课外例题2_确定二次函数的表达式-优质公开课-青岛9下精品

合集下载

确定二次的函数的表达式

确定二次的函数的表达式

确定二次的函数的表达式知识点1 用一般式确定二次函数表达式1.已知抛物线上的三点坐标,可以设函数解析式为)0(2≠++=a c bx ax y ,代入后得到一个三元一次方程,解之即可得到c b a ,,的值,从而求出函数解析式,这种解析式叫一般式.2.用待定系数法确定二次函数表达式的一般步骤:步骤一:设含有待定系数的二次函数表达式y =ax 2+bx +c (a ≠0);步骤二:将题设中满足二次函数图象的点代入所设表达式,得到关于待定系数a 、b 、c 的方程组;步骤三:解这个方程组,得到待定系数a 、b 、c 的值; 步骤四:将待定系数的值代入表达式,得到所求函数表达式.例1.已知二次函数的图象经过点(0,3),(−3,0),(2,−5),且与x 轴交于A 、B 两点。

(1)试确定此二次函数的解析式; (2)求出抛物线的顶点C 的坐标;(3)判断点P (−2,3)是否在这个二次函数的图象上?如果在,请求出△P AB 的面积;如果不在,试说明理由。

例2.抛物线y =ax 2+bx +c 过(0,0),(12,0),(6,3)三点,则此抛物线的表达式是 .知识点2 用顶点式确定二次函数表达式已知二次函数的顶点坐标为(h ,k )的话,可以设成顶点式:y =a (x -h )2+k (a 、h 、k 为常数且a ≠0)然后再找一点带入二次函数的顶点式,即可求得a 的值,最后回代到顶点式即可(提示:最后一般要把二次函数的解析式化成一般式)。

例1.已知抛物线y =ax 2+bx +c 的图象顶点为(−2,3),且过(−1,5),则抛物线的表达式为______. 例2.已知抛物线y =ax 2+bx +c ,当x =2时,y 有最大值4,且过(1,2)点,此抛物线的表达式为 .例3.有一个二次函数,当x <-1时,y 随x 的增大而增大;当x >-1时,y 随x 的增大而减小;且当x =-1时,y =3,它的图象经过点(2,0),请用顶点式求这个二次函数的表达式.例4.由表格中的信息可知,若设y =ax 2+bx +c ,则下列y 与x 之间的函数表达式正确的( )A . y =x 2-x +4B . y =x 2-x +6 C . y =x 2+x +4 D . y =x 2+x +6例5. 已知函数抛物线的顶点坐标为(-3,-2),且过点(1,6),求此抛物线的解析式。

