-初中数学竞赛讲座之三--求代数式的值
初中数学竞赛专题培训(6):代数式的求值
初中数学竞赛专题培训第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以 a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析 计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a ,x 2+y 2=b 2,求x 4+y 4的值.3.已知a -b+c=3,a 2+b 2+c 2=29,a 3+b 3+c 3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m ,求(m -a)3+(m -b)3+(m -c)3-3(m -a)(m -b)(m -c)的值.8.已知13x 2-6xy+y 2-4x+1=0,求(x+y)13·x10的值.。
求代数式值及规律的技巧
求代数式值及规律的技巧专训一:求代数式值的技巧要点识记:用数值代替代数式里的字母,按照代数式里的运算符号,计算出的结果就是代数式的值.如果要求值的式子比较简单,可以直接代入求值;如果要求值的式子比较复杂,可考虑先将式子化简,然后代入求值;有时我们还需根据题目的特点,选择特殊的方法求式子的值,如整体代入求值等.直接代入求值1.(2015·大连)若a=49,b=109,则ab-9a的值为________.2.当a=3, b=2或a=-2,b=-1或a=4,b=-3时,(1)求a2+2ab+b2,(a+b)2的值.(2)从中你发现怎样的规律?先化简再代入求值3.已知A=1-x2,B=x2-4x-3,C=5x2+4,求多项式A-2[A-B-2(B-C)]的值,其中x=-1.特征条件代入求值4.已知|x-2|+(y+1)2=0,求-2(2x-3y2)+5(x-y2)-1的值.整体代入求值5.已知2x-3y=5,求6x-9y-5的值.6.已知当x=2时,多项式ax3-bx+1的值是-17,那么当x=-1时,多项式12ax-3bx3-5的值是多少?整体加减求值7.已知x2-xy=-3,2xy-y2=-8,求代数式2x2+4xy-3y2的值.8.已知m2-mn=21,mn-n2=-12.求下列代数式的值:(1)m2-n2;(2)m2-2mn+n2.取特殊值代入求值9.已知(x+1)3=ax3+bx2+cx+d,求a+b+c的值.专训二:与数有关的排列规律名师点金:1.数式中的排列规律,关键是找出前面几个数或式与自身序号数的关系,从而找出一般规律,进而解决问题.2.数阵中的排列规律的探究一般都是先找一个具有代表性的数(设为某个字母)作为切入点,然后找出其他数与该数的关系,并用字母表达式写出来,从而解决相关问题.数式的排列规律1.已知9×1+0=9,9×2+1=19,9×3+2=29,9×4+3=39,…,根据此规律写出第6个式子为__________.2.如图,填在各正方形中的四个数之间都有相同的规律,根据这种规律,推出m的值是__________.(第2题)3.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,-3,4,-5,6,….将这些数排成如图的形式,根据其规律猜想:第20行第3个数是________.(第3题)数阵中的排列规律类型1 长方形排列4.如图是某月的日历.(第4题)(1)带阴影的长方形框中的9个数之和与其正中间的数有什么关系?(2)不改变长方形框的大小,如果将带阴影的长方形框移至其他几个像这样的位置试一试,你还能得出上述结论吗?你知道为什么吗?(3)这个结论对于任何一个月的日历都成立吗?类型2 十字排列5.将连续的奇数1,3,5,7,9,…,按如图所示的规律排列.(第5题)(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.类型3 斜排列6.如图所示是2016年6月份的日历.(第6题)(1)平行四边形框中的5个数的和与其中间的数有什么关系?(2)(1)题中的关系对任意这样的平行四边形框都适用吗?设中间这个数为a,请将这5个数的和用含有a的式子表示出来.专训三:关于图形中的排列规律的几种常见类型名师点金:图形中的排列规律都与它所处位置的序号有关,所以解题的切入点是:先设法列出关于序号的式子,再用关于序号的式子表示图形的变化规律.三角形个数规律的探究1.(2015·山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……依此规律,第n个图案有______个三角形(用含n的代数式表示).(第1题)四边形中个数规律的探究2.(中考·重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个,…,按此规律,则第6个图形中面积为1的正方形的个数为( )(第2题)A.20 B.27 C.35 D.403.(中考·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(第3题)(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?点阵图形中个数规律的探究4.观察如图的点阵图形和与之相对应的等式,探究其中的规律:①4×0+1=4×1-3;②4×1+1=4×2-3;③4×2+1=4×3-3;④________________;⑤________________.…(第4题)(1)请你在④和⑤后面的横线上分别写出相对应的等式;(2)通过猜想,写出与第n个图形相对应的等式.圆中面积规律的探究5.分别计算图①②③中阴影部分的面积,你发现了什么规律?(第5题)专训四:整体思想在整式加减中的应用名师点金:整式化简时,经常把个别多项式作为一个整体(当作单项式)进行合并;整式的化简求值时,当题目中含字母的部分可以看成一个整体时,一般用整体代入法,整体代入的思想是把联系紧密的几个量作为一个整体来看的数学思想,运用这种方法,有时可使复杂问题简单化.