MLST

合集下载

拷贝数变异检测方法

拷贝数变异检测方法

拷贝数变异检测方法拷贝数变异是指基因组中某一段DNA序列在进化过程中发生了拷贝数的变异,即该序列的拷贝数增加或减少。

拷贝数变异被认为是基因组结构变异的主要形式之一,它在物种进化和个体遗传多样性中起到重要的作用。

为了准确、高效地检测拷贝数变异,科学家们开发了一系列方法。

下面将介绍几种常用的拷贝数变异检测方法。

1. MLPA(Multiplex Ligation-dependent Probe Amplification)MLPA是一种常用的拷贝数变异检测方法,它利用多重连接依赖式探针扩增技术,可以同时检测多个目标序列的拷贝数。

该方法通过引入两个特异性的引物,使目标序列的两个相邻区域连接起来,然后进行PCR扩增。

通过比较目标序列与参考基因组的扩增产物的相对强度,可以确定目标序列的拷贝数是否发生变异。

2. qPCR(Quantitative Polymerase Chain Reaction)qPCR是一种基于聚合酶链反应的拷贝数变异检测方法,它可以快速、准确地测量目标序列的拷贝数。

该方法利用特异性引物和荧光探针,通过监测PCR反应体系中的荧光信号强度来定量目标序列的拷贝数。

相比于传统PCR方法,qPCR具有更高的灵敏度和准确性。

3. MLST(Multilocus Sequence Typing)MLST是一种基于多基因序列分型的拷贝数变异检测方法,它通过测定多个基因的拷贝数变异来推断目标序列的拷贝数。

该方法利用PCR扩增多个基因的片段,并对扩增产物进行测序分析。

通过比较目标序列与参考基因组的片段长度和序列差异,可以确定目标序列的拷贝数是否发生变异。

4. aCGH(array Comparative Genomic Hybridization)aCGH是一种基于基因组DNA杂交的拷贝数变异检测方法,它可以全基因组范围内快速、高通量地检测拷贝数变异。

该方法利用两个不同来源的DNA样品,将其分别标记为红色和绿色,并将它们杂交到DNA芯片上。

05多位点序列分析(MLST)分析

05多位点序列分析(MLST)分析

多位点序列分析(MLST)分析多位点序列分型的原理:MLST方法一般测定6~10个管家基因内部400~600bp的核苷酸序列,每个位点的序列根据其发现的时间顺序赋予一个等位基因编号,每一株菌的等位基因编号按照指定的顺序排列就是它的等位基因谱,也就是这株菌的序列型(sequence type,ST)。

这样得到的每个ST均代表一组单独的核苷酸序列信息。

通过比较ST可以发现菌株的相关性,即密切相关菌株具有相同的ST或仅有极个别基因位点不同的ST,而不相关菌株的ST至少有3个或3个以上基因位点不同。

多位点序列分析(MLST)分析多位点序列分型(MLST)是一种分子分型技术,通过该技术,通常会对部分精心挑选的管家基因(位点)进行测序。

在典型的MLST方法中,重组的发生频率要比点突变高得多。

因此,人们不会研究菌株之间的总的序列相似性。

相反,而去筛选给定位点的每个序列与该位点的已知序列的相似性。

如果序列不同,则将其视为新的等位基因,并为其分配唯一的(任意)等位基因编号。

如果研究了七个管家基因,那么每个菌株的特征就是七个等位基因的图谱。

等位基因图谱可被认为是由7个分类字符组成的字符集。

MLST已成功用于研究种群遗传学和流行细菌和其他微生物的重建微观进化。

Bionumerics中的MLST分析Applied Maths公司通过使用最小生成树为MLST数据的分析做出了贡献(请参阅L. Vauterin和P. Vauterin.综合数据库和分析。

在E. Stackebrandt,ED,分子鉴定,系统学和原核生物的种群结构中。

Springer-Verlag Berlin Heidelberg,2006年,以及许多研究文章)。

MLST插件的使用,使BioNumerics软件被广泛用于MLST序列的存储和分析。

BioNumerics会自动分析一批序列跟踪文件,连接到在线MLST数据库,检索相应的等位基因编号,序列类型以及可用的克隆复合体信息。

单核细胞增生李斯特氏菌多位点序列分型

单核细胞增生李斯特氏菌多位点序列分型

单核细胞增生李斯特氏菌多位点序列分型
李斯特氏菌多位点序列分型(MLST)是一种遗传分型技术,用于将菌株群细分为不同的物种和种类,以便进行更进一步的分类研究。

其基本原理是使用高通量测序技术,对细菌中的多个具有突变风险的位点(或者称为位点序列标识符,MLSTs)进行分析。

在单核细胞增生的MLST分析中,主要关注的是核酸水平上的差异,这一步可以在短时间内得到特定的细菌株的MLST结果。

MLST技术比其他类型的遗传分型技术更加保守,更加稳定,因为它检测的特定位点大多不能被突变。

因此,MLST可以很好地用于无症状的致病菌,或者其可能是一种培养难度较大的重要和共同原菌株。

因此,MLST可以在研究需要更全面、更高层次的菌株分类(而不是仅限于单个基因或其他单个位点)时得到应用。

1. 首先,为什么使用MLST技术?
▪ MLST比其他类型的遗传分型技术更加保守,更加稳定,因为它检测的特定位点大多不能被突变。

因此,MLST可以很好地用于无症状的致病菌,或者其可能是一种培养难度较大的重要和共同原菌株。

2. 关于MLST技术,它有什么基本原理?
▪ MLST基本原理是使用高通量测序技术,对细菌中的多个具有突变风险的位点(或者称为位点序列标识符,MLSTs)进行分析。

3. 单核细胞增生的MLST分析的核心步骤是什么?
▪在单核细胞增生的MLST分析中,主要关注的是核酸水平上的差异,这一步可以在短时间内得到特定的细菌株的MLST结果。

4. MLST技术的应用场景有哪些?
▪ MLST可以在研究需要更全面、更高层次的菌株分类(而不是仅限于单个基因或其他单个位点)时得到应用。

MLST方法原理、数据处理及应用介绍

MLST方法原理、数据处理及应用介绍
ICDC, China CDC
MLST应用实例一:脑膜炎奈瑟菌种群结构现状分析
2005-2012年234株脑膜炎奈瑟菌MLST分析
MLST应用实例二:脑膜炎奈瑟菌菌群变迁
1956-2012年流脑主要血清群流行菌株分子型别变迁
MLST应用实例三:环境军团菌菌群结构分析
2005-2012年中国7个城市环境分离164株血清1型嗜肺军团菌种群结构特征
• 全国范围的、长期的流行情况调查
所有菌株进行PFGE,挑选代表菌株进行MLST分型。
肺炎克雷伯菌院内感染鉴别
ST-11
流脑暴发调查
健康携 带本底 菌株 流脑菌株总携 带率:28.3%
暴 发 相 关 菌 株
暴发相关菌株 携带率:15.7%
健康携 带本底 菌株
谢 谢
TENOVER原则的前提:菌株是同一暴发期间分离的
关于分型方法使用的建议
• 暴发调查
所有菌株进行PFGE,挑选代表菌株进行MLST;对于细菌特异性引物 PCR扩增阳性的标本未能分离菌株的,进行MLST分型。
• 个案调查
所有菌株进行PFGE和MLST分型;对于细菌特异性引物PCR扩增阳性 的标本未能分离菌株的,进行MLST分型。
DNA提取
(1)已分离到细菌:细菌培养,提取DNA。用试剂盒或者水煮法提取均
可以。 (2)未分离到细菌的标本(脑脊液、血液、咽拭子、肺泡灌洗液
等):用标本直接提取细菌DNA,只能用试剂盒提取。
ICDC, China CDC
网 站 提 交 获 得 分 型 结 果
/neisseria 脑膜炎奈瑟菌MLST数据库
扩增片段长度多态性(AFLP)
多位点序列分型(MLST) 脉冲场凝胶电泳(PFGE) 多位点串联重复序列(MLVA)