2.3 确定二次函数的表达式 第2课时(教案)-北师大版数九年级下册

2.3 确定二次函数的表达式 第2课时(教案)-北师大版数九年级下册

第2课时由三点确定二次函数的表达式1.经历确定二次函数表达式y=ax2+bx+c的过程,体会求二次函数表达式的思想方法.2.利用二次函数图象上的三个点的坐标,运用待定系数法确定二次函数表达式.1.经历确定二次函数表达式的过程,体会求二次函数表达式的方法,培养数学应用意识.2.在学习过程中体会学以致用,提高运用所学知识解决实际问题的能力.1.逐步培养学生观察、比较、分析、概括等逻辑思维能力.2.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.【重点】利用二次函数图象上的三个点的坐标确定二次函数表达式.【难点】运用待定系数法,采用多种方法确定二次函数表达式.【教师准备】多媒体课件.【学生准备】复习待定系数法和三元一次方程组的解法.导入一:思考下面的问题:已知二次函数y=ax2+bx+c的图象经过(0,0),(1,2),(-1,-4)三点,那么你能利用上节课所学的知识求这个二次函数的表达式吗?【学生活动】分析题目中的已知条件,回忆利用待定系数法列二元一次方程组来求二次函数表达式的方法后,互相交流,得出无法解决的结论.[设计意图]通过问题的出示,让学生认识到运用原有的知识无法解决该问题,引起了学生的好奇心,激发了学生探究新知的欲望.导入二:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的B处安装一个喷头向外喷水,该喷泉喷出的最远距离,即地面点A距离点B所在的柱子的距离(OA的长度)是3m,李冰同学建立了如图所示的直角坐标系,得到该抛物线还经过(2,1),两点,你能根据李冰同学给出的数据求出此抛物线的表达式吗?师要求学生仔细观察,思考下面的问题:1.题目中给出了几个点的坐标?2.你能运用上节课的知识求该抛物线的表达式吗?3.应该把二次函数表达式设成什么形式?顶点式还是一般式?[设计意图]通过对喷泉这一情境的探究,使学生不但明确了本节课所要探究的知识,同时更加明确了与上节课知识的联系与区别,可谓一举两得.【引例】已知一个二次函数的图象经过(1,-1),(2,-4)和(0,4)三点,求这个二次函数的表达式.【学生活动】回忆上节课的做法,由学生独立解答,代表展示解题过程.解:∵抛物线经过(0,4),∴c=4.故可设二次函数的表达式为y=ax2+bx+4,把(1,-1),(2,-4)分别代入二次函数y=ax2+bx+4中,得解方程组,得∴这个二次函数的表达式为y=x2-6x+4.【想一想】知道了函数图象上的三个点的坐标,能不能直接用待定系数法设成y=ax2+bx+c进行解答.【师生活动】学生思考后,与同伴交流想法,再参与到小组的讨论中去.组长展示解答过程,师生共同订正.解:设所求的二次函数的表达式为y=ax2+bx+c,将三点(1,-1),(2,-4)和(0,4)分别代入表达式,得解这个方程组,得∴这个二次函数的表达式为y=x2-6x+4.【教师点评】通过上面的探究,可知如果已知二次函数y=ax2+bx+c的图象所经过的三个点,那么就可以确定这个二次函数的表达式.[设计意图]利用上节课所学的知识进行引入,既复习了旧知,又引出了新知,继而再接触本节课所学知识的解题方法,同时也为下面的例题做好了铺垫.(教材例2)已知二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个二次函数的表达式,并写出它的对称轴和顶点坐标.〔解析〕由于(-1,10),(1,4),(2,7)三个点都不是特殊点,所以设所求的二次函数的表达式为y=ax2+bx+c,然后把三个点代入,得到三元一次方程组,进而解出a,b,c的值即可.【学生活动】学生先独立解答,然后同伴相互订正.课件出示解题过程(规范学生的解答步骤).解:设所求的二次函数的表达式为y=ax2+bx+c,将三点(-1,10),(1,4),(2,7)的坐标分别代入表达式,得解这个方程组,得所以所求二次函数的表达式为y=2x2-3x+5.因为y=2x2-3x+5=2+,所以二次函数图象的对称轴为直线x=,顶点坐标为.[设计意图]通过进一步探究,掌握了已知三点坐标确定二次函数表达式的方法,提高了解决问题的能力.[知识拓展]已知三点确定二次函数表达式的方法和步骤:利用待定系数法y=ax2+bx+c三元一次方程组a,b,c的值二次函数的表达式.课件出示:【议一议】一个二次函数的图象经过点A(0,1),B(1,2),C(2,1),你能确定这个二次函数的表达式吗?你有几种方法?与同伴进行交流.【师生活动】师要求学生仔细观察给出的三个点的特征,根据点的特征合理地选择解答方法.学生解答,师巡视发现学生不同的解法,并找解法不同的学生板演:解法1:∵二次函数图象与y轴的交点的纵坐标为1,∴c=1.设二次函数的表达式为y=ax2+bx+1,将点(1,2)和(2,1)分别代入y=ax2+bx+1,得解得∴二次函数的表达式为y=-x2+2x+1.解法2:由A(0,1),B(1,2),C(2,1)三个点的特征以及二次函数图象的对称性,可得点B(1,2)是函数图象的顶点坐标.∴二次函数的表达式为y=a(x-1)2+2,将点(0,1)代入y=a(x-1)2+2,得a=-1.∴二次函数的表达式为y=-(x-1)2+2,即y=-x2+2x+1.解法3:设二次函数的表达式为y=ax2+bx+c,将点(0,1),(1,2)和(2,1)分别代入y=ax2+bx+c,得解得∴二次函数的表达式为y=-x2+2x+1.【师生活动】通过两节课的探究,总结确定二次函数表达式的方法.【教师点评】二次函数表达式的确定方法:确定二次函数表达式待定系数法[设计意图]通过对“议一议”的探究,使学生进一步掌握了已知三个点的坐标确定二次函数表达式的步骤和方法,提高了学生一题多解的能力.1.已知三点确定二次函数表达式的方法和步骤.2.二次函数表达式的确定方法.1.一个二次函数,当x=0时,y=-5;当x=-1时,y=-4;当x=-2时,y=5.则这个二次函数的关系式是()A.y=4x2+3x-5B.y=2x2+x+5C.y=2x2-x+5D.y=2x2+x-5解析:设二次函数的关系式是y=ax2+bx+c(a≠0),∵当x=0时,y=-5,当x=-1时,y=-4,当x=-2时,y=5,∴解方程组,得∴二次函数的关系式为y=4x2+3x-5.故选A.2.过A(-1,0),B(3,0),C(1,2)三点的抛物线的顶点坐标是()A.(1,2)B.C.(-1,5)D.解析:设这个二次函数的解析式是y=ax2+bx+c,把(-1,0),(3,0),(1,2)分别代入,得解方程组,得所以该函数的解析式为y=-x2+x+,顶点坐标是(1,2).故选A.3.已知抛物线y=ax2+bx+c经过点(-1,10)和(2,7),且3a+2b=0,则该抛物线的解析式为.解析:根据题意,得解方程组,得所以该抛物线的解析式为y=2x2-3x+5.故填y=2x2-3x+5.4.已知一抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.解:(1)设这个抛物线的解析式为y=ax2+bx+c.由题意知抛物线经过A(-2,0),B(1,0),C(2,8)三点,可得解这个方程组,得∴所求抛物线的解析式为y=2x2+2x-4.(2)y=2x2+2x-4=2(x2+x-2)=2-,∴该抛物线的顶点坐标为.第2课时1.已知三点确定二次函数表达式的方法和步骤:利用待定系数法y=ax2+bx+c三元一次方程组a,b,c的值二次函数的表达式.2.二次函数表达式的确定方法:确定二次表达式待定系数法一、教材作业【必做题】1.教材第45页随堂练习.2.教材第45页习题2.7第1,2题.【选做题】教材第45页习题2.7第3题.二、课后作业【基础巩固】1.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是()A.y=2x2+x+2B.y=x2+3x+2C.y=x2-2x+3D.y=x2-3x+22.已知二次函数y=ax2+bx+c的图象经过点(1,-1),(2,-4),(0,4)三点,那么它的对称轴是直线()A.x=-3B.x=-1C.x=1D.x=33.已知抛物线y=ax2+bx+c的对称轴为直线x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为.4.抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(-1,-6)两点,则a+c=.