1.5三角函数的应用(2)
北师大版九年级数学下册:1.5《三角函数的应用》教案
北师大版九年级数学下册:1.5《三角函数的应用》教案一. 教材分析北师大版九年级数学下册第1.5节《三角函数的应用》主要介绍了正弦、余弦函数在实际问题中的应用。
通过本节课的学习,使学生了解三角函数在实际生活中的重要性,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经学习了三角函数的基本知识,对正弦、余弦函数有一定的了解。
但学生在应用三角函数解决实际问题方面还比较薄弱,需要通过本节课的学习,提高学生运用三角函数解决实际问题的能力。
三. 教学目标1.使学生掌握正弦、余弦函数在实际问题中的应用。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对三角函数的兴趣,培养学生的创新意识。
四. 教学重难点1.重点:正弦、余弦函数在实际问题中的应用。
2.难点:如何运用三角函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究三角函数在实际问题中的应用。
2.利用案例分析法,分析实际问题中三角函数的运用。
3.采用小组合作讨论法,培养学生的团队协作能力。
六. 教学准备1.准备相关的实际问题案例。
2.准备三角函数的图像和公式。
3.准备投影仪和教学课件。
七. 教学过程1.导入(5分钟)利用投影仪展示一些实际问题,如测量高度、角度等,引导学生思考如何利用三角函数解决这些问题。
2.呈现(10分钟)呈现三角函数的图像和公式,让学生了解三角函数的基本性质。
同时,结合实际问题案例,讲解如何运用三角函数解决实际问题。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用三角函数进行解决。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组实际问题,让学生独立解决。
教师及时给予反馈,巩固学生对三角函数应用的掌握。
5.拓展(10分钟)引导学生思考如何将三角函数应用于其他领域,如工程、物理等。
让学生举例说明,培养学生的创新意识。
6.小结(5分钟)总结本节课所学内容,强调三角函数在实际问题中的应用。
三角函数的实际应用
三角函数的实际应用三角函数是数学中重要的概念之一,它们不仅仅是理论上的概念,在日常生活中也有着广泛的实际应用。
三角函数的实际应用涉及到多个领域,包括物理、工程、天文学以及计算机图形等。
本文将介绍三角函数在这些领域中的一些实际应用案例,并探讨其重要性和影响。
一、物理应用1. 弹簧振动弹簧振动是物理学中常见的现象,它是由于弹性体受到外力作用而发生的周期性振动。
三角函数可以用来描述弹簧振动的运动规律。
根据胡克定律,弹簧振动的恢复力与其伸长长度成正比。
这个关系可以用正弦函数表示,即 F = k*sin(ωt),其中 F 表示恢复力,k 表示弹性系数,ω 表示角频率,t 表示时间。
通过三角函数的表达,我们可以计算出弹簧振动的周期、频率等重要参数,进而研究和分析弹簧振动的性质,为相关实验和工程设计提供依据。
2. 交流电路在电学中,交流电路是一种重要的电路类型。
三角函数可以用来描述交流电路中电压和电流的变化情况。
正弦函数被广泛应用于交流电路的分析和计算中。
例如,正弦波电压在时间上的变化可以用 V(t) = Vm * sin(ωt) 表示,其中 V(t) 表示时间 t 时的电压值,Vm 表示电压的最大值,ω 表示角频率。
通过使用三角函数,我们可以计算交流电路中的功率、相位差等重要参数,从而更好地理解和设计电路。
二、工程应用1. 建筑设计在建筑设计中,三角函数被广泛地应用于计算和测量。
例如,三角函数可以用来计算建筑物的高度、倾斜度以及角度等信息。
在进行建筑物定位和测量时,使用三角函数可以通过测量某个点与两个已知点之间的距离和角度,推导出该点的准确位置和方向。
这对建筑师和工程师来说是非常重要的,它们可以基于这些计算结果进行建筑物的合理布局和设计。
2. 机械运动机械运动是工程学中的一个重要领域,三角函数在机械运动中具有广泛的应用。
例如,在机械设计中,三角函数可以描述旋转运动的速度和加速度,帮助工程师分析和计算各种机械零件的运动特性。
北师大版九年级数学下册《三角函数的应用》精品课件PPT
都来当个小专家!
A
B 咋 办
2 如图,水库大坝的截面是梯形
ABCD,坝顶AD=6m,坡长CD=8m.坡底
D
BC=30m,∠ADC=1350. (1)求坡角∠ABC的大小;
(2)如果坝长100m,那么修建这个 C 大坝共需多少土石方(结果精确到
0.01m3 ).
先构造直 角三角形!
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
1 如图,有一斜坡AB长40m,坡顶离地面的
高度为20m,求此斜坡的倾斜角. 2.有一建筑物,在地面上A点测得其顶点 A
C的仰角为300,向建筑物前进50m至B处,又 A
测得C的仰角为450,求该建筑物的高度(结
果精确到0.1m).
B
3. 如图,燕尾槽的横断面是一个等腰梯 形,其中燕尾角∠B=550,外口宽AD=180mm, 燕尾槽的尝试是70mm,求它的里口宽BC(结 果精确到1mm).
北师大版九年级数学下册 2020年北师大版九年级数学下册1.5《三角函数的应用》课件(共16张ppt)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
直角三角形的边角关系
看我露一手
解:要知道货轮继续向东航行途中有无触礁的危险,只
要过点A作AD⊥BC的延长线于点D,如果AD>10海里,则无
触礁的危险.根据题意可知,∠BAD=550,∠CAD=250,BC=
20海里.设AD=x,则
北
A
tan 550 BD , tan 250 CD ,
北师版数学九年级下册 三角函数的应用
∴AC = tan∠ADC·DC
DC
= tan54°×40 ≈ 55.1
∴AB = AC-BC = 55.2-40=15.1答:旗杆的高度为15.1m.
利用坡角解决实际问题
例4 一段路基的横断面是梯形,高为 4 米,上底的宽
是 12 米,路基的坡面与地面的倾角分别是 45° 和 30°,
求路基下底的宽 ( 精确到 0.1,3 1.732 ,2 1.414 ).
分析:可用方程思想,先把 AC 看成已知,用含 AC 的代数式表 示 BC 和 DC,由 BD=1000 m 建 立关于 AC 的方程,从而求得 AC.
解:在 Rt△ABC 中,AC = tan B = tan 30 =
3 ,
∴BC = 3AC.
BC
3
在 Rt△ACD 中,AC = tan∠ADC = tan 45D• tan BAD x • tan55
在 Rt△ACD 中,CD AD• tan CAD x • tan 25
北
由 BC = BD-CD,得
A
BC x • tan55 x • 25 20
55°
解得 x 20.79 10
B
所以,这船继续向东航行是安全的.
解析:如图,过点 A 作 AD ⊥ OB 于 D.
在 Rt△AOD 中,∵∠ADO = 90°,∠AOD = 30°,OA= 4 km,
∴AD =
1 2
OA
=
2
km.
在Rt△ABD 中,∵∠ADB = 90°,∠B = ∠CAB-
∠AOB=75°- 30°= 45°,
∴ BD = AD = 2 km,
750-600 ≈ 150 (km). 答:飞机的飞行路程比原来的路程 600km 远了 150 km. 【方法总结】求一般三角形的边长或高的问题一般可以转 化为解直角三角形的问题,解决的方法就是作高线.
