食品分离技术
食品分离技术总论
离心分离技术具有处理量大、分离效果好、操作 简便等优点,适用于大规模果汁生产。
牛奶加工中的膜分离技术应用
01
膜分离技术原理
利用半透膜,在压力差或浓度差的作用下,使物质通过膜孔或渗透膜进
行选择性分离。
02 03
牛奶加工中的应用
在牛奶加工中,膜分离技术主要用于脱脂、浓缩和超滤等环节。通过超 滤技术,可以去除牛奶中的水分和低分子物质,提高牛奶的蛋白质含量 和口感。
优点
能耗低、操作简便、无相变、环保。
缺点
膜易污染和堵塞,需要定期清洗和更换。
萃取分离技术
原理
利用两种不互溶的溶剂 中溶质在其中的溶解度 不同,从而实现分离。
应用
优点
缺点
用于提取植物油、动物 脂肪和水产品中的有效
成分。
选择性高、分离效果好、 操作简便。
需要使用大量有机溶剂, 且萃取剂回收成本较高。
沉淀分离技术
环境保护与可持续发展
环境保护
食品分离技术的发展必须考虑环境保护和可持续发展,减少对环境的负面影响, 实现绿色分离。
可持续发展
采用环保型的食品分离技术,如利用太阳能、风能等可再生能源的分离技术, 减少对化石能源的依赖,降低碳排放,实现可持续发展。
未来食品分离技术的发展方向
高效化 绿色化 智能化 多元化
食品分离技术的应用领域01Fra bibliotek0203
食品加工
用于提取、纯化食品原料 中的有效成分,提高食品 的品质和附加值。
食品安全
用于检测、去除食品中的 有害物质,保证食品的安 全性。
食品资源利用
通过回收、再利用食品加 工废弃物,实现食品资源 的最大化利用。
食品分离技术的发展趋势
第九章__食品分离技术
七、超临界流体萃取技术
超临界流体萃取是一种新型的萃取分离技术。 该技术利用流体(溶剂)在临界点附近某一区域 (超临界区)内与呆分离混合物中的溶质具有异 常相平衡行为和传递性能,且它对溶质溶解能力 随温度和压力改变而在相当宽的范围内变动这一 特性而达到溶质分离的一项技术。 1897年Hannay等发现超临界乙醇具有极佳的 溶解能力,60年代德国Zosel利用其从羊毛油中提 取羊毛脂,现代应用较广泛。
萃取工艺流程图
自动控制系统流程图
(三)特点
1. 超临界流体具有良好的渗透性和溶解性,可快速提 取有效成分。 2. 在临界点附近,流体温度、压力的变化微小变化会 引起溶解能力的极大变化,这种强选择性对分离溶 解度接近的两种成分有利,并且萃取后的溶质和溶 剂分离也很容易。 3. 选用CO2,可在t=31.1℃,p=7.38mPa下操作,可阻 止高温和氧气对食品影响。 4. 溶剂回收重复使用,无污染。 5. 能耗低。 6. 设备投资大。
传统的“碱溶酸沉”法: 水↓
豆粕→提取→蛋白浆液→离心分离→渣子→干燥 ↓ 离心分离←沉淀←蛋白提取液←酸 ↓ 蛋白乳清水←凝乳蛋白←碱 ↓ ↓ 净化处理 解析中和 ↓ ↓ 废水排放 蛋白液→喷雾干燥→蛋白成品→包装
膜法: 水↓
(二)膜分离的类型和基本原理
1.微滤(microfiltration, MF )
分离范围 0.02 ~ 2μm ,可截留微细物质,可 滤除细菌和细小的悬浮颗粒。以孔径 102 ~ 104 nm的多孔膜过滤溶液。
2.超滤(ultrafiltration, UF )
分离范围 0.002 ~ 0.2μm ,可滤除大分子物质 和微粒,以孔径1~100 nm的膜过滤。
食品中营养成分有效提取与分离技术
食品中营养成分有效提取与分离技术食品中营养成分的有效提取与分离技术一直是营养学领域研究的热点之一。
随着人们对健康意识的不断增强和对营养需求的深入研究,开发新的提取与分离技术有助于更好地利用食品中的营养成分,满足人们对营养的需求。
食品中的营养成分往往以复杂的形式存在,如蛋白质、脂肪、碳水化合物、维生素、矿物质等。
为了有效提取和分离这些营养成分,科学家们采用了多种技术手段。
一种常用的技术是溶剂提取法。
通过选择合适的溶剂,将食品中的目标成分溶解出来,然后通过蒸发、浓缩等步骤得到纯净的营养物质。
例如,利用酒精或醋酸乙酯可以提取植物中的天然色素、香料和营养素,高温蒸发后得到纯净的提取物。
超声波提取技术是一种快速高效的提取方法。
通过利用超声波在液体中产生的剧烈震荡和微小气泡的爆破效应,可打破食物组织细胞结构,使得其中的营养成分能够更快速地释放出来。
这种方法不仅提高了提取效率,还能更好地保留食品中的活性物质。
离子交换技术也是一种常用的分离方法。
通过加入具有特定交换功能的树脂,可以吸附并分离食物中的离子形态的营养成分。
这种方法可以广泛应用于脂肪酸、矿物质、氨基酸等的纯化和分离过程中。
除了这些传统的提取与分离技术,现代科技为我们提供了更多的选择。
纳米技术的应用使得我们可以精确控制材料的物理和化学性质,从而实现对营养成分的高效提取和分离。
纳米材料能够提高提取效率、减少成本、改善产品品质,在食品工业中具有广阔的应用前景。
