物理16-匀变速直线运动规律的应用
匀变速直线运动规律的应用
能力· 思维· 方法
【解题回顾】本题分析时,有不少学生易患如下毛 病,当推出v1>v2时假设物体匀加速,便主观地认 为若物体做匀减速运动结果就是v1<v2.
此外,本题还有一个较好的处理方法,就是利用vt图线比较v1和v2的大小. 设物体做加速运动,其v-t图如图2-2-2,其中间时 刻的速度v2大小即为梯形OABC的中位线的长度.而中 间位置的速度大小则应是把梯形面积平分为二的线 段DE表示的长度.若物体做减速运动由图2-2-3可得 出同样的结论.
物体在AB之间作匀变速直线
运动,C为AB的中点,已知物 体在A、B的速度分别为V 1和 V2试求物体在C点的速度
要点· 疑点· 考点
二、初速度为0的匀变速直线运动的特殊规律 1.从静止出发后,在T秒内、2T秒内、3T秒内位 移之比为:12∶22∶32∶…∶n2
2.从静止出发后,在第一个T秒内、第二个T秒内、 第三个T秒内位移,即连续相等时间内位移之比为: 1∶3∶5∶…∶(2n-1). 3.从静止出发后,在T秒末、2T秒末、3T末速度 之比为:1∶2∶3∶…∶n.
二、匀变速直线运动的规律
1.基本公式.
(1)速度公式:vt=v0+at,
(2)位移公式:s=v0t+(1/2)at2. (3)速度、位移关系:v2t-v20=2as,
要点回眸
【注意】匀变速直线运动中所涉及 的物理量有五个,分别为v0、vt、s、 a、t,其中t是标量,其余均为矢量, 一般情况下,选初速度方向为正方向. 当知道五个量中的任意三个的时候, 就可以利用公式求出其余两个量.
能力· 思维· 方法
【例3】物体从A到B做匀变速直线运动,经过中间 位置时的速度为v1,它在这段时间中间时刻的速 度为v2,则(AC)
匀变速直线运动规律的应用
匀变速直线运动规律的应用匀变速直线运动是物理学中的一个基本概念,它是指物体在直线上做匀速或变速运动的情况。
在实际生活中,我们经常会遇到匀变速直线运动的现象,比如汽车行驶、电梯上升、自行车骑行等等。
而对于这些现象,我们可以通过运用匀变速直线运动规律来进行分析和计算。
匀变速直线运动规律是指物体在匀变速直线运动中的位移、速度和加速度之间的关系。
具体来说,它包括以下三个方程:1. 位移公式:s = vt + 1/2at^2其中,s表示物体的位移,v表示物体的初速度,a表示物体的加速度,t表示时间。
2. 速度公式:v = v0 + at其中,v表示物体的速度,v0表示物体的初速度,a表示物体的加速度,t表示时间。
3. 加速度公式:a = (v - v0) / t其中,a表示物体的加速度,v表示物体的速度,v0表示物体的初速度,t表示时间。
通过这三个公式,我们可以计算出物体在匀变速直线运动中的各种参数,从而更好地理解和分析运动的规律。
例如,当我们开车行驶时,可以通过速度计来测量车速,然后根据速度公式计算出车辆的加速度。
如果我们想知道车辆在某段路程内的行驶时间,可以利用位移公式来计算。
而如果我们想知道车辆在某一时刻的速度,可以利用速度公式进行计算。
除了在实际生活中的应用,匀变速直线运动规律还在物理学研究中扮演着重要的角色。
例如,在研究行星运动、天体物理学等领域中,匀变速直线运动规律被广泛应用。
总之,匀变速直线运动规律是物理学中的一个基本概念,它可以帮助我们更好地理解和分析物体在匀变速直线运动中的规律。
在实际生活中,我们可以通过运用这些规律来解决各种问题,从而更好地应对生活和工作中的挑战。
高中物理:匀变速直线运动的规律及应用
高中物理:匀变速直线运动的规律及应用知识点一| 匀变速直线运动的基本规律1.概念:沿一条直线且加速度不变的运动。
2.分类(1)匀加速直线运动:a与v方向相同。
(2)匀减速直线运动:a与v方向相反。
3.基本规律知识点二| 匀变速直线运动重要推论和比例关系的应用1.两个重要推论(1)中间时刻速度即物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半。
(2)位移差公式:Δx=x2-x1=x3-x2=…=x n-x n-1=aT2,即任意两个连续相等的时间间隔T 内的位移之差为一恒量。
可以推广到x m-x n=(m-n)aT2。
2.初速度为零的匀变速直线运动的四个常用推论(1)1T末、2T末、3T末……瞬时速度的比为v∶v2∶v3∶…∶v n=1∶2∶3∶…∶n。
1(2)1T内、2T内、3T内……位移的比为x∶xⅡ∶xⅢ∶…∶x N=12∶22∶32∶…∶n2。
Ⅰ(3)第一个T内、第二个T内、第三个T内……位移的比为x1∶x2∶x3∶…∶x n=1∶3∶5∶…∶(2n-1)。
(4)从静止开始通过连续相等的位移所用时间的比为知识点三| 自由落体和竖直上抛运动1.竖直上抛运动的重要特性(如图)(1)对称性①时间对称:物体上升过程中从A→C所用时间t AC和下降过程中从C→A所用时间t CA相等,同理t AB=t BA。
②速度对称:物体上升过程经过A点的速度与下降过程经过A点的速度大小相等。
③能量的对称性物体从A→B和从B→A重力势能变化量的大小相等,均等于mgh AB。
(2)多解性:当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成多解,在解决问题时要注意这个特性。
2.竖直上抛运动的研究方法。
匀变速直线运动的规律及应用
③
2
解①~③得:t=5 s,x=12.5 m.
答案:12.5 m
类型二:运动学常用的重要推论及其应用 【例 2】 一列火车做匀变速直线运动驶来,一人在轨 道旁边观察火车运动,发现在相邻的两个 10 s 内,火车 从他跟前分别驶过 8 节车厢和 6 节车厢,每节车厢长 8 m (连接处长度不计),求: (1)火车的加速度的大小; (2)人开始观察时火车速度的大小. 思路点拨:抓住相邻的两个 10 s,利用结论求解.
vt/2=v0-aT,
解得 v0=7.2 m/s.
答案:(1)0.16 m/s2 (2)7.2 m/s
方法技巧:正确分析题目中的条件,选择合适的公式或结
论求解是分析运动学问题的前提,再就是必要时要作出运
动草图帮助分析.