1.5三角函数的应用(教案)(教案)
3.增强学生的直观想象与数据分析能力:通过对三角函数图像的观察与分析,让学生在实际问题中运用三角函数知识,培养他们的直观想象与数据分析素养。
三、教学难点与重点
-理解三角函数图像与性质的关系:学生在理解三角函数图像与性质之间的关系时可能会感到困惑。
-突破方法:利用动态图像、互动软件等教学工具,帮助学生直观地理解函数图像与性质之间的关系。
-建立和求解三角函数模型:学生在建立模型和求解过程中可能会遇到各种问题,如参数的选择、公式的应用等。
-突破方法:通过小组合作、讨论交流等方式,让学生在尝试解决问题的过程中,逐步掌握建立和求解三角函数模型的方法。
4.教学过程中,我发现有些学生对三角函数的应用仍然局限于课堂上的例子,缺乏将知识拓展到其他领域的能力。为了提高学生的知识迁移能力,我计划在后续的教学中加入更多不同领域的实际问题,让他们学会运用三角函数知识解决问题。
5.总结回顾环节,学生对今天所学内容的掌握程度较高,但仍有个别学生在某些知识点上存在疑惑。在课后,我会及时关注这些学生的疑问,并给予个别辅导,确保他们能够跟上教学进度。
3.三角函数模型的建立:结合实际问题,建立三角函数模型,如气温变化、物体振动等,并运用所学的三角函数知识进行求解。
本节课旨在让学生掌握三角函数在实际问题中的应用,提高他们解决实际问题的能力,同时深化对三角函数图像与性质的理解。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的数学抽象能力:通过三角函数在实际问题中的应用,让学生学会从实际问题中抽象出数学模型,提高数学抽象素养。
九年级数学下册1_5三角函数的应用专项练习2解答新版北师大版
∵ ∠PBC是△APB的一个外角,∴∠APB=∠PBC-∠PAB=30°. …………………3分
∴∠PAB=∠APB. …………………4分
故AB=PB=400米. …………………………6分
在Rt△PBC中,∠PCB=90°,∠PBC=60°,PB=400,
解:(1)电线杆落在广告牌上的影长为3+1.5=4.5(米)…………(2分)
(2)作GH⊥AB于H,依题意得:HG=BC+0.5CD=5+1.5=6.5…………(3分)
因为: ,DF=3,DE=4.…………(4分)
因此:AH= =4.875…………(5分)
因此:电线杆的高度为:
AB=AH+BH=AH+DF=3+4.875=7.875≈7.9.…………(6分)
在Rt 中,∵ ∴ = 米 ……4分
那么DA=DB-AB= ≈10×1.732 =7.32米. ……5分
∵3 + DA ,因此离原坡角10米的建筑物应拆除. ……6分
答:离原坡角10米的建筑物应拆除. ……7分
5.某风光治理区,为提高游客到某景点的平安性,决定将抵达该景点的步行台阶进行改善,把倾角由45°减至30°,已知原台阶坡面AB的长为 m(BC所在地面为水平面).
答:(1)广告牌上的影长为4.5米;(2)电线杆的高度为7.9米.…………(7分)
范围内形成气旋风暴,有极强的破坏力.如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变.假设城市所受风力达到或超过四级,那么称为受台风阻碍.
1.5 三角函数的应用(教案)-北师大版数九年级下册
第5节三角函数的应用1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决实际问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助计算器进行有关三角函数的计算,并能对结果的意义进行说明.3.发展学生的数学应用意识和解决问题的能力.1.从实际问题中提炼出用三角函数解决问题的数学思想.2.进一步感受数形结合思想(方程方法与画图法),力图引导学生从三个例题解答中归纳并建构数学模型思想,即抽象成平面图形(直角三角形)后,再利用三角函数解决问题.1.发展学生的数学应用意识和解决实际问题的能力.2.能将实际问题抽象成数学问题(数学符号或图形).3.让学生在探索活动中相互合作与交流,进一步发展学生的合作交流能力和数学表达能力.【重点】1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决实际问题过程中的作用.2.发展学生的数学应用意识和解决问题的能力.【难点】灵活将实际问题转化为数学问题,建立数学模型,并选择适当三角函数来解决.【教师准备】多媒体课件.【学生准备】复习解直角三角形的相关知识.导入一:课件出示:《盘点1833年以来重大海难》2015年6月1日约21时28分,一艘从南京驶往重庆的客船“东方之星”号在长江中游沉没.出事船舶载客458人,其中内宾406人、旅行社随行工作人员5人、船员47人.仅14人生还.历史上的海难事件非常多,最著名的海难事件应属1912年的泰坦尼克号沉没,但实际上,遇难人数远超泰坦尼克号的遇难船只并不罕见.在这一统计所含的75起海难中,遇难人数超过1000人的共有18起.随着时间的推移,因袭击所致的海难逐渐减少.但21世纪以来,海难仍时有发生,如:2014年韩国“岁月号”客轮,2008年菲律宾“群星公主号”客轮,2006年埃及客轮“萨拉姆98号”,2002年的塞内加尔“乔拉号”等船只遇难都造成了巨大的人员伤亡.【引入】今天我们就探究与轮船航行有关的知识.[设计意图]通过对历史上海难事件的了解,使学生对本节课所要探究的知识有一个初步了解,在揭示本课主题的同时,也对学生进行了安全教育,一举两得.导入二:课件出示:多媒体播放:《泰坦尼克号》3D版预告片视频.音频介绍:泰坦尼克号(RMS Titanic)是一艘奥林匹克级游轮,由位于北爱尔兰贝尔法斯特的哈兰·沃尔夫船厂兴建,是当时最大、最豪华的客运轮船.在泰坦尼克号的处女航中,因为船长的大意、舵手没有能够分清方向、没有准确计算距离等人为错误,于1912年4月14日船上时间夜里11点40分撞上冰山,2小时40分钟后,船分裂成两半后沉入大西洋.泰坦尼克号海难为和平时期死伤人数(船上2208名船员和旅客中,只有705人生还)最惨重的海难之一,同时也是最广为人知的海上事故之一.【引入】如果你是船长,怎样才能利用我们所学的知识躲开冰山,进而避免像泰坦尼克号这样的灾难发生呢?[设计意图]通过一段视频,进行音乐与3D影片的欣赏,让学生有一些听觉与视觉的冲击,感受现代科技手段为影片带来的美感,感受生活是美的,我们的身边处处都是美,树立对美的追求.课件出示:如图所示,海中有一个小岛A,该岛四周10n mile内有暗礁.今有货轮由西向东航行,开始在A 岛南偏西55°的B处,往东行驶20n mile后到达该岛的南偏西25°的C处.之后,货轮继续往东航行.你认为货轮继续向东航行途中会有触礁的危险吗你是怎样想的?与同伴进行交流.师引导学生思考:问题1货轮要向正东方向继续行驶,有没有触礁的危险是由什么决定的?【学生活动】学生分组讨论,统一答案:根据题意知小岛四周10n mile内有暗礁,那么货轮继续向东航行,如果到A的最短距离大于10n mile,则无触礁的危险,如果小于10n mile,则有触礁的危险.过A作AD⊥BC,D为垂足,A到BC所在直线的距离为即为AD的长度.我们需根据题意计算出AD 的长度,然后与10n mile比较.问题2如何利用已知条件求出AD的长度呢?【学生活动】先独立思考,然后小组交流,统一想法,代表发言:在Rt△ADB和Rt△ADC中,AD是它们的公共直角边,而且BC是这两个直角三角形中直角边BD与CD的差,即BC=BD-CD,BD与CD的对角是已知的,可以利用两个直角三角形的三角函数分别表示出BD 和CD,即在Rt△ADB中,tan55°=,BD=AD tan55°.在Rt△ADC中,tan25°=,CD=AD tan25°.这样可以列出关于AD的一元一次方程,即AD tan55°-AD tan25°=20.【教师点评】在我们解决数学问题时,很多地方都会用到方程,因此方程思想是我们初中数学中最重要的数学思想之一.【师生活动】学生独立解答,师巡视,对有困难的学生给予及时帮助,代表板演展示,师生共同订正,规范学生的解题过程.解:过A作BC的垂线,交BC于点D.在Rt△ABD中,易知tan55°=,∴BD=AD tan55°.在Rt△ACD中,易知tan25°=,∴CD=AD tan25°.设AD=x,则BD=tan55°x,CD=tan25°x.∵BC=BD-CD,∴tan55°x-tan25°x=20,解得x=≈20.79,即AD≈20.79n mile.∵20.79>10,∴货轮没有触礁的危险.【讨论】此题的其他解法.【学生活动】分组相互讨论、交流,各组组长展示本组的解题方法,师生共同探讨其方法的可行性,统一做法,代表板演:解:设CD=x,则BD=x+20.在Rt△ACD中,tan25°=,∴AD=.在Rt△ABD中,tan55°=,∴BD=AD tan55°=·tan55°.