应用整体思想合并同类项1.化简:4(x+y+z)-3(x-y-z)+2(x-y-z)-7(x+y+z)-(x-y-z).应用整体思想去括号2.计算:3x2y-[2x2z-(2xyz-x2z+4x2y)].直接整体代入3.设M=2a-3b,N=-2a-3b,则M+N=( )A.4a-6b B.4aC.-6b D.4a+6b4.若x+y=-1,xy=-2,则x-xy+y的值是________.5.已知A=2a2-a,B=-5a+1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值.变形后再整体代入6.(中考·威海)若m -n =-1,则(m -n)2-2m +2n 的值是( )A .3B .2C .1D .-17.已知3x 2-4x +6的值为9,则x 2-43x +6的值为( )A .7B .18C .12D .98.已知-2a +3b 2=-7,则代数式9b 2-6a +4的值是________.9.已知a +b =7,ab =10,则代数式(5ab +4a +7b)-(4ab -3a)的值为________. 10.已知14x +5-21x 2=-2,求代数式6x 2-4x +5的值.11.当x =2时,多项式ax 3-bx +5的值是4,求当x =-2时,多项式ax 3-bx +5的值.特殊值法代入12.已知(2x +3)4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,求: (1)a 0+a 1+a 2+a 3+a 4的值; (2)a 0-a 1+a 2-a 3+a 4的值; (3)a 0+a 2+a 4的值.专训五:整式及其加减中的几种热门考点名师点金:本章的主要内容有整式的定义及其相关概念,整式的加减等,学好这些内容为后面学习整式乘法打好基础.而在中考命题中,对这些内容的考查常与其他知识相结合,主要以填空、选择题的形式出现.整式的概念1.下列说法正确的是( )A .整式就是多项式B .π是单项式C .x 4+2x 3是七次二项式D .3x -15是单项式 2.若5a 3b n与-52a mb 2是同类项,则mn 的值为( )A .3B .4C .5D .63.-15πx 2y 3的系数是________,次数是________.整式的加减运算4.下列正确的是( )A .7ab -7ba =0B .-5x 3+2x 3=-3C .3x +4y =7xyD .4x 2y -4xy 2=0(第5题)5.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm ,m >n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .4m cmB .4n cmC .2(m +n) cmD .4(m -n) cm6.先化简,再求值:(1)43a -⎝ ⎛⎭⎪⎫2a -23a 2-⎝ ⎛⎭⎪⎫-23a +13a 2,其中a =-14;(2)2(2x -3y)-(3x +2y +1),其中x =2,y =-12.整式的应用7.可以表示“比a 的平方的3倍大2的数”的是( )A .a 2+2B .3a 2+2C .(3a +2)2D .3a(a +2)28.(中考·达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样9.大客车上原有(4a -2b)人,中途下车一半人,又上车若干人,这时车上共有(8a -5b)人,那么上车乘客是________人.(用含a ,b 的代数式表示)数学思想方法的应用类型1 整体思想10.已知2x 2-5x +4=5,求式子(15x 2-18x +4)-(-3x 2+19x -32)-8x 的值. 类型2 转化思想11.已知A =-3x 2-2mx +3x +1,B =2x 2+2mx -1,且2A +3B 的值与x 无关,求m 的值.探究规律12.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征( )(第12题)13.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,…,这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n 的等式表示这个规律为________________. 答案 专训一 1.4 9002.解:(1)当a =3,b =2时,a 2+2ab +b 2=32+2×3×2+22=25,(a +b)2=(3+2)2=25;当a =-2,b =-1时,a 2+2ab +b 2=(-2)2+2×(-2)×(-1)+(-1)2=9,(a +b)2=[(-2)+(-1)]2=9; 当a =4,b =-3时,a 2+2ab +b 2=42+2×4×(-3)+(-3)2=1,(a +b)2=(4-3)2=1. (2)a 2+2ab +b 2=(a +b)2.3.解:原式=A -2A +2B +4(B -C)=A -2A +2B +4B -4C =-A +6B -4C. 因为A =1-x 2,B =x 2-4x -3,C =5x 2+4,所以原式=x 2-1+6x 2-24x -18-4(5x 2+4)=-13x 2-24x -35.当x =-1时,原式=-13×(-1)2-24×(-1)-35=-13+24-35=-24. 4.解:由条件|x -2|+(y +1)2=0,得x -2=0且y +1=0,所以x =2,y =-1. 原式=-4x +6y 2+5x -5y 2-1=x +y 2-1. 当x =2,y =-1时,原式=2+(-1)2-1=2. 5.解:6x -9y -5=3(2x -3y)-5=3×5-5=10. 6.解:因为当x =2时,多项式ax 3-bx +1的值是-17, 所以8a -2b +1=-17.所以8a -2b =-18.当x =-1时,12ax -3bx 3-5=-12a +3b -5=(-12a +3b)-5=-32(8a -2b)-5=-32×(-18)-5=22.7.