MLST方法原理、数据处理及应用介绍

MLST方法原理、数据处理及应用介绍

MLVA:VNTR位点滑链突变 MLST:管家基因的点突变
ICDC, China CDC
MLST基本原理
abcZ 测序结果 1 2 3 222 222 222
细菌染色体
菌株编号 NM201101
abcZ adk aroE fumC gdh pdhC pgm MLST型 1 1 2 1 3 2 19 ST-7
• 全国范围的、长期的流行情况调查
所有菌株进行PFGE,挑选代表菌株进行MLST分型。
肺炎克雷伯菌院内感染鉴别
ST-11
流脑暴发调查
健康携 带本底 菌株 流脑菌株总携 带率:28.3%
暴 发 相 关 菌 株
暴发相关菌株 携带率:15.7%
健康携 带本底 菌株
谢 谢
扩增片段长度多态性(AFLP)
多位点序列分型(MLST) 脉冲场凝胶电泳(PFGE) 多位点串联重复序列(MLVA)
较好
一般 较好 较好
较好
好 较好 较好

好 较好 较好
中等
好 较好 较好
一般
一般 一般 一般
两天
>两天 两天 一天
中等
大 小 大
中等
高 中等 低
ICDC, China CDC
分子分型主要的三种实验数据形式
/ 流感嗜血杆菌MLST数据库
http://mlst.ucc.ie/ 沙门氏菌MLST数据库
/ legionella/legionella_sbt/php/ sbt_homepage.php 嗜肺军团菌SBT(MLST)分型数据库
DNA提取
(1)已分离到细菌:细菌培养,提取DNA。用试剂盒或者水煮法提取均
可以。 (2)未分离到细菌的标本(脑脊液、血液、咽拭子、肺泡灌洗液

禽源性葡萄球菌MLST分型研究方案

禽源性葡萄球菌MLST分型研究方案

禽源性葡萄球菌MLST分型研究方案方案1 研究背景及实验目的金黄色葡萄球菌是一种重要的人兽共患病原菌,也是造成人和动物感染的主要病原菌之一,隶属于葡萄球菌属,有“嗜肉菌”的别称,是革兰氏阳性菌的代表菌。

金黄色葡萄球菌广泛分布于自然界中,如空气、土壤、水以及其它环境中,可产生多种酶和毒素,故其致病性很强。

金黄色葡萄球菌是临床上常见的致病菌之一,也是引起化脓性疾病毒力最强的化脓菌,常引起奶牛乳腺炎、禽类葡萄球菌病、羔蜱脓毒症等疾病。

不同地区、不同养殖场之间流行的葡萄球菌菌株常存在显著的差异,这给临床的诊治和监测带来极大困扰。

传统分型方法主要基于细菌本身的一些表型特征,如生化分型、血清学分型、耐药谱分型及隨菌体分型等。

但是传统方法存在分辨率低、可重复性差等缺点。

而基于染色体序列结构的分子分型具有分辨率高、稳定性好等特点,并且在揭示菌株传播机制和大范围的流行监测方面具有重要作用。

目前,常用于金黄色葡萄球菌分子分型的方法有脉冲场凝胶电泳(PFGE)、SCCmec分型、多位点序列分型(MLST)和金黄色葡萄球菌蛋白基因多态性分型。

MLST法分辨力高,重复性好,已建立大型数据库的国际网站,可直接将试验结果提交数据库进行比较,为全球金黄色葡萄球菌流行病学研究提供大的信息资源,也可用于分析分离菌株的遗传相关性。

2 实验材料2.1 主要试剂LB肉汤、LB固体培养基、Hipure Bacterial DNA Kit试剂盒、琼脂糖、2×Master Mix、DL1 000 DNA Marker、GoldenView、TAE。

2.2 主要仪器PCR仪、凝胶成像及分析系统。

2.3 菌株(包括来源和数量,不清楚可以先空出来,但要有这一项)3 实验方法3.1 菌株活化将菌库中保存的金黄色葡萄球菌菌株在无菌条件下接种于LB固体培养基上,37℃恒温培养12~16 h,再挑取圆形,表面光滑的单菌落进行重新划板,放置于37℃恒温培养箱中培养12~16 h。

mlst多位点序列分型

mlst多位点序列分型

mlst多位点序列分型
多位点序列分型(MLST)是一种基于多位点标记的分型方法,用于分类和比较不同菌株间的遗传变异。

MLST通常用于研究
细菌和真菌的系统发育和传播路径,特别是对于一些致病菌的病原变异和流行病学研究具有重要意义。

MLST的基本原理是通过分析多个共有的核酸片段序列来确定
菌株的类型。

这些片段通常选择一些高度保守且稳定的基因,如16S rRNA或内在蛋白编码基因等。

通过对这些序列进行测序,可以得到一系列特定的碱基序列,然后将这些序列碱基的组合称为“分型”。

MLST分析的关键步骤包括:选择一组特定的核酸片段,设计
引物,扩增目标序列,进行测序,比对和分型。

通过对多个位点的分型结果进行比较,可以获得不同菌株的遗传关系,构建系统发育树或进行进化分析。

MLST的优点在于具有较高的可重复性和可比较性,对不同实
验室之间的结果具有较好的一致性。

此外,MLST还可以通过
建立公共数据库,实现菌株的全球比较和追踪。

总的来说,MLST是一种常用的菌株分型方法,适用于研究微
生物的分类、进化和流行病学。

它在疾病预防和控制中具有重要作用,可以帮助了解和应对致病菌的变异和传播机制。

多位点序列分型

多位点序列分型

MLST方案的设计
三要素: 选择经过初步筛选的菌株 选择具有独特特征的基因位点 设计用于基因扩增和序列测定的引物
1. 菌株的选择
根据已有的分型方法和流行病学资料,选 择100株左右具有代表性的菌株作为分析对 象。
理论上,这些选定的菌株要代表所研究细 菌的群体,而不是仅仅包含那些对人致病 的克隆。
选定 管家酶
不同电泳迁移速率
淀粉 胶检测
电泳谱
等位基因 的变异性
揭示微生物 基因多样性
MLEE的缺点
不能推断特殊位点的碱基序列 不同实验室间的分型结果不能进行比

MLST的首次使用
MLST是由多位点酶电泳(MLEE)衍生出来 的 一种分型方法
在1998年,Maiden等首次将MLST应用于脑 膜炎奈瑟菌分型
多位点序列分型 (MLST)
一种基于核酸序列测定的细菌分型方 法
通过PCR扩增多个管家基因内部片段 测定其序列,分析菌株的变异
MLST的原理
MLST方法一般测定6~10个管家基因内部 400~600bp的核苷酸序列,每个位点的序 列根据其发现的时间顺序赋予一个等位基 因编号,每一株菌的等位基因编号按照指 定的顺序排列就是它的等位基因谱 ,也即 是这株菌的序列型(sequence type,ST)。 这样得到的每个ST均代表一组单独的核苷 酸序列信息 。
在数据库中 找出相应的 STs
数据分析得到 等位基因图谱
新的STs则找出 对应的clonal
complex
群体进化研究
分子流行病学 研究
菌群结构 调查
菌群遗传 学分析
疾病的全 球性监控
MLST结果分析流程图
鉴定暴发 性疾病的 病原体
ST和克隆型