【能力提升】5.已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为()A.y=x2-4x-5B.y=-x2+4x-5C.y=x2+4x-5D.y=-x2-4x-56.已知二次函数的图象与x轴的两个交点A,B关于直线x=-1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为.7.已知二次函数y=ax2+bx+c的图象经过(0,-6),(1,0)和(-2,-6)三点.(1)求二次函数的解析式;(2)求二次函数图象的顶点坐标;(3)若点A(m-2n,-8mn-10)在此二次函数图象上,求m,n的值.8.如图所示,已知二次函数y=ax2+bx+c的图象经过A(-1,-1),B(0,2),C(1,3).(1)求二次函数的解析式;(2)画出二次函数的图象.9.(1)任选以下三个条件中的一个,求二次函数y=ax2+bx+c的解析式.①y随x变化的部分数值规律如下表:x-10123y03430②有序数对(-1,0),(1,4),(3,0)满足y=ax2+bx+c;③已知函数y=ax2+bx+c的图象的一部分(如图所示).(2)直接写出(1)中二次函数y=ax2+bx+c的三个性质.【拓展探究】10.如图①所示,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积(图②中阴影部分).【答案与解析】1.D (解析:这个二次函数的解析式是y =ax 2+bx +c ,把(1,0),(2,0)和(0,2)分别代入,得解方程组,得所以该函数的解析式是y =x 2-3x +2.故选D .)2.D (解析:二次函数的解析式为y =ax 2+bx +c ,把(1,-1),(2,-4),(0,4)分别代入表达式,得解方程组,得则二次函数的解析式为y =x 2-6x +4,所以它的对称轴是直线x =-=-=3.故选D .)3.y =-x 2+2x +(解析:根据题意,得解方程组,得所以该抛物线的解析式为y =-x 2+2x +.)4.-2(解析:把点(1,2)和(-1,-6)分别代入y =ax 2+bx +c (a ≠0),得①+②得2a +2c =-4,则a +c =-2.)5.C (解析:根据题意,x 1+x 2=-4,x 1x 2=-5,解得x 1=-5,x 2=1或x 1=1,x 2=-5,所以抛物线y =ax 2+bx +c 经过(-5,0),(1,0),(0,-5)三点,所以解得所以所求二次函数的表达式为y =x 2+4x -5.)6.y =x 2+x -(解析:∵对称轴为直线x =-1,且图象与x 轴交于A ,B 两点,AB =6,∴抛物线与x 轴交于(-4,0),(2,0),顶点的横坐标为-1.∵顶点在函数y =2x 的图象上,∴y =2×(-1)=-2,∴顶点坐标为(-1,-2),设二次函数的解析式为y =a (x +1)2-2,把(2,0)代入得0=9a -2,解得a =,∴y =(x +1)2-2=x 2+x -,∴这个二次函数的表达式为y =x 2+x -.故填y =x 2+x -.)7.解:(1)由已知得解得∴二次函数的解析式为y =2x 2+4x -6.(2)∵y =2x 2+4x -6=2(x +1)2-8,∴顶点坐标为(-1,-8).(3)由已知,得-8mn -10=2(m -2n )2+4(m -2n )-6,m 2+4n 2+2m -4n +2=0,(m +1)2+(2n -1)2=0,∴m =-1,n =.8.解:(1)根据题意,得解得∴所求的解析式为y=-x2+2x+2.(2)二次函数的图象如图所示.9.解:(1)若选择①:根据表格,可知抛物线的顶点坐标为(1,4),设抛物线的解析式为y=a(x-1)2+4,将点(0,3)代入,得a(0-1)2+4=3,解得a=-1,所以抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3;若选择②,设抛物线的解析式为y=ax2+bx+c,将(-1,0),(1,4),(3,0)分别代入得解得所以抛物线的解析式为y=-x2+2x+3;若选择③,由图象得到抛物线的顶点坐标为(1,4),且过(0,3),设抛物线的解析式为y=a(x-1)2+4,将(0,3)代入得a=-1,则抛物线的解析式为y=-(x-1)2+4=-x2+2x+3.(2)抛物线y=-x2+2x+3的性质:①对称轴为直线x=1,②当x=1时,函数有最大值,为4;③当x<1时,y随x的增大而增大.(答案不唯一) 10.解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴解得∴抛物线的解析式为y=x2-4x+3. (2)∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2.(3)如图所示,∵抛物线的顶点坐标为(2,-1),∴PP'=1,由题意知阴影部分的面积等于平行四边形A'APP'的面积,平行四边形A'APP'的面积为1×2=2,∴阴影部分的面积为2.本节课的重点是利用待定系数法列三元一次方程组求二次函数的表达式,所以解决问题的前提是会解三元一次方程组,所以提前要求学生对这一部分知识进行复习,就大大降低了本节课的难度,收到了非常好的效果.突破这一难点后,就让学生类比上节课的探究方法利用已知的三个点的坐标确定二次函数表达式.在解答过程中提醒学生对于表达式的选择,要具体问题具体分析,让学生自己总结出确定二次函数表达式的步骤和方法,为后面的“议一议”的一题多解做好充分的准备.没有精心设置问题的难度,使学生步步深入地探究出求二次函数表达式的方法和步骤,对于基础差的学生而言,直接解答有点吃力.课堂上注意讲课的节奏,尽量让中下游的学生跟上老师的步伐,多给学生自己练习的时间,让学生真正成为学习的主体.随堂练习(教材第45页)解:设函数表达式为y=ax2+bx+c,将(0,2),(1,0)和(-2,3)分别代入表达式,得解得所以二次函数表达式为y=-x2-x+2.习题2.7(教材第45页)1.解:设函数表达式为y=ax2+bx+c,将(1,3),(2,0)和(3,4)分别代入表达式,得解得所以二次函数表达式为y=x2-x+13.2.解法1:设函数表达式为y=ax2+bx+c,将(1,0),(3,0)和(2,3)分别代入表达式,得解得所以二次函数表达式为y=-3x2+12x-9.解法2:设函数表达式为y=a(x-1)(x-3),将(2,3)代入表达式,解得a=-3,所以二次函数表达式为y=-3(x-1)(x-3)=-3x2+12x-9.3.解:答案不唯一.如添加:C (-2,13).设函数表达式为y =ax 2+bx +c ,将(0,a ),(1,-2)和(-2,13)分别代入表达式,得解得所以二次函数表达式为y =x 2-4x +1.1.学生通过上节课的学习,已经掌握了利用待定系数法求二次函数表达式的方法,所以本节课可以利用类比的方法进行探究.2.课前做好三元一次方程组解法的复习是求三个未知系数进而确定二次函数表达式的关键.3.要学会对所给出的点的坐标特征进行分析,合理地设出表达式,能运用不同的解法求解二次函数的表达式,提高解决问题的能力.(2014·宁波中考)如图所示,已知二次函数y =ax 2+bx +c 的图象经过A (2,0),B (0,-1)和C (4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y =x +1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.〔解析〕(1)根据二次函数y =ax 2+bx +c 的图象经过A (2,0),B (0,-1)和C (4,5)三点,代入得出关于a ,b ,c 的三元一次方程组,求得a ,b ,c ,从而得出二次函数的解析式.(2)令y =0,解一元二次方程,求得x 的值,从而得出与x 轴的另一个交点坐标.(3)画出图象,再根据图象直接得出答案.解:(1)∵二次函数y =ax 2+bx +c 的图象经过A (2,0),B (0,-1)和C (4,5)三点,∴∴∴二次函数的解析式为y =x 2-x -1.(2)令y =0,得x 2-x -1=0,解得x 1=2,x 2=-1,∴点D的坐标为(-1,0).(3)图象如图所示.当一次函数的值大于二次函数的值时,x的取值范围是-1<x<4.[解题策略]本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x 轴的交点问题,是中档题,要熟练掌握.。