针对训练 2-1:两木块自左向右运动,现用高速摄影 机在同一底片上多次曝光,记录下木块每次曝光时的位 置,如图 1-2-3 所示,连续两次曝光的时间间隔是相等 的,由图可知( )
匀变速直线运动flash
2.匀变速直线运动中几个常用的结论
(1)Δx=aT2,即任意相邻相等时间内的位移之差相 等.可以推广到 xm-xn=(m-n)aT2.判断匀变速直线运动
的实验依据.
(2)vt/2= v0 v = x ,即某段时间中间时刻的瞬时
2 t
速度等于该段时间内的平均速度.
(3)某段位移中点的瞬时速度:v =
v=v gt,上升时间 t 上=v / g
0
0
h=v t 1 gt 2
2 0
v2-v02=
2gh,上升最大高度
Hmax=
v2 0
2g
下降过程:自由落体运动(a=g) v= gt
匀变速直线运动规律及其应用总结
一、匀变速直线运动的公式匀变速直线运动的加速度a 是恒定的. 反之也成立. 加速度方向与初速度方向相同的匀变速直线运运称为匀加速直线运动; 加速度的方向与初速度方向相反叫匀减速直线运动.如果以初速度v 0的方向为正方向,则在匀减速直线运动中,加速度应加一负号表示。
1. 基本规律: (公式)(1) 速度公式: v t = v 0 + a t 或:a =tv v t 0-. (图象为一直线,纵轴截距等于初速度大小) 平均速度: 2v v v t +== X/ t (前一式子只适用于匀变速直线运动,它是指平均速度,不是速度的平均值;后一式子对任何变速运动均适用。
(2) 位移公式: x = v 0t +21at 2注:在v -t 图象中,由v - t 直线与两坐标轴所围的面积等于质点在时间t 内运动的位移(3). 速度、加速度和位移的关系式: as v v t 2202=-说明: 以上各矢量均自带符号,与正方向相同时取正,相反取负.在牵涉各量有不同方向时,一定要先规定正方向. 如果物体做匀加速直线运动时加速度取正值的话,则匀减速直线运动时加速度就取负值代入公式运算. 对做匀减速直线运动的情况,一般要先判断物体经历多少时间停止下来,然后才能进行有关计算.否则可能解出的结果不符合题意.【例】一个质点先以加速度a 1从静止开始做匀加速直线运动,经时间t ,突然加速度变为反方向,且大小也发生改变,再经相同时间,质点恰好回到原出发点。
试分析两段时间内的加速度大小关系,以及两段时间的末速度大小关系。
2. 推论公式:(1) 2v v v t += = v t 2 (匀变速直线运动某段过程的平均速度等于这段过程初速度与末速度之和的一半,也等于这段过程中间时刻的瞬时速度) (2) x =v 0+v t 2·t (仅适用匀变速直线运动)(3) v s 2=√v 02+v t22(匀变速直线运动某段过程中间位置的瞬时速度等于这段过程初速度平方与末速度平方之和的一半)(4)v s2>v t2(图像法和公式法两种证明)(5)∆x=aT2 (匀变速运动中,任意连续相等的两段时间T内位移之差为定值)x m-x n=(m-n)aT2 (逐差法)【例1】.一颗子弹水平射入静止在光滑水平面上的木块中. 已知子弹的初速度为v0, 射入木块深度为L后与木块相对静止,以共同速度v 运动,求子弹从进入木块到与木块相对静止的过程中,木块滑行的距离.【例2】. 羚羊从静止开始奔跑,经过50m距离加速到最大速度25m/s,并能维持一段较长时间;猎豹从静止开始奔跑经过60m的距离能加速到最大速度30m/s,以后只能维持这个速度4.0s.设猎豹距离羚羊x m时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹加速阶段分别做匀加速运动,且均沿同一直线索奔跑.求:⑴猎豹要在其最大速度减速前追到羚羊,x值应在什么范围? ⑵猎豹要在其加速阶段追上羚羊, x 值应在什么范围?【例3】. 两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v0.若前车突然以恒定的加速度刹车,在它刚停住后,后车以前车刹车时的加速度开始刹车. 已知前车在刹车过程中行驶的距离为s ,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少为()A. s ;B. 2s ;C. 3s ; D 4s .3.初速度为零的匀加速直线运动的比例规律:(一)从静止开始连续相等时间T分段(1)1T末, 2T末, 3T末, … n T末瞬时速度之比为:v1∶v2∶v3∶…:∶v n = 1∶2 ∶3 ∶…∶n .(2) 1T内, 2T内, 3T内,… n T内位移之比为:s1∶s2∶ s3∶…∶s n = 12∶ 22∶32∶…∶n2 .(3)第一个T 内, 第二个T 内, 第三个T 内, …, 第n 个T 内位移之比为. s Ⅰ∶s Ⅱ∶s Ⅲ∶…s N = 1∶3∶5 ∶… ∶(2n -1).(二)从静止开始连续相等位移S 分段(1)1S 末, 2S 末, 3S 末, … n S 末瞬时速度之比为:v 1 ∶v 2∶ v 3 ∶…:∶v n = √1∶√2 ∶√3 ∶… ∶√n .(2) 1S 内, 2S 内, 3S 内, … n S 内时间之比为:t 1 ∶t 2 ∶ t 3 ∶… t n = √1∶√2 ∶√3 ∶… ∶√n .(3)第一个S 内, 第二个S 内, 第三个S 内, …, 第n 个S 内时间之比为. t Ⅰ ∶t Ⅱ ∶t Ⅲ ∶ … ∶ t N ∶:)23(:)12--… ∶ (1--n n ).【例1】. 三块完全相同的木块固定在地板上. 一初速度为v 0的子弹水平射穿第三块木板后速度恰好为零. 设子弹在三块木板中的加速度相同,求子弹分别通过三块木板的时间之比.【例2】. 一质点由A 点出发沿直线AB 运动,行程的第一部分是加速度为a 1的匀加速运动,接着做加速度为a 2的匀减速运动,到达B 点时恰好速度减为零. 若AB 间总长度为S ,试求质点从A 到B 所用的时间 t. 【例3】.已知O 、A 、B 、C 为同一直线上的四点。
高中物理必修一匀变速直线运动的规律及应用