解:由x2-xy=-3,得2x2-2xy=-6①;由2xy-y2=-8,得6xy-3y2=-24②.①+②,得(2x2-2xy)+(6xy-3y2)=(-6)+(-24)=-30,即2x2+4xy-3y2=-30.8.解:(1)因为m2-mn=21,mn-n2=-12,所以m2-n2=(m2-mn)+(mn-n2)=21-12=9.(2)因为m2-mn=21,mn-n2=-12,所以m2-2mn+n2=(m2-mn)-(mn-n2)=21-(-12)=21+12=33.9.解:令x=0,得(0+1)3=d,所以d=1.再令x=1,得(1+1)3=a+b+c+d,所以a+b+c+d=8.所以a+b+c=8-1=7.专训二1.9×6+5=59 2.158 3.3644.解:(1)带阴影的长方形框中的9个数之和是其正中间的数的9倍.(2)带阴影的长方形框中的9个数之和仍是其正中间数的9倍,理由如下:设带阴影的长方形框的正中间的数为x,则其余8个数分别为x-8,x-7,x-6,x-1,x+1,x+6,x+7,x+8,带阴影的长方形框中的9个数之和为(x-8)+(x-7)+(x-6)+(x-1)+x+(x+1)+(x+6)+(x+7)+(x+8)=9x,所以带阴影的长方形框中的9个数之和是其正中间的数的9倍.(3)这个结论对于任何一个月的日历都成立.5.解:(1)十字框中的五个数的平均数与15相等.(2)这五个数的和能等于315.理由:设正中间的数为x,则上面的数为x-10,下面的数为x+10,左边的数为x-2,右边的数为x+2.令x+(x-10)+(x+10)+(x-2)+(x+2)=315.解得x=63.这五个数分别是53、61、63、65、73.6.解:(1)平行四边形框中的5个数的和是平行四边形框中间的数的5倍;(2)适用.因为中间的数为a,所以其余4个数分别为a-12,a-6,a+6,a+12,它们的和为(a-12)+(a-6)+a+(a+6)+(a+12)=5a.专训三1. (3n+1) 点拨:方法1:因为4=1+3×1,7=1+3×2,10=1+3×3,…,所以第n个图案有1+3×n=(3n+1)个三角形.方法2:因为4=4+0×3,7=4+1×3,10=4+2×3,…,所以第n个图案有4+(n-1)×3=(3n+1)个三角形.2.B3.解:(1)1张长方形餐桌的四周可坐4+2=6(人),2张长方形餐桌的四周可坐4×2+2=10(人),3张长方形餐桌的四周可坐4×3+2=14(人), …n 张长方形餐桌的四周可坐(4n +2)人.所以4张长方形餐桌的四周可坐4×4+2=18(人), 8张长方形餐桌的四周可坐4×8+2=34(人). (2)设这样的餐桌需要x 张,由题意得4x +2=90, 解得x =22.答:这样的餐桌需要22张. 4.解:(1)④4×3+1=4×4-3 ⑤4×4+1=4×5-3(2)4(n -1)+1=4n -3(n 为正整数).点拨:结合图形观察①②③中等式左右两边,发现有规律可循.等式左边都是式子顺序数少1的4倍,再加上1;而等式右边,恰好是式子顺序数的4倍减3,这样④⑤中的等式就可以写出,进而我们可以归纳出与第n 个图形相对应的等式为4(n -1)+1=4n -3(n 为正整数). 5.解:图①阴影部分的面积S 1=a 2-π⎝ ⎛⎭⎪⎫a 22=a 2-πa 24;图②阴影部分的面积S 2=a 2-4π⎝ ⎛⎭⎪⎫a 42=a 2-πa 24;图③阴影部分的面积S 3=a 2-9π⎝ ⎛⎭⎪⎫a 62=a 2-πa 24.发现小圆的个数按规律增多,但其阴影部分的面积保持不变. 专训四1.解:原式=-3(x +y +z)-2(x -y -z) =-3x -3y -3z -2x +2y +2z =-5x -y -z.2.解:原式=3x 2y -2x 2z +(2xyz -x 2z +4x 2y) =3x 2y -2x 2z +2xyz -x 2z +4x 2y =7x 2y -3x 2z +2xyz. 3.C 4.15.解:(1)3A -2B +2 =3(2a 2-a)-2(-5a +1)+2 =6a 2-3a +10a -2+2=6a 2+7a.(2)当a =-12时,原式=6a 2+7a =6×⎝ ⎛⎭⎪⎫-122+7×⎝ ⎛⎭⎪⎫-12=-2.6.A 点拨:原式=(m -n)2-2(m -n)=(-1)2-2×(-1)=3. 7.A8.-17 点拨:9b 2-6a +4=3(3b 2-2a)+4=3×(-7)+4=-17. 9.5910.解:因为14x +5-21x 2=-2,所以14x -21x 2=-7,所以3x 2-2x =1.所以6x 2-4x +5=2(3x 2-2x)+5=7.11.解:当x =2时,23a -2b +5=4,即8a -2b =-1. 当x =-2时,ax 3-bx +5=(-2)3a -(-2)×b+5= -8a +2b +5=-(8a -2b)+5 =-(-1)+5=6.点拨:求多项式的值时,有时给出相应字母的值,直接求值;有时不能求出字母的值,就需要观察已知与所求式子之间的关系,有时可将已知条件和所求式子经过适当变形后,运用整体代入的方法求解. 12.解:(1)将x =1代入(2x +3)4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4, 得a 0+a 1+a 2+a 3+a 4=(2+3)4=625.(2)将x =-1,代入(2x +3)4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4, 得a 0-a 1+a 2-a 3+a 4=(-2+3)4=1.(3)因为(a 0+a 1+a 2+a 3+a 4)+(a 0-a 1+a 2-a 3+a 4)=2(a 0+a 2+a 4), 所以625+1=2(a 0+a 2+a 4),所以a 0+a 2+a 4=313.点拨:观察各式的特点,通过适当地赋予x 特殊值可以求出. 专训五1.B 2.D 3.