九年级数学下册2.3.2确定二次函数的表达式课件1新版北师大版

九年级数学下册2.3.2确定二次函数的表达式课件1新版北师大版

【例题】
【例2】已知一个二次函数的图象过(-1,10),(1,4),(2,7)三 点,求这个函数的表达式.
解析: 设所求的二次函数为y=ax2+bx+c,
由条件得:
a-b+c=10, a+b+c=4, 解方程组得: 4a+2b+c=7,
a=2, b=-3, c=5
因此,所求二次函数的表达式是
y=2x2-3x+5.
∴所求抛物线的表达式为
C
O
B
x
y
1 2 2 x x 1. 3 3
【议一议】
一个二次函数的图像经过A(0,-1),B(1, 2),C(2,1)三点,你能确定这个二次函 数的表达式吗?你有几种方法?与同伴进行 交流.
【议一议】
解析(一)设该抛物线的表达式为y=ax2+bx+c, 根据题意,得
3.(潼南·中考)如图,在平面直角坐标系中,四边形OABC是菱形, 点C的坐标为(4,0),∠AOC= 60°,垂直于x轴的直线l从y轴出发, 沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC 的两边分别交于点M,N(点M在点N的上方),若△OMN 的面积为S,直线l的运动时间为t 秒(0≤t≤4),则 能大致反映S与t的函数关系的图象是(
ห้องสมุดไป่ตู้
1.(衢州·中考)下列四个函数图象中,当x>0时,
y随x的增大而增大的是(
)
C
2.(莆田·中考)某同学用描点法画y=ax2+bx+c(a≠0)的图象时,列出
如下表格:
x y 0 3 1 0 2 2 3 0 4 3
经检查,发现只有一处数据计算错误,请你写出这个二次函数的表达 式 . y=x24x+3

青岛版九年级数学下册第五章《确定二次函数的表达式》公开课课件

青岛版九年级数学下册第五章《确定二次函数的表达式》公开课课件

通常选择顶点式
§ 已知图象与x轴的两个交点的横x1、x2,
x 通常选择交点式。 o
确定二次函数的表达式时,应该根据条件的特点, 恰当地选用一种函数表达式。
封面
封面 例题
例题选讲
例2
已知点A(-1,6)、B(2,3)和C(2,7), 求经过这三点的二次函数表达式。
解: 设所求的二次函数为 y=ax2+bx+c
将A、B、C三点坐标代入得:
a-b+c=6
16a+4b+c=6
9a+3b+c=2
解得:
a=1, b=-3,
c=2
所以:这个二次函数表达式为:
y ox
封面 练习
例题选讲
例4
有一个抛物线形的立交桥拱,这个桥拱的最大高度 为16m,跨度为40m.现把它的图形放在坐标系里 (如图所示),求抛物线的表达式.
解: 设抛物线为y=a(x-20)2+16
根据题意可知 ∵ 点(0,0)在抛物线上,
评价
∴ 所求抛物线表达式为
通过利用条件中的顶 点和过原点选用顶点 式求解,方法比较灵 活
东平县初中数学
小组探究
1、已知二次函数对称轴为x=2,且过(3,2)、 (-1,10)两点,求二次函数2、已知二次函数极值为2,且过(3,1)、 (-1,1)两点,求二次函数的表达式。
解:设y=a(x-h)2+2
例题选讲
例 4 有一个抛物线形的立交桥拱,这个桥拱的最大高度
封面 练习
用待定系数法求函数表达式的一般步骤:
1 、设出适合的函数表达式; 2 、把已知条件代入函数表达式中,得到关于 待定系数的方程或方程组; 3、 解方程(组)求出待定系数的值; 4、 写出一般表达式。

