2013中考数学冲刺模拟卷5

合集下载

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

2013中考数学模拟测试卷

2013中考数学模拟测试卷

2013中考数学模拟测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在题.前括号内.....【】1. -2的绝对值是A.2 B.-2 C.12- D.2±【】2. 下列计算正确的是A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7【】3. 某同学在“百度”搜索引擎中输入“魅力南通”,能搜索到与之相关的结果个数约为3930000,这个数用科学记数法表示为A.0.393×107 B.393×104C.39.3×105 D.3.93×106【】4. 若一个多边形的内角和是900°,则这个多边形的边数是A.5 B.6 C.7 D.8【】5. 如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为A.12B.5C.10D.25【】6. 如图,点A、C、B、D分别是⊙O上四点,OA⊥BC,∠AOB=50°则∠ADC的度数为A.20° B.25° C.40° D.50°【】7. 如图所示的工件的主视图是【】8. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A.24.5,24.5 B.24.5,25 C.25,24.5 D.25,25尺码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 1A.B.C.D.(第5题)【 】9. 下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形【 】10. 如图,已知在Rt△ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为A .21()32n ⋅B .221()2n ⋅C .121()32n -⋅ D . 1221()2n -⋅二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11. 计算:327-= .12. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=53°,则∠2= °. 13. 已知分式21x x -+的值为0,那么x 的值为 . 14. 一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是 . 15. 如图,函数2y x =和5y ax =+的图象相交于A (m ,3),则不等式25x ax <+的解集 为 .16. 设m ,n 是方程220120x x --=的两个实数根,则2m n +的值为 . 17. 如图,已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,AE 平分∠BAC 交 BD 于点E , 则BE 的长为 . 18. 如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B , 以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .A BCD EFGH I K J PQ (第10题)(第6题)OD C B12(第12题)三、解答题:本大题共10小题,共计96分.解答时应写出文字说明、证明过程或演算步骤.19.(本题满分10分) (1)计算:0(3)-+12cos30°-11()5- (2)解方程组:38 53 4 x y x y +=⎧⎨-=⎩①②20.(本题满分8分)化简分式222421444a aa a a -÷--++,并选取一个你认为合适的整数a 代入求值.y AOx(第15题)xBAC(第18题)O y(第17题)OE小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分8分)如图,AB 与⊙O 相切于点C ,OA =OB .(1)如图①,若⊙O 的直径为8cm ,AB =10cm ,求OA 的长(结果保留根号); (2)如图②,OA 、OB 与⊙O 分别交于点D 、E ,连接CD 、CE ,若四边形ODCE 为菱形,求ODOA的值.OA B C 图 ①ADCBOE图 ②本市若干天空气质量情况扇形统计图优良 64%轻微污染轻度污染 中度污染 重度污染轻微 污染 轻度 污染 天数(天)20 15105832311中度 污染 重度污染空气质如图,在边长为1的正方形组成的网格中,△ABC的顶点和O点均在格点上.(1)以点O为位似中心,在网格中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.24.(本题满分8分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.DF甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线2上的概率.y x26.(本题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式▲;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.如图,二次函数212y x mx n =-++的图象与y 轴交于点N ,其顶点M 在直线32y x =-上运动,O 为坐标原点. (1)当m =-2时,求点N 的坐标;(2)当△MON 为直角三角形时,求m 、n 的值;(3)已知△ABC 的三个顶点的坐标分别为A (-4,2),B (-4,-3),C (-2,2),当抛物线212y x mx n =-++在对称轴左侧的部分与△ABC 的三边有公共点时,求m的取值范围.(第2问图)。

2013中考数学模拟试题及答案五

2013中考数学模拟试题及答案五

2013中考数学模拟试题及答案五(考试时间:120分钟,满分120分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选均得零分.) 1.在2-,1-,0,3这四个数中,最小的数是A .2-B .1-C .0D .32.计算 23)(a 的结果是 A .23a B .26a C .a 9 D .29a 3.下列调查中,适宜采用全面调查(普查)方式的是A .调查我市市民的健康状况B .调查我区中学生的睡眠时间C .调查某班学生1分钟跳绳的成绩D .调查全国餐饮业用油的合格率 4.方程x x =2的解为 A .0或1B .0C .0或1-D .15.如图所示,//AB ED , ︒=∠70ECF ,则BAF ∠的度数为A .︒130B .︒110C .︒70D .︒206.如图所示,是由四个相同的小正方体组成的立体图形,它的俯视图是7.如图所示,扇形AOB 的圆心角为120°,半径为2,则图中阴影部分的面积为A.43π-43π-432π- D. 43π8.有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为A .B .C .D .A. 1x =,3y =B. 3x =,2y =C. 4x =,1y =D. 2x =,3y = 9.已知二次函数215y x x =-+-,当自变量x 取m 时,对应的函数值大于0,当自变量x 分别取1-m ,1+m 时对应的函数值1y 、2y ,则1y ,2y 满足A. 1y >0,2y >0B. 1y <0,2y <0C.1y <0,2y >0D.1y >0,2y <0 10.如图所示,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23,则∠AOC 为A .120°B .130C .140°D .150°11.若A (a 1,b 1),B (a 2,b 2)是反比例函数y = –2图象上的两点,且a 1<a 2,则b 1与b 2的大小关系是A .b 1<b 2B .b 1 = b 2C .b 1>b 2D .不能确定12.如图所示,在正方形ABCD 的对角线上取点E ,使得∠BAE =︒15,连结AE ,CE .延长CE 到F ,连结BF ,使得BC=BF .若AB =1,则下列结论:①AE=CE ; ②F 到BC 的距离为22;③BE +EC =EF ;④8241+=∆AED S ;⑤123=∆EBF S .其中正确的个数是 A .2个 B .3个 C .4个 D .5个二、填空题:(本大题共6小题,每小题3分,共18分.)13.我市重大惠民工程——公租房建设已陆续竣工.截至2013年3月,我市公租房分配量已达13000余套.13000用科学记数法表示为 . 14.分解因式:3a 2b+6ab 2= . 15.若5x – 5的值与2x – 9的值互为相反数,则x = . 16.若ab=-1,a+b=2,则式子(a -1)(b -1)=______ ______.17.如图所示,已知△ABC 的面积为36,将△ABC 沿BC 平移到△A ´B ´C ´,使B ´和C 重合,连结AC ´交AC 于D ,则△C ´DC 的面积为___ _____.ACDE F B第5题图ACBO第10题图ABCDEF第12题图18.如图所示,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、 △PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4② S 2+S 4= S 1+ S 3 ③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上。

最新2012-2013年数学中考冲刺预测模拟试卷(5)

最新2012-2013年数学中考冲刺预测模拟试卷(5)

俯视最新2012-2013年中考冲刺预测模拟试卷(5)数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.计算(ab 2)3的结果是 ( ) A .ab 5B .ab6C .a 3b 5D .a 3b 62.若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( )A. -2B. 2C. -50D. 503.一个几何体及它的主视图和俯视图如图所示, 那么它的左视图正确的是________4. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比A B C D图15.某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是________ A ______A 、19,20B 、19,19C 、19,20.5D 、20,196.已知半径分别为5cm 和8cm 的两圆相交,则它们的圆心距可能是 ( ) A .1cm B .3cm C .10cm D .15cm7.为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为( )A.B.C.D.8. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”. 如图,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( )A. 4B. 5C. 6D. 79. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ). A . k ≥1B . k ≤1C . k >1D . k <110.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元。

