高数下期末模拟试卷

合集下载

高等数学下期末试题七套附答案

高等数学下期末试题七套附答案

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程xyz =(1,0,1)-处的dz =( ) A.dx dy +B.dx +D.dx(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin)()yLxy x dx x e dy++-⎰,其中L为摆线sin1cosx t ty t=-⎧⎨=-⎩从点(0,0)O到(,2)Aπ的一段弧6、求微分方程xxy y xe'+=满足11xy==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面z=与上半球面z=(10)'2、(1)判别级数111(1)3nnnn∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x∈-求幂级数1nnnx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z=的定义域为;(2)已知函数xyz e=,则在(2,1)处的全微分dz=;(3)交换积分次序,ln10(,)e xdx f x y dy⎰⎰=;(4)已知L是抛物线2y x=上点(0,0)O与点(1,1)B之间的一段弧,则=⎰;(5)已知微分方程20y y y'''-+=,则其通解为.二.选择题(每空3分,共15分)(1)设直线L为30x y zx y z++=⎧⎨--=⎩,平面π为10x y z--+=,则L与π的夹角为();A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a-=确定,则zx∂=∂();A.2yzxy z- B. 2yzz xy- C. 2xzxy z- D. 2xyz xy-(3)微分方程256xy y y xe'''-+=的特解y*的形式为y*=();A.2()xax b e+ B.2()xax b xe+ C.2()xax b ce++ D.2()xax b cxe++(4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为();A222000sin ad d r drππθϕϕ⎰⎰⎰B.22000ad d rdrππθϕ⎰⎰⎰C.2000ad d rdrππθϕ⎰⎰⎰D.22000sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D. 三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin 3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy ∑++⎰⎰,∑为抛物面22z xy =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx = .二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

【必考题】高三数学下期末模拟试卷带答案

【必考题】高三数学下期末模拟试卷带答案

【必考题】高三数学下期末模拟试卷带答案一、选择题1.若3tan 4α= ,则2cos 2sin 2αα+=( ) A .6425 B .4825C .1D .16252.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg3.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为( ) A .14B .13C .12D .234.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30°C .45︒D .15︒5.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是( ) A .(22)-,B .(2)(2)-∞-⋃+∞,, C .(22]-,D .(2]-∞,6.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称7.已知a r 与b r均为单位向量,它们的夹角为60︒,那么3a b -r r 等于( )A 7B 10C 13D .48.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,即2k k +<k+1. 那么当n=k+1时,()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<++++=+=(k+1)+1,所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B.n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确9.已知复数 ,则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知向量()1,1m λ=+r,()2,2n λ=+r,若()()m n m n +⊥-r r r r,则λ=( ) A .4-B .3-C .2-D .1-11.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .3212.在ABC ∆中,60A =︒,45B =︒,32BC =AC =( ) A 3B 3 C .23D .43二、填空题13.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 14.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42a A =,且C 为锐角,则ABC ∆面积的最大值为________.15.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC V 的面积为______.18.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的值为 .19.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.已知直线352:{132x t l y t=+=+(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直角坐标方程; (2)设点的直角坐标为3),直线l 与曲线C 的交点为A ,B ,求MA MB ⋅的值.22.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △6AP 的方程. 23.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,AB=22,求三棱锥C 一A 1DE 的体积.24.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值; (2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 25.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积.26.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 【考点】同角三角函数间的基本关系,倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.2.D解析:D 【解析】根据y 与x 的线性回归方程为 y=0.85x ﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误.故选D .3.C解析:C 【解析】 【分析】由题意,求得(),()P AB P A 的值,再由条件概率的计算公式,即可求解. 【详解】记事件A 表示“第一次正面向上”,事件B 表示“第二次反面向上”, 则P(AB)=,P(A)=,∴P(B|A)==,故选C.【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,熟记条件概率的计算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.C解析:C 【解析】由条件得:PA ⊥BC ,AC ⊥BC 又PA ∩AC =C ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C .点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.5.C解析:C 【解析】由题意,不等式222424ax ax x x +-<+,可化为2(2)2(2)40a x a x -+--<, 当20a -=,即2a =时,不等式恒成立,符合题意;当20a -≠时,要使不等式恒成立,需2)2204(44(2)0a a a --<⎧⎨∆=+⨯-<⎩n , 解得22a -<<,综上所述,所以a 的取值范围为(2,2]-,故选C . 6.C解析:C 【解析】 【分析】求函数的定义域,判断函数的奇偶性即可. 【详解】解:()23x f x x+=Q0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞U ,D 关于原点对称.任取x D ∈,都有()()()2233x x f x f x xx+-+-===-,()f x ∴是偶函数,其图象关于y 轴对称,故选:C . 【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.7.A解析:A 【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A .8.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下: 在(2)中假设n k = 时有21k k k +<+ 成立,即2(1)(1)(1)1k k k +++<++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.9.A解析:A 【解析】在复平面内对应的点坐标为在第一象限,故选A.10.B解析:B 【解析】【分析】 【详解】∵()()m n m n +⊥-r r r r ,∴()()0m n m n +⋅-=r r r r. ∴,即22(1)1[(2)4]0λλ++-++=,∴3λ=-,,故选B. 【考点定位】 向量的坐标运算11.B解析:B 【解析】 【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。