考点2 匀变速直线运动的规律及应用盲点测试:1、相等的时间内的直线运动叫做匀变速直线运动.匀变速直线运动中加速度为一,当速度的方向和加速度的方向时,物体速度增大,做匀加速运动;当速度的方向和加速度的方向时,物体速度减小,做匀减速运动.2、匀变速直线运动的基本规律,可由下面四个基本关系式表示:①速度公式;②位移公式;③速度与位移公式;④平均速度与位移公式 .3、匀变速直线运动的重要推论:①某过程中间时刻的瞬时速度大小等于该过程的大小,即 .②加速度为a的匀变速直线运动在相邻的等时间T内的都相等,即 .③物体由静止开始做匀加速直线运动的几个推论t秒末、t2秒末、t3秒末…的速度之比为 .前t秒内、前t2秒内、前t3秒内…的位移之比为 .第一个t秒内、第二个t秒内、第三个t秒内…的位移之比为 .第一个s米、第二个s米、第三个s米…所用时间之比为 .水平测试:1.美国“华盛顿号”航空母舰上有帮助飞机起飞的弹射系统,已知“F-18大黄蜂”型战斗机在跑道上加速时的加速度为4.5 m/s2,起飞速度为50 m/s,若该飞机滑行100 m飞,则弹射系统必须使飞机具有的初速度为( ) A.30 m/s B.40 m/s C.20 m/s D.10 m/s2.一物体做匀变速直线运动,某时刻速度的大小为4 m/s,1 s后速度大小变为10 m/s,下列关于物现体在这1 s 内运动的说法错误的是( )A.平均速度的大小可能是7 m/s B.位移的大小可能小于4 mC.速度变化量大小可能小于4 m/s D.加速度的大小可能小于10 m/s23.(上海)从某高处释放一粒小石子,经过1 s从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将( )A.保持不变B.不断增大C.不断减小D.有时增大,有时减小4.一个质点正在做匀加速直线运动,现用固定的照相机对该质点进行闪光照相,闪光时间间隔为1 s.分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2 m,在第3次、第4次闪光的时间间隔内移动了8 m,由此不可求得( )A.第1次闪光时质点的速度B.质点运动的加速度C.从第2次闪光到第3次闪光这段时间内质点的位移D.质点运动的初速度5.汽车遇紧急情况刹车,经1.5 s停止,刹车距离为9 m.若汽车刹车后做匀减速直线运动,则汽车停止前最后1 s的位移是( )A.4.5 m B.4 m C.3 m D.2 m6.测速仪安装有超声波发射和接收装置,如图所示,B为测速仪,A为汽车,两者相距335 m,某时刻B发出超声波,同时A由静止开始做匀加速直线运动.当B接收到反射回来的超声波信号时,A、B相距355 m,已知声速为340 m/s,则汽车的加速度大小为( )A.20 m/s2B.10 m/s2C.5 m/s2D.无法确定7.2010年4月17日是青海玉树震后第三天,中国空军日以继夜加紧进行空运抗震救灾,当天上午6时至10时又出动飞机4个架次,向玉树地震灾区运送帐篷540顶(约合57吨),野战食品24吨.从水平匀速飞行的运输机上向外自由释放一个物体如图,不计空气阻力,在物体下落过程中,下列说法正确的是( )A.从飞机上看,物体静止B.从飞机上看,物体做自由落体运动C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动8.给滑块一初速度v 0使它沿光滑斜面向上做匀减速运动,加速度大小为g 2,当滑块速度大小减为v 02时,所用时间可能是( )A.v 02g B .v 0g C .3v 0g D.3v 02g9.如图所示,小球从竖直砖墙某位置静止释放,用频闪照相机在同一底片上多次曝光,得到了图中1、2、3、4、5……所示小球运动过程中每次曝光的位置,连续两次曝光的时间间隔均为T ,每块砖的厚度为d .根据图中的信息,下列判断错误的是( )A .位置“1”是小球释放的初始位置B .小球做匀加速直线运动C .小球下落的加速度为2d T 2D .小球在位置“3”的速度为7d 2T10.如图所示,传送皮带的水平部分AB 是绷紧的.当皮带不动时,滑块从斜面顶端由静止开始下滑,通过AB 所用的时间为t 1,从B 端飞出时速度为v 1.若皮带顺时针方向转动时,滑块同样从斜面顶端由静止开始下滑,通过AB 所用的时间为t 2,从B 端飞出时的速度为v 2,则t 1和t 2、v 1和v 2相比较,可能的情况是( )A .t 1=t 2B .t 2>t 1C .v 1=v 2D .v 1>v 211.短跑名将博尔特在北京奥运会上创造了100 m 和200 m 短跑项目的新世界纪录,他的成绩分别是9.69 s 和19.30 s .假定他在100 m 比赛时从发令到起跑的反应时间是0.15 s ,起跑后做匀加速运动,达到最大速率后做匀速运动.200 m 比赛时,反应时间及起跑后加速阶段的加速度和加速时间与100 m 比赛时相同,但由于弯道和体力等因素的影响,以后的平均速率只有跑100 m 时最大速率的96%.求:(1)加速所用时间和达到的最大速率;(2)起跑后做匀加速运动的加速度.(结果保留两位小数)12.在一次低空跳伞训练中,当直升飞机悬停在离地面224 m 高处时,伞兵离开飞机做自由落体运动.运动一段时间后,打开降落伞,展伞后伞兵以12.5 m/s 2的加速度匀减速下降.为了伞兵的安全,要求伞兵落地速度最大不得超过5 m/s ,(取g =10 m/s 2)求:(1)伞兵展伞时,离地面的高度至少为多少?着地时相当于从多高处自由落下?(2)伞兵在空中的最短时间为多少?。
2024届高考物理一轮复习:匀变速直线运动的规律及应用