2013年中考数学模拟试卷(五)及答案201380

2013年中考数学模拟试卷(五)及答案201380

2013年中考数学模拟试卷(五)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1. 1||3-的相反数是【 】A .13B .-13C .3D .-32. 地球上水的总储量为1.39×1018 m 3,但目前能被人们利用的水只占总储量的0.77%,即约为0.010 7×1018 m 3,因此我们要节约用水.能被人们利用的水可用科学记数法表示为【 】 A .1.07×1016 m 3B .0.107×1017 m 3C .10.7×1015 m 3D .1.07×1017 m 33. 下列说法正确的是【 】A .要了解全市居民对环境的保护意识,应采用全面调查的方式B .若甲组数据的方差2S 甲=0.1,乙组数据的方差2S 乙=0.2,则甲组数据比乙组稳定C .随机抛一枚硬币,落地后正面一定朝上D .若某彩票中奖概率为1%,则购买100张彩票就一定会中奖一次 4. 下列四个几何体中,主视图与左视图相同的几何体有【 】④球③圆锥②圆柱①正方体A .1个B .2个C .3个D .4个 5. 若直线y =-2x -4与直线y =4x +b 的交点在第三象限,则b 的取值范围是【 】A .-4<b <8B .-4<b <0C .b <-4或b >8D .-4≤b ≤86. 如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数1k y x =(x >0)和2ky x=(x >0)的图象于点P 和点Q ,连接OP ,OQ ,则下列结论正确的是【 】 A .∠POQ 不可能等于90° B .12PM k QM k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是1212k k (||+||)yxOM QP7. 如图,P A ,PB 是⊙O 的切线,A ,B 是切点,点C 是劣弧AB 上的一个动点,若∠P =40°,则∠ACB 的度数是【 】 A .80°B .110°C .120°D .140°C POAByxA'B'C'A BCO第7题图 第8题图8. 如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA'B'C'的位置,若OB =23,∠C =120°,则点B′的坐标为【 】 A .(3,3)B . (3,3)-C .(6,6)D .(6,6)-二、填空题(每小题3分,共21分)9. 使13a -有意义的实数a 的取值范围是_________.10. 如图,直线BD ∥EF ,AE 与BD 交于点C ,若∠ABC =30°,∠BAC =75°,则∠CEF 的大小为___________.F EDC BABDAN MC第10题图 第12题图11. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x ,乙立方体朝上一面上的数字为y ,这样就确定点P 的一个坐标(x ,y ),那么点P 落在双曲线6y x=上的概率为___________. 12. 如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是_______________.13. 若x 1,x 2(x 1<x 2)是方程(x -a )(x -b )+2=0(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为___________.14. 如图,在平面直角坐标系xOy 中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =kx +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 27(2,3)2,那么点A n 的纵坐标是__________.OB 1A 1A 2y A 3y=kx+bB 2B 3x15. 在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为__________. 三、解答题(本大题共8小题,满分75分)16. (8分)若实数x ,y 满足26190x x x y ++-++=,求代数式2211yx y x y x y⎛⎫+÷ ⎪-+-⎝⎭的值.17. (9分)某市中小学全面开展“体艺2+1”活动,该市一学校根据实际情况,决定开设A :篮球,B :乒乓球,C :声乐,D :健美操四种活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成两幅不完整的统计图.408020图1图2B10% ADC人数/人100806040200AB CD项目请解答下列问题:(1)这次被调查的学生共有______人; (2)请你将统计图1补充完整;(3)求统计图2中D 项目对应的扇形圆心角的度数;(4)已知该校有学生2 400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.18. (9分)如图,△ABC 内接于⊙O ,AD ⊥BC ,OE ⊥BC ,OE =12BC . (1)将△ACD 沿AC 折叠为△ACF ,将△ABD 沿AB 折叠为△ABG ,延长FC 和GB 相交于点H ,求证:四边形AFHG 是正方形; (2)若BD =6,CD =4,求AD 的长.FCE D AOGBH19. (9分)如图,矩形ABOD 的顶点A 是函数1ky x=与函数2(1)y x k =--+的图象在第二象限内的交点,AB ⊥x 轴于点B ,AD ⊥y 轴于点D ,且矩形ABOD 的面积为3.(1)求两函数的解析式以及两交点A ,C 的坐标; (2)直接写出当12y y >时x 的取值范围;(3)若点P 是y 轴上一点,且S △APC =5,求点P 的坐标.yAB OxCD20.(9分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:两问的计算结果均精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)C B AN QP M45°30°21.(10分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲、乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%,对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?哪种方案花费最少?最少为多少?22. (10分)正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F .如图1,当点P 与点O 重合时,显然有DF =CF .(1)如图2,若点P 在线段AO 上(不与点A ,O 重合),PE ⊥PB 且PE 交CD 于点E . ①求证:DF =EF ;②写出线段PC ,P A ,CE 之间的一个等量关系,并证明你的结论. (2)若点P 在线段CA 的延长线上,PE ⊥PB 且PE 交直线CD 于点E .请补全图3,并判断(1)中的结论①、②是否仍成立,若不成立,请写出相应的结论.(所写结论均不必证明)P E F O图3图2图1PO BADCBAD CP (O )F CD BA23. (11分)已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E ,D ,C 的抛物线的解析式.(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由.(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C ,G 构成的△PCG 是等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.BC DOE A xy2013年中考数学模拟试卷(五)参考答案一、选择题1 2 3 4 5 6 7 8 B A B D A D B D二、填空题 9.3a >10.105°11.1912.18313.12a x x b <<< 14.132n -⎛⎫ ⎪⎝⎭15.232211322++或三、解答题 16.3.17.(1)200;(2)统计图略;(3)72°;(4)960人.18.(1)证明略;(2)12.19.(1)1232y y x x =-=-+,,(1 3) (3 1)A C --,,,;(2)10 3x x -<<>或;(3)1219(0 )(0 )22P P -,,,. 20.(1)5.6米;(2)需要挪走,理由略.21.(1)降价前甲、乙两种药品每盒的零售价格分别是15.8元、18元; (2)有3种搭配方案:方案一,甲种药品58箱,乙种药品42箱; 方案二,甲种药品59箱,乙种药品41箱; 方案三,甲种药品60箱,乙种药品40箱. 方案一花费最少,最少是6 740元.22.(1)①证明略;②2PC PA CE -=,证明略;(2)结论①仍成立;结论②不成立,此时PC ,PA ,CE 之间的数量关系是2PC PA CE +=.23.(1)2513166y x x =-++;(2)成立,证明略;(3)存在,1237127(2 2)(1 )( )355Q Q Q ,,,,,.。

2013年中考模拟数学试卷5(有详细解答)

2013年中考模拟数学试卷5(有详细解答)

2013年中考模拟数学试题5(有详细答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8小题选对每小题得3分,第9~12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.1..下列各数中,最小的数是( )A. -2B. -0.1C. 0D. |-1| 2.下列计算正确的是( )A .π-3=3-πB .30=0C .331-=- D .=±33.某校八年级8位同学身高排序后如下:162,164,167,167,173,176,183,184.则由这组数据得到的结论中错误的是( )A. 中位数 170B. 众数为168C. 极差22D. 平均数为1714.在平面直角坐标系中,将抛物线y =x 2-x -6向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则|m |的最小值为( )A .1 B .2 C .3 D .65.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A 'O B ',若∠AOB =15°,则∠AOB '的度数是A .25°B .30°C .35°D . 40°6.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10cm ,OA′=20cm ,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .A .2:3B .3:4C .1:2D .2:57.下列四个结论中,正确的是( ) 故选D . A 、方程x+=﹣2有两个不相等的实数根 B 、方程x+=1有两个不相等的实数根C 、方程x+=2有两个不相等的实数根D 、方程x+=a (其中a 为常数,且|a|>2)有两个不相等的实数根 8.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,.则下列结论中不一定正确的是( )A. BA ⊥DAB. OC //AEC. ∠COE =2∠CAED. OD ⊥AC9.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( )BA 'AB 'O第5题图 第6题图A 、43 B 、34 C 、53 D 、5410.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )11.如图,A(1),B(1.将△AOB 绕点O 旋转 150得到△A′OB′,则此时点A 的对应点A′的坐标为【 】.A .(l) B .(-2,0) C .(-l,-或(-2,0) D .(1)或(-2,0) 12.在锐角△ABC 中,∠BAC=60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP=MP ②当∠ABC=60°时,MN ∥BC ③ BN=2AN ④AN ︰AB=AM ︰AC ,一定正确的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个第8题图第9题图 第10题图第11题图第12题图第Ⅱ卷(非选择题 共80分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13.分解因式:a 3b ﹣2a 2b 2+ab 3= _________ .14.已知关于x 的分式方程1+x a -xx x a +--212=0无解,则a 的值为 。

2013年最新中考数学冲刺试卷

2013年最新中考数学冲刺试卷

2013年最新中考冲刺试卷数学第I 卷一、选择题(本大题共12题,每小题3分,共36分)在每小题列出的四个选项中,只有一个是正确的,请将正确选项的字母写在答卷相应的位置上. 1、下列各式:①)2(--;②2--;③22-;④2)2(--,计算结果为负数的个数有 A .4个 B .3个 C .2个 D .1个 2、下列计算正确的是A .422a a a =+ B .725a a a =⋅ C .532)(a a = D .2222=-a a3、下列标志中,既是轴对称图形又是中心对称图形的为(A ) (B ) (C ) (D )4、已知11x y =⎧⎨=-⎩是方程23x ay -=的一个解,则a 的值为A .1B .3C .2-D .1--5、在一个不透明袋子放入一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后又放入袋子中,充分摇匀后又随机摸出一个球,两次都摸出黑球的概率为【九年级数学试题 共6页】 第1页A .14 B .13 C .12 D .236、将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 A .10cmB .20cmC .30cmD .60cm7、二次函数211y ax x =-+的图像与222y x =-图像的形状、开口方向相同,只是位置不同, 则二次函数1y 的顶点坐标是 A .(19,48--) B .(19,48-) C . (19,48) D . (19,48-) 8、当0k >,0b <时,y kx b =+的图象经过 A .第1、2、3象限 B .第2、3、4象限 C .第1、2、4象限D .第1、3、4象限9、如图,PA 切⊙O 于点A ,直线PBC 经过点圆心O , 若30P ∠=︒,则∠ACB 的度数为A .30︒B .60︒C .90︒D .120︒ 10.如果四边形的对角线相等,且互相垂直平分,则它一定是 A .矩形 B .菱形 C .正方形 D .等腰梯形11.某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx 12.在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ACE △≌△;②CDE△为等边三角形;③2EH BE =;④EBC EHC S AHS CH ∆∆=.其中结论正确的是 A .①②B .①②④C .③④D .①②③④【九年级数学试题 共6页】 第2页第II 卷二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.13、分解因式:=+-a a a 23214、关于x 的一元二次方程2(1)210m x x -++=有两个不相等的DCBE A H实数根,那么m 的取值范围是 .15、如图所示的一只玻璃杯,最高为8cm ,将一根筷子插入其中,杯外最长4厘米,•最短2厘米,那么这只玻璃杯的内径是________厘米. 16、不等式组221x x -⎧⎨-<⎩≤的整数解共有 个17、如图所示,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落 在BC 中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的 长是 .三、解答题:本大题共7个小题,共64分。

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.