另外,基于生物技术的提取与分离方法也呈现出新的活力。
通过利用微生物发酵、酶解等生物反应过程,可以高效地提取和分离食品中的活性物质。
这种方法不仅具有高效性和温和性,还能更好地保留营养成分的生物活性。
食品中营养成分的有效提取和分离技术对于改善食品品质、提高利用率、满足人们不断增长的健康需求具有重要意义。
通过不断探索和创新,我们可以发现更多的技术手段,并将其应用于食品工程中,为人类提供更多更好的营养选择。
总之,食品中营养成分的有效提取与分离技术的研究和应用对于人们的健康和生活质量至关重要。
食品加工中的微生物分离技术
食品加工中的微生物分离技术食品加工过程中的微生物检测和分离是保障食品安全的关键环节之一。
微生物是一类细小但强大的生命体,有些能够生长在食品中,产生毒素,对人体健康造成危害。
因此,采用适宜的微生物检测和分离技术可以帮助食品企业及时掌握食品质量,确保食品的健康和安全。
一、微生物的检测和分离技术1. 培养检测法: 培养检测法是最常用的一种微生物检测方法,利用营养富集培养基来寻找可能存在的微生物。
但缺点是有些微生物会被掩盖,无法检测到。
2. 分子诊断法: 分子诊断法是一种通过分析微生物的核酸(DNA、RNA)来确定它们的数量和种类的方法。
优点是准确性高、速度快,但成本较高。
3. 免疫学方法: 免疫学方法利用抗原与抗体之间特异性互相结合的原理,通过检测特定抗原或抗体来检测微生物的存在。
但有些微生物的抗原或抗体水平极低,很难检测出来。
4. 生物传感器技术: 生物传感器技术是一种检测微生物的新型方法,它可以通过测量微生物与生物材料的相互作用来检测微生物的存在。
二、微生物分离技术微生物分离是将微生物从样品中分离出来以便进行下一步的检测和分析。
这个过程中,需要先确定分离的微生物种类,再选择相应的分离技术。
1. 培养法: 培养法是一种传统的微生物分离方法,通过将样品分别接种在营养富集培养基上来寻找微生物。
优点是应用广泛,但繁琐、耗时、有时会产生误差。
2. 过滤法: 过滤法是通过将待检样品过滤来分离微生物,通常与细胞数统计配合使用。
3. 凝胶扩散法: 凝胶扩散法是一种通过凝胶扩散的原理来分离微生物的方法。
4. 核磁共振技术: 核磁共振技术是一种无损检测微生物的方法,可以通过核磁共振图谱来快速分离、鉴定微生物。
三、微生物分离技术的应用微生物分离技术的应用范围很广,特别是在食品加工中,常用于食品样品的检测和分离。
1. 牛奶中的微生物分离: 牛奶中可能含有多种有害微生物,使用适当的微生物分离技术,可以使各种微生物得到完整分离。
食品分离技术
食品分离技术的现状及研究进展1 分离操作在食品工业中的作用随着食品工业的发展,化工单元操作不断向食品工业渗透并在食品加工领域内实践和提高,形成了适应食品加工特殊规定的新的单元操作。
由于食品加工所用的动植物性原料几乎都为固态和液态,为了使固体和液体原料成为多种美味可口、营养丰富的食品,一方面必须提取其精华,扬弃其糟粕,分离出不同成分并组合成不同种类的制品。
同时为了做到有益无毒,风味别致,又必须反复提纯和精制。
因此分离操作已在食品工业中占有相称重要的地位,研究分离技术在食品加工中的应用,对食品加工的科学化具有重要意义[1]。
食品分离技术在食品工业中具有相称重要的地位。
其重要性表为以下几个方面:(1)食品分离技术是食品工业的基础[2]。
绝大多数食品工业都分离不开食品分离技术,其中不少行业都是以分离工程为重要生产工序的。
例如植物油的提取,淀粉的分离,糖制品的分离以及精练提纯等等。
(2)食品分离技术能提高食品原料的综合运用限度。
在食品加工工程中运用分离技术可以有效的运用食品原料中的各种成分,提高原料的综合运用限度,就提高了食品原料的运用价值。
例如采用有效的分离方法可以从茶叶下脚料中分离出茶多酚、茶碱等,从柑橙中分离甘橙油、果胶等,使原料运用率大为增值。
制糖行业中色谱分离技术的应用使得产糖率大大提高。
(3) 食品分离技术能保持和改善食品的营养和风味。
采用现代分离技术可以将一些需在高温下完毕的工艺改为在常温下进行,这样就可以大大地改善食品的色、香、味及营养。
如用膜分离技术代替常规的蒸发浓缩和真空浓缩咖啡、果汁、茶汁等[3-4]。
(4) 食品分离技术使产品符合食品卫生规定。
食品分离技术涉及提取原料中的有益组分和去除其中的有害成分。
如花生、玉米等油制品易受黄曲霉污染而产生黄曲霉素,所以在加工过程中必须用适当的方法将其去除。
(5)现代食品分离技术能改变食品行业的生产面貌。
现代分离技术在食品工业中的应用,往往可以使行业的生产面貌大为改观。
食品分离技术
一、萃取1、从萃取剂角度分:(1)有机溶剂萃取;(2)反萃取;(3)液膜萃取;(4)双水相萃取;(5)反胶团萃取;(6)超临界萃取。