【常考题】高三数学下期末模拟试题(含答案)

【常考题】高三数学下期末模拟试题(含答案)

【常考题】高三数学下期末模拟试题(含答案)一、选择题1.设1i 2i 1i z -=++,则||z = A .0 B .12 C .1 D .22.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x-85.71,则下列结论中不正确的是A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg3.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i 4.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}5.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( ) A .2B .3C .4D .5 6.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6} B .{3,5,6} C .{1,3,5,6} D .{1,2,3,4}7.已知函数()(3)(2ln 1)x f x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞U 8.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( )A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角 9.当1a >时, 在同一坐标系中,函数x y a -=与log a y x =-的图像是( )A .B .C .D .10.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( ) x 34 5 6 y2.5 t4 4.5 A .产品的生产能耗与产量呈正相关 B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.15 11.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318 B .322 C .1322 D .31812.设0<a <1,则随机变量X 的分布列是X0 a 1 P 13 1313 则当a 在(0,1)内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大二、填空题13.在区间[1,1]-上随机取一个数x ,cos 2x π的值介于1[0,]2的概率为 . 14.函数()23s 34f x in x cosx =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 15.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________.16.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________. 17.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)18.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m=_________ .19.函数y=232x x --的定义域是 .20.函数()lg 12sin y x =-的定义域是________.三、解答题21.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.22.设函数()15,f x x x x R =++-∈.(1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围. 23.已知函数2()sin()sin 32f x x x x π=-.(1)求()f x 的最小正周期和最大值;(2)求()f x 在2[,]63ππ上的单调区间24.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X N μσ,则① ()0.6827P X μσμσ-<+=…;② (22)0.9545P X μσμσ-<+=…;③(33)0.9973P X μσμσ-<+=….(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?25.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标;(II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t at R a b b y t =+∈=+为参数求的值 26.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z,然后求解复数的模.详解:()()()()1i1i1i2i2i 1i1i1iz---=+=+ +-+i2i i=-+=,则1z=,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.D解析:D【解析】根据y与x的线性回归方程为 y=0.85x﹣85.71,则=0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误. 故选D .3.C解析:C【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C.考点:本题主要考查复数的乘法运算公式. 4.B解析:B【解析】【分析】先求出A B ⋃,阴影区域表示的集合为()U A B ⋃ð,由此能求出结果.【详解】Q 全集{1,U =3,5,7},集合{}1,3A =,{}3,5B =,{1,A B ∴⋃=3,5},∴如图所示阴影区域表示的集合为:(){}7U A B ⋃=ð.故选B .【点睛】本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是中等题.5.D解析:D【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模. 6.A解析:A【解析】【分析】先求并集,得到{1,2,3,4}A B ⋃=,再由补集的概念,即可求出结果.【详解】因为{1,2,4}A =,{2,3,4}B =,所以{1,2,3,4}A B ⋃=,又{1,2,3,4,5,6}U =,所以()C {5,6}U A B ⋃=.故选A.【点睛】本题主要考查集合的并集与补集的运算,熟记概念即可,属于基础题型.7.C解析:C【解析】【分析】 求得函数的导数()(2)()x xe a f x x x-'=-⋅,根据函数()f x 在(1,)+∞上有两个极值点,转化为0x xe a -=在(1,)+∞上有不等于2的解,令()xg x xe =,利用奥数求得函数的单调性,得到()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,得到()0f x '≥在(1,2)上恒成立,进而得到x a xe ≥在(1,2)上恒成立,借助函数()x g x xe =在(1,)+∞为单调递增函数,求得2(2)2a g e >=,即可得到答案.