第一章运动的描述匀变速直线运动匀变速直线运动的规律及应用【考点预测】1. 匀变速直线运动的基本规律的应用2.刹车类、双向可逆类匀减速直线运动3. 匀变速直线运动的推论及应用4. 初速度为零的匀加速直线运动的四个重要比例式5. 自由落体运动和竖直上抛运动【方法技巧与总结】匀变速直线运动的基本规律解题技巧1.基本思路画过程示意图→判断运动性质→选取正方向→选用公式列方程→解方程并加以讨论2.正方向的选定无论是匀加速直线运动还是匀减速直线运动,通常以初速度v0的方向为正方向;当v0=0时,一般以加速度a的方向为正方向.速度、加速度、位移的方向与正方向相同时取正,相反时取负.3.解决匀变速运动的常用方法(1)逆向思维法:对于末速度为零的匀减速运动,采用逆向思维法,可以看成反向的初速度为零的匀加速直线运动.(2)图像法:借助v-t图像(斜率、面积)分析运动过程.【题型归纳目录】题型一:匀变速直线运动的基本规律的应用题型二:匀变速直线运动平均速度公式的应用题型三:刹车类问题题型四:匀变速直线运动的推论及应用题型五:初速度为零的匀加速直线运动题型六:自由落体运动和竖直上抛运动【题型一】匀变速直线运动的基本规律的应用【典型例题】例1.中国第三艘航母“福建舰”已成功下水,该航母上有帮助飞机起飞的电磁弹射系统,若经过弹射后,飞机依靠自身动力以16m/s2的加速度匀加速滑行100m,达到60m/s的起飞速度,则弹射系统使飞机具有的初速度大小为( )A .20m/sB .25m/sC .30m/sD .35m/s【方法技巧与总结】1. 注意正方向的选定.2. 画运动过程示意图,选择合适的匀变速直线运动的公式.练1.一个小球沿光滑斜面向上运动,初速度大小为5m/s ,C 为斜面的最高点,AC 间距离为5m 。
小球在0 t 时刻自A 点出发,4s 后途经A 下方的B 点(B 点未在图上标出)。
则下列说法正确的是( )A .小球加速度的最大值为2m/sB .小球加速度的最小值为2m/sC .若小球加速度大小为52m/s ,则斜面至少长25mD .小球到达B 点速度大小可能是m/s【题型二】匀变速直线运动平均速度公式的应用【典型例题】例2.如图所示,电动公交车做匀减速直线运动进站,连续经过R 、S 、T 三点,已知ST 间的距离是RS 的两倍,RS 段的平均速度是10m/s ,ST 段的平均速度是5m/s ,则公交车经过T 点时的瞬时速度为( )A .3m/sB .2m/sC .1m/sD .0.5m/s【方法技巧与总结】1. 平均速度的定义为位移与时间的比值,适用于一切运动。
高中物理精品课件:匀变速直线运动规律应用
(二)解匀变速直线运动问题的步骤
1、正确判断研究对象的运动性质
2、作草图,并找出已知量
3、分析已知量和所求量之间的关系,选用
适当的公式
4、求得结果后必须分析答案的合理性
一、典型例题
一个滑雪的人,从85m长的山坡上匀变速滑下,
初速度是1.8m/s,末速度是5m/s,他通过这段山坡
需要多长时间?
• 2、做匀加速直线运动的物体途中依次经过A、B、C三点,
2T
x2
(n-1)T
3T
x3
Xn-1
nT
xn
(3)第一个T内,第二个内,第三个T内,…位移之
比
xⅠ:xⅡ:xⅢ:…xN=1:3:5: …(2N-1)xⅡxⅠ来自0xⅢT
2T
xN
3T
(n-1)T
nT
(4)第一个L,第二个L,第三个L,…
所用时间之比
tⅠ:tⅡ:tⅢ:…tN=1:( 2 1 ):( 3 2 ):
2a
故 6 s 内的位移为 x+x1=25 m.
重点探究
变式 如图Z1-1所示是某同学研究匀变速直线运动规律时得到的一条纸带(实验
中交流电源的频率为50 Hz),依照打点的先后顺序取计数点1、2、3、4、5、6、
7,相邻两计数点间还有4个点未画出,测得x1=1.42 cm,x2=1.91 cm,x3=2.40 cm,
(一)匀变速直线运动规律:
速度公式:
v v 0 at
(Ⅰ)
位移公式:
1 2
x v0 t at
2
(Ⅱ)
速度位移关系式:
v v 2ax
(Ⅲ)
平均速度:
v0 v
v
匀变速直线运动的规律及应用(解析版)
匀变速直线运动的规律及应用目录题型一匀变速直线运动基本规律的应用类型1 基本公式和速度位移关系式的应用类型2逆向思维法解决匀变速直线运动问题题型二匀变速直线运动的推论及应用类型1平均速度公式类型2位移差公式类型3初速度为零的匀变速直线运动比例式类型4第n秒内位移问题题型三自由落体运动和竖直上抛运动类型1自由落体运动基本规律的应用类型2自由落体运动中的“两物体先后下落”问题类型3竖直上抛运动的基本规律类型4自由落体运动和竖直上抛运动的相遇问题题型四多过程问题题型一匀变速直线运动基本规律的应用【解题指导】1.v=v0+at、x=v0t+12at2、v2-v20=2ax原则上可解任何匀变速直线运动的问题,公式中v0、v、a、x都是矢量,应用时要规定正方向.2.对于末速度为零的匀减速直线运动,常用逆向思维法.3.对于汽车刹车做匀减速直线运动问题,要注意汽车速度减为零后保持静止,而不发生后退(即做反向的匀加速直线运动),一般需判断减速到零的时间.【必备知识与关键能力】1.基本规律2 0(1)速度-时间关系:v=v0+at(2)位移-时间关系:x=v0t+12at2(3)速度-位移关系:v2-v=2ax----→初速度为零v0=0v=atx=12at2v2=2ax2.对于运动学公式的选用可参考下表所列方法题目中所涉及的物理量(包括已知量、待求量和为解题设定的中间量)没有涉及的物理量 适宜选用的公式v0、v、a、t x【速度公式】v=v0+atv0、a、t、x v【位移公式】x=v0t+12at2 v0、v、a、x t【速度位移关系式】v2-v20=2axv0、v、t、x a【平均速度公式】x=v+v0 2t类型1 基本公式和速度位移关系式的应用1(2024·北京·高考真题)一辆汽车以10m/s的速度匀速行驶,制动后做匀减速直线运动,经2s停止,汽车的制动距离为()A.5mB.10mC.20mD.30m【答案】B【详解】速度公式汽车做末速度为零的匀减速直线运动,则有x=v0+v2t=10m故选B。
匀变速直线运动规律的应用
匀变速直线运动规律的应用1. 引言匀变速直线运动是物理学中最基本的运动形式之一,也是我们日常生活和工作中常见的运动形式之一。
了解和掌握匀变速直线运动的规律对于描述和解决问题至关重要。
本文将介绍匀变速直线运动规律的应用场景和相关计算公式。
2. 定义匀变速直线运动是指物体在运动过程中,速度大小和方向都会发生变化,但是变化的方式是均匀的。