mlst多位点序列分型

mlst多位点序列分型

mlst多位点序列分型MLST(多位点序列分型)是一种常用的分子生物学方法,用于研究微生物的遗传多样性和进化关系。

它通过分析多个特定基因的序列变异,将微生物分为不同的序列型,从而揭示它们之间的遗传关系和种群结构。

本文将介绍MLST的原理、应用和未来发展方向。

首先,MLST的原理是基于PCR扩增和DNA测序技术。

研究者选择一组特定的基因作为标记位点,这些基因在不同微生物中具有一定程度的保守性和变异性。

通过PCR扩增这些基因片段,并进行测序,可以得到每个位点上的碱基序列。

然后,将这些碱基序列进行比对和分析,得到每个微生物样品在每个位点上的等位基因型。

接下来,通过比较不同微生物样品之间等位基因型的差异性,可以确定它们之间的遗传关系。

如果两个样品在所有位点上具有相同等位基因型,则它们属于同一序列型;如果在某些位点上存在差异,则它们属于不同序列型。

通过统计大量样品中各个序列型出现的频率,可以揭示微生物的种群结构和进化关系。

MLST在微生物学研究中有广泛的应用。

首先,它可以用于研究病原微生物的流行病学。

通过对不同地理区域和时间点的样品进行MLST分型,可以了解不同序列型的分布情况,从而揭示疾病传播途径和流行趋势。

其次,MLST还可以用于鉴定微生物的种属和亚种。

通过比对已知序列型数据库中的数据,可以将未知样品与已知物种进行比较,并确定其分类学位置。

此外,MLST还可以用于评估抗菌药物耐药性的传播和演化。

然而,目前的MLST方法还存在一些局限性。

首先,选择合适的位点和标记基因是一个挑战。

不同基因在不同微生物中具有不同程度的变异性和保守性,因此需要根据具体研究对象进行选择。

其次,MLST方法需要大量样品和复杂数据分析才能得到可靠结果。

这对于一些资源有限或样品稀缺的实验室来说可能是一个问题。

未来发展方向之一是整合更多基因信息进行分型。

随着高通量测序技术的发展,我们可以获取更多基因的序列信息。

通过整合更多基因的变异信息,可以提高分型的分辨率和准确性。

MLST方法原理数据处理及应用介绍

MLST方法原理数据处理及应用介绍

MLST方法原理数据处理及应用介绍多重连锁应变子体分型(MLST)是一种用于微生物遗传学研究和传染病流行病学研究的分子生物学方法。

MLST基于DNA序列的多态性,通过分析特定基因的序列变异,从而鉴定和分类微生物菌株。

本文将介绍MLST方法的基本原理、数据处理流程以及应用领域。

MLST方法的基本原理是选择一组高度保守的基因,在多个位点上进行测序,并将测序结果与已知的数据库进行比对。

通过比较不同位点的DNA序列变异,可以确定不同菌株之间的遗传差异。

最常用的基因包括16S rRNA、gyrB、rpoB等。

MLST方法的数据处理流程分为测序和分析两个步骤。

首先,需要从菌株中提取DNA并进行PCR扩增。

然后,利用测序仪进行基因测序,并将得到的序列与参考序列进行比对。

接下来,需要将序列对应到相应的位点,并对菌株的遗传差异进行分析。

最后,将分析结果与已知数据库中的菌株进行比对,从而确定菌株的种属分类。

MLST方法的应用领域非常广泛。

在微生物学研究中,MLST方法可以用来研究不同菌株的遗传差异和种属分类。

它不仅可以帮助科学家更好地理解微生物的进化和遗传机制,还可以用于鉴别致病菌株和疫苗研制。

在传染病流行病学研究中,MLST可以帮助科学家追踪病原菌的传播路径和流行规律,从而制定针对性的控制措施。

此外,MLST方法还可以用于农业和环境领域,研究不同微生物菌群的分布和功能。

总之,MLST方法是一种基于DNA序列多态性的微生物分类和遗传差异研究方法。

通过对特定基因的测序和比对分析,可以确定不同微生物菌株之间的遗传关系。

MLST方法在微生物学和传染病流行病学研究中有着广泛的应用,可以帮助科学家更好地理解微生物的进化和传播规律。

mlst分型步骤流程

mlst分型步骤流程

mlst分型步骤流程MLST(多基因序列输入分型)是一种常用的分子流行病学方法,通过分析多个核心基因的序列差异来确定生物种群的分型。

以下是MLST分型的步骤流程:1.选择核心基因:根据研究对象的特性和研究目的,选择适合的核心基因序列进行分型分析。

核心基因应具备足够的变异性,以便区分不同的分型。

2.基因序列获取:获取待分型生物的基因序列数据,可以通过测序方法获得全基因组的序列数据,或者利用已有的公开数据库中的序列数据。

3. 序列比对:使用序列比对软件,如BLAST或Clustal等,将待分型生物的基因序列与参考序列进行比对,寻找序列的相似性和差异性。

4.构建进化树:根据序列的差异性,构建进化树或系统发育树,用来表示不同分型的关系和演化历史。

5.设计引物:根据比对结果和进化树,设计适当的引物用于扩增核心基因序列。

引物应具有特异性,能够有效地扩增目标基因序列。

6.PCR扩增:使用设计的引物对待分型生物的基因组进行PCR扩增。

PCR反应中的温度和时间参数需要根据引物的特性进行优化。

7.扩增产物分析:将PCR扩增产物进行电泳,通过与分子量标准对比,确定扩增产物的大小,判断PCR反应是否成功。

8. 测序:对PCR扩增产物进行测序。

测序可以使用传统的Sanger测序方法,也可以选择新一代测序技术如Illumina等。

9.序列分析:将测序结果与参考序列进行比对,找到序列的差异性。

根据定义的分型规则,确定待分型生物的分型。

10.数据解读:根据分型结果分析生物种群的分布、传播路径、流行病动力学等信息。

同时可以结合其他信息如临床资料和地理信息进行分析。

11.分型结果验证:为了保证分型结果的准确性,可以重复分型步骤或者进行互补的分子分型方法进行验证,并与其他实验结果进行比较。

通过以上的步骤,可以获得生物种群的多基因序列输入分型结果,进一步了解种群的遗传差异和进化关系,为流行病学研究和公共卫生控制提供重要依据。

crpa的mlst分型步骤流程

crpa的mlst分型步骤流程

crpa的mlst分型步骤流程CRPA(C. jejuni and C. coli multi-locus sequence typing)是一种用于分析和比较耐药性菌株的方法。

以下是CRPA的MLST分型步骤流程。

1. 收集样品首先,需要从不同来源收集C. jejuni和C. coli的菌株样品。

这些样品可以来自于不同的动物、人类或环境中。

2. 提取DNA从收集到的菌株中提取DNA。

DNA提取是将菌株中的基因组DNA分离和纯化的过程。

可以使用商业化的DNA提取试剂盒或自制的DNA提取方法。

3. PCR扩增使用引物对感兴趣的基因进行PCR扩增。

在CRPA的MLST分型中,会选择7个内稳基因进行扩增,包括aspA、glyA、pgm、tkt、uncA、hipO和cjj81176。

4. 凝胶电泳将PCR扩增产物进行凝胶电泳分析,以确认扩增是否成功。

可以根据扩增片段的大小来判断PCR反应是否正确。

5. 测序对PCR扩增产物进行测序。

可以选择将测序样品送到商业实验室进行测序,或者在实验室内使用自动测序仪进行测序。

6. 序列分析对测序结果进行序列分析,包括序列编辑、比对和设计引物。

可以使用专业的序列分析软件进行分析,如BioEdit、MEGA等。

7. 序列比对对测序结果进行比对,将不同菌株的序列进行比较。

可以使用比对软件进行比对,如CLUSTAL W、BLAST等。

8. 分型根据不同基因的序列差异,对菌株进行分型。

可以使用分型数据库进行比对,如PubMLST,以确定菌株的类型。

9. 结果解读根据分型结果,可以对菌株进行进一步的分析和解读。

可以比较不同菌株的分型结果,分析它们的遗传关系和进化关系。

CRPA的MLST分型方法可以用于研究不同来源的C. jejuni和C. coli菌株的遗传多样性和传播途径。

通过分析不同基因的序列差异,可以揭示菌株的遗传特征和耐药性。

这种分型方法对于流行病学研究和疫苗研发具有重要意义,可以帮助我们更好地了解和控制这些病原菌的传播和感染。

细菌MLST聚类分析方法

细菌MLST聚类分析方法

MLST聚类分析操作步骤1前言•MLST是对细菌基因组的7个管家基因进行测序、比对,获得各个管家基因的序列编号,最后根据7个基因的序列编号组成的编号阵列获得每株菌的MLST型别、构建聚类树。

(本方案以7个管家基因为例,但是也有菌种的MLST分型方案不是7个管家基因的。

分析方法相同。

)•本方案描述了获得各个管家基因的序列编号和MLST型别后应用eBURST、BioNumerics两款软件进行聚类树和最小生成树的构建方法。

只简单叙述操作过程,不赘述不常用功能、统计学方法和聚类原理。

2提纲一.数据整理(同时适用于eBURST和BioNumerics)二.eBURST分析三.BioNumerics分析3一、数据整理(同时适用于eBURST和BioNumerics)•MLST聚类分析使用的字符型(Character)数据。

将7个管家基因的序列编号、MLST型别、菌株信息以如下形式整理到EXCEL文件里。

•其中key列为录入BioNumerics数据库的唯一识别的菌株编号,如果数据库中还有这些菌的其它实验结果比如PFGE,当MLST录入的Key和录入PFGE图谱时的Key一致时能把两种实验链接到一个菌株编号里。

•注意:(1)EXCEL的字符型数据前后中间不要有空格;(2)把EXCEL文件用纯英文名称命名,保存到英文路径下。

452、从EXCEL文件里,复制MLST型别和7个基因的编号至eBURST。

注意:(1)不要带表头(即eBURST网站提示的without column headings);(2)EXCEL文件里,将MLST型别列移至7个管家基因编号之前。

