平分∠BCD ,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.9.D解析:D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE∥CD∴∠ 2+∠C=180°,∠ 3+∠D=180°∵∠ 2=50°,∠ 3=120°∴∠C=130°,∠D=60°又∵BE∥AF,∠ 1=40°∴∠A=180°-∠ 1=140°,∠F=∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.10.B解析:B【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键.二、填空题11.或【分析】根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据 解析:41203α︒-或36047α︒-【分析】根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可得出结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可得出结论.【详解】解:如图,若点E 运动到l 1上方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠+∠∠=, 5(1802):2CAE CAE α︒-+∠∠=, 解得180241205312CAE αα︒-∠==︒--; 如图,若点E 运动到l 1下方,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-, 又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠-∠∠=, 5(1802):2CAE CAE α︒--∠∠=, 解得180236045712CAE αα︒-︒-∠==+. 综上CAE ∠的度数为41203α︒-或36047α︒-. 故答案为:41203α︒-或36047α︒-. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键. 12.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°或135°;;解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°或135°;;(2)如图2,当AC 边与OB 平行时,∠BAD =90°+45°=135°或45°;(3)如图3,DC 边与AB 边平行时,∠BAD =60°+90°=150°,(4)如图4,DC 边与OB 边平行时,∠BAD =135°+30°=165°,(5)如图5,DC 边与OB 边平行时,∠BAD =45°﹣30°=15°;(6)如图6,DC 边与AO 边平行时,∠BAD =15°+90°=105°(7)如图7,DC 边与AB 边平行时,∠BAD =30°,(8)如图8,DC 边与AO 边平行时,∠BAD =30°+45°=75°;综上所述:∠BAD 的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.13.【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,解析:2n【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.15.【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠解析:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.16.【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l1∥l2,∠A =125°,∠B =85°,∴,,,∴,∴,解析:17︒【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17 .【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.17.30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D解析:30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D=∠BAD=180°,∵∠D=30°∴∠BAD=180°-30°=150°;故答案为:30°或150°.【点睛】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.18.3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,解析:3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,即可判断是否正确;(3)根据翻转的性质可得∠GEF=∠C′EF,又因为∠C′EG=64°,根据平行线性质即可得到∠BGE=∠C′EG=64°,即可判断是否正确;(4)根据对顶角的性质得:∠CGF=∠BGE=64°,根据平行线得性质即可得:∠BFD=180°-∠CGF即可得到结果.【详解】AE BG,∠EFB=32°,解:(1)∵//∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE∥BG,∠EFB=32°,∴∠AEF=180°-∠EFB=180°-32°=148°,∵∠AEF=∠AEC+∠GEF,∴∠AEC<148°,故本小题错误;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,DF CG,∵//∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故正确的为:(1)(3)(4)共3个,故答案为:3.