也就是说,物体在单位时间内运动的距离增量以及速度的变化量都是相等的。
3. 应用场景匀变速直线运动的规律在许多实际场景中得到了应用。
以下是一些常见的应用场景:3.1 汽车行驶汽车在行驶过程中往往需要根据道路情况调整速度,使得车辆始终保持在安全的行驶范围内。
匀变速直线运动的规律可以用来计算汽车加速度、行驶时间和行驶距离等,从而帮助驾驶员合理安排行驶计划。
3.2 抛物运动抛物运动是一种特殊的匀变速直线运动,常见于抛掷物体或投掷物体的运动过程中。
物体在竖直方向上受到重力的作用,导致加速度的大小恒定。
匀变速直线运动的规律可以用来计算抛物运动的最大高度、飞行时间和飞行距离等重要参数。
3.3 升降机运行升降机在运行过程中往往需要根据乘客的需求调整速度,使得乘客在规定的时间内到达目的地。
匀变速直线运动的规律可以用来计算升降机的加速度、运行时间和运行距离,从而帮助调整升降机的工作参数。
3.4 砲弹射击炮弹的射击过程也可以视为匀变速直线运动,通过计算炮弹的发射速度和发射角度,可以预测炮弹的落点和射程等重要指标,从而提高射击的精确度和效果。
4. 计算公式匀变速直线运动的计算公式可以通过运动学的基本原理推导得出。
以下是常见的计算公式:4.1 位移公式位移公式用于计算物体在匀变速直线运动过程中的位移。
假设物体的初速度为v0,末速度为v,运动时间为t,位移为s,加速度为a。
则位移公式可以表示为:s = v0 * t + 1/2 * a * t^24.2 速度公式速度公式用于计算物体在匀变速直线运动过程中的速度。
高三物理匀变速直线运动的规律及应用
(2)双向可逆类的运动 例如:一个小球沿光滑斜面以一定初速度v0向上运动, 到达最高点后就会以原加速度匀加速下滑,整个过程加速 度的大小、方向不变,所以该运动也是匀变速直线运动, 因此求解时可对全过程列方程,但必须注意在不同阶段v、 x、a等矢量的正负号。 3.解题步骤 (1)根据题意,确定研究对象。 (2)明确物体做什么运动,并且画出运动示意图。 (3)分析研究对象的运动过程及特点,合理选择公式, 注意多个运动过程的联系。 (4)确定正方向,列方程求解。 (5)对结果进行讨论、验算。
要点二
追及和相遇问题
1.分析方法 当两个物体在同一直线上同向运动,当前面物体的运动 速度大于后面物体的运动速度时,两者间的距离将逐渐增大, 不论两物体做什么运动均如此。反之,两者间的距离将逐渐 减小。可见,当两物体速度相等时,两者间的距离将最大或 最小。 2.求解追及和相遇问题的基本思路 (1)分别对两物体研究; (2)画出运动过程示意图; (3)列出位移方程; (4)找出时间关系、速度关系、位移关系; (5)解出结果,必要时进行讨论。
图1-2-2
分析时两车的自身长度可以略去,当作两质点进行分析。根据以上数据,进行计算,填写下表。 项目 制动前车速 v0/(km· h-1) 60 90 制动加速度 a/(m· s-2) 制动距离 x/m 事故地点车速 v′/(m·s-1)
匀变速直线运动的规律及应用
匀变速直线运动的规律及应用1. 匀变速直线运动的基础概念1.1 什么是匀变速直线运动?匀变速直线运动,其实就是物体在运动过程中,速度在不断变化,但变化的速度是恒定的。
说白了,就是车子加速或减速的速度保持不变。
就像你骑自行车,如果每秒钟都加速10公里,那么你就是在做匀变速直线运动。
1.2 匀变速直线运动的公式说到公式,别怕复杂。
其实也就那么几个关键点。
首先,我们有位移公式:( s = v_0 t + frac{1}{2} a t^2 ),其中 ( s ) 是位移,( v_0 ) 是初速度,( a ) 是加速度,( t ) 是时间。
接着,速度公式是:( v = v_0 + a t )。
只要掌握了这些,匀变速运动也就搞定了。
2. 匀变速直线运动的实际应用2.1 交通工具中的匀变速我们在交通工具上最常见的就是匀变速运动了。
例如,汽车起步的时候,加速度是比较均匀的,车速逐渐增加。
这个时候,如果你有个车速表,就能看到车速稳步上升。
再比如地铁,刚启动时加速也是匀速的,让你在车上也能感受到“平稳”的感觉。
2.2 日常生活中的应用不仅限于交通工具,我们平常玩滑板、溜冰,甚至走路时,也会遇到匀变速运动的情况。
当你加速走路或减速时,速度的变化往往是均匀的。
比如你在跑步机上慢跑,跑步机的速度增加得比较平稳,这就是匀变速的典型表现。
3. 如何利用匀变速直线运动提高生活质量。
3.1 提高运动效果利用匀变速运动的规律,我们可以更科学地安排运动计划。
比如你要增加跑步的强度,可以在跑步时逐渐增加速度,这样可以避免突然加速带来的不适,同时提高运动效果。
3.2 安全驾驶在驾驶过程中,掌握匀变速运动的知识也非常重要。
比如,当你在高速公路上超车时,平稳加速不仅让驾驶更安全,也能提高车辆的稳定性。
懂得运用匀变速的原理,你的驾驶体验会更舒适,车子也能更省油。
结语所以呢,匀变速直线运动不仅是物理课上的难题,更是我们日常生活中的重要部分。
了解它的规律,应用到实际生活中,不仅能让我们在运动时更有效率,还能在驾驶时更安全。
匀变速直线运动规律的九个应用
一、速度与时间的关系式v =v 0+at 的应用1、(v-t 关系基本应用)一物体从静止开始以2m/s 2的加速度做匀加速直线运动,经5s 后做匀速直线运动,最后2s 的时间内物体做匀减速直线运动直至静止.求:(1)物体做匀速直线运动的速度的大小;(2)物体做匀减速直线运动时的加速度.2、(v-t 关系在刹车问题中的应用)一汽车在平直的公路上以20m/s 的速度匀速行驶,前面有情况需紧急刹车,刹车后可视为匀减速直线运动,加速度大小为8 m/s 2.求刹车3s 后汽车的速度.二、v -t 图象的理解和应用3、A 、B 是做匀变速直线运动的两个物体,其速度图象如图所示.(1)A 、B 各做什么运动并求其加速度;(2)两图象交点的意义;(3)求1s 末A 、B 的速度;(4)求6s 末A 、B 的速度.4、如图所示是某物体做直线运动的v -t 图象,由图象可知( )A .物体在0~2s 内做匀速直线运动B .