2013年安徽省中考数学模拟试卷

2013年安徽省中考数学模拟试卷

2012年安徽省中考数学模拟试卷(五)2013年安徽省中考数学模拟试卷一、选择题(本大题共10小题,每小越4分,满分40分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选,选错,或选出的代号超过一个的不论是否写在括号内一律得0分.)1.计算(﹣2)3+2×(﹣2)2的值是()A.0 B.﹣8 C.16 D.﹣162.(2009•威海)如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是()A.20°B.30°C.35°D.40°3.2012年1月13日,中国人民银行公布的《2011年四季度金融统计数据表》显示,201 1年12月末中国外汇储备为31811.48亿美元,用科学记数法表示31811.48亿正确的为(保留三个有效数字)()A.318亿B.3.18×108C.3.18×1010 D.3.18×10124.(2006•眉山)数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.方差是1.5吨B.中位数是6吨 C.平均数是6.2吨D.众数是6吨6.下列几何体中,主视图、左视图、俯视图相同的是()A.B.C.D.7.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点E,AB=10,CD=8,那么AE的长为()A.2 B.3 C.4 D.58.解方程=的结果是()A.x=﹣3 B.x=3 C.x=6 D.无解9.如图,某种型号链条每节长为2.5cm,每两节链条相连接部分重叠的网的直径为0.8cm,则这种链条60节的总长度为()A.150cm B.104.5cm C.102.8cm D.102cm10.(2010•烟台)如图,AB为半圆的直径,点P为AB上一动点,动点P从点A出发,沿AB匀速运动到点B,运动时间为t,分别以AP与PB为直径做半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x的一元二次方程x2+(k+3)x+k=O有一个实数根是1,则这个方程的另一个实数根是_________.12.将一个三角形纸板按如图所示的方式放置在量角器上,使得点C在量角器的边缘(半圆周)上.已知点A、B 的读数分别为86°、30°,,则∠ACB的大小为_________.13.对于任意实数a,b,定义一种新运算“*”,使得a*b=ab﹣a2,例如2*5=2×5﹣22=6,那么(﹣1)*3=_________.14.根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x 轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,y=.②△OPQ的面积为定值.③x>0时,y随的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论有_________.(把你认为正确的结论序号全部填上)三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:÷,其中a=+1.16.甲,乙两位同学在解方程组时,甲正确地解得方程组的解为.乙因大意,错误地将方程中系数C写错了,得到的解为;若乙没有再发生其他错误,试确定a,b,c的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,点A的坐标为(1,2):将∠AOB绕点A逆时针旋转900得到△ACD,点O的对应点C恰好落在双曲线y1=(x>O)上.直线AC交双曲线于点E.(1)求双曲线y1=(x>O)与直线AC的解析式y2=kx+b;(2)结合图象指出,当x取何值时,y1>y2,y1<y2?18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A (﹣l,2),B(﹣4,5),C(1,8):(1)画出△ABC及其绕点A顺时针旋转90°后得到的△AB1C1.(2)求在上述旋转过程中,点B转动到点B1所经过的路程,及△ABC扫过的面积.五、(本大题共2小题,每小题10分,满分20分)19.如图,CD、EF表示高度不同的两座建筑物,小颖站在A处,正好越过前面建筑物的顶端C看到它后面的建筑物的顶端E,仰角为45°;小颖沿直线FA由点A后移10米到达位置点N,正好看到建筑物EF上的点M,仰角为30°.已知小颖的眼睛距离地面1.5米,CD、EF两座建筑物间的距离为25米,求建筑物CD、EF的高(结果保留根号).20.如图,在△ABC中,∠ACB=90°,点D是BC的中点,且∠B+∠ADC=90°,过点B、D作⊙O,使圆心D在AB上,⊙O交AB于点E.(1)求证:直线AD与⊙0相切;(2)若AC=6,求AE的长.六、(本题满分12分)21.如图,已知菱形ABCD的边长为2,∠DAB=60°,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.连接BD.(1)图中有几对三角三全等?试选取一对全等的三角形给予证明;(2)判断△BEF的形状,并说明理由.(3)当△BEF的面积取得最小值时,试判断此时EF与BD的位置关系.七、(本题满分12分)22.连续两次抛掷一枚质地均匀、六个面分别刻有数字1﹣6的正方体骰子,观察其朝上一面的点数.(1)第一次出现的点数恰好能被第二次出现的点数整除的概率是多少?(2)两次出现的点数分别作为一个两位数的十位数字和个位数字,则这个两位数恰好是3的倍数的概率是多少?(3)两次出现的点数分别作为一个点的横坐标、纵坐标,则这个点在抛物线y=﹣x2+5x上的概率是多少?八、(本题满分14分)23.如图(1),已知抛物线y=ax2+bx+c经过原点O,它的顶点坐标为(5,),在抛物线内作矩形ABCD,使顶点C、.D落在抛物线上,顶点A,B落在x轴上.(1)求抛物线的解析式;(2)若AB=6,求AD的长;(3)设矩形ABCD的周长为L,求L的最大值.(4)如图(2),若直线y=x交抛物线的对称轴于点N,P为直线y=X上一个动点,过点P作X轴的垂线交抛物线于点Q.问在直线y=x上是否存在点P,使得以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2012年安徽省中考数学模拟试卷(五)参考答案与试题解析一、选择题(本大题共10小题,每小越4分,满分40分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选,选错,或选出的代号超过一个的不论是否写在括号内一律得0分.)1.计算(﹣2)3+2×(﹣2)2的值是()A.0 B.﹣8 C.16 D.﹣16考点:有理数的乘方。