-15π;5 4.A5.B 点拨:设小长方形的长为a cm ,宽为b cm (a >b),则上面的阴影部分的周长为2(m -a +n -a) cm ,下面的阴影部分的周长为2(m -2b +n -2b) cm ,则两块阴影部分的周长为[4m +4n -4(a +2b)] cm .因为a +2b =m(由题图可知),所以两块阴影部分的周长和=4m +4n -4(a +2b)=4n(cm ). 6.解:(1)原式=43a -2a +23a 2+23a -13a 2=13a 2.当a =-14时,原式=13a 2=13×⎝ ⎛⎭⎪⎫-142=148.(2)原式=4x -6y -3x -2y -1=x -8y -1.当x =2,y =-12时,原式=x -8y -1=2-8×⎝ ⎛⎭⎪⎫-12-1=5. 7.B 8.C9.(6a -4b)10.解:因为2x 2-5x +4=5,所以2x 2-5x =1.所以(15x 2-18x +4)-(-3x 2+19x -32)-8x=18x 2-45x +36=9(2x 2-5x)+36=9×1+36=45.11.解:2A +3B =2(-3x 2-2mx +3x +1)+3(2x 2+2mx -1)=(2m +6)x -1. 因为2A +3B 的值与x 无关,所以2m +6=0,即m =-3.12.B13.(n +2)2-n 2=4(n +1)。
5种方法求代数式的值
5种方法求代数式的值在数学中,我们经常需要求一个代数式的值。
这个代数式可能包括各种运算符号和变量,我们希望找到一个具体的数值来代替变量,从而得到代数式的真实值。
在这篇文章中,我们将介绍五种方法来求代数式的值。
方法一:代入法代入法是求代数式值的最基本方法之一、它的思想很简单:我们将变量代入代数式中,并计算出代数式的数值。
举个例子来说,如果我们有一个代数式2x+3,我们可以选择给x赋一个具体的数,比如说x=4,然后计算2*4+3,得到11、这就是这个代数式在x=4时的值。
代入法可以在计算中非常方便,特别是当代数式中只有一个变量的时候。
但是,当代数式中有多个变量的时候,代入法可能会变得非常困难。
因此,在这种情况下,我们需要使用其他的方法来求代数式的值。
方法二:展开法展开法是求代数式值的另一种常见方法。
它适用于那些包含括号和指数的代数式。
展开法的思想是将代数式中的括号展开,然后根据指数的规则进行运算。
举个例子来说,假设我们有一个代数式(x+2)(x-3),我们可以将这个代数式展开为x^2-3x+2x-6、然后,我们可以将这些项合并,得到最简形式的代数式x^2-x-6展开法不仅适用于二次代数式,也可以应用于更复杂的代数式。
但是,在展开法中,要注意正确地应用指数法则和合并项的规则,以避免漏项和错误运算。
方法三:因式分解法因式分解法是求代数式值的另一个常见方法。
它适用于那些可以分解为乘积形式的代数式。
因式分解法的思想是将代数式分解为括号和因子的乘积,然后计算每个乘积的值。
举个例子来说,假设我们有一个代数式x^2-4,我们可以使用因式分解法将其分解为(x+2)(x-2)。
然后,我们可以选择一个数值给x,并计算每个乘积的值。
比如说,当x=3时,代数式的值为(3+2)(3-2)=5因式分解法可以用于求解各种类型的代数式,包括多项式、二次方程等。
但是,它需要一定的代数知识和技巧来正确地进行因式分解,这可能需要一些练习和实践。
第三章 求代数式的值
1 x 4 y2 _____ 2
a-b 的相反数是b-a,x2 3 y2的相反数为 3 y2 x2
x2 y2 的相反数为 x2 y2 或 x2 y2
例2、若2b-a=5,求代数式5(a-2b)2-3(a-2b)-60的值。
a与b ba
互为倒数
x y xy x y 与 xy
互为倒数
数学·新课标(BS)
例1.按右边图示的程序计算,若
开始输入的n值为2,则最后输出
的结果是
。
输入n
计算
的值
当n 2 时, 当n 3时, 当n 6 时,
nn 1 23 3
2
2
nn 1 3 4 6
2
2
nn 1 6 7 21
2
2
当n 7 时, nn 1 21 22 231
2
2
>200
yes 输出结果
no
当x 2时, ax4 bx2 c 9,
当x 2时, ax4 bx2 c 5,则c __2__。
1.若m 2n 5, 则 5m 2n2 6n 3m 60
例2、一工厂有煤x(t),计划每天烧煤y(t). (1)列式表示计划可烧煤的天数. (2)若实际每天少烧煤0.5t,列式表示实际比计划多烧煤的天数. (3)当x=72,y=6时,求计划烧煤天数以及实际比计划多烧煤的天数. 解:(1)由题意得,计划烧煤天数为 x (天)
解:(1)乘甲车所需的车费为50(x+1)×80%(元),
乘乙车所需的车费为50x·90(元)%;
(2)当x=6时,50(x+1)×80%=40×7=280(元), 50x·90%=45×6=270(元),乘乙车合算; 当x=10时,50(x+1)×80%=40×11=440(元), 50x·90%=45×10=450(元),乘甲车合算.
初三数学竞赛讲座:求代数式的值
第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.。
(初中数学竞赛希望杯)代数式的化简求值问题
代数式的化简求值问题初中数学中,全面实现了用字母代数。
这实现了学生对数认识的又一次飞跃。
这要求学生能体会用字母代替数后思维的扩展,体会一些简单的数学模型。
体会由特殊到一般,再由一般到特殊的重要方法。
1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
例题精讲【试题来源】【题目】若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值. 【答案】-4【解析】分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx 所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值【知识点】代数式的化简求值问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式635-++cx bx ax 的值。