物体在2~8s 内静止C .t =1s 时物体的加速度为6m/s 2D .t =5s 时物体的加速度为12m/s 2三、位移时间关系式x =v 0t +12at 2的基本应用1、一物体做初速度为零的匀加速直线运动,加速度为a=2m/s2,求:(1)第5s末物体的速度多大?(2)前4s的位移多大?(3)第4s内的位移多大?四、利用v-t图象求物体的位移2、如图所示是直升机由地面竖直向上起飞的v-t图象,试计算直升机能到达的最大高度及25s时直升机所在的高度.五、对x-t图象的认识3、如图所示为在同一直线上运动的A、B两质点的x-t图象,由图可知()A.t=0时,A在B的前面B.B在t2时刻追上A,并在此后运动到A的前面C.B开始运动的速度比A的小,t2时刻后才大于A的速度D.A运动的速度始终比B的大六、刹车类问题4、一辆汽车正在平直的公路上以72km/h的速度行驶,司机看见红色信号灯便立即踩下制动器,此后,汽车开始做匀减速直线运动.设汽车减速过程的加速度大小为5 m/s2,求:(1)开始制动后,前2s内汽车行驶的距离.(2)开始制动后,前5s内汽车行驶的距离.七、速度与位移关系的简单应用1、A、B、C三点在同一条直线上,一物体从A点由静止开始做匀加速直线运动,经过B 点的速度是v,到C点的速度是3v,则x AB∶x BC等于()A .1∶8B .1∶6C .1∶5D .1∶3八、v =2t v =v 0+v 2的灵活运用 2、 一质点做匀变速直线运动,初速度v 0=2m/s,4s 内位移为20m ,求:(1)质点4s 末的速度;(2)质点2s 末的速度.九、对Δx =aT 2的理解与应用3、做匀加速直线运动的物体,从开始计时起连续两个4s 的时间间隔内通过的位移分别是48m 和80m ,则这个物体的初速度和加速度各是多少?。
匀变速直线运动的规律及应用
第二讲:匀变速直线运动的规律及应用【基础概述】一、匀变速直线运动规律1.(1)描述物体运动的基本概念:质点、参考系、时间、路程和位移、速率和速度、加速度①位移、速度和加速度是矢量;②位移大速度不一定大;③位移为零速度不一定为零;④物体做直线运动,若速度的方向不变,则位移的大小增加;(2)速度为零加速度不一定为零①加速度与速度的方向一致,则速度增大②加速度与速度的方向相反速度都减小(3)平均速度、平均速率、瞬时速度2. 匀变速直线运动规律与推论(1) 三个基本公式①速度-时间关系式:②位移-时间关系式:③速度-位移关系式:(2) 两个常用的推论(纸带推论)①平均速度关系式:②位移差公式:则【考点、考法突出】考法1 匀变速直线运动规律的应用方法1 基本公式的应用重点(1) 位移公式或位移与速度关系式①x=v0t+1/2at2 (用于知道运动时间或者求解运动时间问题)②v2-v1=2ax (用于运动时间未知的问题)(2)速度与时间的关系:用于计算初、末速度和加速度方法2 中间时刻速度公式应用重点(1)匀变速运动,时间段t中间时刻的瞬时速度等于时间t内的平均速度①应用一:已知瞬时速度,能迅速解出以这个时刻为中间时刻的一段时间里物体运动的位移或时间。
②应用二:已知两段时间的位移,可分别求出两段时间的中间时刻瞬时速度应用速度公式v=v0+at,求出加速度或者运动时间先求出Δt1及Δt2中间时刻速度: v1=,v2= .(2)再找出这两个中间时刻时间间隔Δt=Δt1+t+Δt2.(3)得该匀变速直线运动的加速度a=方法3 推论——位移差公式应用难点(1)匀变速直线运动中,连续相等的时间T内的位移之差为一恒量:Δx=xn+1-xn=aT2已知条件中出现相等的时间间隔,优先考虑用Δx=aT2求解①应用一:在连续相等的时间T内的位移之差是否相等;判断是否做匀变速直线运动②应用二:已知匀变速直线运动,根据在相等的时间T内的位移之差,求解加速度或时间方法4 初速度为零的匀加速直线运动中的比例规律应用(1)初速度为零的匀加速直线运动过程满足下列比例关系:①1t末、2t末、3t末、…、nt末的瞬时速度之比为v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n②前1t、前2t、前3t、…、前nt时间内的位移之比为x1∶x2∶x3∶…∶xn =1∶4∶9∶…∶n2(注意是零点起的不同时间内的位移之比) ③第一个t内、第二个t内、第三个t内、…、第N个连续相等时间t内的位移之比为xⅠ∶xⅡ∶xⅢ∶…∶xN=1∶3∶5∶…∶(2N-1).(注意是相等时间内的位移之比) 方法5 应用运动图像分析运动问题:①匀变速直线运动图像②根据图像分析物体运动情况③根据题设情景判断或作出运动图像考法2 根据图像分析物体的运动情况1.单个物体的运动图像的分析(1)无论是x-t图像还是v-t图像都只能描述直线运动(2)x-t图像和v-t图像不表示物体运动的轨迹(3)关键点:根据斜率判断物体的运动状况根据位移图像斜率判断速度变化情况根据速度图像斜率判断加速度变化情况(4)a-t图像阴影面积表示速度的变化量2.两个物体运动图像的分析:运动性质、位移大小、速度大小或方向、相遇点或距离等比较考法3 根据题设情景判断或作出物体的运动图像两种形式:一、给出初始条件和受力条件,判断或作出运动图像,选择题二、给出某一物理量(非速度)随时间变化的图像关系,据此解答问题(1)本质是将非速度的图像关系转化成速度—时间关系;(2)判断物体起始时刻的物理状态,即不同图像的起点;(3)根据初始状态及分析出的物体运动规律判断或作出所求图像;【考点拓展练习】一、单项选择题1.某驾驶员手册规定具有良好刹车性能的汽车在以80 km/h的速率行驶时,可以在56 m的距离内被刹住;在以48 km/h的速率行驶时,可以在24 m的距离内被刹住。
物理16-匀变速直线运动规律的应用
匀变速直线运动规律的应用【学习目标】:1、掌握匀变速直线运动规律中几个重要推论2、掌握匀变速直线运动的位移、速度、加速度和时间之间的相互关系,会用公式解决匀变速直线运动的问题。
【学习重点】 会用匀变速直线运动规律公式解决匀变速直线运动的问题。