2、萃取是利用在两个不相混溶的相中各组分溶解度的不同,从而增浓和提取分离目标产物的过程3、有机溶剂萃取:将待萃取组分由亲水性转化为疏水性,使其萃入有机相中;反萃取:就是萃取的逆过程,即用水(或其他极性大的溶剂)将在有机溶剂中的某些物质萃取到水中,所以反萃取剂主要是水(或其他极性大的溶剂),要与有机溶剂互不相溶,与被萃取的物质不反应.对应的反萃取物应该是在水中溶解度较大的物质;液膜萃取(Liquid membrane extraction )一种以液膜为分离介质,以浓度差为推动力的分离操作。
通常将含有被分离组分的料液作连续相,称为外相;接受被分离组分的液体称内相,成膜的液体处于两者之间称为膜相,三者组成液膜分离体系。
3、液膜是指悬浮在液体中的很薄的一层乳液微粒。
乳液通常是由溶剂(水或有机溶剂)、表面活性剂、载体和添加剂形成的。
其中溶剂构成膜基体;表面活性剂起乳化作用,可以促进液膜传质速度和提高其选择性;添加剂用于控制液膜的稳定性和渗透性。
支撑液膜是将固体膜浸在膜溶剂(如有机溶剂中)使膜溶剂充满膜的孔隙形成液膜。
与乳状液膜相比,支撑液膜结构简单,放大容易。
4、聚合物的不相溶性(incompatibility):当两种高分子聚合物之间存在相互排斥作用时,由于相对分子质量较大,分子间的相互排斥作用与混合过程的熵增加相比占主导地位,一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。
这种含有聚合物分子的溶液发生分相的现象称为聚合物的不相容性。
5、双水相萃取:利用双水相的成相现象及待分离组分在两相间分配系数的差异,进行组分分离或多水相提纯的技术。
6、亲水性大分子物质溶解于水池中的水分,从而被以反胶团的形式萃取出来,称之为反胶团(胶束)萃取。
食品分离技术
食品分离技术第一章绪论第一节分离技术的概念分离过程就是通过一定的手段,将混合物分成互不相同的几种产品的操作过程,它包括提取和除杂两个部分。
分离技术是一门研究如何从混合物中把一种或几种物质分离出来的科学技术。
要实现混合物的分离,需要某种专门的设备和专门的过程,并且要提供相应的能量和物质。
这是因为物质的混合过程是一个熵的增加过程,可以自发地进行;而从混合物中进行分离,是一个熵减少的过程。
熵减的过程必须要有外加能量才能进行。
第二节分离技术的分类及特点所有的分离技术,都可以分为机械分离和传质分离两大类。
机械分离处理的是两相或者两相以上的混合物,其目的是简单地将各相加以分离,过程中不涉及传质过程。
如:过滤、沉降、离心分离、旋风分离等。
传质分离过程的特点是过程中有传质现象发生。
传质分离技术处理的物料可以是均相体系,也可以是非均相体系。
传质分离过程包括平衡分离过程和速率分离过程。
平衡分离过程是指借助于分离媒介(热能、溶剂、吸附剂),使均相混合物变成两相系统,再以各处组分扩散速度的差异来实现分离的过程。
如:闪蒸、萃取、精馏、吸附、吸收、离子交换、结晶以及泡沫分离等。
速率分离控制分离过程则主要是根据混合物中各个组分扩散速度的差异来实现分离的过程。
如:反渗透、超滤、电流等,分离过程所处理的原料产品通常属于同一相态,仅仅是组成上存在差异,利用浓度差、压力差以及温度差等作为分离推动力。
如果按分离性质分类则有:①物理分离法:以被分离对象在物理性质方面的差异作为分离依据,采用有效的化学手段进行分离,包括热扩散法、梯度磁性分离法以及过滤、沉淀、离心分离等各种机械分离法。
②化学分离法:依据被分离对象在化学性质方面的差异,采用有效的化学手段进行分离的技术,如沉淀分离法、溶剂萃取法、离子交换技术等。
③物理化学分离法:被分离对象中,有时存在着不止一个特征方面的差异,包括在物理和化学方面的差异,据此可以采用物理手段与化学手段相结合的技术进行分离。
食品分离技术
食品分离技术
嘿,朋友们!今天咱来聊聊食品分离技术这个神奇的玩意儿。
你想想啊,咱平常吃的那些美食,从原材料到摆在咱面前那香喷喷的样子,这中间可少不了食品分离技术的功劳呢!就好像一个魔法师,能把各种食材变变变,变得更纯净、更美味。
比如说榨果汁吧,那就是把水果里的汁水和果肉分离开呀。
这看似简单的操作,背后可藏着大学问呢。
没有食品分离技术,咱能喝到那么纯纯的果汁吗?那肯定不能啊!再想想牛奶,要把奶油和奶水分开,这也是食品分离技术在大显身手呢。
食品分离技术就像是一个超级挑剔的整理大师,把好的挑出来,把不好的去掉。
这不就跟咱收拾房间一样嘛,把有用的东西留下,没用的垃圾扔掉。
它能让食品变得更健康、更安全。
你看那些加工食品,要是没有精确的分离技术,那得有多少杂质混在里面呀。
就好像你吃个蛋糕,结果里面有沙子,那多倒胃口呀!所以说食品分离技术可重要了。
而且啊,这技术还在不断进步呢。
就像咱的手机一代代更新,越来越厉害。
以后说不定食品分离技术能做到把食物里的每一种营养成分都精确分离出来,那咱吃起来不就更放心、更营养啦?