2013年江苏省盐城市中考数学模拟试卷(5月份)解析word版

2013年江苏省盐城市中考数学模拟试卷(5月份)解析word版

2013年江苏省盐城市中考数学模拟试卷(5月份)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.(3分)(2013•盐城模拟)2012年元月的某一天,我市的最低气温为﹣3℃,最高气温为4℃,那么这一天我市的日3.(3分)(2013•盐城模拟)图中圆与圆之间不同的位置关系有()4.(3分)(2013•盐城模拟)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A的大小是()5.(3分)(2013•盐城模拟)四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选)6.(3分)(2013•盐城模拟)如图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是()7.(3分)(2005•徐州)如果反比例函数y=的图象如图所示,那么二次函数y=kx 2﹣k 2x ﹣1的图象大致为( ).BC .D8.(3分)(2013•盐城模拟)下列说法正确的个数是( ) ①“对顶角相等”的逆命题是真命题 ②所有的黄金三角形都相似 ③若数据1、﹣2、3、x 的极差为6,则x=4 ④方程x 2﹣mx ﹣3=0有两个不相等的实数根 ⑤已知关于x 的方程的解是正数,那么m 的取值范围为m >﹣6.二、填空题(每小题3分,共30分) 9.(3分)(2013•盐城模拟)函数中,自变量x 的取值范围是 _________ .10.(3分)(2013•盐城模拟)我市今年初中毕业生为12870人,将12870用科学记数法表示为_________ (保留两个有效数字). 11.(3分)(2011•宁德)如图,人民币旧版壹角硬币内部的正多边形每个内角度数是 _________ °.12.(3分)(2013•盐城模拟)如图,直线l 1:y 1=x+1与直线l 2:y 2=mx+n 相交于点P (1,b ).当y 1>y 2时,x 的取值范围为 _________ .13.(3分)(2013•盐城模拟)六•一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为_________.14.(3分)(2013•盐城模拟)如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,﹣4),若以原点O为位似中心,在第二象限内画△ABC的位似图形△A′B′C′,使△A′B′C′与△ABC的位似比等于,则点A′的坐标为_________.15.(3分)(2013•盐城模拟)如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B 顺时针旋转90°至CB,那么点C的坐标是_________.16.(3分)(2013•盐城模拟)定义:如图,若双曲线(k>0)与它的其中一条对称轴y=x相交于两点A,B,则线段AB的长称为双曲线(k>0)的对径.若某双曲线(k>0)的对径是,则k的值为_________.17.(3分)(2013•盐城模拟)如图,已知四边形ABCD是菱形,∠A=72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3=_________度.18.(3分)(2013•盐城模拟)在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边于G,则折痕FG=_________.三、简答题(共96分)19.(8分)(2013•盐城模拟)(1)计算:﹣sin30°(2)解方程:.20.(6分)(2013•盐城模拟)先化简(),再选取一个你喜欢的a的值代入求值.21.(8分)(2008•黄石)在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是.(1)求n的值;(2)把这n个球中的两个标号为1,其余分别标号为2,3,…x=5,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.22.(10分)(2013•盐城模拟)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=_________,b=_________;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?23.(10分)(2013•盐城模拟)如图,自来水公司的主管道从A小区向北偏东60°方向直线延伸,测绘员在A处测得要安装自来水的M小区在A小区北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M位于C的北偏西60°方向,(1)请你找出支管道连接点N,使得N到该小区铺设的管道最短.(在图中标出点N的位置)(2)求出AN的长.24.(10分)(2013•盐城模拟)如图,在△ABC中,AD平分∠BAC,交BC于D,将A、D重合折叠,折痕交AB 于E,交AC于F,连接DE、DF,(1)判断四边形AEDF的形状并说明理由;(2)若AB=6,AC=8,求DF的长.25.(10分)(2013•盐城模拟)已知四边形ABCD的外接圆⊙O的半径为5,对角线AC与BD的交点为E,且AB2=AE•AC,BD=8,(1)判断△ABD的形状并说明理由;(2)求△ABD的面积.26.(10分)(2013•盐城模拟)某种商品在30天内每件销售价格P(元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q(件)与时间t(天)之间的函数关系是Q=﹣t+40(0<t≤30,t是整数).(1)求该商品每件的销售价格P与时间t的函数关系式,并写出自变量t的取值范围;(2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)(2013•盐城模拟)如图,矩形ABCD中,AD=8,AB=4,点E沿A→D方向在线段AD上运动,点F 沿D→A方向在线段DA上运动,点E、F速度都是每秒2个长度单位,E、F两点同时出发,且当E点运动到D点时两点都停止运动,设运动时间是t(秒).(1)当0<t<2时,判断四边形BCFE的形状,并说明理由;(2)当0<t<2时,射线BF、CE相交于点O,设S△FEO=y,求y与t之间的函数关系式;(3)问射线BF与射线CE所成的锐角是否能等于60°?若有可能,请求出t的值;若不能,请说明理由.28.(12分)(2013•盐城模拟)如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).(1)求抛物线的函数解析式和点E的坐标;(2)求证:ME是⊙P的切线;(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;2013年江苏省盐城市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.(3分)(2013•盐城模拟)2012年元月的某一天,我市的最低气温为﹣3℃,最高气温为4℃,那么这一天我市的日3.(3分)(2013•盐城模拟)图中圆与圆之间不同的位置关系有()4.(3分)(2013•盐城模拟)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A的大小是()5.(3分)(2013•盐城模拟)四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选)甲6.(3分)(2013•盐城模拟)如图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是()圆锥的母线长是:×7.(3分)(2005•徐州)如果反比例函数y=的图象如图所示,那么二次函数y=kx 2﹣k 2x ﹣1的图象大致为( ).BC .D)>8.(3分)(2013•盐城模拟)下列说法正确的个数是( ) ①“对顶角相等”的逆命题是真命题 ②所有的黄金三角形都相似 ③若数据1、﹣2、3、x 的极差为6,则x=4④方程x 2﹣mx ﹣3=0有两个不相等的实数根 ⑤已知关于x 的方程的解是正数,那么m 的取值范围为m >﹣6.二、填空题(每小题3分,共30分)9.(3分)(2013•盐城模拟)函数中,自变量x的取值范围是...10.(3分)(2013•盐城模拟)我市今年初中毕业生为12870人,将12870用科学记数法表示为 1.3×104(保留两个有效数字).11.(3分)(2011•宁德)如图,人民币旧版壹角硬币内部的正多边形每个内角度数是140°.12.(3分)(2013•盐城模拟)如图,直线l1:y1=x+1与直线l2:y2=mx+n相交于点P(1,b).当y1>y2时,x的取值范围为x>1.13.(3分)(2013•盐城模拟)六•一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为10%.14.(3分)(2013•盐城模拟)如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,﹣4),若以原点O为位似中心,在第二象限内画△ABC的位似图形△A′B′C′,使△A′B′C′与△ABC的位似比等于,则点A′的坐标为(﹣,2).,的位似比等于(﹣,﹣),即(﹣,15.(3分)(2013•盐城模拟)如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B 顺时针旋转90°至CB,那么点C的坐标是(﹣2,1).16.(3分)(2013•盐城模拟)定义:如图,若双曲线(k>0)与它的其中一条对称轴y=x相交于两点A,B,则线段AB的长称为双曲线(k>0)的对径.若某双曲线(k>0)的对径是,则k的值为9.AB=6OA=OB=3,)3=17.(3分)(2013•盐城模拟)如图,已知四边形ABCD是菱形,∠A=72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3=90度.18.(3分)(2013•盐城模拟)在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边于G,则折痕FG=5或4.F=BF=E==5F=BF=E==4或三、简答题(共96分)19.(8分)(2013•盐城模拟)(1)计算:﹣sin30°(2)解方程:.进行计算即可得解;﹣(﹣﹣×,,,x=时,+1×)≠x=20.(6分)(2013•盐城模拟)先化简(),再选取一个你喜欢的a的值代入求值.)﹣21.(8分)(2008•黄石)在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是.(1)求n的值;(2)把这n个球中的两个标号为1,其余分别标号为2,3,…x=5,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.)依题意由上表知所求概率为=22.(10分)(2013•盐城模拟)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?23.(10分)(2013•盐城模拟)如图,自来水公司的主管道从A小区向北偏东60°方向直线延伸,测绘员在A处测得要安装自来水的M小区在A小区北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M位于C的北偏西60°方向,(1)请你找出支管道连接点N,使得N到该小区铺设的管道最短.(在图中标出点N的位置)(2)求出AN的长.MC=AC=×NC=MC=5024.(10分)(2013•盐城模拟)如图,在△ABC中,AD平分∠BAC,交BC于D,将A、D重合折叠,折痕交AB 于E,交AC于F,连接DE、DF,(1)判断四边形AEDF的形状并说明理由;(2)若AB=6,AC=8,求DF的长.∴x=DF=25.(10分)(2013•盐城模拟)已知四边形ABCD的外接圆⊙O的半径为5,对角线AC与BD的交点为E,且AB2=AE•AC,BD=8,(1)判断△ABD的形状并说明理由;(2)求△ABD的面积.∴,BD=4=3的面积是BD=BG=的面积是:×26.(10分)(2013•盐城模拟)某种商品在30天内每件销售价格P(元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q(件)与时间t(天)之间的函数关系是Q=﹣t+40(0<t≤30,t是整数).(1)求该商品每件的销售价格P与时间t的函数关系式,并写出自变量t的取值范围;(2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量),27.(12分)(2013•盐城模拟)如图,矩形ABCD中,AD=8,AB=4,点E沿A→D方向在线段AD上运动,点F 沿D→A方向在线段DA上运动,点E、F速度都是每秒2个长度单位,E、F两点同时出发,且当E点运动到D点时两点都停止运动,设运动时间是t(秒).(1)当0<t<2时,判断四边形BCFE的形状,并说明理由;(2)当0<t<2时,射线BF、CE相交于点O,设S△FEO=y,求y与t之间的函数关系式;(3)问射线BF与射线CE所成的锐角是否能等于60°?若有可能,请求出t的值;若不能,请说明理由.则= =OM=EH=42=t=﹣∴,即,解得OM=y=OM EF=×;CH=EH=4,,t=)ED=t=)﹣28.(12分)(2013•盐城模拟)如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).(1)求抛物线的函数解析式和点E的坐标;(2)求证:ME是⊙P的切线;(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;y=∴y=﹣x x+2=0,=,.,=,与下方部分的面积不变,为。

2013年中考模拟冲刺数学试卷

2013年中考模拟冲刺数学试卷

2013年中考模拟冲刺试卷(北师大版)数学试卷本试题卷共8页。

全卷满分120分。

考试用时120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

得分表 一、选择题(在下列每小题所给的四个选项中,每题只有一个选项是正确的,每小题3分,共8小题, 共24分)1、-|21|2+sin60o cos30o = ( )A 、 2B 、-2C 、21 D 、-212、下列有关于y=ax+b 与y=abx 2(a,b ≠0)的图像,正确的是( ) y y y yx x xA 、B 、C 、D 、 3、已知不等式组有⎩⎨⎧-+x x 213>≥2-x 解,则a 的取值范围是( )A 、a >-1B 、a ≥-1C 、a ≤1D 、a <1 4、如图,∠ABO=26o ∠ACO=32o,则∠BOC 的度数为( ) A 、58o B 、60oC 、116oD 、120o5、如图,在平面直角坐标系中,直线AB 直线与轴x 的夹角为60o ,且点A 的坐标为(-2,0)点B 在x 轴的上方,设AB=a ,则点B 的坐标是( )A 、32,22aa ⎛⎫-- ⎪ ⎪⎝⎭B 、2,22aa ⎛⎫-- ⎪⎝⎭C 、2,22aa ⎛⎫- ⎪⎝⎭ D 、32,22a a ⎛⎫- ⎪ ⎪⎝⎭题号 一 二 三 四 总分 得分17 18 19 20 21 22 23 24 25 26阅卷人得分AB C.O 市、县姓名学校 考场考号 密封线内不许 答题装订线60oBAC xy 班级 (第5题图) (第4题图) O OO O O x x x x数是()A 、6个B 、7个C 、8个D 、9个7、已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线 与高的夹角为θ(如图所示),则sin θ 的值为 ( )A 、512B 、513C 、1013D 、12138、二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,对称轴是直线x=1,则下列四个结论错误的是( )A 、c>0B 、2a+b=0C 、b 2-4ac>0D 、a-b+c>0二、填空题(本题共8小题,每小题3分,共24分)9、若211a aaa --=,则a 的取值范围是 10、若分式153--x x 无意义,当21235=---xm x m 时,则m =11、如图所示,⊙M 与x 轴相交于点A (4,0),B (10,0),与y 轴相切于点C , 则M 的坐标是 12、轮船顺水航行40km 所需要的时间和逆水航行30km 所需要的时间相同。