【详解】由题意,函数()(3)(2ln 1)xf x x e a x x =-+-+, 可得2()(3)(1)(2)()(2)()x x xx a xe a f x e x e a x e x x x x -'=+-+-=--=-⋅, 又由函数()f x 在(1,)+∞上有两个极值点,则()0f x '=,即(2)()0x xe a x x--⋅=在(1,)+∞上有两解, 即0x xe a -=在在(1,)+∞上有不等于2的解,令()x g x xe =,则()(1)0,(1)xg x x e x '=+>>, 所以函数()xg x xe =在(1,)+∞为单调递增函数, 所以()1a g e >=且()222a g e ≠=, 又由()f x 在(1,2)上单调递增,则()0f x '≥在(1,2)上恒成立, 即(2)()0x xe a x x--⋅≥在(1,2)上恒成立,即0x xe a -≤在(1,2)上恒成立, 即x a xe ≥在(1,2)上恒成立,又由函数()x g x xe =在(1,)+∞为单调递增函数,所以2(2)2a g e >=, 综上所述,可得实数a 的取值范围是22a e >,即2(2,)a e ∈+∞,故选C. 【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.8.B解析:B【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角,故选B .9.D解析:D【解析】【分析】根据指数型函数和对数型函数单调性,判断出正确选项.【详解】由于1a >,所以1x x a y a -=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合.故选:D.【点睛】本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.10.D解析:D【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .11.B解析:B【解析】【分析】 由题可分析得到()tan +tan 44ππααββ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由差角公式,将值代入求解即可【详解】由题,()()()21tan tan 3454tan +tan 21442211tan tan 544παββππααββπαββ⎛⎫+--- ⎪⎡⎤⎛⎫⎛⎫⎝⎭=+--=== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+⨯++- ⎪⎝⎭, 故选:B【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题12.D解析:D【解析】【分析】利用方差公式结合二次函数的单调性可得结论;【详解】 解:1111()013333a E X a +=⨯+⨯+⨯=, 222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯ 2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<Q ,()D X ∴先减小后增大故选:D .【点睛】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.二、填空题13.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率 解析:13【解析】 试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤-≤≤-⇒≤≤-≤≤-或或,因此所求概率为22(1)13.1(1)3-=--考点:几何概型概率 14.1【解析】【详解】化简三角函数的解析式可得由可得当时函数取得最大值1解析:1【解析】【详解】化简三角函数的解析式,可得()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++= 23(cos )12x --+, 由[0,]2x π∈,可得cos [0,1]x ∈,当3cos x =时,函数()f x 取得最大值1. 15.【解析】令函数有两个极值点则在区间上有两个实数根当时则函数在区间单调递增因此在区间上不可能有两个实数根应舍去当时令解得令解得此时函数单调递增令解得此时函数单调递减当时函数取得极大值当近于与近于时要使 解析:.【解析】 ()()()2ln 0,'ln 12f x x x ax x f x x ax =->=+-,令()ln 12,g x x ax =+-Q 函数()()ln f x x x ax =-有两个极值点,则()0g x =在区间()0,∞+上有两个实数根,()112'2ax g x a x x-=-=,当0a ≤时,()'0g x >,则函数()g x 在区间()0,∞+单调递增,因此()0g x =在区间()0,∞+上不可能有两个实数根,应舍去,当0a >时,令()'0g x =,解得12x a =,令()'0g x >,解得102x a<<,此时函数()g x 单调递增,令()'0g x <,解得12x a >,此时函数()g x 单调递减,∴当12x a =时,函数()g x 取得极大值,当x 近于0与x 近于+∞时,()g x →-∞,要使()0g x =在区间()0,∞+有两个实数根,则11ln 022g a a ⎛⎫=> ⎪⎝⎭,解得10,2a <<∴实数a 的取值范围是102a <<,故答案为102a <<. 16.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l 的 解析:4【解析】试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.17.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同解析:16【解析】【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有344C=种选法,从6名学生中任意选3人有3620C=种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.18.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x满足|x|≤m的概率为若m对于3概率大于若m小于3概率小于所以m=3故答案为3解析:3【解析】【分析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,若m对于3概率大于,若m小于3,概率小于,所以m=3.故答案为3.19.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1-考点:函数定义域 20.【解析】由题意可得函数满足即解得即函数的定义域为 解析:513|22,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭【解析】由题意可得,函数lg(12sin )y x =-满足12sin 0x ->,即1sin 2x <, 解得51322,66k x k k Z ππππ+<<+∈, 即函数lg(12sin )y x =-的定义域为513{|22,}66x k x k k Z ππππ+<<+∈. 三、解答题21.(1)证明见解析;(2)69 【解析】【分析】(1)证明1AA CD ⊥,CD AD ⊥,推出CD ⊥平面11AA D D ,得到CD AE ⊥,证明AE ED ⊥,即可证明AE ⊥平面ECD ;(2)建立坐标系,求出平面的法向量,利用空间向量的数量积求解直线1A C 与平面EAC 所成角的正弦值.【详解】(1)证明:∵四棱柱1111ABCD A B C D -是直四棱柱,∴1AA ⊥平面ABCD ,而CD ⊂平面ABCD ,则1AA CD ⊥,又CD AD ⊥,1AA AD A =I ,∴CD ⊥平面11AA D D ,因为平面11AA D D ,∴CD AE ⊥,∵1AA AD ⊥,1AA AD =,∴11AA D D 是正方形,∴AE ED ⊥,又CD ED D =I ,∴AE ⊥平面ECD .