还有啊,咱平时吃的那些保健品,很多不也是通过食品分离技术提取出来的精华嘛。
这就像是从一堆宝藏里挖出最闪亮的宝石,多厉害呀!
咱中国的美食文化那可是博大精深,食品分离技术在其中也发挥了很大的作用呢。
没有它,咱那些传统美食怎么能流传这么久,还越来越受欢迎呢?
总之啊,食品分离技术就是食品界的大功臣,默默为我们的美食生活贡献着力量。
咱可得好好珍惜它,感谢它让我们的生活变得这么有滋有味呀!这就是我对食品分离技术的看法,你们说是不是这么个理儿呢?。
食品分离技术
液相色谱:是指用液体作为流动相的色谱法。
色谱法又称色层法或层析法,是一种物理化学分析方法;它是利用不同溶质与固定相和流动相之间的作用力的差别,当两相做相对移动是,各溶质在两相间进行多次平衡,是各溶质达到相互分离的一种分离方法。
不对称膜:指膜的化学结构或物理结构随膜的部位而异,即各向异性的膜,是按膜结构分类的一种,膜是分离两相和作为选择性传递物质的屏障。
程序升温:是气相色谱中控制温度的一种方法,是指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称。
各组分的保留值可用色谱峰最高处的相应温度即保留温度表示。
萃取精馏:是指向精馏系统添加第三组分,通过它对原溶液中各组分间的不同作用,提高原溶液各组分间的α(相对挥发度),使原来难以用精馏分离的物系变得易于分离的一种特殊精馏方法。
微胶囊技术:是指将固体、液体或气体物质包埋、封存在一种微型胶内成为一种固体微粒产品的技术,这样能够保护被包裹的物料,使之与外界不宜环境相隔绝,达到最大限度地保持原有的色香味、性能和生物活性,防止营养物质的破坏与损失。
阐述热导池、氢火焰和电子捕获检测器的检测原理,它们各自适合于哪类样品的检测?热导池检测器的检测原理是基于不同组分与载气之间有不同的热导系数,热导池检测工作时,接通载气并保持池体恒温,此时流经的载气成份和流量都是稳定的。
流经热敏元件电流也是稳定的,由热敏元件组成的电桥处于平衡状态。
当经色谱柱分离后的组份被载气带入热导池中由于组份和载气的热传导率不同,因而使热敏元件温度发生变化,并导致电阻发生变化,从而导致电桥不平衡,输出电压信号,此信号的大小与被测组份的浓度成函数关系,再由记录仪或色谱数据处理机进行换算并记录下来。
热导池检测器具有结构简单,性能稳定,灵敏度适宜等特点,对各种能作色谱分析的物质都有响应,最适合作常量分析电子捕获检测器的检测原理:由柱流出的载气及吹扫气进入ECD池,在放射源放出β-射线的轰击下被电离,产生大量电子。
《食品分离技术》课件
膜分离技术
膜分离技术
利用半透膜作为选择性障碍,在外力 作用下使不同粒径和性质的物质通过 或被截留,从而实现物质分离的技术 。
分离原理
应用范围
常用于过滤、渗透、超滤、反渗透等 操作,如海水淡化、工业废水处理等 。
基于分子筛原理,半透膜允许某些物 质透过而截留其他物质。
萃取分离技术
萃取分离技术
01
利用两种不互溶的溶剂中溶质在其中的溶解度不同,将溶质从
应用范围
常用于固体物质的分离,如食盐、 糖等。
吸附分离技术
吸附分离技术
利用吸附剂对不同物质的吸附力不同,使不同物 质在吸附剂表面吸附或解吸,从而实现分离。
分离原理
基于吸附剂对不同物质的吸附力差异。
应用范围
常用于气体和液体的分离,如空气净化、工业废 水处理等。
食品分离技术的应
03
用
在食品加工中的应用
品质改进
通过食品分离技术,可以改进添加剂的品质和纯度, 提高其稳定性和效果。
创新开发
利用食品分离技术,可以开发新的食品添加剂,满足 市场需求。
食品分离技术的挑
04
战与未来发展
当前面临的挑战
技术应用局限
当前食品分离技术在实际应用中 仍存在一定的局限性,如处理规 模、效率和成本等方面的挑战。
食品安全问题
食品分离技术需要确保在分离过 程中不引入新的污染或有害物质 ,这对技术的安全性和可靠性提 出了更高的要求。
技术更新换代
随着食品工业的快速发展,食品 分离技术需要不断更新和升级, 以满足新的分离需求和更高的产 品质量标准。
技术改进与创新
1 2
新型分离材料的研发
研究新型的分离材料,以提高分离效率和降低成 本。
食品分离
1.什么是食品分离技术,为什么说食品分离技术在食品工业中具有相当重要的地位。
P4答:分离过程是将混合物分成组成相互不相同的两种或几种产品的操作。
分离过程包括提取和除杂两个部分。
一食品分离技术是食品工业的基础;二食品分离技术能提高食品原料的综合理用程度;三食品分离技术能保持和改进食品的营养的风味;四食品分离技术是产品符合食品卫生的要求;五现代食品分离技术能改变食品行业的生产面貌。
2 食分离过程有那些特点。
P5-6答:1分离对象种繁多,结构复杂;2 产品质量与分离过程关系密切;3 食用安全性要求高;4 食品在分离过程中易腐败变质。
3一种食品分离方法的确定应如何进行。
P6•答:食品分离方法的确定:–查找待分离组分的基本性质;–选择和确立对该组分进行定性定量测定的方法;–了解原料的特性及待分离组分的含量等性质;–确立所用分离技术及对分离条件进行实验选择;–对分离效果进行评价;–中试和工业放大设计。
4分离技术的工业化应用前景如何评价。
P7–答:食品分离技术的发展趋势:•传统分离技术的进一步发展•高新分离技术的工业化应用•生化分离技术的交叉与融合•新型分离技术的开发5沉淀分离的目的是什么,沉淀分离通常包括那些方法。