2013 年中考数学模拟试卷参考答案

2013 年中考数学模拟试卷参考答案

1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)

2013年北京市中考数学模拟试卷(五)

2013年北京市中考数学模拟试卷(五)

2013年北京市中考数学模拟试卷(五)2013年北京市中考数学模拟试卷(五)一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的..4.(3分)(2009•湘西州)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,.C D.5.(3分)(2007•锦州一模)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().C9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)13.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()二、填空题(本大题共5小题.每小题3分,共15分)把答案填在题中横线上.15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是_________.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为_________.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为_________cm2(不考虑接缝等因素,计算结果用π表示).18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为_________.19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=_________(n是整数,且1≤n<7).三、开动脑筋.你一定能做对20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?四、认真思考,你一定能成功!23.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)五、相信自己.加油呀25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.2013年北京市中考数学模拟试卷(五)参考答案与试题解析一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的..4.(3分)(2009•湘西州)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,.C D.=5.(3分)(2007•锦州一模)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().CBD+DF=×9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)OC=BC=.,﹣)13.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()∠∠PCB=((+∠(﹣BCP=∠∠﹣∠(﹣二、填空题(本大题共5小题.每小题3分,共15分)把答案填在题中横线上.15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣..观察数轴知其解集为∴.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为.AC==,=r=.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为300πcm2(不考虑接缝等因素,计算结果用π表示).=18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为3.∴BE=﹣)+4x19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=2(n是整数,且1≤n<7).三、开动脑筋.你一定能做对20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?=16x+320四、认真思考,你一定能成功!23.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)∴.7.2=解得.y=y=3.2=.五、相信自己.加油呀25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.,a=xa=y=y=a aNS=a(∴MR=.x+bc=0∴SR=2.∴∴MT=PQ=∴参与本试卷答题和审题的老师有:lk;Liuzhx;zhehe;feng;lf2-9;wdxwwzy;lanchong;zhjh;蓝月梦;hbxglhl;csiya;kuaile;hnaylzhyk;cook2360;算术;张超。

2013年中考数学模拟试题及参考答案

2013年中考数学模拟试题及参考答案

2013年中考数学模拟考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.-2的相反数是A.-2B.2C.-21 D.212.已知两圆的半径分别为6和4,圆心距为7,则两圆的位置关系是 A .相交B .内切C .外切D .内含3.下列计算中,正确的是( )A .42232a a a =+ B .()52322x x x -=-⋅ C .()53282a a -=- D .22326x x xm m=÷4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个 5.下列说法正确的是A .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 6.下面四个几何体中,左视图是四边形的几何体共有A. 1个B. 2个C. 3个D. 4个7.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为A .(3,1)B .(3,2)C .(2,3)D .(1,3)y C 2C 1C y 24 3B8.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( ) A .201035()2⨯B .201195()4⨯ C . 200995()4⨯ D .402035()2⨯二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.去年冬季的某一天,学校一室内温度是8℃,室外温度是2-℃,则室内外温度相差 ▲ ℃.10.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为 ▲ 平方米. 11.五边形的内角和为 ▲ 度.12.已知反比例函数的图象经过点A (6,-1),请你写出该函数的表达式 ▲ . 13.已知二元一次方程组⎩⎨⎧=-=-52832y x y x ,则y x -的值为 ▲ .14.不等式组30210x x -<⎧⎨-⎩≥的解集是 ▲ .15.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____▲____.16.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.17.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保留π)B 题)yxO BCA (第18题)OAC(第16题)·(第15题)18.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ▲ .三、解答题(本大题共有10小题,共74分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算:(1)200821(1)()162---+; (2)2311()11x x x x--⋅-+. 20.(本题6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 bc 5 104.5——119.56 0.15 合 计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.(本题6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.22.(本题6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?23.(本题8分)如图,点E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(第24题)(第22题)蔬菜种植区域前 侧 空 地F EDCBA(第23题)(1)求证:△AFD ≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本题8分)如图15,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(结果精确到0.1m )(参考数据:2 1.41≈,3 1.73≈) 25.(本题8分)如图,A (-1,0)、B (2,-3)两点在二次函数y 1=ax 2+bx -3与一次函数y 2=-x +m 图像上。

2013年中考数学模拟题

2013年中考数学模拟题

2013年中考数学模拟题(仿真卷)一、选择题(每小题3分,共15分)1.∣-3∣的相反数是 ( )A. -3B. 3C. -31D.312.一次课堂练习,小华做了如下4道因式分解题,你认为小华做得不够完整的一题是 ( )A. x 3-x =x(x 2-1)B. x 2-2xy+y 2=(x-y)2C. x 2y-xy 2=xy(x-y)D. x 2-y 2=(x+y)(x-y)3.如图所示的两个圆盘中,指针落在同一个圆盘的每一个区域的机会均等,则两个指针同时落在偶数区域的概率是 ( )A. 121B. 61C. 21D.654.如图,MB=ND ,∠MBA=∠NDC ,下列条件中, 不能判定ΔABM ≌ΔCDN 的是 ( )A. ∠M=∠NB.AB=CDC. AM=CND. AM ∥CN5.如图,⊙O 的半径是5,弦AB 的长是8,M 为弦AB 上的动点,则线段OM 长的最小值是 ( )A. 2B. 3C. 4D. 5二、填空题(每小题4分,共20分)6.函数y=x 24 的自变量x 的取值范围是 ___________.7.0.00624用科学记数法表示为___________.8. 已知不等式组无解,则9.如图,两直线a、b 被第三条直线c所截,若a ∥b∠1=70°,则∠2 =_____度。

10.如图,圆锥的主视图是边长为6的正三角形ABC ,则这个圆锥侧面展开图的圆心角是_____度。

三、解答题(每小题6分,共30分)11. 先化简,再求值:a a 2-1 ÷(1+ 1a-1),其中 a = 3-1 .12.已知ΔABC (如图)。

求作:(1)线段AB 的中点O ;(2)以O 为旋转中心,将ΔABC 旋转180°后的ΔA ′B ′C ′。

(要求用直尺圆规作图,用不用写画法,但要保留作图痕迹)。

13. 已知一次函数y=kx+k P (4,n )。

(1)求n 的值;(214. 如图,在ΔABC 中,∠ACB=90°,CD ⊥AB 于D 。

广东2013年中考数学模拟试卷及答案(5)

广东2013年中考数学模拟试卷及答案(5)

机密★启用前2013年广东省初中毕业生学业考试数学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,满分30分)1. 当x=1时,代数式2x+5的值为A.3 B. 5 C. 7 D. -22.直角坐标系中,点P(1,4)在A. 第一象限B.第二象限C.第三象限D.第四象限3.据省统计局公布的数据,去年底我省农村居民人均收入约6600元,用科学记数法表示应记为A.0.66×104 B. 6.6×103 C.66×102 D .6.6×1044.下图所示的几何体的主视图是A. B. C. D.5.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是A. B. C. D.6.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是A. 相离B. 外切C. 内切D.相交7.不等式组⎩⎨⎧≤≥+4235x x 的解是 A. -2 ≤x ≤2 B. x ≤2 C. x ≥-2 D. x <2 8.将叶片图案旋转180°后,得到的图形是叶片图案 A B C D 9.下图能说明∠1>∠2的是A B C D10.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①a >0; ②c >0; ③b 2-4a c >0, 其中正确的个数是A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,每小题4分,满分24分) 11.矩形的对称轴有___ 条. 12.函数y =的自变量x 的取值范围是 . 13. 如图, //AB DC , 要使四边形ABCD 是平行四边形,还需补充 一个条件是 .14. 亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm ,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。