∴x+20=·tan55°,∴x=≈9.70,∴AD=≈20.79(n mile).∵20.79>10,∴货轮没有触礁的危险.[设计意图]在“货轮有触礁的危险吗?”的探讨过程中,学生入手感到困难,所以精心设计了一系列问题,将难点分解,逐步引导学生总结出应用数学知识解决实际问题的一般步骤,进一步培养了学生的探究、归纳能力和解决实际问题的能力.[知识拓展]应用三角函数知识解决实际问题的步骤:(1)根据题意,画出示意图,将实际问题转化为数学问题;(2)用三角函数和方程的思想解决关于直角三角形的问题;(3)解释结果的合理性.二、利用仰角和俯角解决实际问题课件展示:【想一想】如图所示,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果精确到1m)教师引导学生思考并回答:1.在这个图中,仰角为30°、仰角为60°分别指哪两个角?2.此题的示意图和“船触礁”问题的示意图一样吗?它们有什么共同点?【学生活动】1.学生分析题目中的两个仰角的对应情况,并相互订正.得出结论:∠DAC=30°,∠DBC=60°.2.两题的示意图都含有两个直角三角形,所以解答方法类似.【教师活动】要求学生类比“船触礁”问题的解答方法,对本题进行解答.【师生活动】学生思考后,独立完成,然后与同伴交流,代表展示,师生共同订正.解:在Rt△ACD中,tan30°=,即AC=.在Rt△BCD中,tan60°=,即BC=.由AB=AC-BC=50,得-=50,解得CD≈43,即塔CD的高度约为43m.[知识拓展]在“测量塔高”的问题中,小明的身高忽略不计,而在实际测量时,应该考虑小明的身高,更准确一点应考虑小明在测量时,眼睛离地面的距离.如果小明测量时,眼睛离地面的距离为1.6m,其他数据不变,此时塔的高度为多少?你能画出示意图吗?【师生活动】引导学生画出示意图后,由学生自己解答.【学生活动】口述解答过程:如图所示,由前面的解答过程可知CD≈43m,则C'D≈43+1.6=44.6(m),即如果考虑小明的高度,塔的高度约为44.6m.[设计意图]直角三角形的边角关系在航海、工程测量等问题中有着广泛应用,通过“测量塔高”的问题进一步让学生巩固如何用直角三角形的边角关系解决实际问题,提高学生的建模、转化能力,通过问题的变式训练让学生了解更贴近实际生活的数学问题,也为第6节“利用三角函数测高”打下了铺垫.三、利用倾斜角解决实际问题课件展示:【做一做】某商场准备改善原有楼梯的安全性能,把倾斜角由40°减至35°,已知原楼梯长为4m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01m)【教师活动】要求学生根据题意,画出示意图,将这个实际问题转化成数学问题,并进行解答.【学生活动】先独立完成,然后相互交流,讨论各自的想法.【师生活动】师生共同画出示意图:代表展示解题过程:解:如图所示,在Rt△ABC中,sin40°=,∵AC=4m,∴AB=4sin40°m,原楼梯占地长BC=4cos40°m.调整后,在Rt△ADB中,sin35°=,则AD==(m),楼梯占地长DB=m,∴调整后楼梯加长:AD-AC=-4≈0.48(m).楼梯比原来多占地面:DC=DB-BC=-4cos40°≈0.61(m).【教师点评】本节课所探究的内容是从实际问题中抽象出的数学模型——双直角三角形.[设计意图]本环节的难点在于是否能利用掌握的“双直角三角形”模型,借助方程思想解决问题.处理这个环节时,要给学生充分思考的时间和空间,发挥学生潜在的能力,通过小组合作交流,完善自己的想法,并在教师的指导下,规范地表述思考过程.[知识拓展]形如“双直角三角形”的图形的解题规律:设∠C=α,∠ADB=β,CD=a.1.非特殊角的组合(α和β组合):AB=a.2.特殊角的组合(α和β组合):(1)30°与60°组合:AB=a.(2)30°与45°组合:AB=a.(3)45°与60°组合:AB=a.1.三角函数的应用2.两个转化:(1)是把实际问题的图形转化为数学图形;(2)是把已知条件转化为数学图形中的边角关系.1.渔船在A处看到灯塔C在北偏东60°方向上,渔船向正东方向航行了12n mile到达B处,在B处看到灯塔C在正北方向上,这时渔船与灯塔C的距离是()A.6n mileB.8n mileC.2n mileD.4n mile解析:由已知得∠BAC=90°-60°=30°,在直角三角形ABC中,BC=AB·tan30°=12×=4(n mile).故选D.2.如图所示,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20m,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10mB.10mC.20mD.m解析:∵在直角三角形ADB中,∠D=30°,∴BD==AB.∵在直角三角形ABC中,∠ACB=60°,∴BC==AB.∵CD=20,∴CD=BD-BC=AB-AB=20,解得AB=10.故选A.3.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了m.解析:由题意知调整前梯高为4·sin45°=4×=2(m),调整后梯高为4·sin60°=4×=2(m),∴梯子升高了2(-)m.故填2(-).4.如图所示,在小山的东侧A点有一个热气球,由于受西风的影响,以30m/min的速度沿与地面成75°角的方向飞行,25min后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B两点间的距离为m.解析:过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°-30°=45°,AC=30×25=750(m),∴AD=AC·sin45°=375(m).在Rt△ABD中,易知∠B=30°,∴AB=2AD=750(m).故填750.5.小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如下左图所示).小船从P处出发,沿北偏东60°方向划行200m到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多远(精确到1m)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)解:过点P作PC⊥AB于C,如上右图所示,在Rt△APC中,AP=200m,∠ACP=90°,∠PAC=60°,∴PC=200×sin60°=200×=100.∵在Rt△PBC中,sin37°=,∴PB=≈≈288(m).答:小亮与妈妈相距约288m.5三角函数的应用1.三角函数的应用2.两个转化:(1)是把实际问题的图形转化为数学图形;(2)是把已知条件转化为数学图形中的边角关系.3.一个构造:若原图形不是直角三角形,可添加辅助线构造直角三角形.一、教材作业【必做题】1.教材第20页随堂练习第1,2题.2.教材第21页习题1.6第1,2题.【选做题】教材第21页习题1.6第3,4题.二、课后作业【基础巩固】1.(2015·哈尔滨中考)如图所示,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为()A.1200mB.1200mC.1200mD.2400m2.(2014·苏州中考)如图所示,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km3.如图所示,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB宽为m.4.如图所示,在东西方向的海岸线上有A,B两个港口,甲货船从A港沿北偏东60°的方向以4nmile/h的速度匀速航行,同时乙货船从B港沿西北方向匀速航行,2h后两货船相遇在点P处,则乙货船每小时航行n mile(用根号表示).【能力提升】5.(2015·泰安中考)如图所示,轮船从B处以每小时60n mile的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20n mileB.40n mileC.n mileD.n mile6.如图所示,路边路灯的灯柱BC垂直于地面,灯杆BA的长为2m,灯杆与灯柱BC成120度角,锥形灯罩轴线AD与灯杆AB垂直,且灯罩轴线AD正过道路路面的中心线(D在中心线上),已知点C与D点之间的距离为12m,则BC的高是m.7.如图所示的是某滑板爱好者训练时的斜坡示意图,出于安全因素考虑,决定将训练的斜坡的倾角由45°降为30°,已知原斜坡坡面AB的长为5m,点D,B,C在同一水平地面上.(1)改善后斜坡坡面AD比原斜坡坡面AB加长多少米?