【答案】-202008200712007200720072222323=+=++=+++=++a a a a a a a 【解析】分析: 因为8635=-++cx bx ax当x=-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x=2时,635-++cx bx ax =206)14(622235-=--=-++c b a【知识点】代数式的化简求值问题【适用场合】当堂例题【难度系数】4【试题来源】【题目】当代数式532++x x 的值为7时,求代数式2932-+x x 的值.【答案】4【解析】分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
初中数学竞赛专题讲解代数式问题的求解思路
初中数学竞赛专题讲解代数式问题的求解思路代数式的求值问题,是初中代数基础知识与基本技能的重要内容。
求代数式的值应对所给定的代数式加以具体情况具体分析,针对题设条件与所求代数式的本质特点及内在联系,灵活选用适当方法与技巧,方能使求解过程简捷、科学、合理。
一、基础过关1.已知11m n =+=-______________ 2.若a 是2201610x x -+=的一个根,则22201620151a a a -+=+___________________ 3.已知1a a+=,则1a a -=___________________4.已知实数,,a b c 满足10a b c ++=,且,则的值是____________ 5.方程组:2222007x y z xy yz xzx y z ⎧++=++⎨++=⎩的解为_________________6.设方程03242=--x x 的两个根是α和β,则242αβ+=_______________7.若2015a a -=,则22015a -=___________ 8.已知2210m n mn m n +++-+=,则11m n+=_______________2==_______________ 10.计算:3322017201562017241008--⨯+⨯=_______11.计算:333201710171000201710171000--=⨯⨯__________ 12.设333201520162017,0x y z xyz ==>,=,则111x y z++=__________ 13.设2017m =+则2017m 整数部分的值为_________1714111=+++++a c c b b a ba c a cbc b a +++++14.如果整数,,x y z 满足10981()()()271615256x y z ⋅⋅=,求()x yx y z ---的值二、例题讲解构造法求解代数问题(1)构造多项式例1、三个整数a 、b 、c 的和是6的倍数.,那么它们的立方和被6除,得到的余数是( ) A.0 B.2 C.3 D.不确定的 (2)构造有理化因式例2、已知(2017x y +=.则22346658x xy y x y ----+=____________ (3)构造对偶式例3、已知αβ、是方程210x x --=的两根,则43αβ+的值是____________(4)构造递推式例4、实数,,,a b x y 满足3ax by +=,227ax by +=,3316ax by +=,4442ax by +=.求55ax by +的值__________(5)构造几何图形例5、(数形结合)已知,a b 是正数,且2a b +=.求u =_____练习1:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。
如何求代数式的值
如何求代数式的值求代数式的值是数学中的一个重要的内容,它是中考和数学竞赛中的必考内容.求代数式的值的一般步骤是先代入,再计算求值.但在实际解题时,常常需要综合运用知识求值,现介绍一些求代数式的值的一些常用的方法,以供同学们参考.一、单值代入求值用单一的字母数值代替代数式中的字母,按代数式指明的运算,计算出结果;例1当x=2时,求x 3+x 2-x+3的值. 析解:当x=2时,原式=23+22-2+3=13. 二、多值代入求值用多个的字母数值代替代数式中的相应字母,按代数式指明的运算,计算出结果 例2当a=3,a-b=1时,代数式a 2-ab 的值 . 析解:将a=3代入a-b=1得b=2,则原式=32-3×2=3. 三、整体代入求值根据条件,不是直接把字母的值代入代数式,而是根据代数式的特点,将整体代入以求得代数式的值.例3如果代数式238a b -++的值为18,那么代数式962b a -+的值等于( )A .28B .28-C .32D .32-分析:根据所给的条件,不可能求出具体字母a b 的值,可考虑采用整体代入的方法,所要求的代数式962b a -+可变形为3(-2a+3b+8)-22,,从而直接代入238a b -++的值 求出答案.解:原式=3(-2a+3b+8)-22=3×18-22=32.例4如果012=-+x x ,那么代数式2622-+x x 的值为( ) A 、64 B 、5 C 、—4 D 、—5分析:本题中没有给出的值,所以不能直接代入求值.所以我们应设法把原代数式化成用含12-+x x 的式子来表示的形式,然后再把12-+x x 看作一整体,把它的值整体代入求值.解:原式=4024)1(22-⨯=--+x x =-4,所以选C.例5当x=1时,代数式px 3+qx+1的值为2004,则x=-1时,代数式px 3+qx+1的值为[( ) A.-2002 B.-2003 C.-2001 D.2005解, 当x=1时px 3+qx+1=p+q+1=2004,p+q=2003.当x=-1时,px 3+qx+1=-p-q+1=-2003+1= -2002故选A.四、特值代入求值在选择题与填空题中,由于不用计算过程,也可以用特殊值法来计算,即选取符合条件的字母的值,直接代入代数式得出答案.例6已知-1<b <0, 0<a <1,那么在代数式a -b 、a+b 、a+b 2、a 2+b 中,对任意的a 、b ,对应的代数式的值最大的是(A) a+b (B) a -b (C) a+b 2 (D) a 2+b解:取21-=b ,21=a ,分别代入四个选择支计算得:(A)的值为0;(B)的值1;(C) 的值为43;(D)的值为43,所以选(B) 例7设,)1()1(322dx cx bx a x x +++=-+则=+++d c b a析解:d c b a +++恰好是32dx cx bx a +++当1=x 时的值。