《确定二次函数的表达式》(优秀教案)

《确定二次函数的表达式》(优秀教案)
情感态度价值观:
4.逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考的能力、勇于创新的精神,以及良好的学习习惯。
重点
难点
1.学会用特定系数法确定二次函数的表达式。
2.灵活选用三种表达形式来确定二次函数的表达式,解决实际问题。
关键
问题
1.掌握二次函数解析式的三种不同表达形式。
2.学生能够在小组内畅所欲言,进行有序有效的交流,并在同伴交流时认真倾听,做好记录;
3.学科长组织组员围绕任务目标热烈讨论,及时进行修改,统一认识,做好展示准备
展示交流
规范评价
15---20
min
创设展示交流情境
1.每个小组上台,按问题顺序进行展示交流,解决问题;
2.要求学生规范上台讲解展示的语言,强调生生互动,激发学生质疑的热情;
《确定二次函数的表达式》课堂学习过程设计
上课
年级
九年级
学科:数学
主题
确定二次函数的表达式
指导教师
学生主持
第几
课时
1
课型
问题综合解决评价课
学习日期
学习
目标
知识技能:
1.掌握二次函数解析式的三种不同表达形式。
2.学会用特定系数法确定二次函数的表达式。
过程方法:
3.经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识。
1.学生主持呈现学习目标,学生展读学习目标;
2.学生主持呈现学生生成问题;
3.希望学生能积极进入状态,准备讨论问题。
自主学习
合作讨论
8---12
min
创设讨论
学习情境
1.教师巡回检查指导;

北师大版九年级数学下册课件 2.3 第2课时 由三点确定二次函数的表达式

北师大版九年级数学下册课件 2.3 第2课时 由三点确定二次函数的表达式
9a+3b+1=10,
解这个方程组,得
3
a , b 3.
2
2
3 2 3
∴所求的二次函数的表达式是 y 2 x 2 x 1.
五、当堂达标检测
6.若抛物线经过(0,1),(一1,0),(1,0)三点,求此抛物线的表达式.
解: 由抛物线与x轴的交点坐标,则可设交点式y=a(x+1)(x-1).
知识要点
一般式法求二次函数表达式的方法
这种已知三点求二次函数表达式的方法叫做一般式法.
其步骤是:
①设函数表达式为y=ax2+bx+c;
②代入后得到一个三元一次方程组;
③解方程组得到a,b,c的值;
④把待定系数用数字换掉,写出函数表达式.
二、自主合作,探究新知
典型例题
例1:已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个
(-2,13),求这个二次函数的表达式.
想一想:除了上节课的解法,还有没有其他解法呢?
分析:因为二次函数的图象与y轴交点的纵坐标为1,即函数图象过点
(0,1),因此知道三个点的坐标,设y=ax2+bx+c,能不能确定这个
二次函数的表达式呢?
将三个点代入y=
ax2+bx+c后,会得
到一个什么样的方
程组呢?
∴ 4=a+b+c
解得 b=-3,
你会解三元一
c=5.
7=4a+2b+c,
次方程组吗?
2
∴所求二次函数表达式为 y=2x -3x+5.
2
3 31

y 2 x 3x 5 2 x ,

北师大版数学九年级下册2.3.2《确定二次函数的表达式》课件

北师大版数学九年级下册2.3.2《确定二次函数的表达式》课件
14
相信自己,推荐自我!
15
达标检测,反馈提高
1.已知二次函数的图象顶点是(-1,2),且 经过(1,-3),那么这个二次函数的解析式 是_______________.
2.已知二次函数y=x2+px+q的图象的顶点 是(5,-2),那么这个二次函数解析式是 _______________.
3.二次函数y=mx2+2x+m-4m2的图象过原点, 则此抛物线的顶点坐标是______.
顶点式
y=a(x-h)2+k (a≠0) y=ax 2+bx+c (a≠0) 一般式
y=a(x-x1)(x-x2)(a≠0) 交点式
7
例题精讲
例1:已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
解: 设所求的二次函数为 y=ax2+bx+c
a-b+c=10
y
所以: 解得:
a(0+1)(0-1)=1 a= -1
x o
故所求的抛物线解析式为 y=- (x+1)(x-1)
即:y=-x2+1
10
慧眼识金,感悟新知:
选择最优解法,求下列二次函数解析式:
1、已知抛物线经过三点A(0,3),B(-1,0) C(1 ,-5),求二次函数的表达式.
2、已知抛物线其顶点坐标为(1,4),且该图像经过点 A(4,6),求二次函数的表达式.
16
达标检测,反馈提高
4.链接中考:(2014•宁波)如图,已知二次
函数y=ax2+bx+c的图象过A(2,0),B(0,
﹣1)和C(4,5)三点. (1)求二次函数的解析式; (2)设二次函数的图象与x轴的另一个交点 为D,求点D的坐标; (3)在同一坐标系中画出直线y=x+1,并写 出当x在什么范围内时,一次函数的值大于二 次函数的值.

2022--2023学年北师大版九年级数学下册《2-3确定二次函数的表达式》同步达标测试题(附答案)

2022--2023学年北师大版九年级数学下册《2-3确定二次函数的表达式》同步达标测试题(附答案)