(精确到0.01m)(2)若斜坡的正前方能有3m长的空地就能保证安全,已知原斜坡AB的前方有6m长的空地,进行这样的改造是否可行?说明理由.8.(2014·南充中考)马航MH370失联后,我国政府积极参与搜救.某日,我国两艘专业救助船A,B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140n mile处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan 36.5°≈0.75)(1)求可疑漂浮物P到A,B两船所在直线的距离;(2)若救助船A和救助船B分别以40n mile/h,30n mile/h的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.【拓展探究】9.如图所示,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,再沿山坡向上走到P处测得该建筑物顶点A的仰角为45°.已知BC=90m,且B,C,D在同一条直线上,山坡坡度为(即tan∠PCD=).(1)求该建筑物的高度(即AB的长);(2)求此人所在位置点P的铅直高度.(测量角度的仪器的高度忽略不计,结果保留根号形式)【答案与解析】1.D(解析:易知∠ABC=∠α=30°,∴AB===2400(m),即飞机A与指挥台B的距离为2400m.故选D.)2.C(解析:过点A作AD⊥OB于D.在Rt△AOD中,易知∠ADO=90°,∠AOD=90°-60°=30°,OA=4,∴AD=OA=2.在Rt△ABD中,易知∠ADB=90°,∠B=∠CAB-∠AOB=(90°-15°)-30°=75°-30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选C.)3.15(解析:过C作CE⊥AB,在Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5(m),CE=AC·cos30°=15×=(m).∵∠BCA=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE·tan60°=×=22.5(m),∴AB=BE-AE=22.5-7.5=15(m).故填15.)4.2(解析:如图所示,过点P作PC⊥AB于点C,∵甲货船从A港沿北偏东60°的方向以4n mile/h的速度航行,∴∠PAC=90°-60°=30°,AP=4×2=8,∴PC=AP×sin30°=8×=4.∵乙货船从B港沿西北方向匀速航行,∴∠PBC=45°,∴PB=PC÷sin45°=4÷=4,∴乙货船每小时航行4÷2=2(n mile).故填2.)5.D(解析:如图所示,作AM⊥BC于M.由题意得∠DBC=20°,∠DBA=50°,BC=60×=40(n mile),∠NCA=10°,则∠ABC=∠ABD-∠CBD=50°-20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC,∴CM=BC=20(n mile).在直角三角形ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(n mile).故选D.)6.12-4(解析:设灯柱BC的长为h m,作AH⊥CD于点H,作BE⊥AH于点E.∴四边形BCHE为矩形.∵∠ABC=120°,∴∠ABE=30°.又∵∠BAD=∠BCD=90°,∴∠ADC=60°.在Rt△AEB中,AE=AB sin30°=1,BE=AB cos30°=,∴CH=.又∵CD=12,∴DH=12-.在Rt△AHD中,tan∠ADH===,解得h=12-4.故填12-4.)7.解:(1)在Rt△ABC中,BC=AC=AB·sin45°=(m),在Rt△ADC中,AD==5(m),CD==(m),∴AD-AB=5-5≈2.07(m).答:改善后的斜坡约加长2.07m.(2)这样改造能行.由(1)可知CD-BC=-≈2.59(m),而6-3>2.59,∴这样改造能行.8.解:(1)过点P作PE⊥AB于点E,如图所示,由题意得∠PAE=90°-53.5°=36.5°,∠PBA=45°,设PE 为x n mile,则BE=PE=x n mile.∵AB=140n mile,∴AE=(140-x)n mile.在Rt△PAE中,=tan∠PAE,即=0.75,解得x=60,∴可疑漂浮物P到A,B两船所在直线的距离为60n mile.(2)由(1)知在Rt△PBE中,PE=60n mile,∠PBE=45°,则BP=PE=60(n mile),B船需要的时间为≈2.83(h).在Rt△PAE中,=sin∠PAE,∴AP=PE÷sin∠PAE≈60÷0.6=100(n mile),∴A船需要的时间为100÷40=2.5(h).∵2.83>2.5,∴A船先到达P处.9.解:(1)由题意可知AB⊥BC,在Rt△ABC中,BC=90m,∠ACB=60°,∴AB=BC·tan60°=90(m),故建筑物的高度为90m.(2)如图所示,过点P作PE⊥BD于E,PF⊥AB于F.∵AB⊥BC于B,∴四边形BEPF是矩形,∴PE=BF,PF=BE.设PE=x m,则BF=PE=x m.∵在Rt△PCE中,tan∠PCD==,∴CE=2x.∵在Rt△PAF中,∠APF=45°,∴AF=AB-BF=90-x,PF=BE=BC+CE=90+2x.又∵AF=PF,∴90-x=90+2x,解得x=30-30.答:此人所在位置点P的铅直高度为(30-30)m.本节课选用的教学素材来源于现实生活,船是否有触礁的危险、小明测塔高、怎样改造楼梯都是学生关注和感兴趣的实例,使学生感受到了数学知识就在身边,与现实世界有着非常密切的联系.这些内容对一部分学生来说会显得轻松自如,但对另外一部分学生来说,他们基础较差,对数学的应用不是那么得心应手,关键是不会合理构造直角三角形,所以在学习时会有些困难.在教学时,注重引导学生在审清题意的基础上,自己(或在老师的引导下)画出示意图,将实际问题转化为数学问题,通过亲身经历数学活动的过程,初步掌握数学建模的方法,然后留时间给学生自主解决问题,并充分发挥小组的合作作用,以合作互助、优势互补的方式突破难点.本节课的知识比较抽象,为了满足学生的认知规律和逻辑思维习惯,在内容设计上有一定的层次性和弹性.此外,在教学过程中,把一个知识对象尽量用多样化的载体予以呈现,体现了知识发展的阶梯.1.学生间差异较大,部分学生跟不上教学节奏,学习较吃力,需要课下加强辅导.2.本节课设计的练习题的题量比较大,有部分学生没有当堂完成.学生对数学建模思想理解得不透彻,再教时应该时刻提醒学生首先要建立数学模型,把实际问题转化为数学问题.随堂练习(教材第20页)1.约7.96m.2.(1)17°8'21″.(2)10182.34m3.习题1.6(教材第21页)1.解:∵sin A===,∴∠A=30°,即斜坡的倾斜角为30°.2.解:如图所示,由题意得∠A=30°,AB=50m,∠CBD=45°.∵CD⊥AD,∴CD=BD.设CD=x m,则BD=x m.在Rt△ADC中,tan A===,∴3x=50+x,∴x=≈68.3(m).3.解:过点A作AE⊥BC于E,∵tan B=,∴BE=≈≈49(mm),由题意知四边形ABCD是等腰梯形,∴BC=AD+2BE≈180+2×49=278(mm).4.33.94n mile.[提示:(解法不唯一)方法1:过点B作AN的垂线,可得BC sin75°-BC cos75°=36×.方法2:过点C作AB的垂线,得出两个特殊直角三角形,再利用∠A=45°,∠B=30°求得BC.]1.运用直角三角形的边角关系解决实际问题的关键是掌握两个转化:实际问题数学问题,已知条件数学图形中的边角关系.2.本节课的图形比较特别,为“双直角三角形”,准确把握此图形的特征是总结其规律的前提条件,熟记“双直角三角形”的规律方法会让学生节省大量的时间,提高解题效率.某船以每小时36n mile的速度向正东方向航行,在点A测得某岛C在北偏东60°方向上,匀速航行半小时后到达点B,测得该岛在北偏东30°方向上,已知该岛周围16n mile内有暗礁.(1)试说明点B是否在暗礁区域外;(2)若继续向东航行有无触礁危险?请说明理由.〔解析〕(1)求点B是否在暗礁区域内,其实就是求CB的距离是否大于16,如果大于则不在暗礁区域内,反之,则在.可通过构造直角三角形来求CB的长,作CD⊥AB于D点,CD是直角三角形ACD和直角三角形CBD的公共直角边,可先求出CD的长,再求出CB的长.(2)本题实际上是求C到AB的距离是否大于16,如果大于则无触礁危险,反之,则有,C到AB的距离在(1)中已经求出,只要进行比较即可.解:(1)如图所示,作CD⊥AB于D点,设BC为x,在Rt△BCD中,∠CBD=90°-30°=60°,∴BD=x,CD=x.在Rt△ACD中,∠CAD=90°-60°=30°,∴tan∠CAD==,由题意可知AB=36×=18(n mile),∴=,解得x=18,∵18>16,∴点B在暗礁区域外.(2)有.理由如下:由(1)可知CD=x=×18=9≈15.6(n mile).∵15.6<16,∴若继续向东航行,船有触礁的危险.。