点击SUBMIT。

73、进入下一界面后,点击Click to launch eBURST,将eBURST运行文件保存到本地。

84、打开下载到本地的jnlp文件,出现以下界面。

注意:jnlp文件需在JAVA环境下打开,如果电脑未安装JAVA,此步会提示安装。

mlst基因分型

mlst基因分型

mlst基因分型
MLST (Multi-Locus Sequence Typing) 是一种常用的基因分型
方法,用于对细菌进行分类和分型。

它通过选择多个核心基因(一般为7-9个)进行测序,并将不同基因型在数据库中进行
比对和分类。

MLST通过比较核心基因的序列差异来评估不同
细菌菌株之间的遗传关系和相似性。

常用的MLST基因包括质粒的recombination protein (recA)、DNA gyrase B (gyrB)、DNA polymerase III alpha subunit (dnaE)、高变区的16S-23S rDNA(internal transcribed spacer,ITS)、
16S rRNA、23S rRNA以及多聚酶酶链反应β亚单位(rpoB)等。

通过对这些基因的测序,可以得到细菌的基因型。

在MLST分析中,每个细菌菌株会有一个唯一的序列类型(ST),它是由多个基因座上的序列型别组合而成。

通过比较不同菌株的ST,可以推断它们之间的遗传关系和演化历史。

此外,MLST还可以帮助研究者了解细菌的流行性和传播路径,对流
行病学研究和细菌分子流行病学研究具有重要意义。

总之,MLST基因分型是一种精确、可重复性强的细菌分型方法,被广泛应用于细菌分类和流行病学研究。

mlst基因分型

mlst基因分型

mlst基因分型(实用版)目录1.MLST 基因分型的概述2.MLST 基因分型的应用领域3.MLST 基因分型的优势与局限性4.我国在 MLST 基因分型方面的研究进展5.MLST 基因分型的未来发展前景正文1.MLST 基因分型的概述MLST(多重位点序列分型)基因分型是一种分子生物学技术,通过分析 DNA 序列变异,对微生物进行快速、准确的鉴定和分型。

MLST 技术可以为研究者提供微生物的遗传信息,为微生物分类、溯源、传播途径研究等领域提供重要依据。

2.MLST 基因分型的应用领域MLST 基因分型技术广泛应用于以下几个领域:(1)微生物分类学研究:通过分析微生物的基因序列变异,为微生物的分类提供分子生物学证据。

(2)微生物溯源:通过对不同来源微生物的 MLST 基因分型分析,可以追踪微生物的传播途径,为疫情防控提供科学依据。

(3)微生物耐药性研究:通过分析微生物的耐药基因变异,可以研究微生物的耐药机制和耐药水平。

(4)基因组学研究:MLST 技术可以为全基因组测序提供高质量的参考基因组,为基因组学研究提供重要支持。

3.MLST 基因分型的优势与局限性MLST 基因分型技术具有以下优势:(1)高精度:MLST 技术可以分析微生物的多个位点,提高分型的准确性。

(2)高效性:MLST 技术操作简便,结果快速可靠,适合大规模微生物样本分析。

(3)可重复性:MLST 技术结果具有较好的可重复性,适合实验室间的质量控制。

然而,MLST 技术也存在一定的局限性:(1)技术门槛较高:需要熟练掌握分子生物学实验技术和生物信息学分析方法。

(2)成本较高:MLST 技术实验和分析成本相对较高,可能限制其在部分领域的应用。

4.我国在 MLST 基因分型方面的研究进展我国在 MLST 基因分型技术方面取得了显著的研究成果,已经成功应用于多个领域,如病原微生物检测、生物多样性研究、工业微生物菌株鉴定等。

此外,我国学者还积极参与国际 MLST 基因分型技术的合作研究,推动该领域的国际交流与合作。

mlst格式

mlst格式

MLST(Multilocus Sequence Typing)是一种基于多个基因序列的多态性分析方法,用于细菌、病毒、真菌等微生物的分类和鉴定。

MLST通过分析多个基因的序列变异来确定微生物的种群结构和进化关系。

MLST通常包括以下步骤:
1. 选择多个基因作为分析对象,这些基因通常具有较高的多态性,能够提供足够的信息来区分不同的微生物种群。

2. 对每个基因进行PCR扩增和测序,获得基因的序列信息。

3. 将每个基因的序列与已知的参考序列进行比对,确定序列的变异位点。

4. 根据每个基因的序列变异类型,将不同的微生物划分为不同的序列型(ST)。

5. 根据不同序列型之间的相似性和差异,构建系统发育树,揭示微生物的进化关系和种群结构。

MLST的结果通常以表格或树状图的形式呈现,其中包含每个微生物的序列型、每个基因的序列变异类型等信息。

MLST在流行病学、疾病控制、生物安全等领域具有广泛的应用价值,可以帮助科学家了解微生物的传播途径、进化历程以及与疾病的关系。

b族链球菌基因分型

b族链球菌基因分型

b族链球菌基因分型B族链球菌是一类常见的细菌,它们广泛存在于自然界中,也是人体常见的致病菌之一。

B族链球菌的基因分型是研究这些细菌的重要手段之一。

通过对B族链球菌基因的分型,我们能够更好地了解其致病性、传播途径以及抗药性等重要信息,为预防和治疗相关疾病提供科学依据。

我们需要了解什么是B族链球菌。

B族链球菌属于革兰氏阳性菌,其细胞壁主要由肽聚糖构成。

这类细菌有很强的腐蚀性,能够引起多种感染,如咽炎、肺炎、败血症等。

B族链球菌感染严重的患者,尤其是免疫力低下的人群,往往会面临生命危险。

B族链球菌的基因分型是通过分析其基因组序列的差异来划分不同的亚型。

这些基因分型方法主要包括多重位点序列分型(MLST)、多重位点变性分析(MLVA)和多重位点PCR(MLPCR)等。

这些分子生物学方法能够准确地鉴定不同的亚型,并且能够追踪和溯源不同的感染源。

MLST是一种常用的基因分型方法,它通过分析多个特定基因的序列差异来划分不同的亚型。

这些特定基因被称为“基因片段”,其序列差异可以反映不同亚型之间的遗传关系。

通过比较不同菌株的基因片段序列,我们可以判断它们是否属于同一亚型。

MLST不仅可以用于研究B族链球菌的传播途径,还可以帮助研究人员了解不同亚型之间的致病性差异。

除了MLST,还有一种基因分型方法叫做MLVA。

MLVA通过分析多个微卫星位点的重复序列数目来划分不同的亚型。

微卫星位点是一种高度变异的DNA序列区域,它们的变异程度反映了不同亚型之间的遗传关系。

MLVA可以提供更高的分辨率,能够更准确地鉴定不同的亚型。

基因分型还可以通过多重位点PCR来实现。

MLPCR通过同时检测多个特定位点的PCR产物来判断不同的亚型。

这种方法具有快速、高通量的特点,可以在短时间内分析大量样本。

B族链球菌基因分型的研究不仅有助于研究其致病性和传播途径,还可以为预防和治疗相关疾病提供指导。

通过分析不同亚型之间的遗传关系,我们可以了解不同亚型的耐药性情况,从而选择合适的抗生素治疗感染。

FTP中MLST概要解读---解决获取ftpFile为null的另外一种方式

FTP中MLST概要解读---解决获取ftpFile为null的另外一种方式

FTP中MLST概要解读---解决获取ftpFile为null的另外⼀种⽅式零、引⾔之前写FTP⼯具库,⽤的是ftp4j,他使⽤其他⾮常简单⽅便,但是在细节上提供的可选项⽐较少(当然也可能是我了解不够深刻)最新的项⽬重写了FTP⼯具类,选择了apache net中的ftp库,选择apache的原因有如下⼏个:1是我相信apche 2是它的注释完善(apache 的代码注释值得每⼀位程序猿学习) 3是提供的可选配置(FTPConfig)有跟多选择(⽐如主动被动模式,断点续传等)。

本⼈在使⽤ftp4j判定⽂件是否存在的时候,通过API(具体那个忘了)获取FTPFile对象时,在部分FTP服务时(filezilla)会遇到返回值为null的问题(备注:原因是时间格式化的问题),当时解决判定⽂件是否存在改⽤只通过获取⽂件名来解决。

本次改⽤apache net的时候,在使⽤API listFiles() 获取的也是null,经过详细查看源码,发现了⼀个API是 mlistFile() 这样获取结果OK。