2022--2023学年北师大版九年级数学下册《2.3确定二次函数的表达式》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.将二次函数y=x2﹣4x+8转化为y=a(x﹣m)2+k的形式,其结果为()A.y=(x﹣2)2+4B.y=(x+4)2+4C.y=(x﹣4)2+8D.y=(x﹣2)2﹣4 2.一抛物线的形状、开口方向与抛物线相同,顶点为(﹣2,1),则此抛物线的解析式为()A.B.C.D.3.已知二次函数的图象经过(0,0),(3,0),(1,﹣4)三点,则该函数的解析式为()A.y=x2﹣3x B.y=2x2﹣3x C.y=2x2﹣6x D.y=x2﹣6x4.已知抛物线y=x2+bx+c的顶点坐标为(1,3),则抛物线对应的函数解析式为()A.y=x2﹣2x+4B.y=x2﹣2x﹣3C.y=﹣x2+2x+1D.y=x2﹣2x+1 5.已知抛物线的顶点坐标是(2,﹣1),且与y轴交于点(0,3),这个抛物线的表达式是()A.y=x²﹣4x+3B.y=x²+4x+3C.y=x²+4x﹣1D.y=x²﹣4x﹣1 6.如图,若抛物线y=ax2﹣2x+a2﹣1经过原点,则抛物线的解析式为()A.y=﹣x2﹣2x B.y=x2﹣2xC.y=﹣x2﹣2x+1D.y=﹣x2﹣2x或y=x2﹣2x7.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=2;当x=5时,y=6,以下判断正确的是()A.若h=2,则a<0B.若h=4,则a>0C.若h=6,则a<0D.若h=8,则a>08.已知某抛物线与二次函数y=5x2的图象的开口大小相同,开口方向相反,且顶点坐标为(﹣1,2021),则该抛物线对应的函数表达式为()A.y=﹣5(x﹣1)2+2021B.y=5(x﹣1)2+2021C.y=﹣5(x+1)2+2021D.y=5(x+1)2+2021二.填空题(共8小题,满分32分)9.小聪在画一个二次函数的图象时,列出了下面几组y与x的对应值:x…012345…y…50﹣3﹣4﹣30…该二次函数的解析式是.10.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线的表达式是.11.二次函数y=x2+bx+c的图象经过点(1,0)和(3,0),则其函数解析式为.12.已知某二次函数y=x2+bx+c过点A(1,0),B(﹣3,0),则此二次函数的关系式是,若在此抛物线上存在一点P,使△ABP面积为8,则点P的坐标是.13.已知抛物线的顶点在原点,对称轴为y轴,且经过点(﹣1,﹣2),则抛物线的表达式为.14.二次函数与y轴的交点到原点的距离为8,它的顶点坐标为(﹣1,2),那么它的解析式为.15.若抛物线y=ax2+bx+c(a≠0)与抛物线y=2x2﹣4x﹣1的顶点重合,且与y轴的交点的坐标为(0,1),则抛物线y=ax2+bx+c(a≠0)的表达式是.16.已知:二次函数y=ax2+bx+c中的x、y满足下表:x﹣2﹣11347y﹣5040m﹣36(1)m的值为;(2)此函数的解析式为;(3)若0<x<4时,则y的取值范围为.三.解答题(共6小题,满分56分)17.已知抛物线y=x2+bx+c的图象经过A(﹣1,12)、B(0,5).(1)求抛物线解析式;(2)试判断该二次函数的图象是否经过点(2,3).18.已知抛物线y=ax2+bx﹣3(a,b是常数,a≠0)经过A(﹣1,﹣2),B(1,﹣6).(1)求抛物线y=ax2+bx﹣3的函数解析式;(2)抛物线有两点M(2,y1)、N(m,y2),当y1<y2时,求m的取值范围.19.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+4(a≠0)经过点A(﹣2,0)和点B(4,0).(1)求这条抛物线所对应的函数解析式;(2)点P为该抛物线上一点(不与点C重合),直线CP将△ABC的面积分成2:1两部分,求点P的坐标.20.抛物线的顶点坐标为(2,﹣1),抛物线又经过点(1,0).(1)求抛物线的解析式;(2)在图中画出这条抛物线;(3)根据图象回答,当y>3时,自变量x的取值范围.21.如图,抛物线y=ax2+2ax+c经过点A(2,0),B(﹣2,4).(1)求抛物线的解析式;(2)若函数y=ax2+2ax+c在m≤x≤m+2时有最大值为4,求m的值;(3)点M在直线AB上方的抛物线上运动,当△ABM的面积最大时,求点M的坐标.22.如图,已知抛物线过点O(0,0),A(5,﹣5),且它的对称轴为直线x=2.(1)求此抛物线的表达式;(2)若点B是抛物线对称轴上的一点,且点B在第四象限.①当△OAB的面积为10时,求B的坐标;②点P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.参考答案一.选择题(共8小题,满分32分)1.解:y=x2﹣4x+8=x2﹣4x+4+4=(x﹣2)2+4,故选:A.2.解:∵抛物线的形状、开口方向与抛物线相同,∴a=,∵顶点为(﹣2,1),∴抛物线解析式为y=(x+2)2+1.故选:C.3.解:设这个二次函数的解析式是y=ax(x﹣3)(a≠0),把(1,﹣4)代入得﹣4=﹣2a,解得a=2;所以该函数的解析式为:y=2x(x﹣3)=2x2﹣6x.故选:C.4.解:∵抛物线y=x2+bx+c的顶点坐标为(1,3),∴抛物线解析式为y=(x﹣1)2+3,即y=x2﹣2x+4.故选:A.5.解:∵抛物线的顶点坐标为(2,﹣1)∴设抛物线的解析式为y=a(x﹣2)2﹣1(a≠0),把(0,3)代入得:4a﹣1=3,解得,a=1.所以,这条抛物线的解析式为:y=(x﹣2)2﹣1=x2﹣4x+3.故选:A.6.解:把(0,0)代入y=ax2﹣2x+a2﹣1得,0=a2﹣1,∴a=±1,∵抛物线开口向下,∴抛物线的解析式为y=﹣x2﹣2x,故选:A.7.解:当x=1时,y=2;当x=5时,y=6;代入函数式得:,∴a(5﹣h)2﹣a(1﹣h)2=4,整理得:a(6﹣2h)=1,若h=2,则a=,故A错误;若h=4,则a=﹣,故B错误;若h=6,则a=﹣,故C正确;若h=8,则a=﹣,故D错误;故选:C.8.解:∵抛物线的顶点坐标为(﹣1,2021),∴抛物线的解析式为y=a(x+1)2+2021,∵抛物线y=a(x+1)2+2021二次函数y=5x2的图象的开口大小相同,开口方向相反,∴a=﹣5,∴抛物线的解析式为y=﹣5(x+1)2+2021.故选:C.二.填空题(共8小题,满分32分)9.解:由表格数据结合二次函数图象对称性可得图象顶点为(3,﹣4),设二次函数的表达式为y=a(x﹣3)2﹣4(a≠0),将(1,0)代入得4a﹣4=0,解得a=1,∴该二次函数的表达式为y=(x﹣3)2﹣4(或y=x2﹣6x+5).10.解:设所求的抛物线的关系式为y=a(x﹣h)2+k,∵顶点为(﹣6,0),∴h=﹣6,k=0,又∵开口向下,形状与函数y=x2的图象相同,∴a=﹣,∴抛物线的关系式为:y=﹣(x+6)2,11.解:∵二次函数y=x2+bx+c的图象经过点(1,0)和(3,0),∴二次函数为y=(x﹣1)(x﹣3)=x2﹣4x+3,故答案为:y=x2﹣4x+3.12.解:将点A(1,0),B(﹣3,0)代入y=x2+bx+c中,可得,解得,∴y=x2+2x﹣3,设P(m,m2+2m﹣3),∵AB=4,∴S△ABP=×AB×y P=×4×|m2+2m﹣3|=8,∴|m2+2m﹣3|=4,∴m2+2m﹣3=4或m2+2m﹣3=﹣4,解得m=﹣1±2或m=﹣1,∴P(﹣1+2,4)或P(﹣1﹣2,4)或P(﹣1,﹣4),故答案为:y=x2+2x﹣3;(﹣1+2,4)或(﹣1﹣2,4)或(﹣1,﹣4).13.解:根据题意设抛物线解析式为y=ax2,将x=﹣1,y=﹣2代入得:﹣2=a,则抛物线解析式为y=﹣2x2.故答案为:y=﹣2x2.14.解:∵二次函数的图象顶点坐标为(﹣1,2),∴设这个二次函数的解析式y=a(x+1)2+2(a≠0),∵二次函数的图象与y轴的交点到原点的距离是8,∴交点坐标为(0,8)或(0,﹣8),把(0,8)代入y=a(x+1)2+2,得8=a+2,解得a=6,则这个二次函数的解析式y=6(x+1)2+2;把(0,﹣8)代入y=a(x+1)2+2,得﹣8=a+2,解得a=﹣10,则这个二次函数的解析式y=﹣10(x+1)2+2;故答案为:y=6(x+1)2+2或y=﹣10(x+1)2+2.15.解:∵y=2x2﹣4x﹣1=2(x﹣1)2﹣3,∴抛物线y=2x2﹣4x﹣1的顶点坐标为(1,﹣3),∵抛物线y=ax2+bx+c与抛物线y=2x2﹣4x﹣1的顶点重合,∴抛物线y=ax2+bx+c的顶点坐标为(1,﹣3),∴设此抛物线为y=a(x﹣1)2﹣3,∵与y轴的交点的坐标为(0,1),∴1=a﹣3,解得a=4,∴此抛物线为y=4(x﹣1)2﹣3=4x2﹣8x+1,故答案为:y=4x2﹣8x+1.16.解:(1)由图中表格可知,二次函数y=ax2+bx+c的图象关于直线x=1对称,且(4,m)与(﹣2,﹣5)关于直线x=1对称,∴m=﹣5;故答案为:﹣5;(2)由二次函数y=ax2+bx+c的图象过(﹣1,0),(3,0),设函数的解析式为y=a(x+1)(x﹣3),将(1,4)代入得:4=a×2×(﹣2),解得a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,故答案为:y=﹣x2+2x+3;(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=1时,y取最大值4,∵1﹣0<4﹣1,∴x=4时,y取最小值﹣(4﹣1)2+4=﹣5,∴0<x<4时,y的取值范围为是﹣5<y≤4;故答案为:﹣5<y≤4.三.解答题(共6小题,满分56分)17.解:(1)∵抛物线y=x2+bx+c的图象经过A(﹣1,12),B(0,5).∴,解得,∴二次函数解析式为y=x2﹣6x+5;(2)当x=2时,y=x2﹣6x+5=4﹣12+5=﹣3≠3,∴该二次函数的图象不经过点(2,3).18.解:(1)把A(﹣1,﹣2),B(1,﹣6)代入y=ax2+bx﹣3得,解得,∴抛物线的关系式为y=﹣x2﹣2x﹣3;(2)∵y=﹣x2﹣2x﹣3,∴抛物线开口向下,对称轴直线x=﹣=﹣1,∴由图取抛物线上点Q,使Q与N关于对称轴x=﹣1对称,∴点M(2,y1)关于对称轴x=﹣1的对称点为(﹣4,y1),又∵N(m,y2)在抛物线图象上的点,且y1<y2,∴﹣4<m<2.19.解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),则y=a(x+2)(x﹣4)=ax2﹣2ax﹣8a,即﹣8a=4,解得a=﹣,故抛物线的表达式为y=﹣x2+x+4;(2)由点A、B的坐标知,OB=2OA,故CO将△ABC的面积分成2:1两部分,此时,点P不在抛物线上;如图1,当BH=AB=2时,CH将△ABC的面积分成2:1两部分,即点H的坐标为(2,0),则CH和抛物线的交点即为点P,由点C、H的坐标得,直线CH的表达式为y=﹣2x+4,联立,解得或,故点P的坐标为(6,﹣8).20.解:(1)设抛物线的解析式为y=a(x﹣2)2﹣1,将点(1,0)代入,得a﹣1=0.解得a=1,∴抛物线的解析式为y=(x﹣2)2﹣1,(2)∵y=(x﹣2)2﹣1=x2﹣4x+3,∴抛物线与y轴的交点为(0,3),其关于对称轴的对称点为(4,3),令y=0,则x2﹣4x+3=0,解得x=1或3,∴抛物线与x轴的交点为(1,0),(3,0),画出函数图象如下:(3)由函数图象知,当y>3时,自变量x的取值范围是x<0或x>4.21.解:(1)∵抛物线y=ax2+2ax+c经过点A(2,0),B(﹣2,4),∴,解得,∴抛物线的解析式为y=﹣x2﹣x+4;(2)∵y=﹣x2﹣x+4,∴抛物线开口向下,对称轴x=﹣=﹣1,∵m≤x≤m+2时,y有最大值4,∴当y=4时,有﹣x2﹣x+4=4,∴x=0或x=﹣2,①在x=﹣1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值4,②在对称轴x=﹣1右侧,y随x最大而减小,∴x=m=0时,y有最大值4;综上所述:m=﹣4或m=0;(3)过点M作MG∥y轴交直线AB于点G,设直线AB的解析式为y=kx+b,∴,解得,∴y=﹣x+2,设M(m,﹣m2﹣m+4),则G(m,﹣m+2),∴MG=﹣m2+2,∴S△ABM=×4×(﹣m2+2)=﹣m2+4,∴当m=0时,△ABM的面积最大,此时M(0,4).22.解:(1)∵抛物线过点O(0,0),A(5,﹣5),且它的对称轴为x=2,∴抛物线与x轴的另一个交点坐标为(4,0),设抛物线解析式为y=ax(x﹣4),把A(5,﹣5)代入,得5a=﹣5,解得:a=﹣1,∴y=﹣x(x﹣4)=﹣x2+4x,故此抛物线的解析式为y=﹣x2+4x;(2)①∵点B是抛物线对称轴上的一点,且点B在第四象限,∴设B(2,m)(m<0),设直线OA的解析式为y=kx,解得:k=﹣1,∴直线OA的解析式为y=﹣x,设直线OA与抛物线对称轴交于点H,则H(2,﹣2),∴BH=﹣2﹣m,∵S△OAB=10,∴×(﹣2﹣m)×5=10,解得:m=﹣6,∴点B的坐标为(2,﹣6);②设直线AB的解析式为y=cx+d,把A(5,﹣5),B(2,﹣6)代入得:,,解得:,∴直线AB的解析式为y=x﹣,如图2,当P A﹣PB的值最大时,A、B、P在同一条直线上,∵P是抛物线上的动点,∴,解得:或,∴P(﹣,﹣).∵AB==,∴P A﹣PB的最大值为.。