(人教版数学)七年级竞赛专题讲解:第三十一讲 代数式的值
第三十一讲 代数式的值某同学做一道代数题:求代数式l0x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x+1,当x=-1时的值.由于将式中某一项的“+”错看成“-”,误得代数式的值为7,那么,该同学看错了几次项前的符号?思路点拨 设着错的是n 次项前的符号,那么,它计算的代数式实际上是l0x 9+9x 8+…+2x+1-2(n+1)x n 的值,由题意可得:10(-1)9十9(-1)8+…十2(-1)+1-2(n+1)(—1)n =7,即(n+1)(-1)n =-6,解得n=5,即该同学看错的是5次项前的符号.一、直接代入求值代数式的值是指代数式中的字母取某数值时,按照代数式中的运算要求求出的值,如果已知代数式中的字母的值,将其代入就可以求出代数式的值.【例1】 54-=a ,求代数式)61(2)22(332233a a a a a a a -++---+-的值. 思路点拨 原式=11a=544-二、整体代入求值在有些求代数式的值的问题中,往往题目中并没有直接告诉我们字母的值,而且通过已知条件很难求出未知数的值来,我们通常进行整体代入,求得代数式的值.【例2】已知211=-ba ,求代数式b ab a b ab a 232343--++-的值. 思路点拨 ab b a 2-=-,∴原式=7103)(24)(3-=--+--ab b a ab b a 【例3】 当x=-5时,代数式ax 4+bx 2+c 的值是3,求当x=5时,代数式ax 4+bx 2+c 的值.思路点拨 3)5()5(24=+-+-c b a ,即35524=++c b a ∴当x=5时,代数式ax 4+bx 2+c =35524=++c b a . 【例4】 已知62,1422-=-=+bc b bc a ,则bc b a 54322-+= .思路点拨 原式=182442)2(4)(322=-=-++bc b bc a【例5】已知01223344555)12(a x a x a x a x a x a x +++++=-是关于x 的恒等式.求:(1)543210a a a a a a +++++的值;(2) 543210a a a a a a -+-+-的值;(3) 420a a a ++的值.思路点拨 (1)令x=1,得543210a a a a a a +++++=1;(2)令x=-l ,得543210a a a a a a -+-+-=-243;(3)将上面两式相加,得420a a a ++=-121【例5】 (1999年第10届“希望杯”竞赛试题)已知x=1999,则7322415422++++-+-x x x x x .思路点拨 当x=1999时,原式=199901073)22(415422-=-=++++-+-x x x x x x三、逆用乘法运算律对代数式进行变形求值【例6】 已知x 2+4x —1=0,求代数式2x 4+8x 3—4x 2—8x1的值.思路点拨 原式=2x 2(x 2+4x —1)-2(x 2+4x —1)-1=-1四、运用乘法公式对代数式进行变形求值乘法公式是我们在研究整式的乘法时总结出来的,具有普遍意义,可以简化运算的一些结论.在求代数式式的值时,对已知条件或所求代数式利用乘法公式进行适当变形,可以使一些问题简化,并得以解决.【例7】 已知a+b+c=3,(a —1)3+(b —1)3+(c —1)3=0,且a=2,求代数式a 2+b 2+c 2的值.思路点拨 把a=2代人到前两个式子中,可得b+c=1, (b —1)3+(c —1)3=-1(1)运用立方和公式将(1)式进行变形,得bc=0,∴a 2+b 2+c 2=22+(b+c)2-2bc=5注:在求代数式的值时,对代数式的相关知识要非常熟练,有时代数式不一定是公 式所具有的形式,我们可以采取差什么添什么.添后再减的方法对代数式进行变形.【例8】若a 、b 、c 都是有理数,且a+b+c=0,a 3+b 3+c 3=0,求代数式a 5+b 5+c 5的值.思路点拨 a 3+b 3+c 3-3abc=(a+b+c)( a 2十b 2十c 2-ab -bc -ac)=0,得abc=0∴a 5+b 5+c 5=0五、利用一些特殊的代数式形式求代数式的值【例8】 已知6112=++a a a ,试求代数式1242++a a a 的值. 思路点拨 由已知条件知a ≠0, ∵6112=++a a a, ∴612=++a a a ,即51=+a a , ∴2411)1(112242=-+=++aa a a a 【例9】(1999年北京市竞赛题)若3x 3-x=1,则9x 4+12x 3—3x 2-7x +1999的值等于( )A .1997B .1999C .2001D .2003思路点拨 用竖式除法可得原式=(3x 3-x -1)(3x+4)+2003= 2003,故选D .学力训练1.已知a —b=5,ab=-1,求代数式(2a+3b —2ab)—(a+4b+ab)—(3ab+2b-2a)的值.2.若x+7y=y-3x ,求2222yx y x +-的值. 3.若a 、b 、c 、d 为互不相等的整数,且abcd=25,求a+b+c+d 的值.4.已知221=+yx ,求代数式y xy x y xy x 284234-+-++的值. 5.