【学习难点】几个重要公式的推导与应用【方法指导】自主探究、交流讨论、自主归纳【知识链接】四个基本公式1、 匀变速直线运动速度随时间变化规律公式:at v v +=02、匀变速直线运动位移随时间变化规律公式:2021at t v x += 3、匀变速直线运动位移与速度的关系:ax v v 2202=-4、匀变速直线运动平均速度公式:【自主探究】你能完成下列重要推论证明吗一、 匀变速直线运动的三个推论1、 某段时间内中间时刻的瞬时速度等于这段时间内的平均速度:试证明此结论:2、 某段位移内中间位置的瞬时速度2x v 与这段位移的初、末速度0v 与t v 的关系为:()220221t x v v v +=试证明此结论:课堂练习:做匀加速直线运动的列车驶出车站,车头经过站台上的工作人员面前时,速度大小为s m /1,车尾经过该工作人员时,速度大小为s m /7。
若该工作人员一直站在原地没有动,则车身的正中部经202t t v v v v +==过他面前时的速度大小为多少?3、在连续相等的时间(T )内的位移之差为一恒定值,即:2aT x =∆(又称匀变速直线运动的判别式)推证: 设物体以初速v 0、加速度a 做匀加速直线运动,自计时起时间T 内的位移:在第2个T 内的位移即2aT x =∆ 进一步推证可得=∆=2Tx a 课堂练习:一质点做匀加速直线运动,在连续相等的两个时间间隔内通过的位移分别为24m 和64m ,每个时间间隔是2S ,求加速度a 。
二、 初速度为零的匀加速运动的几个比例式 v 0=0设t=0开始计时,以T 为时间单位,则1、 1T 末、2T 末、3T 末…瞬时速度之比为1v ׃2v ׃3v ׃…=推证2、 第一个T 内,第二个T 内,第三个T 内……位移之比x I ׃ x II ׃ x III ׃ … ׃ x N =推证3、1T 内、2T 内、3T 内…位移之比x 1 ׃ x 2 ׃ x 3 ׃ … ׃ x n =推证4、通过连续相同的位移所用时间之比t 1 ׃ t 2 ׃ t 3 ׃ … ׃ t n = 推证 由221at x 知t 1= 通过第二段相同位移所用时间t 2=同理t 3=则t 1 ׃ t 2 ׃ t 3 ׃ … ׃ t n =课堂练习:4、完全相同的三个木块,固定在水平地面上,一颗子弹以速度v 水平射入,子弹穿透三块木块后速度恰好为零,设子弹在木块内做匀减速直线运动,则子弹穿透三木块所用的时间之比是 ;如果木块厚度不同,子弹穿透三木块所用的时间相同,则三木块的厚度之比是 (子弹在三木块中做匀减速直线运动的加速度是一样的)【达标检测】(B 级)1.一辆车由静止开始作匀变速直线运动,在第8 s 末开始刹车,经4 s 停下来,汽车刹车过程也是匀变速直线运动,那么前后两段加速度的大小之比和位移之比x 1 ׃ x 2分别是( )A 、=1:4 ,x 1 ׃ x 2=1:4 B 、=1:2,x 1 ׃ x 2=1:4 C 、=1:2 ,x 1 ׃ x 2=2:1C 、=4:1 ,x 1 ׃ x 2=2:1(B 级)2.对于做初速度为零的匀加速直线运动的物体,以下叙述中不正确的是( ).A .相邻的相等时间间隔内的位移之差为常数B .相邻的相等时间间隔内的位移之差为最初的那个等时间间隔内位移的两倍C .该物体运动过程中任意两个相等的时间间隔内速度的改变量均相等D .该物体运动过程中任意两个相等的时间间隔内位移大小之比一定是奇数比(B 级)3.一质点做匀加速直线运动,第三秒内的位移2m ,第四秒内的位移是2.5m ,那么以下说法中不正确的是( )A .这两秒内平均速度是2.25m/sB .第三秒末即时速度是2.25m/sC .质点的加速度是0.125m/s 2D .质点的加速度是0.5m/s 2(B 级)4.一个物体做匀变速直线运动,若运动的时间之比为t 1:t 2:t 3:…=1:2:3:…,下面说法中正确的是( )A .相应的运动距离之比一定是x 1 ׃ x 2 ׃ x 3:…=1:4:9: …B .相邻的相同时间内的位移之比一定是x I ׃ x II ׃ x III ׃ …=1:3:5: …C .相邻的相同时间内位移之差值一定是2aT x =∆,其中T 为相同的时间间隔.D .以上说法正确都是不正确的(B 级)5.骑自行车的人沿着直线从静止开始运动,运动后,在第1 s 、2 s 、3 s 、4 s 内,通过的路程分别为1 m 、2 m 、3 m 、4 m ,有关其运动的描述正确的是A .4 s 内的平均速度是2.5 m/sB .在第3、4 s 内平均速度是3.5 m/sC .第3 s 末的瞬时速度一定是3 m/sD .该运动一定是匀加速直线运动(C 级)6、一列火车作匀变速直线运动驶来,一人在轨道旁观察火车的运动,发现在相邻的两个10s 内,火车从他面前分别驶过8节车厢和6节车厢,每节车厢长8m (连接处长度不计)。
匀变速直线运动规律的应用
…………(2) …………(3)
s vt vo vt t …………(4)
2
由于反映匀变速直线运动的规律公式很多,因此,
对同一个具体问题往往有许多不同的解法,但不同的解 法繁简程度不一样,所以应注意每个公式的特点,如 (3)式不涉及时间;(4)式不涉及加速度;另外还有 的公式不涉及速度。
物理问题的结果一定要有物理意义
例题3:骑自行车的人以5.0m/s的初速度匀减速 地上一个斜坡,加速度的大小是0.40m/s2,斜 坡长30m,试求骑自行车的人通过斜坡需要多 长时间?
解:根据位移公式:s=v0t+at2/2可得 30=5.0t-0.40t2/2 解得:t1=10s t2=15s 其中t2不合题意舍去。 即骑车人通过斜坡需要10s时间。
解:根据位移和速度的关系式可得:
vt2=2as
vt 2as
25105 0.64m / s 800m / s 即枪弹射出枪口时的速度是800m/s
二、匀变速直线运动规律的应用
例题2:一个滑雪的人,从85m的山坡上匀变速滑 下,初速度是1.8m/s,末速度是5m/s,他通过这段 山坡需要多长时间?
解:根据vt2-v02=2as可得: a=(vt2-v02)/2s=0.128m/s2 根据速度公式vt=v0+at可得: t=(vt-v0)/a=25s 即滑雪的人通过这段山坡需要25s。
??还有其它更简单的方法吗?