P10 •答:沉淀分离的目的:–通过沉淀使目标成分达到浓缩和去杂质的目的;–通过沉淀使已纯化的产品由液态变为固态。
•沉淀分离的种类–无机沉淀剂沉淀分离:以盐类作为沉淀剂–有机沉淀剂沉淀分离:以有机溶剂作为沉淀剂–非离子多聚体沉淀剂沉淀分离–等电点沉淀法–共沉淀分离法–变性沉淀分离法:使目标成分变性6盐析法的基本原理是什么,影响盐析效果的因素有那些。
P12-14 答:向蛋白质溶液中加入大量的中性盐(NH4)2SO4,Na2SO4,NaCl,使蛋白质脱去水化层而聚集沉淀,这种现象称为盐析。
–蛋白质浓度的影响;离子强度的影响–离子类型对盐析效果的影响;温度的影响–PH值对盐析效果的影响什么是等电点,等电点分离的基本原理是什么。
功能性食品中的功能成分分离和提取技术
功能性食品中的功能成分分离和提取技术功能性食品(Functional Foods)是指被设计成在保证正常食品的营养价值和风味口感的基础上,增加某些功能成分的食品,能够满足消费者的某些特定健康需求,如改善免疫力、延缓衰老、降低血脂和胆固醇等。
在当今的健康食品市场,功能性食品越来越受到消费者的青睐,已经成为食品行业的一个重要分支。
此外,随着人们对健康的重视,越来越多的食品厂商开始不断研究和开发功能性食品,以满足市场的需求。
而要生产高品质的功能性食品,需要使用先进的技术来分离和提取食品中的功能成分。
以下是一些常用的技术。
1. 超声波提取技术超声波提取技术是指利用超声波的物理效应,对食品中的功能成分进行分离和提取的方法。
其原理是将食品样品浸泡在溶液中,然后用超声波器将样品进行震荡,通过超声波的震荡能量,可以使样品中的功能成分分离出来,从而达到提取的目的。
超声波提取技术具有提取速度快、提取效率高、对样品无污染等优点,被广泛应用于功能性食品的开发和生产中。
2. 萃取技术萃取技术是指利用溶剂将食品中的功能成分分离出来的方法。
其原理是将样品与溶剂混合后,通过振荡或加热等手段,使样品中的功能成分被溶解在溶剂中,从而达到提取的目的。
萃取技术具有分离效果好、适用范围广等优点,但在某些情况下,萃取剂有可能对生产环境产生污染,因此需要在操作中加以注意。
3. 色谱技术色谱技术是指利用化学反应、物理处理等手段,将样品中的功能成分分离出来的方法。
其原理是通过将样品分离在固相或液相中,根据各自的分子量、极性、活性等性质,通过遵循特定的分离原理,分离出所需的功能成分。
色谱技术具有分离效果好、精度高等优点,但对操作人员的技能要求较高。
总之,功能性食品的开发和生产需要使用各种分离和提取技术,以达到更优质的功能性食品。
同时,经过不断的开发和创新,功能性食品的市场前景将会越来越广阔。
食品分离技术复习知识点
食品分离技术复习知识点一、名词解释食品分离技术、食品分离技术是指各种分离技术在食品科学与食品工程中的应用,它依据某些理化原理将食品物料中的不同组分进行分离,是食品加工中的一个主要操作过程。
聚合物的不相容性、当两种高分子聚合物之间存在相互排斥作用时,由于相对分子质量较大,分子间的相互排斥作用与混合过程的熵增加相比占主导地位,一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。
这种含有聚合物分子的溶液发生分相的现象称为聚合物的不相容性。
单效蒸发、产生的二次蒸汽不加利用,直接冷凝排出;多效蒸发、二次蒸汽作为串联使用的下一个蒸发器的加热蒸汽。
分子蒸馏、在蒸馏过程中采用特殊措施,增大离开液相的分子流而减少返回液相的分子流,实现从液相到气相的单一分子流向,即分子蒸馏。
膜分离、液膜是一层很薄的液体,它阻隔在两个可互溶但组成不同的液相之间,一个液相中的待分离组分通过液膜的渗透作用传递到另一个液相中,从而实现分离的目的。
道南效应、Donnan模型以Donnan平衡为基础,用来描述荷电膜的脱盐过程,一般纳滤膜多为荷电膜,所以该模型更多用来描述纳滤过程浓差极化现象、浓差极化是指分离过程中,料液中的溶液在压力驱动下透过膜,溶质(离子或不同分子量溶质)被截留,在膜与本体溶液界面或临近膜界面区域浓度越来越高;在浓度梯度作用下,溶质又会由膜面向本体溶液扩散,形成边界层,使流体阻力与局部渗透压增加,从而导致溶剂透过通量下降。
色谱分离、色谱分离技术是基于不同物质在由固定相和流动相构成的体系中具有不同的分配系数,在采用流动相洗脱过程中呈现不同保留时间,从而实现分离比移值、原点中心至斑点中心的距离与原点中心至展开剂前沿的距离之比。
分配系数、物质在两相中的分布服从分配定律,即:在一定温度和压力下,物质A在有机相与水相中分配达到平衡时,其浓度比为一常数,通常称为分配系数Kd亲和色谱、利用固相载体上的配基对目标组分所具有的专一的和可逆的亲和力而使生物分子分离纯化的一种分离技术。
食品功能性成分的提取与分离技术
食品功能性成分的提取与分离技术近年来,随着人们健康意识的提高,食品功能性成分的研究和应用越来越受到关注。
这些功能性成分可以提供营养、促进健康,甚至预防疾病。
然而,这些成分通常存在于食物中非常微量,提取和分离技术的发展变得至关重要。
一、提取技术在食品中提取功能性成分的过程中,常用的提取技术包括溶剂提取、超临界流体提取和微波辅助提取等。
溶剂提取是目前最常用的成分提取方法之一。