(2)解:建立如图所示的坐标系,1A D 与1AD 交于点E ,124AA AD AB ===,则()()()()10,0,0,0,0,4,2,4,0,0,4,0A A C D ,∴()0,2,2E ,∴()()()12,4,4,2,4,0,0,2,2A C AC AE =-==u u u u r u u u r u u u r ,设平面EAC 的法向量为(),,n x y z =r ,则·0·0n AC n AE ⎧=⎨=⎩u u u v v u u u v v ,即240220x y y z +=⎧⎨+=⎩, 不妨取()2,1,1n =--r ,则直线1A C 与平面EAC 所成角的正弦值为444663666n AC n AC-+-==r u u u r g r u u u r g . 【点睛】本题主要考查直线与平面所成角的求法,考查直线与平面垂直的判断和性质,考查推理能力与计算能力,属于中档题.22.(1){}|37x x -≤≤;(2)(],9-∞.【解析】【分析】(1)分别在1x ≤-、15x -<<、5x ≥三种情况下去掉绝对值符号得到不等式,解不等式求得结果;(2)将不等式变为()()27a f x x ≤+-,令()()()27g x f x x =+-,可得到分段函数()g x 的解析式,分别在每一段上求解出()g x 的最小值,从而得到()g x 在R 上的最小值,进而利用()min a g x ≤得到结果.【详解】(1)当1x ≤-时,()154210f x x x x =--+-=-≤,解得:31x -≤≤-当15x -<<时,()15610f x x x =++-=≤,恒成立当5x ≥时,()152410f x x x x =++-=-≤,解得:57x ≤≤综上所述,不等式()10f x ≤的解集为:{}37x x -≤≤(2)由()()27f x a x ≥--得:()()27a f x x ≤+- 由(1)知:()42,16,1524,5x x f x x x x -≤-⎧⎪=-<<⎨⎪-≥⎩令()()()22221653,171455,151245,5x x x g x f x x x x x x x x ⎧-+≤-⎪=+-=-+-<<⎨⎪-+≥⎩当1x ≤-时,()()min 170g x g =-=当15x -<<时,()()510g x g >=当5x ≥时,()()min 69g x g ==综上所述,当x ∈R 时,()min 9g x =()a g x ≤Q 恒成立 ()min a g x ∴≤ (],9a ∴∈-∞【点睛】本题考查分类讨论求解绝对值不等式、含绝对值不等式的恒成立问题的求解;求解本题恒成立问题的关键是能够通过分离变量构造出新的函数,将问题转化为变量与函数最值之间的比较,进而通过分类讨论得到函数的解析式,分段求解出函数的最值.23.(1)f (x )的最小正周期为π(2)f (x )在5[,]612ππ上单调递增;在52[,]123ππ上单调递减. 【解析】【分析】(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值. (2)根据[]20,3x ππ-∈,利用正弦函数的单调性,即可求得()f x 在2[,]63ππ上的单调区间.【详解】 解:(1)函数2()sin()sin cos sin cos2)2f x x x x x x x π=-=+1sin 22sin(2)23x x x π==-, 即()sin(2)3f x x π=-故函数的周期为22T ππ==,最大值为12-. (2)当2[,]63x ππ∈ 时,[]20,3x ππ-∈, 故当0232x ππ-剟时,即5[,]612x ππ∈时,()f x 为增函数; 当223x πππ-剟时,即52[,]123x ππ∈时,()f x 为减函数; 即函数()f x 在5[,]612ππ上单调递增;在52[,]123ππ上单调递减. 【点睛】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.24.(1)17.4;(2)(i )14.77千元(ii )978位【解析】【分析】(1)用每个小矩形的面积乘以该组中点值,再求和即可得到平均数;(2)(i )根据正态分布可得:0.6827()0.50.84142P X μσ>-=+≈即可得解;(ii )根据正态分布求出每个农民年收入不少于12.14千元的事件概率为0.9773,利用独立重复试验概率计算法则求得概率最大值的k 的取值即可得解.【详解】(1)由频率分布直方图可得:120.04140.12160.28180.36200.1220.06240.0417.4x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=; (2)(i )由题()~17.4,6.92X N ,0.6827()0.50.84142P X μσ>-=+≈, 所以17.4 2.6314.77μσ-=-=满足题意,即最低年收入大约14.77千元;(ii )0.9545(12.14)(2)0.50.97732P X P X μσ≥=≥-=+≈, 每个农民年收入不少于12.14千元的事件概率为0.9773, 记这1000位农民中的年收入不少于12.14千元的人数为X ,()1000,0.9773X B : 恰有k 位农民中的年收入不少于12.14千元的概率()()100010000.997310.9973k k k P X k C -==-()()()()10010.97731110.9773P X k k P X k k =-⨯=>=-⨯-得10010.9773978.2773k <⨯=, 所以当0978k ≤≤时,()()1P X k P X k =-<=,当9791000k ≤≤时,()()1P X k P X k =->=,所以这1000位农民中的年收入不少于12.14千元的人数最有可能是978位.【点睛】此题考查频率分布直方图求平均数,利用正态分布估计概率,结合独立重复试验计算概率公式求解具体问题,综合性强.25.(I )(4,),(22,)24ππ(II )1,2a b =-= 【解析】【分析】【详解】(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-= 联立得22(2)4{40x y x y +-=+-=得110{4x y ==222{2x y ==所以1C 与2C 交点的极坐标为(4,),(22,)24ππ (II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为20x y -+=由参数方程可得122b ab y x =-+,所以1,12,1,222b ab a b =-+==-=解得 26.(1);(2);(3). 【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是,根据独立重复试验次发生次的概率公式可得结果;(3)随机变量的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在的频率为:;(2)根据频率分布直方图,被调查者非常满意的频率是,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为,现从中抽取3人恰有2人非常满意该项目的概率为:;(3)∵评分低于60分的被调查者中,老年人占,又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量的所有可能取值为0,1,2,的分布列为:012的数学期望.。