《三角函数的应用(第二课时)》示范课教学设计【高中数学】
《三角函数的应用(第2课时)》教学设计 1.通过分析和解决现实生活中的实际问题,使学生经历利用三角函数近似刻画实际问题的过程,了解利用数学知识解决实际问题的一般思路,提高数形结合能力. 2.通过例题分析和练习巩固,促进学生养成运用几何直观思考问题的习惯,发展学生的直观想象核心素养.教学重点:通过实例,使学生经历完整的数学建模过程.教学难点:将实际问题转化为数学问题.视频、Geogebra 软件、PPT 课件.通过视频播放弹簧振子的运动与交流电的变化;利用Geogebra 作实例中的散点图.(一)整体感知 引导语:匀速圆周运动、简谐运动和交变电流都是理想化的运动变化现象,可以用三角函数模型准确的描述它们的运动变化.在现实生活中也有大量运动变化现象,仅在一定范围内呈现出近似于周期变化特点,这些现象也可以借助三角函数近似的描述.(二)新知探究例1 如图1,某地一天从6~14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω.(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式.问题1:如何根据温度变化曲线得到这一天6~14时的最大温差?预设的师生活动:学生回答.预设答案:曲线在自变量为6~14时,图形中的最高点的纵坐标减去最低点的纵坐标就是这一天6~14时的最大温差,观察图形得出这段时间的最大温差为20℃.◆ 教学过程◆ 课前准备 ◆ 教学重难点◆ ◆ 教学目标 图1设计意图:通过问答形式得到(1)的解答.问题2:如何求温度随时间的变化满足的函数关系“b x A y ++=)sin(ϕω”中A ,ω,ϕ,b 的值?预设的师生活动:学生回答,教师补充,之后学生板演解答过程,教师强调要注意自变量的变化范围.预设答案:A 为最大值减去最小值的差的一半,ω可以利用半周期为14-6=8建立方程得解,ϕ可以利用特殊值求得.所求解析式为 π3π10sin()20[416]84y x x =++∈,,. 设计意图:启发学生利用待定系数法解决(2).例2 海水受日月的引力,在一定时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进巷道,靠近码头;卸货后,在落潮时返回海洋.表1是某港口某天的时刻与水深关系的预报.(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似值(精确到0.001 m ).(2)一条货船的吃水深度(船底与水面的距离)为4 m ,安全条例规定至少要有1.5 m 的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久? (3)若船的吃水深度为4 m ,安全间隙为1.5 m ,该船在两点开始卸货,吃水深度以0.3 m/h 的速度减少,那么该船在什么时间必修停止卸货,将船驶向较深的水域?问题3:观察表1中的数据,你发现了什么规律?根据数据做出散点图,观察图形,你可以用怎样的函数模型来刻画其中的规律?请试着完成(1)的解答.预设的师生活动:教师提出问题,学生观察数据,发现规律.教师引导学生作散点图,根据散点图特点,选择函数模型,学生根据散点图及有关数据,求出这个函数模型的解析式.得出解析式之后,教师让学生根据解析式填写整点时的水深,完成(1)的解答.预设答案:观察表格中数据可以看出,水深的变化具有周期性,根据表中数据画出散点表1图如图2.从散点图的形状可以判断,这个港口的水深y 与时间x 的关系可以用形如sin()y A x h ωϕ=++的函数来刻画,从数据和图形可以得出:A =2.5,h =5,T =12.4,φ=0;由2π124T ω==.,得ω=5π31. 所以各港口的水深与时间的关系可用函数y =2.5sin5π31x +5近似描述. 将整点对应的自变量代入解析式求出相应的水深,得到表2完成(1)的解答.设计意图:从所给数据中发现周期性变化规律,引导学生根据散点图特点选择函数模型,并求出函数解析式,并得到(1)的解答.问题4:(2)中,货船需要的安全深度是多少?从函数的解析式来看,满足怎样的条件时,该船能够进入港口?从图象上看呢?预设的师生活动:学生回答,教师补充.预设答案:货船需要的安全水深为4+1.5=5.5 m .从函数的解析式来看,满足y ≥5.5,即2.5sin 5π31x +5≥5.5,该船能够进入港口;从图象上看,就是函数y =2.5sin 5π31x +5的图象在直线y =5.5上方时,该船能够进入港口.利用信息技术绘出两个函数的图象如图3.图2表2求得交点的横坐标分别为:x A ≈0.3975,x B ≈5.8025,x C ≈12.7975,x D ≈18.2025. 问题5:可以将A ,B ,C ,D 点的横坐标作为进出港时间吗?为什么?预设的师生活动:教师请学生们自由回答,答案不唯一.预设答案:事实上为了安全,进港时间要比算出的时间推后一些,出港时间要比算出的时间提前一些,这样才能保证货船始终在安全水域.因此,货船可以在零时30分左右进港,早晨5时45分左右出港;或在下午13时左右进港,下午18时左右出港.每次可以在港口停留5小时左右.设计意图:启发学生数形结合得到(2)的解答.问题6:(3)中,设在x h 时货船的安全水深为y m ,y 与时间x 满足怎样的函数关系?从解析式来看,满足怎样的条件时,该船必须停止卸货?从图象上看呢?预设的师生活动:学生回答,教师补充.预设答案:设在x h 时货船的安全水深为y m ,那么y =5.5-0.3(x -2)(x ≥2).从函数的解析式来看,满足y ≥5.5-0.3(x -2),即2.5sin 5π31x +5≥5.5-0.3(x -2)时,该船能够进入港口;从图象上看,就是函数y =2.5sin5π31x +5的图象在直线y =5.5-0.3(x -2)上方时,该船能够进入港口.利用信息技术绘出两个函数的图象如图4.可以看到在6~8时之间两个函数只有一个交点P ,求得P 点的横坐标为7.016.≈P x 问题7:在船的安全水深正好等于港口水深时停止卸货可以吗?图3图4预设的师生活动:教师请学生们自由回答,答案不唯一.预设答案:为了安全,船停止卸货驶向安全水域的时间要比算出的时间提前一些.因此为了安全,货船最好在6.6时停止卸货,将船驶向较深的水域.设计意图:让学生感受利用数学模型得到的答案要根据实际情况进行检验和调整。
初中数学北师大版九年级下册《第一章 直角三角形的边角关系 5 三角函数的应用》教材教案
课题:1.5三角函数的应用课型:新授课年级:九年级教学目标:1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.3.通过把实际问题转化为数学问题过程中感受数学与生活的联系,增强学生的数学应用意识;在学习过程中通过小组合作交流,培养学生的合作交流能力与数学表达能力.教学重点与难点:重点:经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.难点:根据题意,了解有关术语,准确地画出示意图.教法与学法指导:教法:1.创设情境法.通过播放视频,创设教学情境,激发学生学习兴趣.2.设疑启发法.通过设置疑问,启学生思维,引导学生分析问题.3.观察对比法.通过归纳类比,让学生由感性认识上升到理性认识.学法:1.自主探索法.学生通过独立思考,探索分析,提高数学分析能力.2.合作学习法.学生通过小组讨论,交流等学习过程,加强合作交流,提高学习效果. 教学准备:教师准备:多媒体课件。
学生准备:计算器。