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.19.56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如解析:56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如图,由折叠的性质,可得∠3=∠1=28°,∴∠4=∠1+∠3=56°,∵CD ∥BE ,AC ∥BD ,∴∠EBD =180°﹣∠4=124°,又∵CD ∥BE ,∴∠2=180°﹣∠CBD =180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 20.90°【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90°902n︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ...,∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.三、解答题21.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB +∠ACD =180°,由邻补角定义得到∠ECM +∠ECN =180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB =120°﹣∠GCA ,再由角平分线的定义及平行线的性质得到∠GCA ﹣∠ABF =60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A 作AD ∥MN ,∵MN ∥PQ ,AD ∥MN ,∴AD ∥MN ∥PQ ,∴∠MCA =∠DAC ,∠PBA =∠DAB ,∴∠CAB =∠DAC +∠DAB =∠MCA +∠PBA ,即:∠CAB =∠MCA +∠PBA ;(2)如图2,∵CD ∥AB ,∴∠CAB +∠ACD =180°,∵∠ECM +∠ECN =180°,∵∠ECN =∠CAB∴∠ECM =∠ACD ,即∠MCA +∠ACE =∠DCE +∠ACE ,∴∠MCA =∠DCE ;(3)∵AF ∥CG ,∴∠GCA +∠FAC =180°,∵∠CAB =60°即∠GCA +∠CAB +∠FAB =180°,∴∠FAB =180°﹣60°﹣∠GCA =120°﹣∠GCA ,由(1)可知,∠CAB =∠MCA +∠ABP ,∵BF 平分∠ABP ,CG 平分∠ACN ,∴∠ACN =2∠GCA ,∠ABP =2∠ABF ,又∵∠MCA =180°﹣∠ACN ,∴∠CAB =180°﹣2∠GCA +2∠ABF =60°,∴∠GCA ﹣∠ABF =60°,∵∠AFB +∠ABF +∠FAB =180°,∴∠AFB =180°﹣∠FAB ﹣∠FBA=180°﹣(120°﹣∠GCA )﹣∠ABF=180°﹣120°+∠GCA ﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.22.(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B , ∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.23.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.24.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P 作PM ∥CD ,∴∠APM =∠DAP .(两直线平行,内错角相等),∵CD ∥EF (已知),∴PM ∥CD (平行于同一条直线的两条直线互相平行),∴∠MPB =∠FBP .(两直线平行,内错角相等),∴∠APM +∠MPB =∠DAP +∠FBP .(等式性质) 即∠APB =∠DAP +∠FBP =40°+70°=110°. (2)结论:∠APB=∠DAP +∠FBP .理由:见(1)中证明.(3)①结论:∠P=2∠P 1;理由:由(2)可知:∠P =∠DAP +∠FBP ,∠P 1=∠DAP 1+∠FBP 1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP , = 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.25.(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠= ∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.。
七年级-人教版-数学-下册-第2课时--平行线的判定
观察下面的动图,进一步理解“同位角相等,两直线平行”.
思考
两条直线被第三条直线所截,同时得到同位角、内错角和同旁
内角.由同位角相等,可以判定两条直线平行,那么能否利用内错
角,或同旁内角来判定两条直线平行呢?
如图,如果∠2=∠3,能得出 a∥b 吗?
c1
因为∠2=∠3,而∠3=∠1(对顶角相等), 3 4
第2课时 平行线的判定
1.平行线:在_同__一__平__面__内,_不__相__交__的两条直线叫做平行线. 2.平行公理:经过直线__外___一点,_有__且__只__有__一条直线与这条 直线_平__行__. 3.平行公理的推论:如果两条直线都与第三条直线_平__行__,那么 这两条直线也_互__相__平__行__. 也就是说:如果 b∥a,c∥a,那么 b_∥__c.
A
B
直线 AB,CD 被直线 EF 截得的同位
G2
角.这说明,如果同位角相等,那么
F
AB∥CD.
归纳
判定方法 1
文字语言:两条直线被第三条直线所截,如果同位角相等,
那么这两条直线平行.
简单说成:同位角相等,两直线平行.
符号语言:因为∠1=∠2,
c1 a
所以 a∥b.
2
b
观察下面的动图,进一步理解“同位角相等,两直线平行”.
方法 3:添加∠EBD+∠BDF=180°.
方法 4:添加 EB⊥MN,FD⊥MN.
M
EC 1
B
F 2
DN
同位角相等,两直线平行
平行线的判定
内错角相等,两直线平行
同旁内角互补,两直线平行
a
所以∠1=∠2,即同位角相等,从而 a∥b.
人教版七年级下册数学作业课件 第五章 平行线 (2)
【变式题】如图,经过直线 a 外一点 O 的 4 条直线 中,与直线 a 相交的直线至少有( B ) A.4 条 B.3 条 C.2 条 D.1 条
6.已知在同一平面内,有三条直线 a,b,c,若 a∥b,
b∥c,则直线 a 与直线 c 之间的位置关系是( B )
A.相交
B.平行
C.垂直
D.平行或相交
7.如图,A,B 分别是直线 EF 外两点. (1)过点 A 画直线 AC∥EF,过点 B 画直线 BD∥EF; (2)AC 与 BD 有怎样的位置关系?说明理由. 解:(1)略. (2)AC∥BD.理由: 平行于同一直线的两直线平行.