初三数学下册确定二次函数的表达式课件(新版)青岛版

初三数学下册确定二次函数的表达式课件(新版)青岛版

•由条件得: •点M( 0,1 )在抛物线上
•x •o
•所以:a(0+1)(0-1)=1
•得: a=-1
•故所求的抛物线表达式为 1•即)(:x-y1=)-x2+1
y=- (x+
•封 •例
小组探究
1、已知二次函数对称轴为x=2,且过(3,2) 、(-1,10)两点,求二次函数的表达式。
•解:设y=a(x-2)2-k
, •根据题意可知
•抛物线经过(0,0),(20,16)和(40,0)三点
•可得方程组
•评价•通过利用给定的条

•列出a、b、c的三元 •一次方程组,求出a 、
•b、c的值,从而确 定 •函数的解•析封式.•练
•例 题 选 讲
•例 4 •有一个抛物线形的立交桥拱,这个桥拱的最大高度
•为16m,跨度为40m.现把它的图形放在坐标系里 •(如图所示),求抛物线的表达式.
• 2、已知二次函数极值为2,且过(3,1)、 • (-1,1)两点,求二次函数的表达式。
•解:设y=a(x-h)2+2
•例 题 选 讲
•例 •有一个抛物线形的立交桥拱,这个桥拱的最大高度
4
•为16m,跨度为40m.现把它的图形放在坐标系里
•(如图所示),求抛物线的表达式.
•解:•设抛物线的表达式为y=ax2+bx+c
(a≠0)
•例 题 选 讲
•例 1•已知抛物线的顶点为(-1,-6),与轴交点为
•(2,3)求抛物线的表达式?
•解 •因为二次函数图像的顶点坐标是(-1,-6),
: •所以,设所求的二次函数为 y=a(x+1)2-6
•由条件得 •点( 2 , 3 )在抛物线上,

青岛版九年级数学下册确定二次函数的表达式课件

青岛版九年级数学下册确定二次函数的表达式课件
5.5确定二次函数 的表达式
创设情境
如图是一名学生推铅球时,铅球行进高度y(m) 与水平距离x(m)的图象,你能求出其表达式吗?
知识链接
1、y=kx (k≠0)
y= ቤተ መጻሕፍቲ ባይዱ(k x
≠ 0)
系数 待定
k 需 找一个点
确定 一个 方程
2、y=kx+b
找 两个点
(k≠0) 两系数 k、b 需
两 个方
待定

3、y = ax2+bx+c (a≠0)
三 个系数 找 三个点
需待定
三个方程
待定系数法
解一元 一次方 程
解二元一 次方程组
解三元 一次方 程组
学习目标
1、会利用(
的表达式
2、会选择( 数表达式
一般式 顶点式
)确定二次函数 )的方法求二次函
数学知识我先知
自学课本例2
自学指点: 1、怎样求二次函数解析式? 2、这种方法的步骤: 3、你认为这种方法的难点是?
二次函数y=ax2+bx+c的图象过点 A(1,0),B(2,0)两点,且经过点(3,4),求这 个二次函数的解析式。
温故知新
1.二次函数表达式的一般情势是_y_=_a_x_2+_b_x_+_c_(_a_≠__0_)_,
b 4ac b2
顶点坐标是____(-_2_a__, __4_a____)___。 2.二次函数表达式的顶点式是_y_=_a_(_x_-_h_)_2_+_k___。
_____________。
学以致用
如图是一名学生推铅球时,铅球行进高度y(m) 与水平距离x(m)的图象,你能求出其表达式吗?
解:由图像知,抛物线的顶点为(4,3),过点(10,0) 可设抛物线解析式为 y=(a x-4)2+3 把(10,0)代入上式,得

北师大版九年级数学下册:第二章 2.3.1《确定二次函数的表达式》精品教案

北师大版九年级数学下册:第二章 2.3.1《确定二次函数的表达式》精品教案

北师大版九年级数学下册:第二章 2.3.1《确定二次函数的表达式》精品教案一. 教材分析《确定二次函数的表达式》是北师大版九年级数学下册第二章第三节的第一课时内容。

本节课的主要目的是让学生掌握二次函数的解析式,并能够根据实际问题确定二次函数的系数。

教材通过简单的实例引导学生探究二次函数的解析式,培养学生的探究能力和数学思维。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,对函数有了初步的认识。

但是,对于二次函数的理解还需要进一步的引导和培养。

在导入环节,我会利用学生已有的知识基础,通过一次函数的图像引导学生思考二次函数的特点,激发学生的学习兴趣。

三. 教学目标1.理解二次函数的解析式的概念,掌握二次函数的解析式的形式。

2.能够根据实际问题确定二次函数的系数。

3.培养学生的探究能力和数学思维。

四. 教学重难点1.重点:二次函数的解析式的概念和形式。

2.难点:如何根据实际问题确定二次函数的系数。

五. 教学方法1.引导法:通过问题的引导,让学生主动探究二次函数的解析式。

2.实例分析法:通过具体的实例,让学生理解二次函数的解析式的应用。

六. 教学准备1.教学课件:制作相关的教学课件,帮助学生直观地理解二次函数的解析式。

2.实例素材:准备一些实际的例子,用于引导学生分析二次函数的解析式。

七. 教学过程1.导入(5分钟)通过展示一次函数的图像,引导学生思考二次函数的特点。

提出问题:“如果我们把一次函数的图像旋转90度,会得到怎样的图像?”让学生思考二次函数的图像特征。

2.呈现(10分钟)通过课件展示二次函数的一般形式:y=ax^2+bx+c(a≠0)。

解释二次函数的各个系数的含义,引导学生理解二次函数的解析式。

3.操练(10分钟)让学生分组讨论,每组选取一个实际的例子,尝试确定二次函数的解析式。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)请各组学生汇报他们的讨论结果,教师点评并总结。

九年级数学下册确定二次函数表达式

九年级数学下册确定二次函数表达式

第二章二次函数《确定二次函数的表达式(第1课时)》一、指导思想与理论依据《数学课程标准》中指出:教师教学应该以学生的认知发展水平和已有的经验为基础,会用已有的知识经验,解决新情境中的数学问题。

教学活动是师生积极参与、交往互动、共同发展的过程,数学教学活动应调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;《课标》中的要求:会用待定系数法确定二次函数表达式,掌握二次函数的应用,这一节内容是为应用做准备的。

二、背景分析教材内容分析本节内容是义务教育课程标准实验教科书数学(北师大版)九年级下册第二章第3节《确定二次函数的表达式》的第1课时,本节课是在学习二次函数的表达式和图象性质的基础上展现,目的为二次函数的实际应用奠基,是本章学习的关键点。

在中考题中,一般情况下最后一道大题的第一小问就是求二次函数表达式的题目,所以要求90%以上的学生掌握本节知识。

本节课既要承接上一节课的数形结合的数学思想,又要能够根据实际问题抽象数学模型,用待定系数法求解二次函数表达式,学生能够根据条件灵活应用二次函数的两种形式:一般式,顶点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程.因此本节课重点和难点都确定为:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.学生学情分析我校是垣曲县示范初中,大部分学生家长对孩子的学习比较重视,学生学习积极性高,数学基础相对比较好,部分学生思维灵活。