2013中考数学冲刺模拟卷5

2013中考数学冲刺模拟卷5

2013中考数学冲刺模拟卷5选择题(本大题共有6小题,每小题2分,共12分)1.5-的相反数是( ).A .15B .15-C .5D .5-2.下列运算正确的是( ).A .236·a a a = B .()328a a = C .()3263a b a b =D .623a a a ÷=3.为迎接2014年青奥会,在未来两到三年时间内,一条长53公里,总面积约11000亩的鸀色长廊将串起南京的观音门、仙鹤门、沧波门等8座老城门遗址.数据11000用科学记数法可表示为( ).A .31110⨯B .41.110⨯C .51.110⨯D .50.1110⨯4.如图,不等式组⎩⎪⎨⎪⎧x +1>0,x -1≤0 的解集在数轴上表示正确的是( ).5.如图,在12⨯网格的两个格点上任意摆放黑、白两个棋子,且两棋子不在同一条格线上.其中恰好如图示位置摆放的概率是( ).A .61 B . 91 C . 121D .1816.如图,在扇形纸片AOB 中,OA =10,∠AOB =36︒,OB 在桌面内的直线l 上.现将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为( ). A . π12 B .π11 C .π10 D .55510-+π二、填空题(本大题共10接填写在答题..纸.相应位置上) 7.数据3,5,5,1-,1,1,1的众数是. 8.分解因式269x x -+的结果是 . 9.如图,已知AB ∥CD ,80AEF ∠=°, 则DCF ∠为 °.10.观察:1234111111113355779a a a a =-=-=-=-,,,,…,则n a = (n 为正整数).(第6题图)(第5题图)-1A .-1 B .-1 1 C .-1D .11.如图,AB 是⊙O 直径,且AB =4cm ,弦CD ⊥AB ,∠COB =45°,则CD 为 cm . 126,则该长方体的体积为 .13.当分式12x -与3x 的值相等时,x 14.如图,正比例函数1y x =和反比例函数2yx=的 图象都经过点A (1,1).则在第一象限内,当12y y >时,x 的取值范围是 .15.如图,在梯形ABCD 中,AD ∥BC ,点E 、F 、G 、H 是两腰上的点,AE =EF =FB ,CG =GH =HD ,且四边形EFGH 的面积为6cm 2,则梯形ABCD 的面积为 cm 2.16.一张矩形纸片经过折叠得到一个三角形(如图),则矩形的长与宽的比为 .三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(5分)计算:182)31(0+---. 18.(5分)先化简,再求值:22222a b b a b a b+++-,其中a=-2,b =1.19.(6分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为D ,AE ∥BC , DE ∥AB .证明:(1)AE =DC ;(2)四边形ADCE 为矩形.ABCD E(第19题图)(第16题图)D BEF A GH (第15题图) (第9题图)AB CDFE42(第12题图)(第11题图)B20.(6分)某区为了解全区2800名九年级学生英语口语考试成绩的情况,从中随机抽取了部分学生的成绩(满分24分,得分均为整数),制成下表:(1)填空:①本次抽样调查共抽取了 名学生;②学生成绩的中位数落在 分数段; ③若用扇形统计图表示统计结果,则分数段为x ≤16的人数所对应扇形的圆心角为 °; (2)如果将21分以上(含21分)定为优秀,请估计该区九年级考生成绩为优秀的人数.21.(6分)某初级中学准备随机选出七、八、九三个年级各1名学生担任领操员.现已知这三个年级分别选送一男、一女共6名学生为备选人.(1)请你利用树状图或表格列出所有可能的选法; (2)求选出“两男一女”三名领操员的概率.22.(6分)受国际原油价格持续上涨影响,某市对出租车的收费标准进行调整..(1)调整前出租车的起步价为 元,超过3km 收费 元/km ;(2)求调整后的车费y (元)与行驶路程x (km )(x >3)之间的函数关系式,并在图中画出其函数图象.(第22题图)x /km23.(8分) 现有一张宽为12cm 练习纸,相邻两条格线间的距离均为0.8cm .调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°. (1)求矩形图案的面积;(2)若小聪在第一个图案的右 边以同样的方式继续盖印 (如图),最多能印几个完整的图案? (参考数据:sin32°≈0.5,cos32°≈0.8, tan32°≈0.6)24.(8分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:(1)第一季度:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,(1)求第一季度购进A 、B 两种型号手机的数量;(2)第二季度:计划购进A 、B 两种型号手机共34部,且不超出第一季度的购机总费用,则A 型号手机最多能购多少部?25. (8分)如图,在△ABC 中,AB=AC ,点O 为底边上的中点,以点O 为圆心, 1为半径的半圆与边AB 相切于点D .(1)判断直线AC 与⊙O 的位置关系,并说明理由; (2)当∠A =60°时,求图中阴影部分的面积.26.(9分)已知二次函数m x x y ++-=22的图象与x 轴相交于A 、B 两点(A 左B 右),与y 轴型 号 A B 进 价 1200元/部 1000元/部 售 价1380元/部1200元/部0.8cm……12cmα(第23题图)D B CA(第25题图)相交于点C ,顶点为D .(1)求m 的取值范围;(2)当点A 的坐标为(3,0) ,求点B 的坐标;(3)当BC ⊥CD 时,求m 的值.27.(9分)操作:小明准备制作棱长为1cm 的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:纸片利用率=纸片被利用的面积纸片的总面积×100%发现:(1)方案一中的点A 、B 恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.28.(12分)如图,在Rt △ABC 中,∠C =90°,AC =BC =4cm ,点D 为AC 边上一点,且AD =3cm ,动点E 从点A 出发,以1cm/s 的速度沿线段AB 向终点B 运动,运动时间为x s .作∠DEF =45°,与边BC 相交于点F .设BF 长为y cm . (1)当x = s 时,DE ⊥AB ;(2)求在点E 函数关系式及点F 说明: 方案一图形中的圆过点A 、B 、C ;方案二直角三角形的两直角边与说明: 方案三中的每条边均过其中两个A B C 方案一 方案三方案二(3)当△BEF为等腰三角形时,求x的值.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分) 7.1 8.()23-x 9.100 10.121121+--n n 11.2 2 12.24 13.3 14.x >1 15.18 16.2︰ 3 (或2 3或2 33 ) 三、解答题(本大题共12小题,共计88分) 17.(本题5分解:原式=1-2+3 2 3分=-1+3 2 ········································································ 5分18.(本题5分)解:原式))((2))(())(2(2b a b a b b a b a b a b a -++-+-+=2分))((2b a b a ab a -++= ···································································· 3分 ba a -=·············································································· 4分 当a=-2,b=1时,原式= -2 -2-1 = 23 ········································ 5分19.(本题6分) 证明:(1)在△ABC 中,∵AB=AC ,AD ⊥BC , ∴BD=DC ······················································································· 1分 ∵AE ∥BC , DE ∥AB ,∴四边形ABDE 为平行四边形 ····························································· 2分 ∴BD=AE , ···················································································· 3分 ∵BD=DC ∴AE = DC . ··················································································· 4分 (2)解法一:∵AE ∥BC ,AE = DC , ∴四边形ADCE 为平行四边形. ························································· 5分 又∵AD ⊥BC , ∴∠ADC=90°,∴四边形ADCE 为矩形. ·································································· 6分 解法二:∵AE ∥BC ,AE = DC , ∴四边形ADCE 为平行四边形 ···························································· 5分ACDE又∵四边形ABDE 为平行四边形 ∴AB=DE .∵AB=AC ,∴DE=AC . ∴四边形ADCE 为矩形. ·································································· 6分 20.(本题6分)解法一:(1)用表格列出所有可能结果:···································································································· 3分(2)从上表可知:共有8种结果,且每种结果都是等可能的,其中“两男一女”的结果有3种. ···································································································· 5分所以,P (两男一女)=38 . ······························································· 6分 解法二:(1)用树状图列出所有可能结果:···································································································· 3分(2)从上图可知:共有8种结果,且每种结果都是等可能的,其中“两男一女”的结果有3种. ···································································································· 5分所以,P (两男一女)=38 . ······························································· 6分21.(本题6分)(1)①300 1分②21≤x ≤22 3分 ③12 ···················································· 4分(2)2800×112+128300 =2240(人) ······················································ 5分 答:该区所有学生中口语成绩为满分的人数约为2240人. ······················· 6分 22.(本题6分)解:(1)9;2.5; 2分(2)y=10+2.5(x -3)=2.5x+2.5 ··················································· 5分(男,男,男) (男,男,女) 男 女男(男,女,男) (男,女,女) 男 女 (女,男,男) (女,男,女)男 女男(女,女,男) (女,女,女) 男 女 女男女开始七年级 八年级九年级 结果 调整后的图像如图:..···································································································· 6分 23.(本题8分)(1)如图,在Rt △BCE 中,∵sin α=CE BC ,∴BC = CE sin α =5.08.0 = 1.6 ················································ 2分∵矩形ABCD 中,∴∠BCD=90°,∴∠BCE +∠FCD=90°, 又∵在Rt △BCE 中,∴∠EBC +∠BCE=90°,∴∠FCD=32°.在Rt △FCD 中,∵cos ∠FCD=FC CD ,∴CD=︒32cos FC=8.06.1=2 ····················· 4分∴橡皮的长和宽分别为2cm 和1.6cm .(2)如图,在Rt △ADH 中,易求得∠DAH=32°.∵cos ∠DAH=ADAH ,∴AH=︒32cos AD=8.06.1=2······································································· 5分在Rt △CGH 中,∠GCH=32°.∵tan ∠GCH=GHCG , ∴GH=CG tan32°= 0.8×0.6 = 0.48 ······················································ 7分 又∵6×2+0.48>12,5×2+0.48<12,3×4+0.9616,∴最多能摆放5块橡皮. · 8分 24.