已知关于x 的二次多项式a(x 3-x 2+3x)十b(2x 2+x)+x 3-5,当x=2时的值为—17,求当x=-2时,该多项式的值.6. 把(x 2-x-1)n展开得0122121222a x a x a x a x a n n n n +++++-- ,求n a a a a 2420++++ 的值.7.若ac z c b y b a x -=-=-,求x+y+z 的值. 8.设100个实数a 1、a 2、a 3,、…、a 100满足(n-2)a n —(n —1)a n-1+1=0(2≤n ≤100),并且已知 a 100=199,求a 1+a 2+a 3+…+a 100的值.9.设f (x)=ax 7+bx 3+cx-5,其中a 、b 、c 为常数,已知f (-7)=7,求f (7)的值.10.已知x+y=1,求代数式x 3+y 3+3xy 的值.11.已知a 为有理数,且a 3+a 2+a+1=0,求代数式1+a+a 2+a 3+…+a 1995的值.12.求代数式5x 2-4xy+y 2+6x+25的最小值.13.已知m=4x 2—12xy+l0y 2+4y+9,当x 、y 各取何值时,m 的值最小?14.已知a 2+b 2+c 2=ab+bc+ac ,且a=1,求代数式(a 十b —c)2004的值.15.已知a 、b 、c 、d 都是正整数,并且a 5=b 4,c3=d2,c —a=9,求a —b 的值.16.已知a 、b 、c 满足a+b+c=0,且abc >0,cc b b a a x ++=,)11()11()11(a b c a c b c b a y +++++=,求代数式x 2000—6xy+y 3的值.17.已知a+b+c=0,a 2+b 2+c 2=1,求代数式a(b 十c)十b(a 十c)十c(a 十b)的值.18.若a c b a b c b a c c b a ++-=+-=-+,求abc a c c b b a ))()((+++的值. 19.已知312222=++a a a ,试求代数式222242++a a a 的值. 20.已知a 是方程2x 2+3x —1=0的一个根,求代数式131593322345-+-+++a a a a a a 的值. 21.已知a=2003x+2004,b=2003x+2003,c=2003x+2005,求代数式a 2十b 2十c 2-ab -bc -ac 的值.参考答案代数式的值1.212.135 3.0 4.47 5.-1 6.2)1(1n -+ 7. 0 8.10000 9.-17 10.1 11.0 12.16 13.5,2,3=-=-=m y x 14.1 15.-16 16.-44 17.-1 18.8或-1 19.194 20.25- 21.331。
初中数学竞赛专题培训(6):代数式的求值
初中数学竞赛专题培训第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以 a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析 计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a ,x 2+y 2=b 2,求x 4+y 4的值.3.已知a -b+c=3,a 2+b 2+c 2=29,a 3+b 3+c 3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m ,求(m -a)3+(m -b)3+(m -c)3-3(m -a)(m -b)(m -c)的值.8.已知13x 2-6xy+y 2-4x+1=0,求(x+y)13·x10的值.。
初中数学竞赛专题培训(6):代数式的求值
初中数学竞赛专题培训第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以 a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析 计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a ,x 2+y 2=b 2,求x 4+y 4的值.3.已知a -b+c=3,a 2+b 2+c 2=29,a 3+b 3+c 3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m ,求(m -a)3+(m -b)3+(m -c)3-3(m -a)(m -b)(m -c)的值.8.已知13x 2-6xy+y 2-4x+1=0,求(x+y)13·x10的值.。
初中数学竞赛专题培训(6):代数式的求值
初中数学竞赛专题培训第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以 a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析 计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a ,x 2+y 2=b 2,求x 4+y 4的值.3.已知a -b+c=3,a 2+b 2+c 2=29,a 3+b 3+c 3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m ,求(m -a)3+(m -b)3+(m -c)3-3(m -a)(m -b)(m -c)的值.8.已知13x 2-6xy+y 2-4x+1=0,求(x+y)13·x10的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲求代数式的值
用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.
例1求下列代数式的值:
分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.