⼀、Apache的mlistFile源码分析源码如下:/*** Get file details using the MLST command** @param pathname the file or directory to list, may be {@code null}* @return the file details, may be {@code null}* @throws IOException on error* @since 3.0*/public FTPFile mlistFile(String pathname) throws IOException{boolean success = FTPReply.isPositiveCompletion(sendCommand(FTPCmd.MLST, pathname));if (success){String reply = getReplyStrings()[1]; //5:check/* check the response makes sense.* Must have space before fact(s) and between fact(s) and filename* Fact(s) can be absent, so at least 3 chars are needed.*/if (reply.length() < 3 || reply.charAt(0) != ' ') {throw new MalformedServerReplyException("Invalid server reply (MLST): '" + reply + "'");}String entry = reply.substring(1); // skip leading space for parserreturn MLSxEntryParser.parseEntry(entry);} else {return null;}}我看源码⼤概分析出了2点:1. 此⽅法调⽤的是MLST,⽽listFile调⽤的是LIST。

134株克罗诺杆菌的多位点序列分型研究的开题报告

134株克罗诺杆菌的多位点序列分型研究的开题报告

134株克罗诺杆菌的多位点序列分型研究的开题报告一、题目:134株克罗诺杆菌的多位点序列分型研究二、研究背景和意义:克罗诺杆菌是一种重要的病原菌,常见于家禽和牲畜中,可以引起严重的感染性疾病。

近年来,其在人类感染中的发病率也有所上升,引起了广泛关注。

目前,对于克罗诺杆菌的分子流行病学研究已经成为当前研究的热点之一。

多位点序列分型(MLST)是一种用于分子流行病学研究的技术,能够通过对多个核苷酸序列变异位点进行分析,确定克罗诺杆菌的亚型和进化关系,为进一步的病原学研究提供支持和指导。

因此,本研究将对134株克罗诺杆菌进行MLST技术分型,探讨其亚型分布和进化关系,为克罗诺杆菌的病原学研究提供新的分子学工具。

三、研究内容和方法:研究内容:1. 收集134株克罗诺杆菌的菌种标本,进行细菌培养和DNA提取。

2. 选取7个标准位点(adk,fumC,gyrB,icd,mdh,purA,recA)扩增PCR产物,对7个位点进行序列分析,并基于序列分析结果确定菌株的MLST分型。