(本题8分)(1)解:设该专营店第一季度购进A 、B 两种型号手机的数量分别为x 部和y 部. 1分由题意可知: ⎩⎪⎨⎪⎧1200x +1000 y =36000,180x +200y =6300 ················································ 3分解得:⎩⎪⎨⎪⎧x =15,y =18答:该专营店本次购进A 、B 两种型号手机的数分别为15部和18部. ······· 4分 (2)解:设第二季度购进A 型号手机a 部. ········································· 5分 由题意可知:1200a +1000(34-a )≤36000, ·········································· 6分 解得:a ≤10 ··················································································· 7分 不等式的最大整数解为10..答:第二季度最多能购A 型号手机10部. 8分 25.(本题8分) 解:(1)直线AC 与⊙O 相切. 1分 理由是:连接OD ,过点O 作OE ⊥AC ,垂足为点E . ∵⊙O 与边AB 相切于点D ,∴OD ⊥AB . ··················································································· 2分 ∵AB=AC ,点O 为底边上的中点,∴AO 平分∠BAC ·············································································· 3分 又∵OD ⊥AB ,OE ⊥AC∴OD= OE ······················································································ 4分 ∴OE 是⊙O 的半径.又∵OE ⊥AC ,∴直线AC 与⊙O 相切. ················································ 5分 (2)∵AO 平分∠BAC ,且∠BAC=60°, ∴∠OAD=∠OAE=30°, ∴∠AOD=∠AOE=60°,在Rt △OAD 中,∵ta n ∠OAD = OD AD ,∴AD=OD tan ∠OAD=3,同理可得AE=3∴S 四边形ADOE =12 ×OD ×AD ×2=12 ×1×3×2=3 ······························· 6分 又∵S 扇形形ODE =120π×12 360 =13 π ····························································· 7分∴S 阴影= S 四边形ADOE -S 扇形形ODE = 3 -13 π. ·········································· 8分 26.(本题9分)解:(1)∵二次函数m x x y ++-=22的图象与x 轴相交于A 、B 两点∴b 2-4a c >0,∴4+4m >0, ······························································ 2分 解得:m >-1 ················································································· 3分 (2)解法一:∵二次函数m x x y ++-=22的图象的对称轴为直线x =-b2a =1 ··············· 4分 ∴根据抛物线的对称性得点B 的坐标为(5,0) ···································· 6分 解法二:把x =-3,y =0代入m x x y ++-=22中得m=15 ······································· 4分 ∴二次函数的表达式为1522++-=x x y令y =0得01522=++-x x ·································································· 5分 解得x 1=-3,x 2=5∴点B 的坐标为(5,0) 6分(3)如图,过D 作DE ⊥y 轴,垂足为E .∴∠DEC =∠COB =90°,当BC ⊥CD 时,∠DCE +∠BCO =90°, ∵∠DEC =90°,∴∠DCE +∠EDC =90°,∴∠EDC =∠BCO .∴△DEC ∽△COB ,∴EC OB =EDOC . 7分由题意得:OE =m+1,OC =m ,DE =1,∴EC =1.∴ 1OB =1m . ∴OB =m ,∴B 的坐标为(m ,0). ····················································· 8分 将(m ,0)代入m x x y ++-=22得:-m 2+2 m + m =0.解得:m 1=0(舍去), m 2=3. ························································· 9分 27.(本题9分) 发现:(1)小明的这个发现正确. ······················································· 1分 理由:解法一:如图一:连接AC 、BC 、AB ,∵AC =BC = 5 ,AB =10∴AC 2+BC 2=AB 2 ∴∠BAC =90°, ························ 2分∴AB 为该圆的直径. ············································ 3分解法二:如图二:连接AC 、BC 、AB .易证△AMC ≌△BNC ,∴∠ACM =∠CBN .又∵∠BCN +∠CBN =90°,∴∠BCN +∠ACM =90°,即∠BAC =90°, 2分 ∴AB 为该圆的直径. ·················································· 3分(2)如图三:易证△ADE ≌△EHF ,∴AD =EH =1. ····························· 4分∵DE ∥BC ,∴△ADE ∽△ACB ,∴AD AC =DE CB ∴14 =2CB ,∴BC =8. ······· 5分 ∴S △ACB =16. ················································································· 6分 ∴该方案纸片利用率=展开图的面积纸板的总面积 ×100%=616 ×100%=37.5% ·········· 7分探究:(3)180361 ··············································································· 9分 28.(本题12分)解:(1)32 2 2分(2)∵在△ABC 中,∠C =90°,AC =BC =4.∴∠A =∠B =45°,AB =4 2 ,∴∠ADE +∠AED =135°;又∵∠DEF =45°,∴∠BEF +∠AED =135°,∴∠ADE =∠BEF ; ∴△ADE ∽△BEF ············································································· 4分 ∴AD BE =AE BF ,图一 M 图二 N C B ADE F H图三∴3 4 2 -x=x y ,∴y =-13 x 2+43 2 x ··············································· 5分∴y =-13 x 2+43 2 x =-13 ( x -2 2 )2+83∴当x =2 2 时,y 有最大值=83 ························································ 6分 ∴点F 运动路程为163 cm ··································································· 7分(3)这里有三种情况:①如图,若EF =BF ,则∠B =∠BEF ;又∵△ADE ∽△BEF ,∴∠A =∠ADE =45°∴∠AED =90°,∴AE =DE =32 2 ,∵动点E 的速度为1cm/s ,∴此时x =32 2 s ;②如图,若EF =BE ,则∠B =∠EFB ;又∵△ADE ∽△BEF ,∴∠A =∠AED =45°∴∠ADE =90°,∴AE =3 2 , ∵动点E 的速度为1cm/s ∴此时x =3 2 s ;③如图,若BF =BE ,则∠FEB =∠EFB ;又∵△ADE ∽△BEF ,∴∠ADE =∠AED ∴AE =AD =3,∵动点E 的速度为1cm/sE 第28题(1)(2)图 A BCDEF第28题(3)①图A B CD E F第28题(3)②图 ABCDE F第28题(3)③图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考数学冲刺模拟卷5选择题(本大题共有6小题,每小题2分,共12分)1.5-的相反数是( ).A .15B .15-C .5D .5-2.下列运算正确的是( ).A .236·a a a = B .()328a a = C .()3263a b a b = D .623a a a ÷=3.为迎接2014年青奥会,在未来两到三年时间内,一条长53公里,总面积约11000亩的鸀色长廊将串起南京的观音门、仙鹤门、沧波门等8座老城门遗址.数据11000用科学记数法可表示为( ).A .31110⨯B .41.110⨯C .51.110⨯D .50.1110⨯4.如图,不等式组⎩⎪⎨⎪⎧x +1>0,x -1≤0 的解集在数轴上表示正确的是( ).5.如图,在12⨯网格的两个格点上任意摆放黑、白两个棋子,且两棋子不在同一条格线上.其中恰好如图示位置摆放的概率是( ).A .61 B . 91 C . 121D .1816.如图,在扇形纸片AOB 中,OA =10,∠AOB =36︒,OB 在桌面内的直线l 上.现将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为( ). A . π12 B .π11 C .π10 D .55510-+π二、填空题(本大题共10接填写在答题..纸.相应位置上) 7.数据3,5,5,1-,1,1,1的众数是. 8.分解因式269x x -+的结果是 . 9.如图,已知AB∥CD ,80AEF ∠=°, 则DCF ∠为 °.10.观察:1234111111113355779a a a a =-=-=-=-,,,,…,则n a = (n 为正整数).(第6题图)(第5题图) .B .-1 1 C ..11.如图,AB 是⊙O 直径,且AB =4cm ,弦CD ⊥AB ,∠COB =45°,则CD 为 cm . 126,则该长方体的体积为 .13.当分式12x -与3x 的值相等时,x 14.如图,正比例函数1y x =和反比例函数2yx=的 图象都经过点A (1,1).则在第一象限内,当12y y >时,x 的取值范围是 .15.如图,在梯形ABCD 中,AD ∥BC ,点E 、F 、G 、H 是两腰上的点,AE =EF =FB ,CG =GH =HD ,且四边形EFGH 的面积为6cm 2,则梯形ABCD 的面积为 cm 2.16.一张矩形纸片经过折叠得到一个三角形(如图),则矩形的长与宽的比为 .三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(5分)计算:182)31(0+---. 18.(5分)先化简,再求值:22222a b b a b a b +++-,其中a=-2,b =1.19.(6分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为D ,AE ∥BC , DE ∥AB .证明:(1)AE =DC ;(2)四边形ADCE 为矩形.B ABCE(第19题图)(第16题图)D BEF A GH (第15题图) (第9题图)AB CDFE42(第12题图)(第11题图)B20.(6分)某区为了解全区2800名九年级学生英语口语考试成绩的情况,从中随机抽取了部分学生的成绩(满分24分,得分均为整数),制成下表:(1)填空:①本次抽样调查共抽取了 名学生;②学生成绩的中位数落在 分数段; ③若用扇形统计图表示统计结果,则分数段为x ≤16的人数所对应扇形的圆心角为 °; (2)如果将21分以上(含21分)定为优秀,请估计该区九年级考生成绩为优秀的人数.21.(6分)某初级中学准备随机选出七、八、九三个年级各1名学生担任领操员.现已知这三个年级分别选送一男、一女共6名学生为备选人.(1)请你利用树状图或表格列出所有可能的选法; (2)求选出“两男一女”三名领操员的概率.22.(6分)受国际原油价格持续上涨影响,某市对出租车的收费标准进行调整..(1)调整前出租车的起步价为 元,超过3km 收费 元/km ;(2)求调整后的车费y (元)与行驶路程x (km )(x >3)之间的函数关系式,并在图中画出其函数图象.(第22题图)x /km23.(8分) 现有一张宽为12cm 练习纸,相邻两条格线间的距离均为0.8cm .调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右 边以同样的方式继续盖印 (如图),最多能印几个完整的图案? (参考数据:sin32°≈0.5,cos32°≈0.8, tan32°≈0.6)24.(8分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:(1)第一季度:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,(1)求第一季度购进A 、B 两种型号手机的数量;(2)第二季度:计划购进A 、B 两种型号手机共34型号手机最多能购多少部?25. (8分)如图,在△ABC 中,AB=AC ,点O 为底边上的中点,以点O 为圆心, 1为半径的半圆与边AB 相切于点D .(1)判断直线AC 与⊙O 的位置关系,并说明理由; (2)当∠A =60°时,求图中阴影部分的面积.26.(9分)已知二次函数m x x y ++-=22的图象与x 轴相交于A 、B 两点(A 左B 右),与y 轴(第23题图)(第25题图)相交于点C ,顶点为D .(1)求m 的取值范围;(2)当点A 的坐标为(3,0) ,求点B 的坐标;(3)当BC ⊥CD 时,求m 的值.27.(9分)操作:小明准备制作棱长为1cm 的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:纸片利用率=纸片被利用的面积纸片的总面积×100%发现:(1)方案一中的点A 、B 恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.28.