8.如图,将一张长方形纸对折三次,则产生的折痕 与折痕间的位置关系是( C ) A.平行 B.垂直 B.平行或垂直 D.无法确定
9.观察如图的长方体,回答问题: (1)与线段 AB 平行的线段有__C_D_,__E__F_,__G_H_____; (2)AB 与 DH 所在直线不相交,它们_不__是___平行线(填 “是”或“不是”).由此可知,在_同__一__平__面__内,两条 不相交的直线才是平行线.
10.如图,过点 F 画 EF∥AB. 因为 AB∥CD, 所以 EF__∥____CD(_平__行__于__同__一__直__线__的__两__条__直__线 _平__行____).
3.下列图形中,AB 不平行于 CD 的是( D )
4.如图,点 P 是 AB 上一点,过点 P 作直线 PM∥AC, 交 BC 于点 M,作直线 PN∥BC,交 AC 于点 N. 解:如图所示.
知识点二 平行公理及其推论 5.如图,过 C 点作直线 AB 的平行线,说法正确的 是( B ) A.不能作 B.只能作一条 C.能作两条 D.能作无数条
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:用直尺和三角尺平移画平行线 的方法不仅是画平行线的主要方法, 而且还可以检验两条直线是否平行。
知识拓展
2.已知线段AB,AD如图所示,以这两条线 段为一组邻边,补画成一个平行四边形,这 样的平行四边形有多少个?为什么?
解:这样的平行四边形只有一个, 这是因为过点D平行于AB的直线 只有一条,过点B平行于AD的直 A 线也只有一条,而且两条相交直 线的交点有且只有一个。
惠兴中学
袁秀红
第四章 图形的初步认识
1.在同一平面内不相交的两条直线 叫做平行线。如图,直线a与直线b 互相平行,记作“a∥b”。
a b
2.在同一平面内,两条不重合的直线 的位置关系有两种:相交 ,平行 。
观察如图所示的长方体后填空: (1)用符号表示下列两棱的位置关系:
A1B1 ∥ AB, AA1 ⊥ AB, A1D1 ⊥ C1D1, AD ∥ BC。 (2) A1B1与BC所在的直线是两条不 相交的直线,他们 不是平行。 (填“是”或“不是”), 由此可知,在 同一平面内,两条 不相交的直线才能叫做平行线。
D1 A1 A B1 B C1 C
D
你会画平行线吗?
1.你会画一条直线b与已知直线a 平行吗?这样的直线你能画几条? 2.如果在直线a外有一个已知点p, 那么经过点p可以画多少条直线与 已知直线a平行?请你画一画。
1.经过已知直线外一点,有且只有 一条直线与已知直线平行。 2.如果两条直线都和第三条直线平 行,那么这两条直线也互相平行。
5.两条不相交的直线叫做平行线。 ( × )
6.与同一条直线相交的两条直线必相交。 (×)
3.根据下列语句,画出图形:(课本169页) (1)过△ABC的顶点C,画MN∥AB; (2)过△ABC的边AB的中点D,画平 行于AC的直线,交于BC于点E。
C A
B
知识拓展
如图,直线l1⊥l3, l2 ⊥ l3,直线l1与l2 平行吗?你是怎么知道的? l3 l2 l1 解:l1∥l2
D B
代写软文 软文代写 / 代写软文 软文代写
vcg83wfv