它通过将食品样品与适当选择的溶剂接触,将功能性成分从食物中提取出来。
常用的溶剂包括乙醇、水、酸和酶等。
超临界流体提取是一种相对新兴的技术,其基本原理是通过改变溶剂的温度和压力来调节其物理性质,使溶剂的密度和粘度接近液体和气体的临界点。
这种方法具有提取效率高、操作简单、对环境无污染等优点。
微波辅助提取是一种利用微波辐射的热效应将溶解的食品样品加热,从而加速溶解和传输过程的技术。
相比传统的热水浸提方法,微波辅助提取具有提取速度快、效果高、样品消耗少等优势。
二、分离技术提取得到的功能性成分通常需要进行进一步的分离和纯化,以获得更纯粹的目标化合物。
技术上常用的分离方法包括色谱法、电泳法、选择性膜分离和萃取法等。
色谱法是目前最常见的分离技术之一,其中液相色谱和气相色谱应用较为广泛。
液相色谱分离依据溶剂与固定相之间的相互作用,可分为大小分离和亲疏分离两种。
而气相色谱则基于物质在气相连续流动的载气中的分配系数差异来实现分离。
电泳法根据样品中成分的电荷性质、分子大小和形状的不同,将其在电场中进行分离。
电泳法分为凝胶电泳、毛细管电泳、等电聚焦电泳等多种类型。
选择性膜分离是利用膜的选择性通过反应、拦截或理化作用来将混合物中的分子分离开来。
这种方法操作简单,不需要添加任何试剂,因此得到的产物纯度高,有较高的应用前景。
萃取法是一种将其中一种物质从混合物中分离出来的方法,主要通过溶剂之间溶解度的差异实现。
常用的萃取方法有液液萃取和固相萃取两种。
三、应用前景食品功能性成分的提取和分离技术在食品工业中有着广泛的应用前景。
离心分离技术在食品工业中的应用
离心分离技术在食品工业中的应用
离心分离技术是一种通过离心力将混合物中不同密度的组分分离的方法。
在食品工业中,离心分离技术被广泛应用于分离和提取不同的食品成分,如脂肪、蛋白质、维生素等。
以下是离心分离技术在食品工业中的应用:
一、乳制品加工中的应用
乳制品加工中常用的离心分离技术包括脱脂、脱乳清和分离乳脂。
脱脂是将牛奶中的脂肪分离出来,制成低脂或脱脂乳。
脱乳清是将牛奶中的蛋白质分离出来,制成乳清蛋白粉。
分离乳脂是将牛奶中的脂肪分离出来,制成黄油或乳脂。
二、果汁加工中的应用
果汁加工中常用的离心分离技术包括橙汁分离和苹果汁浓缩。
橙汁分离是将橙汁中的果肉和汁液分离出来,制成橙汁浓缩液。
苹果汁浓缩是将苹果汁中的水分分离出来,制成苹果汁浓缩液。
三、食用油加工中的应用
食用油加工中常用的离心分离技术包括脱蜡和脱色。
脱蜡是将蜡质分离出来,制成无蜡食用油。
脱色是将油中的色素和杂质分离出来,制成无色食用油。
四、酿酒加工中的应用
酿酒加工中常用的离心分离技术包括酒糟分离和酒花分离。
酒糟分离是将酒中的酒糟分离出来,制成酒糟饲料。
酒花分离是将酒中的酒花分离出来,制成酒花提取物。
总之,离心分离技术在食品工业中有着广泛的应用,能够有效地提取和分离不同的食品成分,为食品加工提供了重要的技术支持。
食品分离技术在食品工程的应用
食品分离技术在食品工程的应用现代食品分离新技术,主要有膜分离技术、超临界萃取技术,分子蒸馏技术和冷冻干燥技术。
1、膜分离技术膜分离根据过程推动力的不同,大致分两类:一类是以压力为推力的膜过程,如在食品工业具有突出实用意义的超滤和反渗技术;另一类是以电力为推动力的膜过程,所使用的是一种特殊的离子离换膜,如食品工业具有实用意义的电渗打技术。
超滤,是指利用半透膜的微孔过滤,以截留溶液中大溶质分子的操作技术;反渗,是指通过膜渗分离技术,使溶剂分子反渗透压力流向较稀溶液的操作技术;电渗析,是指在电场的作用下利用离子交换膜对离子具有不同的选择、透过的特性,使溶液中的阳、阴离子和溶剂分离的操作技术。
超滤和反渗主要用于食品的浓缩和提纯,以及饮用水纯化;电渗析主要用于食品工业用水的纯化处理,以及乳清加工。
2、超临界萃取技术超临界萃取技术是利用CO2作为超临界萃取剂,萃取压力为2.8~4.5毫巴,钢瓶中CO2的压力为6~6.5毫巴,使体CO2进入低温溶槽(约5℃)将其冷缩为液体,然后加热至临界点以上,形成超临界状态,能有效地把食物原料中的酯等特殊成分萃取出来。
目前,已应用于各种香辛料的提取。
3、分子蒸馏技术蒸馏按操作原理划分,可分为水蒸气蒸馏、分子蒸馏,简单蒸馏(一次蒸馏)及精蒸馏(多次蒸馏)。
分子蒸馏技术,可用于各种酯类进行单向或双方向蒸馏提取,分离有效成份的纯度可达97%以上。
目前,已广泛用于单甘酯的分离。
4、冷冻干燥技术冷冻干燥,又称真空冷冻干燥、冷冻升华干燥、分子干燥等。
它是将湿性物料先冻结至冰点以下,使水变为固态冰,然后在较高的真空度下,将冰直接转化为蒸汽而除去,使物料干燥。
目前,在食品加工保藏中,利用冷冰干燥技术,把新鲜果蔬菜、肉类食品,经冷冻至零下20℃,然后移至真空升华室直接脱水干燥,制成粉末状,能有效保持食品色、香、味和营养成份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* 这种聚合方法在早期就被用来制作无 碳纸系统的微胶囊 * Pennwalt Co.也将此技术应用在农业上 的杀虫剂制作
-- 利用机械搅拌方式将杀虫剂和有机二氯酸分散在 水中 -- 待液滴型成至适当大小,加入二胺(diamine) -- 二胺可以穿透胶囊外壳与二氯酸反应,直到微胶 囊稳定形成
* 利用表面聚合法制作含香料的微胶囊