(12分)如图,在Rt △ABC 中,∠C =90°,AC =BC =4cm ,点D 为AC 边上一点,且AD =3cm ,动点E 从点A 出发,以1cm/s 的速度沿线段AB 向终点B 运动,运动时间为x s .作∠DEF =45°,与边BC 相交于点F .设BF 长为y cm . (1)当x = s 时,DE ⊥AB ;(2)求在点E 函数关系式及点F (3)当△BEF 说明: 方案一图形中的圆过点A 、B 、C ; 方案二直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点. 说明: 方案三中的每条边均过其中两个正方形的顶点. A BC方案一 方案三方案二求x的值.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分) 7.1 8.()23-x 9.100 10.121121+--n n 11.2 2 12.24 13.3 14.x >1 15.18 16.2︰ 3 (或2 3或2 33 ) 三、解答题(本大题共12小题,共计88分) 17.(本题5分解:原式=1-2+3 2 3分=-1+3 2 ·······························································································5分18.(本题5分)解:原式))((2))(())(2(2b a b a b b a b a b a b a -++-+-+= 2分 ))((2b a b a aba -++=··························································································3分 ba a-=········································································································4分 当a=-2,b=1时,原式= -2 -2-1 = 23 ····················································5分19.(本题6分) 证明:(1)在△ABC 中,∵AB=AC ,AD ⊥BC , ∴BD=DC ···················································································································1分 ∵AE ∥BC , DE ∥AB ,∴四边形ABDE 为平行四边形 ················································································2分 ∴BD=AE , ················································································································3分 ∵BD=DC∴AE = DC . ·············································································································4分 (2)解法一:∵AE ∥BC ,AE = DC , ∴四边形ADCE 为平行四边形. ············································································5分 又∵AD ⊥BC , ∴∠ADC=90°,∴四边形ADCE 为矩形. ························································································6分 解法二:∵AE ∥BC ,AE = DC , ∴四边形ADCE 为平行四边形 ················································································5分A BCE又∵四边形ABDE 为平行四边形 ∴AB=DE .∵AB=AC ,∴DE=AC . ∴四边形ADCE 为矩形. ························································································6分 20.(本题6分)解法一:(1)用表格列出所有可能结果:·····································································································································3分(2)从上表可知:共有8种结果,且每种结果都是等可能的,其中“两男一女”的结果有3种.·····································································································································5分所以,P (两男一女)=38 . ····················································································6分 解法二:(1)用树状图列出所有可能结果:·····································································································································3分(2)从上图可知:共有8种结果,且每种结果都是等可能的,其中“两男一女”的结果有3种.·····································································································································5分所以,P (两男一女)=38 . ···················································································6分21.(本题6分)(1)①300 1分②21≤x ≤22 3分 ③12 ······································································ 4分(2)2800×112+128300 =2240(人) ········································································5分 答:该区所有学生中口语成绩为满分的人数约为2240人.·······························6分 22.(本题6分)解:(1)9;2.5; 2分(2)y=10+2.5(x -3)=2.5x+2.5 ····································································5分(男,男,男) (男,男,女) 男 女男(男,女,男) (男,女,女) 男 女 (女,男,男) (女,男,女)男 女男(女,女,男) (女,女,女) 男 女 女男女开始七年级 八年级九年级 结果 调整后的图像如图:·····································································································································6分 23.(本题8分)(1)如图,在Rt △BCE 中,∵sin α=CE BC ,∴BC = CE sin α =5.08.0 = 1.6 ······························································2分∵矩形ABCD 中,∴∠BCD=90°,∴∠BCE +∠FCD=90°, 又∵在Rt △BCE 中,∴∠EBC +∠BCE=90°,∴∠FCD=32°.在Rt △FCD 中,∵cos ∠FCD=FC CD ,∴CD=︒32cos FC=8.06.1=2 ····························4分∴橡皮的长和宽分别为2cm 和1.6cm .(2)如图,在Rt △ADH 中,易求得∠DAH=32°.∵cos ∠DAH=ADAH ,∴AH=︒32cos AD=8.06.1=2 ·····························································································5分在Rt △CGH 中,∠GCH=32°.∵tan ∠GCH=GHCG , ∴GH=CG tan32°= 0.8×0.6 = 0.48 ········································································7分 又∵6×2+0.48>12,5×2+0.48<12,3×4+0.9616,∴最多能摆放5块橡皮. ··8分 24.(本题8分)(1)解:设该专营店第一季度购进A 、B 两种型号手机的数量分别为x 部和y 部. 1分由题意可知: ⎩⎪⎨⎪⎧1200x +1000 y =36000,180x +200y =6300 ································································3分解得:⎩⎪⎨⎪⎧x =15,y =18答:该专营店本次购进A 、B 两种型号手机的数分别为15部和18部. ··········4分 (2)解:设第二季度购进A 型号手机a 部. ······················································5分 由题意可知:1200a +1000(34-a )≤36000, ························································6分 解得:a ≤10···············································································································7分 不等式的最大整数解为10答:第二季度最多能购A 型号手机10部. 8分 25.(本题8分) 解:(1)直线AC 与⊙O 相切. 1分 理由是:连接OD ,过点O 作OE ⊥AC ,垂足为点E . ∵⊙O 与边AB 相切于点D ,∴OD ⊥AB . ··············································································································2分 ∵AB=AC ,点O 为底边上的中点,∴AO 平分∠BAC ·······································································································3分 又∵OD ⊥AB ,OE ⊥AC∴OD= OE ··················································································································4分 ∴OE 是⊙O 的半径.又∵OE ⊥AC ,∴直线AC 与⊙O 相切. ·······························································5分 (2)∵AO 平分∠BAC ,且∠BAC=60°, ∴∠OAD=∠OAE=30°, ∴∠AOD=∠AOE=60°,在Rt △OAD 中,∵ta n ∠OAD = OD AD ,∴AD=OD tan ∠OAD=3,同理可得AE=3∴S 四边形ADOE =12 ×OD ×AD ×2=12 ×1×3×2=3 ··········································6分 又∵S 扇形形ODE =120π×12 360 =13 π·················································································7分∴S 阴影= S 四边形ADOE -S 扇形形ODE = 3 -13 π. ························································8分 26.(本题9分)解:(1)∵二次函数m x x y ++-=22的图象与x 轴相交于A 、B 两点∴b 2-4a c >0,∴4+4m >0, ··················································································2分 解得:m >-1 ············································································································3分 (2)解法一:∵二次函数m x x y ++-=22的图象的对称轴为直线x =-b2a =1 ·····················4分 ∴根据抛物线的对称性得点B 的坐标为(5,0) ················································6分 解法二:把x =-3,y =0代入m x x y ++-=22中得m=15 ···················································4分 ∴二次函数的表达式为1522++-=x x y令y =0得01522=++-x x ·······················································································5分 解得x 1=-3,x 2=5∴点B 的坐标为(5,0) 6分。

相关文档
最新文档