学生已经学习了二次函数的一般式和顶点式表达式,二次函数的图象和性质,尤其对特殊类型的二次函数图象已有充分的认识。

以前学生已经学习了用待定系数法确定一次函数和反比例函数的关系式,因此本节课学生用类比的方法学习待定系数法确定二次函数的表达式应该并不陌生和困难。

因此,在上本节课之前,我对我所带九年级两个班共计96个学生进行了一次相关知识测试。

测试题:1、已知一次函数图象过(0,3)(1,5),求该函数的表达式;2、二次函数y=ax2+bx+c图象的对称轴为y轴,则有。

二次函数的性质的市公开课获奖教案省名师优质课赛课一等奖教案

二次函数的性质的市公开课获奖教案省名师优质课赛课一等奖教案

二次函数的性质的教案一、教学目标1. 理解二次函数的定义和基本性质。

2. 掌握二次函数的图像、顶点、轴对称、判别式和零点。

3. 能够应用二次函数的性质解决实际问题。

二、教学重点1. 二次函数的基本性质。

2. 二次函数的图像和顶点。

3. 二次函数的轴对称、判别式和零点。

三、教学难点1. 解决实际问题时如何应用二次函数的性质。

2. 对二次函数图像和顶点的理解和应用。

四、教学方法1. 讲授法:通过讲解二次函数的定义和基本性质来引导学生理解。

2. 演示法:通过具体的案例演示二次函数的图像、顶点、轴对称、判别式和零点的求解过程。

3. 练习法:通过大量的练习题巩固学生对二次函数性质的理解和应用能力。

五、教学过程1. 引入:老师可以通过现实生活中的例子引入二次函数的概念,如抛物线的形状、物体的自由落体等,引发学生对二次函数的兴趣。

2. 讲解二次函数的定义和基本性质:首先介绍二次函数的定义:二次函数是形如f(x) = ax^2 + bx + c 的函数,其中a、b、c是实数且a不等于0。

然后讲解二次函数的基本性质:(1) 图像:二次函数的图像是一个抛物线,其开口方向由二次项的系数a 的正负号决定。

- 当a大于0时,抛物线开口向上;- 当a小于0时,抛物线开口向下。

(2) 顶点:二次函数的顶点坐标为(-b/2a, f(-b/2a))。

(3) 轴对称:二次函数的图像的轴对称轴是通过顶点的竖直线x = -b/2a。

(4) 判别式:二次函数的判别式是D = b^2 - 4ac,通过判别式可以判断二次函数的零点情况。

- 当D大于0时,二次函数有两个不相等的实数零点;- 当D等于0时,二次函数有一个重根;- 当D小于0时,二次函数无实数零点。

(5) 零点:二次函数的实数零点可以通过求解方程f(x) = 0得到。

3. 演示案例:选择几个典型的案例进行演示,如:(1) f(x) = x^2 - 3x + 2的图像和顶点;(2) f(x) = -2x^2 + 5x - 3的图像和顶点;(3) f(x) = 3x^2 - 6x + 3的轴对称轴和判别式。

北师大数学九年级下册第二章-确定二次函数的表达式(含解析)

北师大数学九年级下册第二章-确定二次函数的表达式(含解析)

第02讲_确定二次函数的表达式知识图谱二次函数解析式的求法知识精讲 一般式 ()20y ax bx c a =++≠已知任意3点坐标,可用一般式求解二次函数解析式待定系数法已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,求a b c、、的值解:把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,顶点式 ()2y a x h k =-+()0a ≠已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式顶点式求解析式 一抛物线和y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),求其解析式解:∵两条抛物线形状与开口方向相同,∴a =﹣2,又∵顶点坐标是(﹣2,1),∴y =﹣2(x +2)2+1易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+三.二次函数的两根式两根式 1.已知抛物线与x 轴的两个交点坐标,可用两根式求解析式; 2. 已知抛物线经过两点,且这两点的纵坐标相等时,可在两根式的基础上求解析式两根式求解析式 已知抛物线y =ax 2+bx +c 过点A (-1,1),B (3,1),3(2,)2C - 求解析式解:设抛物线的解析式为y =a (x +1)(x -3)+1把3(2,)2c -代入解析式,求出a 即可 易错点:(1)任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示(2)二次函数解析式的这三种形式可以互化三点剖析一.考点:二次函数解析式的求法.二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.三.易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+.待定系数法例题1、 已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,那么a b c 、、的值分别是( )A.164a b c =-=-=,,B.164a b c ==-=-,,C.164a b c =-=-=-,,D.164a b c ==-=,,【答案】 D【解析】 把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,故答案为D 选项.例题2、 已知二次函数的图象经过(0,0)(-1,-1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.【答案】 (1)y =4x 2+5x(2)(58-,2516-). 【解析】 (1)设所求二次函数的解析式为y =ax 2+bx +c (a≠0),根据题意,得019c a b c a b c =⎧⎪-+=-⎨⎪++=⎩,解得450a b c =⎧⎪=⎨⎪=⎩,∴所求二次函数的解析式为y =4x 2+5x .(2)由22525454()816y x x x x =+=+-, ∴顶点坐标为(58-,2516-). 例题3、 已知抛物线2y x bx c =-++经过点A (3,0),B (-1,0).(1)求抛物线的解析式;(2)求抛物线的对称轴.【答案】 (1)y=-x 2+2x+3(2)x=1【解析】 暂无解析随练1、 已知二次函数的图像经过点()1,5--,()0,4-和()1,1,则这个二次函数的解析式为( ) A.2634y x x =-++ B.2234y x x =-+- C.224y x x =+- D.2234y x x =+-【答案】 D【解析】 由待定系数法可求得2234y x x =+-.随练2、 已知一个二次函数过()0,0,()1,11-,()1,9三点,求二次函数的解析式.【答案】 210y x x =-【解析】 设二次函数的解析式为2y ax bx c =++(0a ≠),因为抛物线经过点()0,0,()1,11-,()1,9,所以0119c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得1010a b c =⎧⎪=-⎨⎪=⎩,所以二次函数解析式为210y x x =-.顶点式例题1、 函数21212y x x =++写成y =a (x -h )2+k 的形式是( ) A.21(1)22y x =-+ B.211(1)22y x =-+ C.21(1)32y x =-- D.21(2)12y x =+- 【答案】 D【解析】 22211121(44)21(2)1222y x x x x x =++=++-+=+-. 例题2、 二次函数的顶点为(﹣2,1),且过点(2,7),则二次函数的解析式为_____________.【答案】 y=23(x 2)18++ 【解析】 设抛物线解析式为y=a (x+2)2+1,把(2,7)代入得a•(2+2)2+1=7,解得a=38, 所以抛物线解析式为y=38(x+2)2+1。

北师大版九年级数学下册2.3确定二次函数的表达式PPT优秀课件

北师大版九年级数学下册2.3确定二次函数的表达式PPT优秀课件

北师大版九年级数学下册2.3-确定二次函数的表达式 PPT优
【变式二】(变换问法)过点A(1,0),B(3,0),C(-1,2)三点的抛物线的顶点坐标是 ( )
D
【变式二】(变换问法)过点A(1,0),B(3,0),C(-
感谢观看,欢迎指导!
善良、淳朴、真诚。三婶买了老宅并把钥匙交给了我们,体现了她的
y=x2+2x(答案不唯一)
y=-2(x+2)2+1
2.写出经过点(0,0),(-2,0)的一个二次函数的表达y
知识点一 由顶点式求二次函数表达式(P43随堂练习T1拓展)【典例1】(2019·汕头潮阳区一模)若二次函数图象的顶点坐标是(2,1),且经过点(1,-2),求此二次函数的表达式.
知识点一 由顶点式求二次函数表达式(P43随堂练习T1拓展)
【母题变式】 【变式一】(变换条件)根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的表达式为 ( )
A
【母题变式】A 北师大版九年级数学下册2.3-确定二次函数
x

-1
0
1
2

y

-1
-
-2
-

x…-1012…y…-1- -2- …北师大版九年级
D
【题组训练】 D北师大版九年级数学下册2.3-确定二次函数的
★2.若二次函数的图象经过(0,3),(-2,-5),(1,4)三点,则它的表达式为 世纪金榜导学号( )A.y=x2+6x+3 B.y=-3x2-2x+3C.y=2x2+8x+3 D.y=-x2+2x+3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档