2. 核/壳比值 (1) 典型的胶囊含有70-90%wt的核心 物质,外壳厚度约为0.1-200 μm a. 胶囊外壳的厚度与颗粒大小和相 对密度有关 b. 微胶囊中核心物质和外壳的关系 有许多表示方法 最常见的是「核心量」和「核/壳 比值」两种表示方式
(2) 核心量 a.心材在整个微胶囊中所占百分比 b.核心量可作为商品的重要准则 (3) 核/壳比值 a.定义:核心与外壳的重量比值 b.核/壳比值是假设核心是一完美的球体, 胶囊外壳厚度也是均匀不变的。
* 相分离法可分为 -- 水相系统相分离法(phase separation from an aqurous solution system) i. simple coacervation ii. complex coacervation process -- 有机相系统相分离法(phase separation from an organic solution ) * 制备方法 将核心物质分散在外壳物质溶液中,藉 由改变状态,让含有核心物质的外壳聚 合物能产生凝集,而将其分离
(1) Chemical methods a. interfacial or in situ polymerization * 是典型界面聚凝集聚合反应(poly-condensation polymerization)的应用 * 界面聚合法制作微胶囊外壳的制法 -- 先形成乳化液,再以聚合反应形成外壳 --大部分商业化产品是在与水不互溶的溶剂中 进行界面和原位聚合反应
2.Principle : 微 胶 囊 技 术 主 要 是 根 据 Bungenbergde Jong 所 提 的 聚 集 (coacervation)原理 (1) 运用高分子的聚集是微胶囊形成主 要方式 (2) 它是利用分子间的化学或物理产生 的边界作用力,让分子自行形成微胞 的一种方法
3. 微胶囊技术在食品工业上的意义 (1) 将液体形式的食品转变成固体,以利 于干燥食品中使用 (2) 留滯挥发性物,以供最佳条件时释放 (3) 避免蒸发及受水分影响 (4) 使不容(incompatible)成分均匀混合 (5) 掩蔽不良味道 (6) 藉由特定的溶释机构,达到特殊效果 (7) 改变固体物质的质地与密度 (8) 保护敏感物质
* 催化剂(Catalysts) * 粘著剂(Adhesives) * 色料(Colorants) * 香料(Perfumes) * 记录材料(Recording materials) * 药品(Medicines):阿司匹林、维生素、 氨基酸等 * 微生物(Organisms):细菌、酵母以及病 毒等 * 食品类(Foods):油、脂肪、各种调味品 、发酵粉等
III. manufacturing 1.微胶囊的材料 (1) 蕊物质:大部分的亲水或亲油性固 体、液体、气体均可作为包覆物。依其 性质分为: * 溶剂类(Solvents):水、醇、苯类、酯 类、醚类、酮类、甘油等。 * 助塑剂(Plasticizers):磷酸酯类、硅酮 类、氯化石蜡等。 * 酸碱类(Acid and base)
II. 微胶囊结构
1. 微胶囊的组成部分:nucleus & shell
(1) core material (蕊物质或蕊材)或nucleus (核心物质):包覆于壁膜内的物质。 重量约占整个微胶囊的80-99%,并于 适当的时候被释放出來。 (2) wall material(壁膜材料或囊壁)或shell (外壳) a. 如蕊内物质为亲油性物质,则囊壁材 料选择亲水性材料 b. 如蕊内物质为亲水性物质,则囊壁材 料用水不溶性的合成聚合物
利用喷嘴的气流将悬浮固粒带入涂布区 ↓ 由喷嘴所喷出的流体,可能是聚合物溶液 或融熔聚合物 ↓ 在核心固粒表面上形成外壳包覆物 ↓ 核心颗粒顺着气流流向槽顶再离开涂布区 ↓ 核心颗粒降至槽底 ↓ 再顺着喷嘴气流流入涂布区
b. 喷雾干燥(spray drying )
Idealized encapsulated particle. r = radii of the respective spheres
由核心与外壳的重量比,可得︰
其中W:重量;r:半径;w:外壳; n: 核心;d:密度
假设外壳及核心的密度相等,則
可改写为r2与r1的线性关系式︰
* 在一定的Ww/Wn比值下,外壳的厚度 与核心的半径r1呈线性关系 * 要有核/壳比值及核心大小,才可求 得微胶囊的大小和外壳厚度 * 制作微胶囊必须要控制外壳厚度和 核/壳比值 -- 壳厚度对储存稳定性和释放行为有 重要的影响 -- 核/壳比值对成品的效果也有影响 -- 较高的核/壳比,更为经济
第八章 食品的微胶囊技术 Special Topic of Food Processing—Encapsulation
I. Introduction
1. definition (1) microencapsulation (微胶囊技术) 指将 物质细微分散包覆后,并在所需的时 候将其释放出来的方法 a. capsules--粒径大于1000μm b. microcapsules (or microcells)--粒径分布 在1~1000μm c. nanocapsules--粒径小于1μm
(2) a. * * b. * * c.