要带俺们去好远好远的地方去,那里美得就好像‘天堂’里一样!俺爹说了,那里赚钱很容易的,俺们发大财了就回来!”看 着年少懵懂的耿直兴致勃勃的样子,大人们只能报以苦笑和无声的叹息了。郭氏的眼里再次溢满了泪水。她强忍着把两泡眼泪 倒灌入鼻腔内,再吸进嗓子眼里咽到肚子里以后,抬头望一望,说:“月儿爷爷升高了,咱们开始拜月哇,完了娃娃们还要去 热闹摇火团儿呢!”于是,郭氏、刘氏和裴氏站起身来,你一言我一语地恭请月儿爷爷享用八仙桌上的“供品”。尽管虔诚的 心情是一样的,但各人的说辞并不尽相同。然后,大家伙儿望着圆月双手合十许愿。至于各人许的什么愿是不能说出来的,因 为说出来就不灵了。如此,“供月”仪式就结束了。郭氏端起放着大月饼的青花大瓷盘说:“俺去把‘团月’切开了,大家伙 儿先吃瓜果啊!”少顷,她又把三斤重的“团月”月饼端了出来。这个大月饼仍然还装在原先的那个青花大瓷盘中,但郭氏已 经巧妙地以“米”字加“米”字的方式把它切成了十六快。她把青花大瓷盘放回到原来的位置上,笑着说:“大家伙儿快吃哇, 月儿爷爷品尝过的‘团月’,咱们正好一人一块儿!”然后,她又返身回屋端出来一盘普通月饼挤放在桌子边上,对几个大男 娃儿说:“多吃点儿哇,吃饱了好有劲儿摇火团儿!”几个小孩子快乐起来。正在吃西瓜的董妞儿把吃剩下的半条西瓜递给娘, 伸出小手就拿起一块儿“团月”吃起来。吃一口很香,马上又拿起一块儿要耿兰吃。然而,耿兰却舍不得放下正在吃的苹果。 她接过董妞儿递来的那块儿“团月”交给娘,高兴地说:“这个苹果不大,可特别甜,俺从来没有吃过这么好吃的苹果!”刘 氏说:“唉,天旱果子甜啊!历来就是这样的。别看果子小,甜着呢!”秀儿也拿起一块儿“团月”,但她掰一半递给了坐在 身旁的耿正,另一半自己吃。耿正接过来咬了一点儿,又给秀儿递过来,说:“唔,很好吃!”秀儿用另半块儿“团月”挡了, 说:“你吃了哇!”郭氏忙说:“这儿还有小月饼呢,‘团月’还是你自己吃啊!”秀儿小声儿说:“俺中午吃多饺子了,不 饿。”这里,大壮拿起一个最红的苹果,放在鼻子下闻了闻,说:“娘说得对,这苹果就是比往年的香!喏,耿英,吃一个!” 耿英羞答答地接了,低头咬一口慢慢嚼着。等到大家伙儿把那个大“团月”分着吃完,又各自吃了一会儿瓜果以后,耿正和秀 儿站了起来。耿正说:“俺教秀儿吹笛子去了!”耿英和大壮也站起来。大壮说:“俺们也吃好了,下午就说好了要去河边捉 蛐蛐儿去呢!”耿老爹瞪大眼睛不解地问:“怎么,你们不去摇火团儿啦?”耿正说:“俺和大壮已经把下午做好的火团儿给 了二狗子和大头了。让二壮和青山青海带小
你能做下面的题吗?
1.在同一平面内,与已知直线a平行的直 直线有 无数 条,而经过直线a外一点p, 与已知直线a平行的直线有且只有 1 条。 2.用平移三角尺的方法可以检验出图中 共有平行线 6 对。(课本176页)
B1 C1 C ABFra bibliotekA1判断题:(对的打√,错的打×)
比 1.在同一平面内,没有公共点的线段是 一 平行线段。 (×) 比 2.a∥b,b ∥ c,则a与c相交于点p。( × ) 谁 学 3.在同一平面内,经过一点只能作一条 得 直线与已知直线垂直。 (√ ) 最 4.过一点有且只有一条直线和这条直线 快 (× ) ! 平行。
探索与思考
已知直线l1∥直线l2,直线l2∥直线l3 ,…, 直线l7∥直线l8,那么直线l1与直线l8 平行吗?画图验证,并进行思考。 解:直线l1 ∥直线l8
理一理
1.在同一平面内,不相交的两条直线 叫做平行线。 2在同一平面内两条不重合的直线有 两种位置关系:平行或相交。 3.经过已知直线外一点,有且只有一条 直线与已知直线平行。 4.如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。