3. 构建克罗诺杆菌MLST分型数据库,分析其亚型分布和进化关系。

研究方法:1. 细菌的培养和DNA提取:采用革兰氏染色和生化鉴定法确定克罗诺杆菌菌株,利用细菌基因组DNA提取试剂盒进行DNA提取。

2. PCR扩增和序列分析:选取7个标准位点的引物,使用PCR扩增菌株基因组DNA,将所得PCR产物进行序列分析。

3. 数据分析:使用BioNumerics软件将所有菌株的序列分型结果进行聚类分析,计算MLST亚型数量和分布情况,构建克罗诺杆菌MLST分型数据库。

四、预期成果和意义:本研究将获得134株克罗诺杆菌的MLST分型数据和亚型分布情况,为探索克罗诺杆菌的进化关系提供支持,为其病原学研究提供新的分子学工具。

同时,所建立的克罗诺杆菌MLST分型数据库,将为今后的分子流行病学研究和菌种监测提供可靠的数据来源和参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Oenococcus oeni strain typification by combination of Multilocus Sequence Typing and Pulsed Field Gel Electrophoresis analysisLucía González-Arenzana,Pilar Santamaría,Rosa López,Isabel López-Alfaro*ICVV,Instituto de Ciencias de la Vid y del Vino(Gobierno de La Rioja,Universidad de La Rioja and CSIC),C/Madre de Dios51,26006Logroño,La Rioja,Spaina r t i c l e i n f oArticle history:Received24January2013 Received in revised form26July2013Accepted30July2013 Available online14August2013Keywords:PFGEMLSTOenococcus oeni a b s t r a c tOenococcus oeni is usually the main lactic acid bacteria(LAB)responsible for conducting malolactic fermentation(MLF)in wines.Pulsed Field Gel Electrophoresis(PFGE)is one of the most common methods used to identify different genotypes among the wine LAB populations.Although PFGE is a powerful typing tool,it is time-consuming and its results are not easily exchangeable between labora-tories so typing methods such as Multilocus Sequence Typing(MLST)have been developed.In this study, thirty O.oeni isolates from Rioja Tempranillo wines were characterized performing SfiI and Apa I PFGE and MLST with eight housekeeping ing the latter technique,six new alleles have been described forfive genes.PFGE was slightly more efficient than MLST because of the number of genotypes and of the index of diversity(ID)that each technique discriminated.This has been thefirst time that PFGE and MLST results have been combined to shape a unique dendrogram.Thus,the combination of results from both typing methods allowed the discrimination of twenty-two PFGE-ST genotypes showing the highest ID of these research(0.947).According to these results,the future application of the combination of PFGE and MLST results could be successful for reliable O.oeni strain typification.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionThe species Oenococcus oeni has been shown to be the best adapted lactic acid bacteria(LAB)to the pH and ethanol of wine, and so it is the most frequently detected species during malolactic fermentation(MLF)(López et al.,2007;Pramateftaki et al.,2012).Several studies have been conducted so far focussing on the investigation of O.oeni biodiversity to gain insight into the complex ecosystem of wine,to select and to prepare well-defined starters of biotechnological interest in winemaking and to study the contri-bution of certain strains to wine composition(González-Arenzana et al.,2013;Izquierdo et al.,2004;Vigentini et al.,2009).All these studies have used efficient and precise molecular methods to identify and to discriminate strains.The genetical and phyloge-netical homogeneous O.oeni characteristic makes strain differen-tiation only possible through high resolution techniques such as those based on DNA analysis(Le Jeune&Lonvaud-Funel,1997). Several typing methods have been employed to identify O.oeni strains,among which macrorestriction analysis of DNA by Pulsed Field Gel Electrophoresis(PFGE)and Multilocus Sequence Typing (MLST)have been found to be the most efficient(Bilhère et al., 2009;Bridier et al.,2010;de las Rivas et al.,2004).The two methods are also interesting since they target different genetic variations:MLST reveals punctual mutations and also longer de-letions and mutations in a few genes,whereas PFGE is more sen-sitive to large-scale genomic rearrangements(Bilhère et al.,2009). Moreover,MLST targeting housekeeping genes has the advantage of generating portable and comparable data between laboratories that are used,not only for strain identification,but also for evolu-tionary and population studies(Maiden et al.,1998).In addition,some authors have reported that only the combi-nation of results from different techniques is able to provide a complete picture,especially when the aim is to study the ecology of natural microbial populations(Nigatu,2000).Other authors ach-ieved better discrimination after combining numerical analysis of the patterns obtained from PFGE and randomly amplified poly-morphic DNA(RAPD)(Ruiz et al.,2008;Sánchez et al.,2004). However,RAPD-PCR method has been critisized for lack of repro-ducibility and efficacy even when two primers were used at the same time(López et al.,2008).Therefore,this study was designed with the aim of establishing a method that completes the current way of typing O.oeni.For this purpose,PFGE with SfiI and Apa I endonucleases was performed along with the MLST of eight of the most informative housekeeping*Corresponding author.ICVV,Servicio de Investigación y Desarrollo Tecnológico Agroalimentario,Ctra.de Mendavia-Logroño(NA134,km.88),26071Logroño,La Rioja,Spain.Tel.:þ34941291383;fax:þ34941291392.E-mail addresses:isabel.lopez@,isabel.lopez@icvv.es,ilopezalfaro@ yahoo.es(I.López-Alfaro).Contents lists available at ScienceDirectFood Microbiologyjournal homepage:/locate/fm0740-0020/$e see front matterÓ2013Elsevier Ltd.All rights reserved./10.1016/j.fm.2013.07.014Food Microbiology38(2014)295e302genes (Bilhère et al.,2009;de las Rivas et al.,2004).Results have been analyzed to compare and to combine the discriminatory ability of these two typing techniques.2.Materials and methods 2.1.O.oeni isolatesThirty randomly selected O.oeni isolates were included in this study.They are part of the strain collection of CIDA Research Centre of the Spanish northern region of La Rioja and they were obtained in a previous study of LAB ecology carried out in 2006,2007and 2008vintages in several wineries in this region (González-Arenzana et al.,2013).O.oeni isolates were grown in MRS agar (Scharlau Chemie S.A.,Barcelona.Spain)modi fied with tomato juice (10%vv À1),fructose (6gL À1),cysteine-HCl (0.5gL À1)and D ,L -malic acid (5gL À1).The plates were incubated at 30 C under anaerobic atmosphere (Gas Pak System,Oxoid Ltd.,Basingstoke,England).2.2.PFGE analysisPFGE was carried out according to the method described by Birren and Lai (1993),with some modi fications for the agarose block preparation (2007).Macrorestriction analysis was performed with two endonucleases:S fiI,following the method reported by López et al.(2007),and Apa I,according to the method reported by Larisika et al.(2008)with the following modi fications:1.2%(wv À1)agarose gels were submitted to 24h with a pulse ramping between 0.5and 20s at 14 C and 6Vcm À1in a CHEF DRII apparatus (Bio-Rad Laboratories,Hercules,CA).2.3.MLST analysisGenomic DNA was extracted from fresh culture plates following the method of rapid lysis described by López et al.(2008).According to recent literature on typing O.oeni by MLST,eight housekeeping genes encoding proteins were chosen for this analysis (Table 1):ddl (D-Ala-D-Ala ligase)and gyr B (Gyrase,b subunit)described by de las Rivas et al.(2004);and rpoB (RNA polymerase,b subunit),purK (Phosphoribosylamino-imid-azole carboxylase),g6pd (Glucose-6-phosphate dehydrogenase),pgm (Phosphoglucomutase),dnaE (DNA polymerase III,a subunit)and recP (Transketolase)described by Bilhère et al.(2009).PCR was performed in order to amplify these gene fragments from DNA of O.oeni strains by using the oligonucleotides included in Table 1.Each 50m L-ampli fication reaction mixture contained 20ng template DNA,MgCl 22.5mM,20m M of each deoxynucleotide triphosphate,500mM of each primer and 2.5U BIOTAQ ÔDNA polymerase (Bioline,London,UK).PCR program was:95 C for 2min;followed by 30cycles of 95 C for 30s,58 C for 1min,and 72 C for 1min;followed by a final extension of 10min at 72 C.PCR was carried out with a Perkin Elmer Thermal GeneAmp PCR system 2700and the obtained amplicons were puri fied and sequenced in Macrogen Inc.(Seoul,South Korea).Nucleotide sequences of the eight housekeeping genes were deposited in GenBank under the following accession numbers:JX240023e JX240052(rpoB ),JX239993e JX240022(ddl ),JX240173e JX240202(purK ),JX240203e JX240232(g6pd ),JX240143e JX240172(pgm ),JX240053e JX240082(dnaE ),JX240083e JX240112(gyrB )and JX240113e JX240142(recP ).2.4.Numerical analysis of gel images and sequencesThe conversion,normalization,and further processing of the stained gel images were carried out by InfoQuest Ôsoftware version 5.1(Bio-Rad).Comparison of the pulse types obtained from the PFGE for S fiI and Apa I was made by Composite Data combined comparison with average of experiment by Unweighted Pair Group Method using Arithmetic averages (UPGMA)(Ruiz et al.,2008).The weight of the results from each endonuclease was set at the same level.The chromatograms and sequences obtained for the eight genes of the MLST scheme and the thirty bacterial isolates were analized by using InfoQuest Ô5.1.The sequences generated a consensus dendrogram by using the Composite Data combined comparison with average of experiment and UPGMA.The relevance of each gene was set at the same level to assess the dendrogram.Each different combination of allelic pro files was then determined as a sequence type (ST).Consequently,the allelic pro files that were 100%indistinguishable in the dendrogram shared the same ST.Furthermore,each distinct gene sequence was compared with the O.oeni allelic sequences deposited to date in GenBank and an allele number was assigned.The identi fication number of alleles previously determined by de la Rivas et al.and Bilhère et al.was assigned to identical sequences (Bilhère et al.,2009;de las RivasTable 1Genes and primers employed for MLST analysis.Gene Enzyme function Primer Sequence (50-30)Amplicon size (bp)ddl D-Ala-D-Ala ligase ddl-1CGATGTTAGCAAGCGTTCG 911a ddl-2TTCGTATTTCCCGGTAGTG gyrB Gyrase,b subunitgyrB-1TGGGCTTCATGGTGTTGGC 947a gyrB-2CCCTCGACGATAAACAATTC rpoB RNA polymerase,b subunitrpoB-1CGATATTCTCCTTTCTCCAATG 665b rpoB-2CTTTAGCGATCTGTTCCAATG purK Phosphoribosylamino-imidazole carboxylase purK-1TGGTTATCATGTTGGTATTTTGG 597b purK-2GAAGCAGGAGCATAGGAAAGA g6pd Glucose-6-phosphate dehydrogenase g6pd-1TTATATGTCTGTTGCTCCTCGT 669b g6pd-2CCGGTTCTGATGTAAAAAGG pgm Phosphoglucomutasepgm-1ATATCTGCCGAAGTGCTAAGAG 654b pgm-2AGCAGCAATTTGATTTCCAG dnaE DNA polymerase III,a subunit dnaE-1CGTATATAGAGCGCTTTGCC 714b dnaE-2CGTTCTTATCGCGAGTTGTAC recPTransketolaserecP-1AGCGACAAACCATCCTTTATC 676brecP-2CGACAGCTAAGGAATCATGAGa de la Rivas et al.