教学过程:一、合作探究,导入新课直角三角形就像一个万花筒,为我们展现出了一个色彩斑澜的世界.我们在欣赏了它神秘的“勾股”、知道了它的边的关系后,接着又为我们展现了在它的世界中的边角关系,它使我们现实生活中不可能实现的问题,都可迎刃而解.它在航海、工程等测量问题中有着广泛应用,例如测旗杆的高度、树的高度、塔高等. 下面我们就来看一个问题(多媒体演示).活动内容1:海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处.之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.处理方式:首先我们可将小岛A确定,货轮B在小岛A的南偏西55°的B处,根据“上北下南,左西右东”,B在A的“下偏左”55°位置.C在B的正东方,即C在B的右边.且在A南偏东25°处,即C在A的“下偏左”25°位置.在Rt△ABD中,∵tan55°=BDAD,∴BD=AD tan55°.在Rt△ACD中,∵tan25°=CDAD,∴CD=AD tan25°.设AD=x,则BD=tan55°x,CD=tan25°x.∵BC=BD-CD, ∴tan55°x-tan25°x=20,解得,x=20tan55tan25︒-︒≈20.79,即AD≈20.79海里.设计意图:“学数学、用数学”应是我们每位数学教师在教学中时刻不忘的数学宗旨.我们教育的学生,不只要学会知识,更重要的是会用知识.将实际问题抛给学生,引导学生想象问题情境,将自己置身于问题情境中,才能顺利的转化为数学问题,从而学会用数学知识解决实际问题.二、分析探索, 新知学习活动内容1:回答下列问题.如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果精确到1m)处理方式:(自主解决问题)(鼓励学生展示一下自己的过程)(实物投影展示)法1:由题意可知∠DAC=30°,∠DBC=60°,AB=50m.因为CD是两个直角三角形Rt△ADC和Rt△BDC的公共边,所以,设CD=x,在Rt△ADC中,∵tan30°=CDAC,∴AC=tan30CD︒,即AC=3x.法2:在Rt△BDC中,∵tan60°=CDBC,∴BC=tan60CD︒,即BC=33x.又∵AB=AC-BC=50m,∴3x-33x=50.解得,x=253≈43,∴CD≈43m.即塔CD的高度约为43m.(实物投影展示)∵∠DAC=30°,∠DBC=60°,∴∠ADB=30°,∴∠DAC=∠ADB,∴AB=BD=50.在Rt△BDC中,∵sin60°=CD BD,∴CD=sin60°BD=50×32=253≈43m.即塔CD的高度约为43m.设计意图:直角三角形的边角关系在航海,工程等测量问题中有着广泛应用,通过“想一想”的问题进一步让学生巩固如何用直角三角形的边角关系这一知识解决实际问题,提高学生的建模,转化能力.三、拓展升华, 变式思考活动内容1:在这个问题中,小明的身高忽略不计,而在实际测量时,应该考虑小明的身高,更准确一点应考虑小明在测量时,眼睛离地面的距离.如果小明测量时,眼睛离地面的距离为1.6m,其他数据不变,此时塔的高度为多少?你能画出示意图吗?处理方式:(3分钟时间思考,交流,并实物投影展示.)如图所示,由前面的解答过程可知CC'≈43m,则CD=43+1.6=44.6m,即如果考虑小明的高度,塔的高度为44.6m.以开放题的形式呈现,让学生从多角度思考问题,既能培养学生的数学思维能力,又能调动学生学习数学的积极性.学生情绪高涨,讨论热烈.进而得出推论。
三角函数在生活中的应用
三角函数在生活中的应用
三角函数在生活中的应用非常广泛,以下是一些具体的例子:
1. 导航和测量:在地理学和导航系统中,三角函数被广泛用于确定位置和导航路线。
例如,使用正弦函数可以计算出一个船只或飞机相对于地平线的高度,而使用余弦函数可以帮助计算两地之间的距离和方位角。
2. 音乐学:在音乐学中,三角函数也有重要的应用。
例如,正弦函数可以用来描述声音的波动,音乐中的音调和和弦也可以用三角函数来表示。
3. 光学:在光学中,三角函数被广泛应用于描述和计算光线的传播、折射和反射。
我们可以利用三角函数来计算出反射镜或折射体中光线的角度和路径。
4. 建筑和工程:在建筑和工程中,三角函数常用于测量高度、距离和角度。
例如,工程师可以使用三角函数来计算建筑物的高度、角度和结构的稳定性。
5. 航海和航空:航海员和飞行员使用三角函数来计算船舶或飞机的位置、航向和速度。
三角函数也用于制定航线和导航系统。
6. 电磁学:电磁学中常用交流电,而交流电可以用三角函数(特别是正弦函数和余弦函数)来描述。
此外,复数函数常用正弦函数和余弦函数的复变函数表示。
7. 日常生活:在现实生活中存在大量具有周期性变化的现象,比如农业中筒车中盛水筒距离水面的相对高度与时间的关系、物理中
的简谐运动等。
这些都可以借助三角函数来描述。
总的来说,三角函数在生活中的应用非常广泛,几乎无处不在。
三角函数的定义与应用
三角函数的定义与应用三角函数是数学中重要的概念之一,它在几何、物理、工程等领域有广泛的应用。
本文将介绍三角函数的定义及其在实际问题中的应用。
一、三角函数的定义1. 正弦函数(sine function):在任意给定角的单位圆上,该角对应的弧度终点在Y轴上的纵坐标值,称为该角的正弦值。
正弦函数常用符号为sin。
2. 余弦函数(cosine function):在任意给定角的单位圆上,该角对应的弧度终点在X轴上的横坐标值,称为该角的余弦值。
余弦函数常用符号为cos。
3. 正切函数(tangent function):在任意给定角的单位圆上,该角对应的正弦值除以余弦值,称为该角的正切值。
正切函数常用符号为tan。
以上三个三角函数在三角学中具有重要的性质和关系,它们的图像也相互关联。
二、三角函数的应用1. 几何应用三角函数在几何中有广泛的应用,例如在直角三角形中,正弦函数可以帮助我们求解角的正弦值,从而求解边长和高度。
余弦函数可用于计算角的余弦值,从而求解边长和底边。
正切函数则可用于计算角的正切值,求解边长和斜边。
2. 物理应用三角函数在物理中也有重要的应用。
例如在力的合成问题中,可以利用正弦函数和余弦函数求解合成力的大小和方向。
在波动方程中,正弦函数和余弦函数则描述了波的形状和变化。
3. 工程应用在工程领域,三角函数也得到广泛的应用。
例如在航空、航海中,利用三角函数可以计算方向和距离。
在建筑领域,可以利用三角函数来计算角度和高度。
三、三角函数的性质1. 周期性三角函数是周期性的,周期为360度或2π弧度。
即三角函数的值在每个周期内重复出现。
2. 对称性正弦函数和余弦函数是偶函数,即它们关于Y轴对称。
也就是说,sin(-x) = -sin(x),cos(-x) = cos(x)。
3. 反函数每个三角函数都有其反函数,分别称为反正弦函数(arcsine function)、反余弦函数(arccosine function)和反正切函数(arctangent function)。
北师大版九年级数学下册:1.5《三角函数的应用》教学设计
北师大版九年级数学下册:1.5《三角函数的应用》教学设计一. 教材分析《三角函数的应用》是北师大版九年级数学下册的重要内容。
这部分内容主要介绍了三角函数的概念、性质及应用。
通过学习,学生可以了解三角函数的基本概念,掌握三角函数的性质,并能运用三角函数解决实际问题。
本节课的内容为后续学习三角函数的其他部分打下基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。
但是,对于三角函数这一部分内容,由于其抽象性和复杂性,学生可能存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导学生逐步理解和掌握三角函数的知识。
三. 教学目标1.了解三角函数的基本概念,掌握三角函数的性质。
2.能够运用三角函数解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.三角函数的基本概念。
2.三角函数的性质。
3.运用三角函数解决实际问题。
五. 教学方法1.讲授法:通过讲解,使学生了解三角函数的基本概念和性质。
2.案例分析法:通过分析实际问题,使学生掌握运用三角函数解决问题的方法。
3.讨论法:引导学生分组讨论,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学课件:制作三角函数的课件,帮助学生直观地理解三角函数的概念和性质。
2.实际问题:准备一些与生活相关的实际问题,用于引导学生运用三角函数解决实际问题。
3.练习题:准备一些有关三角函数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些与三角函数相关的实际问题,引导学生思考并引入新课。
2.呈现(10分钟)讲解三角函数的基本概念和性质,让学生了解三角函数的定义和特点。
3.操练(10分钟)让学生分组讨论,分析实际问题,并运用三角函数解决问题。
教师巡回指导,帮助学生解决讨论中的问题。
4.巩固(10分钟)让学生独立完成练习题,巩固所学知识。
教师及时批改,给予学生反馈。
5.拓展(10分钟)讲解一些与三角函数相关的拓展知识,引导学生思考和探索。
最新鲁教版五四制九年级数学上册《三角函数的应用》同步练习题及答案解析.doc