公式小结
vt v0 at
…………(1)
sv01 2 Nhomakorabeaat
2
vt2 v02 2as
匀变速直线运动规律的应用
匀变速直线运动的基本公式
vt v0at
s
v0t
1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀变速直线运动规律的应用 课 型:习题课
编写人: 审核人:高一物理组 编制时间:2013-10-15 姓名: 班级: 【学习目标】:1、掌握匀变速直线运动规律中几个重要推论
2、掌握匀变速直线运动的位移、速度、加速度和时间之间的相互关系,会用公式解决匀变速直线运
动的问题。
【学习重点】
会用匀变速直线运动规律公式解决匀变速直线运动的问题。
【学习难点】
几个重要公式的推导与应用
【方法指导】
自主探究、交流讨论、自主归纳
【知识链接】四个基本公式 1、 匀变速直线运动速度随时间变化规律公式:at v v +=0
2、匀变速直线运动位移随时间变化规律公式:202
1at t v x += 3、匀变速直线运动位移与速度的关系:ax v v 2202=-
4、匀变速直线运动平均速度公式:
【自主探究】
你能完成下列重要推论证明吗
一、 匀变速直线运动的三个推论
1、 某段时间内中间时刻的瞬时速度等于这段时间内的平均
速度: 试证明此结论:
2、 某段位移内中间位置的瞬时速度2
x v 与这段位移的初、末速度0v 与t v 的关系为:
()22022
1t x v v v +=
试证明此结论:
2
02t t v v v v +=
=
课堂练习:做匀加速直线运动的列车驶出车站,车头经过站台上的工作人员面前时,速度大小为s m /1,
车尾经过该工作人员时,速度大小为s m /7。
若该工作人员一直站在原地没有动,则车身的正中部经
过他面前时的速度大小为多少?
3、在连续相等的时间(T )内的位移之差为一恒定值,即:2aT x =∆(又称匀变速
直线运动的判别式)
推证: 设物体以初速v 0、加速度a 做匀加速直线运动,
自计时起时间T 内的位移:
在第2个T 内的位移
即2aT x =∆ 进一步推证可得=∆=2T
x a 课堂练习:一质点做匀加速直线运动,在连续相等的两个时间间隔内通过的位移分别为24m 和64m ,
每个时间间隔是2S ,求加速度a 。
二、 初速度为零的匀加速运动的几个比例式 v 0=0设t=0开始计时,以T 为时间单位,则
1、
1T 末、2T 末、3T 末…瞬时速度之比为1v ׃2v ׃3v ׃…=
推证
2、 第一个T 内,第二个T 内,第三个T 内……位移之比
x I ׃ x II ׃ x III ׃ … ׃ x N =
推证
3、
1T 内、2T 内、3T 内…位移之比x 1 ׃ x 2 ׃ x 3 ׃ … ׃ x n = 推证
4、
通过连续相同的位移所用时间之比t 1 ׃ t 2 ׃ t 3 ׃ … ׃ t n = 推证 由22
1at x 知t 1= 通过第二段相同位移所用时间t 2=
同理t 3=
则t 1 ׃ t 2 ׃ t 3 ׃ … ׃ t n =
课堂练习:4、完全相同的三个木块,固定在水平地面上,一颗子弹以速度v 水平射入,子弹穿透三
块木块后速度恰好为零,设子弹在木块内做匀减速直线运动,则子弹穿透三木块所用的时间之比
是 ;如果木块厚度不同,子弹穿透三木块所用的时间相同,则三木块的厚度之比是 (子弹在三木块中做匀减速直线运动的加速度是一样的)
【达标检测】
(B 级)1.一辆车由静止开始作匀变速直线运动,在第8 s 末开始刹车,经4 s 停下来,汽车刹车过程也是匀变速直线运动,那么前后两段加速度的大小之比和位移之比x 1 ׃ x 2分别是( )
A 、
=1:4 ,x 1 ׃ x 2=1:4 B 、
=1:2,x 1 ׃ x 2=1:4 C 、
=1:2 ,x 1 ׃ x 2=2:1
C 、=4:1 ,x 1 ׃ x 2=2:1
(B 级)2.对于做初速度为零的匀加速直线运动的物体,以下叙述中不正确的是( ).
A .相邻的相等时间间隔内的位移之差为常数
B .相邻的相等时间间隔内的位移之差为最初的那个等时间间隔内位移的两倍
C .该物体运动过程中任意两个相等的时间间隔内速度的改变量均相等
D .该物体运动过程中任意两个相等的时间间隔内位移大小之比一定是奇数比
(B 级)3.一质点做匀加速直线运动,第三秒内的位移2m ,第四秒内的位移是2.5m ,那么以下说法
中不正确的是( )
A .这两秒内平均速度是2.25m/s
B .第三秒末即时速度是2.25m/s
C .质点的加速度是0.125m/s 2
D .质点的加速度是0.5m/s 2
(B 级)4.一个物体做匀变速直线运动,若运动的时间之比为t 1:t 2:t 3:…=1:2:3:…,下面说法中正确的是( )
A .相应的运动距离之比一定是x 1 ׃ x 2 ׃ x 3:…=1:4:9: …
B .相邻的相同时间内的位移之比一定是x I ׃ x II ׃ x III ׃ …=1:3:5: …
C .相邻的相同时间内位移之差值一定是2aT x =∆,其中T 为相同的时间间隔.
D .以上说法正确都是不正确的
(B 级)5.骑自行车的人沿着直线从静止开始运动,运动后,在第1 s 、2 s 、3 s 、4 s 内,通过的路程分别为1 m 、2 m 、3 m 、4 m ,有关其运动的描述正确的是
A .4 s 内的平均速度是2.5 m/s
B .在第3、4 s 内平均速度是3.5 m/s
C .第3 s 末的瞬时速度一定是3 m/s
D .该运动一定是匀加速直线运动
(C 级)6、一列火车作匀变速直线运动驶来,一人在轨道旁观察火车的运动,发现在相邻的两个10s 内,火车从他面前分别驶过8节车厢和6节车厢,每节车厢长8m (连接处长度不计)。
求: ⑴火车的加速度a ;
⑵人开始观察时火车速度的大小。
(D 级)7.从斜面上某位置,每隔0.1 s 释放一个小球,在连续释放几个后,对在斜面上的小球拍下照片,如图所示,测得s AB =15 cm ,s BC =20 cm ,试求
(1)小球的加速度.
(2)拍摄时B 球的速度v B =?
(3)拍摄时s CD =?
(4)A 球上面滚动的小球还有几个?
学习反思:。