(2006).bBilhère et al.(2009).L.González-Arenzana et al./Food Microbiology 38(2014)295e 302296et al.,2004).The new alleles described in this study that had never been submitted to GenBank database were assigned Roman numerals.Combination of the obtained pulse types from SfiI and Apa I PFGE analysis and MLST sequences were made by Composite Data comparison with average of experiment and UPGMA,setting the weight of the results from each technique at the same level.A consensus dendrogram was generated and so it was possible to bring together PFGE and sequence results.parison of typing method resultsThe index of diversity(ID)was calculated using Simpson’s Index of Diversity(Hunter,1990).Values closest to1meant the highest power of discrimination of the method.The ID for PFGE analysis was calculated including both endonucleases SfiI and Apa I.The ID for MLST was assessed separately for each gene and also for overall MLST scheme.Finally,the ID for combined PFGE and MLST results was also calculated.3.Results3.1.PFGE typingThe thirty isolates included in this study were submitted to PFGE using SfiI and Apa I restriction enzymes.The PFGE results showed that Apa I discriminated eighteen genotypes,one less than SfiI(data not shown).Finally,nineteen distinct PFGE patterns were identified combining the results obtained with both enzymes (Fig.1).The isolates were grouped in two major clusters at64% similarity level.Cluster A included twelve isolates with unique genotypes while seven genotypes representing eighteen isolates made up cluster B.PFGE genotypes17,18and19,contained each one two isolates with identical electrophoretic profiles.PFGE% Similarity PFGE-Sfi I PFGE-Apa I Isolate Year GenotypeCluster ACluster B195985875765G2A1A8H3D2L1E5J1H2A9C1D1A3A2E4H1A7A6E1F1H4F2A10K1G1G3A5E3A4E2200620062007200620082006200720082006200820062007200620062006200620062006200620062007200720082006200620072006200620062006PFGE 1PFGE 2PFGE 3PFGE 4PFGE 5PFGE 6PFGE 7PFGE 8PFGE 9PFGE 10PFGE 11PFGE 12PFGE 13PFGE 14PFGE 15PFGE 15PFGE 15PFGE 16PFGE 16PFGE 16PFGE 16PFGE 16PFGE 16PFGE 16PFGE 17PFGE 17PFGE 18PFGE 18PFGE 19PFGE 19100100100100100Fig.1.Consensus dendrogram obtained by combining SfiI-PFGE,Apa I-PFGE pulse types of thirty O.oeni isolates showing cophenetic correlation values.Isolates were labelled with different letters corresponding to different wineries of the Rioja Spanish northern region.L.González-Arenzana et al./Food Microbiology38(2014)295e302297genotype 15included three isolates with indistinguishable pulse types and PFGE 16included seven isolates sharing the same pro file.The remaining two isolates (PFGE 13and 14)showed unique PFGE patterns.The strains typed as PFGE 15,18and 19included isolates collected during the MLF of wines from different wineries from the same vintage.The isolates grouped in PFGE 16were taken from five wineries during MLF in three vintages.Only isolates typed as PFGE 17were obtained from a unique winery in separate years (Fig.1).3.2.MLST typingThe thirty isolates were also submitted to MLST typing tech-nique.Eight housekeeping genes rpoB ,ddl ,purK ,g6pd ,pgm ,dnaE ,g yrB and recP ,were targeted in this MLST analysis (Table 1).A consensus dendrogram was generated using the obtained sequences (Fig.2).Isolates with 100%similarity level were assigned the same ST and sixteen STs were identi fied.The STs were separated in two main branches at 98%similarity level (Fig.2).Branch A included twenty-seven isolates represented by fourteen STs,and branch B was formed by three strains repre-sented by two STs.The STs 1,8,9,11and 15included each one two isolates with identical allelic pro files obtained from different win-eries,except STs 11and 15isolated in the same winery at different vintages.Moreover,ten out of the thirty isolates analyzed in this study derived from five wineries and from three vintages belonged to ST 3.Data concerning characterization results for each gene are shown in Table 2.The eight housekeeping genes allowed to determine from three to eight alleles.Ddl and rpoB were the genes that showed less alleles and purK was the gene that established the% SimilarityIsolate Year Genotype Cluster ACluster B1009998E4H1 H2A6 E1F1H4F2A10A3 A9 K1A7G2 A2A5D1 H3 C1 D2 A1A4E5 E2E3J1 A8 G1G3L1200620062006200620062006200720072008200620082006200620062006200620072006200620082006200620072006200620082007200620072006ST 1ST 1ST 2ST 3ST 3ST 3ST 3ST 3ST 3ST 3ST 3ST 3ST 3ST 4ST 5ST 6ST 7ST 8ST 8ST 9ST 9ST 10ST 11ST 11ST 12ST 13ST 14ST 15ST 15ST 16Fig.2.Consensus dendrogram obtained by combining sequences of the eight housekeeping genes (rpoB,ddl,purK,pgm,g6pd,dnaE,gyrB and recP )ampli fied from the thirty O.oeni strains genomes showing cophenetic correlation values.Isolates were labelled with different letters corresponding to different wineries of the Rioja Spanish northern region.L.González-Arenzana et al./Food Microbiology 38(2014)295e 302298most different ones.In addition,the Simpson’s Index of Diversity (ID)proposed by Hunter(Hunter,1990)calculated for the genes gave the smallest value for rpoB and the largest one for purK.The comparison of the sequences from this study with the ones already deposited to date in the GenBank database revealed six new alleles that had never been described before and that were represented by Roman numerals(Table2).The allele I of ddl gene was the only one that showed a silent mutation;however,the other new alleles(I and II of gyrB and I of recP,pgm and purK)were characterized by non-synonymous substitutions(data not shown). Finally,the alleles previously deposited in GenBank were taken into consideration.Thus,the non-new alleles were named with the numbers that other authors had previously established(Table2).bination of PFGE and MLST resultsResults of both techniques PFGE and MLST(Fig.3)were used to construct a consensus dendrogram.The results of this dendrogram showed the presence of twenty-two PFGE-ST genotypes among the thirty isolates analyzed.The dendrogram was shaped by two main clusters split at76% similarity level.Cluster A was quite complex including ten PFGE-ST genotypes made by eighteen isolates,whereas cluster B was composed of twelve isolates typed as twelve unique PFGE-ST genotypes.There were two PFGE-ST genotypes(3and8)integrated by two isolates while PFGE-ST5included seven isolates of this study.These PFGE-STs grouped isolates that were recovered from several win-eries in three vintages(PFGE-ST5)or in one vintage(PFGE-ST3),except PFGE-ST8whose isolates derived from the same winery at different vintages.parison of techniques:PFGE versus MLSTThe discriminatory ability of PFGE and MLST was compared by the number of genotypes(ST,PFGE and PFGE-ST genotypes)and isolates integrating those genotypes.The ID for MLST was0.885,for PFGE was0.937and the combination of both was0.947(Table2).Results showed that two PFGE genotypes(15and18)made by three and two isolates respectively,were distinguished by MLST defining four STs;so PFGE15was separated into ST1(with two isolates)and ST3,and PFGE18into ST6and ST12.On the other hand,four STs(3,8,9and11)integrated by a total of eighteen isolates resulted in ten PFGE genotypes.In this way,ST3 was split into PFGE10,13,15and16;ST8was established as PFGE4 and PFGE11;ST9as PFGE2and5;finally,ST11as PFGE7and19.The PFGE-ST combination showed three groups(PFGE-ST3,5 and8)that were identically typed by both techniques.PFGE-ST3 integrated isolates from the same year and from different wineries, PFGE-ST5was formed by isolates from different wineries and years and PFGE-ST8included isolates from the same winery and from different years(Table2).4.DiscussionIn this study two different typing methods,PFGE and MLST, were carried out for thirty O.oeni isolates obtained from ferment-ing wines.Table2Origin and typing data of the thirty O.oeni isolates analyzed in this study.Alleles without superlow script letters were described by Bilhère et al.(2009),alleles with d were described by de la Rivas et al.(2006)and alleles in bold Roman numbers were not previously described.Isolates a Isolation year Alleles Genotypesddl rpoB dnaE gyrB recP pgm g6pD purk ST PFGE PFGE-STA320061125-6d1-1d4-8d423131A220061125-6d8-2d7175142E420061125-6d1-1d5-2d121153H120061125-6d1-1d5-2d121153A720061125-6d1-1d4-8d423154A620061125-6d1-1d4-8d423165E120061125-6d1-1d4-8d423165F120061125-6d1-1d4-8d423165H420071125-6d1-1d4-8d423165F220071125-6d1-1d4-8d423165A1020081125-6d1-1d4-8d423165K120061125-6d1-1d4-8d423165A5200611211-7d25-2d116186E32006251310115-2d31912187G1*******I5I11815178G3*******I5I11815178A42006251210115-2d3I10199E220062513101114319111910G22006I125-6d1-1d1124111A12006251210115-2d3129212A82007251310I1431914313H320062512II115-2d3128414L120062276-4d5I11816615E52007251310111431911716J12008211310115-2d31913817H220061125-6d1-1d4-8d122918A920081125-6d1-1d4-8d4231019D12007112475-2d1771220D22008251210115-2d3129521D120062512II115-2d31281122Total number b33577648161922Index of diversity(ID)c0.5450.5580.6390.6990.7010.7330.7380.7450.8850.9370.947a Isolates were labelled with different letters that correspond to different wineries of Rioja Spanish northern region.b Total number of differentiated alleles of genotypes.c ID¼1À[1/N(NÀ1)]S nj(njÀ1),where N is the total number of strains and n is the number of strains belonging to a genotype.L.González-Arenzana et al./Food Microbiology38(2014)295e302299PFGE technique has been the most frequently used method to type bacteria in clinical and food microbiology (Vernile et al.,2009).Many studies based on PFGE were developed with more than one restriction enzyme,in order to improve the discriminatory ability of O.oeni strain typing by PFGE (Guerrini et al.,2003;López et al.,2008;Zapparoli et al.,2009).The results obtained in this study with Apa I were not complementary to the ones obtained with S fiI because Apa I discriminated one less genotype than S fiI.These re-sults were in agreement with those described by other authors who recognised that the employment of S fiI endonuclease is one of the best options for typing O.oeni by PFGE (Larisika et al.,2008;López et al.,2008).The dendrogram obtained combining S fiI-Apa I PFGE provided two de fined clusters.However,neither group was shaped by the winery,year or isolation stage.The MLST scheme used