1.5三角函数的应用1.如图,一枚运载火箭从地面O 处发射,当火箭到达A 点时,从地面C 处的雷达站 测得AC 的距离是6km ,仰角是43,1s 后,火箭到达B 点,此时测得BC 的距离是6.13km ,仰角为45.54,这枚火箭从A 点到B 点的平均速度是多少?(精确到0.01km s )2.如图1—62所示,一艘渔船正以30海里/时的速度由西向东追赶鱼群,自A 处经半小时到达B 处,在A 处看见小岛C 在船的北偏东60°的方向上,在B 处看见小岛C 在船的北偏东30°的方向上,已知以小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,则这艘船继续向东追赶鱼群,是否有进入危险区域的可能?3.某地震救援队探测出某建筑物废墟下方点C 处有生命迹象,已知废墟一侧地面OABC上两探测点A ,B 相距3米,探测线与地面的夹角分别是30和60(如图),试确定生命所在点C 的深度.(结果精确到0.1米,参考数据:2 1.41≈,3 1.73≈)4.如图1—63所示,某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B 处,经16小时到达,到达后立即卸货,此时接到气象部门通知,一台风中心正以40海里/时的速度由A 处向北偏西60°的AC 方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响: (1)B 处是否会受到台风的影响?清说明理由;(2)为避免卸货过程受到台风影响,船上人员应在多少小时内卸完货物?(精确到0.1小时,3≈1.732)5.如图l —64所示,MN 表示某引水工程的一段设计路线,从点M 到点N 的走向为北偏西30°,在点M 的北偏西60°方向上有一点A ,以点A 为圆心,以500米为半径的圆形区域为居民区,取MN 上另一点B ,测得BA 的方向为北偏西75°.已知MB=400米,若不改变方向,则输水路线是否会穿过ABCD3060居民区?(参考数据:3≈1.732)6.如图1—65所示,A,B两地之间有一座山,汽车原来从A地到B地需要经C地沿折线A—C—B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC =10 km,∠A=30°,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果精确到0.1 km,参考数据:2≈1.41,3≈1.73)7.气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45方向的B点生成,测得1006.台风中心从点B以40km h的速度向正北方OB km向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km h的速度向北偏西60方向继续移动.以O为原点建立如图所示的直角坐标系.(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为 ;(结果保留根号)(2)已知距台风中心20km 范围内均会受到台风侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?参考答案1. 解:在Rt BCO ∆中,sin OB BCO BC∠=∴sin 6.13sin45.54 4.375OB BC BCO =⋅∠=⨯≈ 在Rt ACO ∆中,sin OA ACO AC∠=∴sin 6sin43 4.092OA AC ACO =⋅∠=⨯≈∴ 4.375 4.0920.28AB OB OA =-=-≈答:这枚火箭从A 点到B 点的平均速度是0.28km s .2.提示:不会进入危险区.3. 解:过C 作CD AB ⊥于点D∵探测线与地面的夹角为30和60∴30CAD ∠=,60CBD ∠=在Rt ACD ∆中,tan CD CAD AD∠=∴3tan tan 30CD CD AD CD CAD ===∠ 在Rt BCD ∆中,tan CD CBD BD∠=∴33tan60CD BD CD ==又∵3AD BD AB -==∴3333CD CD -= 解得333 1.73 2.622CD ⨯==≈∴生命所在点C 的深度约为2.6米.4.解:(1)如图1—66所示,过B 作BD ⊥AC 于D ,在Rt △ABD 中,BD=12AB=160海里<200海里,所以B 处会受到台风的影响. (2)以B 为圆心,200海里为半径画圆交AC 于E ,F 两点,连接BE ,BF .由(1)可知BD =160海里,又BE =200海里,则DE=120海里,所以AE =(1603-120)海里.设卸货时间为t ,则t =160312040-≈3.9(小时),所以在3.9小时内卸完货才不会受台风影响.5.解:如图1—67所示,过A 作AP ⊥MN 于点P ,由题意可知∠ABP=∠PAB=45°,因为MB =400米,所以MP -BP=MB =400米,所以AP .1tan 30-AP ·1tan 45=400,即3AP -AP=400,AP=200(3+1)≈546.4米>500米,所以输水路线不会穿过居民区.6.解:过点C 作CD ⊥AB ,垂足为D .在Rt △CDA 中,∠A =30°,AC =10km ,∴CD =12AC =5 km ,AD =ACcos 30°=53km .在Rt △BDC 中,∠B=45°,∴BD =CD=5km ,BC=sin 45CD==52km ,∴AB =AD +BD=(53+5)km ,∴AC+BC -AB =10+52-(53+5)=5+52-53≈5+5×1.4l -5×1.73=3.4(km).即隧道开通后,汽车从A 地到B 地比原来少走约3.4 km .7. 解(1) (1003,1003)- :(1003,2001003)- (2)过点C 作CD OA ⊥于点D ,则1003CD =,30ACD ∠= 在Rt ACD ∆中,cos CD ACD AC∠=∴1003200cos cos30CD AC ACD ===∠∵20020630-=,6511+=∴台风从生成到最初侵袭该城要经过11小时.ABD/y km/x kmO 4560C。
北师大版九年级数学下册:1.5《三角函数的应用》说课稿
北师大版九年级数学下册:1.5《三角函数的应用》说课稿一. 教材分析北师大版九年级数学下册1.5《三角函数的应用》这一节主要介绍了三角函数在实际问题中的应用。
通过本节课的学习,学生能够掌握正弦函数、余弦函数和正切函数在实际问题中的应用,理解三角函数的实际意义,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了三角函数的基本概念和性质,对正弦函数、余弦函数和正切函数有一定的了解。
但学生在应用三角函数解决实际问题方面可能存在一定的困难,需要通过本节课的学习,提高学生运用三角函数解决实际问题的能力。
三. 说教学目标1.知识与技能目标:学生能够理解三角函数在实际问题中的应用,掌握正弦函数、余弦函数和正切函数在实际问题中的运用方法。
2.过程与方法目标:通过解决实际问题,学生能够提高运用三角函数解决问题的能力,培养学生的数学思维。
3.情感态度与价值观目标:激发学生学习三角函数的兴趣,培养学生的团队合作精神,使学生感受到数学在实际生活中的重要性。
四. 说教学重难点1.教学重点:学生能够理解三角函数在实际问题中的应用,掌握正弦函数、余弦函数和正切函数在实际问题中的运用方法。
2.教学难点:学生如何将实际问题转化为三角函数问题,如何灵活运用三角函数解决实际问题。
五. 说教学方法与手段1.教学方法:采用案例分析法、问题驱动法、小组合作法等,引导学生主动探究,提高学生解决实际问题的能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,帮助学生形象直观地理解三角函数在实际问题中的应用。
六. 说教学过程1.导入:以一个实际问题引入,激发学生学习兴趣,引导学生思考如何运用三角函数解决实际问题。
2.新课讲解:通过案例分析,讲解正弦函数、余弦函数和正切函数在实际问题中的应用,引导学生理解三角函数的实际意义。
3.实践操作:学生分组讨论,选取一个实际问题,运用三角函数进行解决,培养学生的实际操作能力。
4.总结提升:教师引导学生总结本节课所学内容,巩固学生对三角函数在实际问题中的应用的理解。
三角函数的应用-九年级数学下册课件(北师大版)
解:设 = 米,由题意得: ⊥ ,∠ = 30°,∠ = 45°,
∴∠ = ∠ = 90°,∴ =
∵ + = = 100米,∴
3
3
3
3
=
3
3
米, = = 米,
+ = 100,解得: = 150 − 50 3,
参考数据: ≈1.414, ≈1.732
【详解】
解:在Rt△CDE中,
∵sin∠C= ,cos∠C=,
1
3
2
∴DE=sin30°×DC=2×14=7 m ,CE=cos30°×DC= ×14=7 3≈12.124≈12.12 m ,
∵四边形AFED是矩形,∴EF=AD=6m,AF=DE=7m,
解法2:如图,根据题意知,∠A=30º,∠DBC=60º,AB=50m.