=0-4a3b2-a2b-5
=-4×13×(- 2)2- 12×(-2)-5
=-16+2-5=-19.
(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]
=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)
=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)
=2xyz-2x2z
=2×(-1)×2×(-3)-2×(-1)2×(-3)
=12+6=18.
说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.
例2已知a-b=-1,求a3+3ab-b3的值.
分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.
解法1由a-b=-1得a=b-1,代入所求代数式化简
a3+3ab-b3=(b-1)3+3(b-1)b-b3
=b3-3b2+3b-1+3b2-3b-b3
=-1.
说明这是用代入消元法消去a化简求值的.
解法2因为a-b=-1,所以
原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab
=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab
=-(a2-2ab+b2)=-(a-b)2
=-(-1)2=-1.
说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以
原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3
=a3-3a2b+3ab2-b3=(a-b)3
=(-1)3=-1.
说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.
解法4 因为a-b=-1,所以
(a-b)3=(-1)3=1,
即a3+3ab2-3a2b-b3=-1,
a3-b3-3ab(a-b)=-1,
所以a3-b3-3ab(-1)=-1,
即a3-b3+3ab=-1.
说明这种解法是由a-b=-1,演绎推理出所求代数式的值.
解法5
a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab
=(a-b)3+3ab(a-b)+3ab
=(-1)3+3ab(-1)+3ab
=-1.
说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2;
(a+b)3=a3+3a2b+3ab2+b3;
(a-b)3=a3-3a2b+3ab2-b3;
a3+b3=(a+b)(a2-ab+b2);
a3-b3=(a-b)(a2+ab+b2).
解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以
解因为a=3b,所以
c=5a=5×(3b)=15b.
将a,c代入所求代数式,化简得
解因为(x-5)2,|m|都是非负数,所以由(1)有
由(2)得y+1=3,所以y=2.
下面先化简所求代数式,然后再代入求值.
=x2y+5m2x+10xy2
=52×2+0+10×5×22=250
例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.
分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.
解14a-2b=2(7a-b)
=2[(4a+3a)+(-3b+2b)]
=2[(4a-3b)+(3a+2b)]
=2(7+19)=52.
|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.
分析所求代数式中六个绝对值的分界点,分别为:0,1,2,
据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.
原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)
=-1-2+3+4+5=9.
说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.
例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?
分析x:y:z=3:4:7可以写成
的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.
x=3k,y=4k,z=7k.
因为
2x-y+z=18,
所以
2×3k-4k+7k=18,
所以k=2,所以x=6,y=8,z=14,所以
x+2y-z=6+16-14=8.
例9已知x=y=11,求
(xy-1)2+(x+y-2)(x+y-2xy)的值.
分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.
解设x+y=m,xy=n.
原式=(n-1)2+(m-2)(m-2n)
=(n-1)2+m2-2m-2mn+4n
=n2-2n+1+4n-2m-2mn+m2
=(n+1)2-2m(n+1)+m2
=(n+1-m)2
=(11×11+1-22)2
=(121+1-22)2
=1002=10000.
说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.
练习三
1.求下列代数式的值:
(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;
的值.
3.已知a=3.5,b=-0.8,求代数式
|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求a,b的值.
5.已知。