in this study was de fined after checking previous literature concerning this technique applied to different LAB (Bilhère et al.,2009;de la Rivas et al.,2006;de las Rivas et al.,2004).It has been suggested that better results can be obtained by increasing the number of housekeeping genes.Nevertheless,these same authors have con firmed that there is a point where it is not worth studying more loci because the results do not become more discriminating (Urwin and Maiden,2003).Therefore,genes and primers that provide more information about O.oeni typing were chosen.Every targeted gene showed its polymorphic condition so that the strategy for typing with the MLST scheme used in this study gave a suitable result.To the best of our knowledge,for the first time,complete pro-cessing of MLST scheme has been performed without concatenated sequences using the InfoQuest Ôsoftware.The results obtained in this way allowed to determine that isolates with 100%similarity at the dendrogram were determined as the same ST.Although this dendrogram was formed by two main clusters,like the PFGE dendrogram,they had a completely different organization.First of all,in the MLST dendrogram,the point where both branches arose% SimilarityIsolate YearGenotypeCluster ACluster B100999897969594939291908988878685848382A3 A2E4H1 A7A6 E1F1H4F2A10K1A5E3G1G3A4E2G2 A1A8H3 L1 E5 J1 H2 A9D1 D2 C1 200620062006200620062006200620062007200720082006200620062006200720062006200620062007200620062007200820062008200720082006PFGE-ST 1PFGE-ST 2PFGE-ST 3PFGE-ST 3PFGE-ST 4PFGE-ST 5PFGE-ST 5PFGE-ST 5PFGE-ST 5PFGE-ST 5PFGE-ST 5PFGE-ST 5PFGE-ST 6PFGE-ST 7PFGE-ST 8PFGE-ST 8PFGE-ST 9PFGE-ST 10PFGE-ST 11PFGE-ST 12PFGE-ST 13PFGE-ST 14PFGE-ST 15PFGE-ST 16PFGE-ST 17PFGE-ST 18PFGE-ST 19PFGE-ST 20PFGE-ST 21PFGE-ST 22Fig.3.Consensus dendrogram obtained by combining S fiI and Apa I-PFGE,and sequences of the eight housekeeping genes (rpoB ,ddl ,purK ,pgm ,g6pd ,dnaE,gyrB and recP )ampli fied from the thirty O.oeni strains genomes showing cophenetic correlation values.Isolates were labelled with different letters corresponding to different wineries of the Rioja Spanish northern region.L.González-Arenzana et al./Food Microbiology 38(2014)295e 302300was close to100%similarity which made us expect a low discrimination power of this technique.Furthermore,cluster A included most of the typed strains,whereas cluster B was shaped by ST15and ST16.These two strains shared new mutations in the polymorphic gyrB and pgm genes.Some studies have described similar results for strains that underwent similar conditions as a result of adaptation to a new or different niche(Bilhère et al.,2009; Bridier et al.,2010;Molenaar et al.,2005).Nonetheless,in this study these three isolates were gathered from wines elaborated in different vintages and one of them in a different winery,so the winemaking conditions were completely different.In relation to the analyzed loci,it was observed that ddl and rpoB genes provided lowest ID which was in agreement with other re-ports(Bridier et al.,2010).However,in this study ddl gene enabled us to define a new allele(JX240002).The sequencing of gyrB and recP genes led to intermediate results because they differentiated several alleles but did not include many isolates.This made ID low because of the small number of defined genotypes.The opposite situation was found with sequences from pgm and g6pd genes, since higher ID was noted with less determined alleles.Actually,the gene with more significance in this study was purK showing an ID of0.745and defining seven genotypes and a new allele.In spite of these results,any loci should be excluded from this study because they were useful in defining new alleles and moreover in any case the ID calculated for one gene was superior to the ID shown with the eight housekeeping genes.Our results have demonstrated the presence of six new alleles that were defined by four of these genes (JX240002for ddl gene;JX240110and JX240100for gyrB gene; JX240141for recP gene;JX240157for pgm gene and JX240182for purK gene).In addition,five out of the six were characterized by non-synonymous substitutions per base that altered the amino acid sequence and only one suffered from a silent mutation(de la Rivas et al.,2006).This study is thefirst to combine electrophoresis images with chromatograms of sequences to provide a unique dendrogram.This option made it possible to take into consideration several typing methods,as PFGE with different restriction enzymes and MLST with different housekeeping gene sequences.The resulting dendrogram showed that two differentiated clusters arose at76% similarity which was intermediate between the level of similarity of two branches obtained by PFGE(68%)and by MLST(98%).As in the PFGE dendrogram,one cluster of the consensus dendrogram (cluster A)included mostly PFGE-ST genotypes composed by more than one isolate and the other(cluster B)consisted of every unique PFGE-ST genotype.Comparison of results from MLST,PFGE and the combination PFGE-MLST was based on the number of genotypes,on the ID and on the way of clustering of each technique.A good discrimination level was determined with combined MLST-PFGE method,not only in number of determined genotypes(twenty-two)but also in ID value(0.947),which meant a95%probability of differentiating two randomly selected strains(Bilhère et al.,2009).Comparison be-tween PFGE and MLST results has been previously carried out in several studies(Al Nakib et al.,2011;Bilhère et al.,2009;Johnson et al.,2007;Picozzi et al.,2010).Overall,it was observed that the ID of PFGE and the number of detected genotypes were higher than those obtained using the MLST although it was slightly lower than the one for combined PFGE-MLST.Thus,in this study a better discrimination level of PFGE versus MLST for O.oeni has been demonstrated which was opposite of the results obtained by other authors(Bilhère et al.,2009).In relation to the way of clustering,it was evident that strains grouped in branches from the PFGE dendrogram were completely different to those grouped in branches in the MLST dendrogram.This different way of clustering has been previously reported by other authors in other LAB species (Picozzi et al.,2010).The lack of concordance in the clustering and typing results of MLST and PFGE is based on the different evolution rate that both techniques show.PFGE is based on restriction frag-ments so mutations,insertions or deletions in the enzyme recog-nition site may alter the electrophoretic profile and may be significant of genome rearrangements(Picozzi et al.,2010). Whereas MLST is able to detect little mutations showing a neutral diversity and evolution rate(Bridier et al.,2010).In conclusion,in relation to methodology this study confirmed that endonuclease SfiI was successful in O.oeni strain typing. Moreover,the eight targeted housekeeping genes were poly-morphic although some of them resulted in low ID.This study has made possible to determine six new alleles that had never been described in the literature.It has been also determined that PFGE was slightly more discriminatory than MLST although MLST allows to develop population studies.The lack of concordance between typing results of MLST and PFGE was due to the different rates of genetic changes that each one represented so an evidently distinct way of clustering was demonstrated.This has been thefirst time that PFGE and MLST results have been combined and it was demonstrated that combination of both techniques was the most discriminatory strategy for O.oeni characterization.Future studies for analyzing O.oeni populations should be focused on the com-bined MLST and PFGE results to improve the discriminatory ability of both techniques.AcknowledgementsThis study was supported by funding and a predoctoral grant (B.O.R.6th March,2009)from the Government of La Rioja,the I.N.I.A.project RTA2007-00104-00-00and FEDER of the European Community and was made possible thanks to the collaborating wineries.ReferencesAl Nakib,M.,Longo,M.,Tazi,A.,Billoet,A.,Raymond,J.,Trieu-Cuot,P.,Poyart,C., parison of the diversilab(R)system with multi-locus sequence typing and pulsed-field gel electrophoresis for the characterization of Streptococcus agalactiae invasive strains.Journal of Microbiological Methods85(2),137e142. Bilhère,E.,Lucas,P.M.,Claisse,O.,Lonvaud-Funel,A.,2009.Multilocus sequence typing of Oenococcus oen i:detection of two subpopulations shaped by intergenic recombination.Applied and Environmental Microbiology75(5),1291e1300. Birren,B.,Lai,E.,1993.Pulsed Field Gel Electrophoresis.a Practical Guide.Academic Press,San Diego.Bridier,J.,Claisse,O.,Coton,M.,Coton,E.,Lonvaud-Funel,A.,2010.Evidence of distinct populations and specific subpopulations within the species Oenococcus oeni.Applied and Environmental Microbiology76(23),7754e7764.de la Rivas,B.,Marcobal,A.,Muñoz,R.,2006.Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains.Microbiology-sgm 152,85e93.de las Rivas,B.,Marcobal,A.,Muñoz,R.,2004.Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of house-keeping genes.Applied and Environmental Microbiology70(12),7210e7219. González-Arenzana,L.,Santamaría,P.,López,R.,López-Alfaro,I.,2013.Indigenous lactic acid bacteria communities in alcoholic and malolactic fermentations of Tempranillo wines elaborated in ten wineries of La Rioja(Spain).Food Research International50,538e545.Guerrini,S.,Bastianini, A.,Blaiotta,G.,Granchi,L.,Moschetti,G.,Coppola,S., Vincenzini,M.,2003.Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines.International Journal of Food Microbi-ology83(1),1e14.Hunter,P.R.,1990.Reproducibility and indexes of discriminatory power of microbial typing methods.Journal of Clinical Microbiology28(9),1903e1905. Izquierdo,P.M.,García,E.,Martínez,J.,Chacón,J.L.,2004.Selection of lactic bacteria to induce malolactic fermentation in red wine of cv.Cencibel.Vitis43(3),149e 153.Johnson,J.K.,Arduino,S.M.,Stine,O.C.,Johnson,J.A.,Harris,A.D.,2007.Multilocus sequence typing compared to pulsed-field gel electrophoresis for molecular typing of Pseudomonas aeruginosa.Journal of Clinical Microbiology45(11), 3707e3712.Larisika,M.,Claus,H.,Koenig,H.,2008.Pulsed-field gel electrophoresis for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany.International Journal of Food Microbiology123(1e2),171e176.L.González-Arenzana et al./Food Microbiology38(2014)295e302301。

相关文档
最新文档