则∠ADC=60º,∠BDC=30º, ∴∠BDA=30º
∴∠A=∠BDA∴BD=AB=50
在Rt△DBC中,∠DBC=60º则sin60º=
∴DC=50×sin60º=25 3 ≈43 m
答:该塔约有43m高
50
30º
50 m
∵直角三角形中30°角所对的边是斜边的一半∴AC=240 m
∴设BD=x,则AB=2x,由勾股定理得2 = 2 + 2
B
α
A β
D
解得x= 40 3 m,同理求得DC= 120 3 m
则BC=BD+DC=160 3≈277 m 答:楼高277米
俯角
C
水平
线
情景引入
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
55 0 25
20海里
0
B
C
D
复习回顾 随堂练习
如图,在△ABC中,AB=300m, ∠B=45°, ∠A=60°,求点C到AB的距离.
B
4m 30° 45°
┌
A
D
C
例题欣赏
例2.如图,某学校课外活动小组想测量建筑物CD的高,
他们在地面A处测得建筑物顶部D的仰角为30°,再往建
筑物底部C的方向前进18m至B处,测得仰角为45°.求建
D
筑物CD的高度.
C
B
A
随堂练习
如图,公园管理处计划在公园里建一个以A为喷泉中心, 半径为15m的圆形喷水池。公园里已建有B、C两个休息亭, BC是一条长50m的人行道,经测得∠ABC=450,∠ACB=300 。 (1)若要在人行道BC上安装喷泉用水控制阀门E,使它到喷泉 中心A的距离最短,请你在BC上画出该点的位置。 (2)通过计算,你认为该圆形喷水池会影响人行道的通行吗?
北
A
45º
60º
D
C
10
B
被观测点
随堂练习
1,海中有一个小岛A,它的周围8海里范围内有暗礁, 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏 东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上,如果渔船不改变航线继续向东 航行,有没有触礁的危险?
A
30°
60°
x
F
B
12
D
A 45° 30°
( 3 1.732 )
B
E
C
)
复习回顾
重点2:方位角 1、方位角坐标:上北下南,左西右东。
2、定义:目标方向线与指南或指北方向所成的锐 角叫做方位角。方位角通常是以南北方向线(指南 针)为主,分南偏东(西)或北偏东(西)。 如图中点A的方位角 为北偏东30°,点B 西(W) 东(E) O 的方位角为南偏西 54 ° B 54 ° 。 南(S) 3、确定方位角应先确定观测点,在观测点建立方 位角坐标,所以观测点不同,所得的方位角不同。
北(N) A 30°
探索新知
你会求方位角吗?
如图所示,在一次实践活动中,小兵从A地出发, 沿东北方向行进了5 3 千米到达B地,然后再沿西北方向 行进了5千米到达目的地C。 (1)A、C两地的距离为 10 千米。
(2)试确定目的地C在A地的什么地方?
N
答:C在A地的北偏东15º,离A地10千米处.
随堂练习
2,如图,一辆拖拉机从A点正在沿北偏西60 °的方向行驶.在距A
点100m的正西方向有一个学校B正在上课,已知该拖拉机的噪声污 染范围是75m,试问拖拉机在继续前进的过程中是否对学校造成噪 声污染?为什么?如果拖拉机的行驶速度是36km/h,那么该拖拉机在 行驶过程中对学校的影响有多长时间?(精确到1 秒,5 2.236 )
课后训练
如图,海中有一个小岛A,该岛四周10海里内暗礁.今有 货轮由西向东航行,开始在A岛南偏西550的B处,往东行驶 20海里后到达该岛的南偏西250的C处.之后,货轮继续向 东航行.你认为货轮继续向东航行途中会有触礁的危险吗?
(tan55 1.43 ,tan25 0.47)
0 0
北 东
D
A
300
50m
0 60 ┌ B C
总结新知
重点1:解决实际问题的步骤
1、 审题,画出(补全)图形。 2、审图,确定已知和未知。 3、解直角三角形,列方程 (组)。
4、解方程(组),结论。
随堂练习
1,某商场准备改善原有楼梯的安全性 能,把倾角由原来的45°减至30°,已知 原楼梯的长度为4m,调整后的楼梯会加 长多少?楼梯多占多长一段地面?(结果 精确到0.01m). ( 6 2.449 ,2 1.732 )
第一章
直角三角形的边角关系
1.5 三角函数的应用 (2 )
沈阳市第一七四中学
复习回顾 随堂练习
• 1,如图:山高AB=200米,山上有一塔BC,从点D 测得B点的仰角为30°,测得C点的仰角为45°, 求塔高BC。
例题欣赏
例1,如图,小明想测量塔CD的高度.他在A处仰望塔顶,测 得仰角为300,再往塔的方向前进50m至B处,测得仰角为 600,那么该塔有多高?(小明的身高忽略不计,结果精确到 1m, 3 1.732 ).
C
45°
B A E
例题欣赏
例3 茫茫大海中有 一个小岛A,该岛四周 14海里内有暗礁.今 有货船由东向西航行, 开始在A岛南偏东 60°的B处,往西行驶 10海里后到达该岛的 东南方向的C处.之后, 货船继续向西航行. 你认为货船继续向西航 行途中会有触礁的危险 吗?
若船在C点改航向为南偏西 75°,还会有触礁的危险吗? 观测点
M
B
A
回顾与总结
刚才遇到的几个问题转化为数学问题后有什么共同点? 1、都有2个直角三角形 2、都是给出2个角、1条线段线 3、都需要用三角函数来解决 再遇到这样的问题我们如何解决? 1、弄清题意,画出示意图,并在图中标出相应量。 2、把实际问题转化成数学问题。 3、找直角三角形,必要时构造直角三角形,利用三角函数中 的边角关系,找等量关系。 4、利用方程解决问题 4、都可以用方程来解决