扩散方向 SA 当SA为正值, A相可散布在B相上 当SA为负值, A相无法散布在B相上 SB SB为正值时, B相可散布在A相上 SB为负值时, B相无法散布在A相上 若SA与SB两者均为负值,则两相互不 散布
(3) 蕊材与壁膜间的扩散 a. 高分子层(壁膜)需散布在核芯上,膜硬 化后即可包覆核芯物。即若高分子相为 A,核芯物为B时,SA要大于零,才有希 望达到包覆目的 b. 当高分子膜硬化的过程中也必须维持SA 要大于零
* 凝胶相分离法的利用性 -- 优点 i. 微粒子的粒径大小控制相当方便 ii. 所形成的颗粒均匀而呈现圆形的 球体 -- 缺点 在工业上不易量产,而限制其经 济价值
b. 以食品香料工业上常用的相分离法为 例,主要操作步骤可分为四项: * 混合(mixing) 为了促进聚合物的溶解,可先将制造 媒介物(水)事先加热,在加入核心物质 前冷却 * 乳化(emulsification) 愈佳的乳化程度,则微胶囊粒度愈小 * 硬化(solidification and hardening) 可以物理或化学方法来达到囊壁固化 的效果 * 分离干燥(separation and drying)
(3) Mechanical methods a.空气悬浮涂布(air suspension coating ) * 原理—在一不稳定平衡下,于一向上流 动的空气流中将溶化或融熔聚合物涂布在 颗粒表面的技术 * 制作过程 -- 整个过程有两大部分︰ i. 核心固体颗粒利用涂布室底部所产生的 循环气流悬浮分散于涂布室中 ii. 经槽底喷嘴喷出的聚合物,将核心包覆
* 农业化学品(Agricultural chemicals): 除草剂、杀虫剂、化肥等 * 膨胀剂(Swelling agents) * 防锈剂(Rust inhibitors) * 燃料(Fuel) * 其它(Others)
(2) 壁膜材料 不同有机及无机物皆可作为壁膜,但常 用的是聚合物 * 蛋白质(Proteins) * 植物性胶(Vegetable gums) * 纤维素(Cellulose) * 混合聚合物(Condensation polymers) * 共聚物(Copolymers) * 均质聚合物(Homopolymers) * 交织聚合物(Curable polymers) * 蜡质(Waxes) * 无机化合物(Inorganic materials)
2. 微胶囊形成原理 (1) 界面理论 a. 微胶囊的形成至少需要两相: 一为芯材,一为壁材,二者不互溶 b. 若壁材与芯材均为液相,则在两液 相之间会有界面张力产生
Antonoff 提出当两液相互相饱和,则: γAB=γA-γB 其中γA:A 相之界面张力 γB:B 相之界面张力 γAB:A、B 两相间之界面张力 Good 和Fowkes提出,若两液相呈相异状 ,则两液相在界面相接着;其接着功为: WAB=γA +γB -γAB
b. 聚合物快速固化法(rapid insolubilization of polymer methods)
预先调整好所需大小的微胶囊液滴 ↓ 由小管口(orifice)滴入高分子外膜的硬化剂中 ↓ 高分子硬化而得微粒胶囊
* 微胶囊粒径较大 * 在工业上的应用 改良成extrusion method或multiorific centrifugal process等机械法,以因应 大量微粒胶囊的生产需求
Orifice method装臵示意图
(2) Physico-Chemical method a. phase or coacervation-phase separation * 相分离法主要牵涉三项系统 (three-phase system) -- 制造媒介物(manufacturing vehicle) -- 胶囊壁物质(wall material) -- 核心物质(core material)
3. 微胶囊形成的步骤 (1) 分散蕊物质 (2) 加入壁膜物质 (3) 形成壁膜 (4) 硬化壁膜
4. 微胶囊的制备方法 (1) Chemical methods 合成聚合物时,将此聚合物包覆在蕊 物质上,形成壁膜 (2) Physico-Chemical method 添加溶剂及第三物质(如盐类),或改 变温度、pH等,使高分子溶解度降低而沉 淀披覆在蕊物质上形成壁膜 (3) Mechanical methods 利用机械力将高分子包覆在蕊物质上