高三数学下期末一模试卷(含答案)

高三数学下期末一模试卷(含答案)

高三数学下期末一模试卷(含答案)一、选择题1.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .242.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小3.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A .19B .29C .49D .7184.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8B .9,5,6C .7,5,9D .8,5,75.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .576.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>7.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM =A B .532C D 8.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒>D .22a b a b >⇒>9.渐近线方程为0x y ±=的双曲线的离心率是( )A .22B .1C .2D .210.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( )A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<11.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与B B .B 与CC .A 与DD .C 与D12.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}二、填空题13.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 14.锐角△ABC 中,若B =2A ,则ba的取值范围是__________. 15.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.16.已知α,β均为锐角,4cos 5α=,1tan()3αβ-=-,则cos β=_____. 17.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.18.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 19.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.20.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.三、解答题21.已知向量()2sin ,1a x =+r ,()2,2b =-r ,()sin 3,1c x =-r,()1,d k =u r(),x R k R ∈∈(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,且()//a b c +r r r ,求x 的值.(2)若函数()f x a b =⋅r r,求()f x 的最小值.(3)是否存在实数k ,使得()()a dbc +⊥+r u r r r?若存在,求出k 的取值范围;若不存在,请说明理由.22.已知函数()3f x ax bx c =++在点2x =处取得极值16c -.(1)求,a b 的值;(2)若()f x 有极大值28,求()f x 在[]3,3-上的最小值.23.已知菱形ABCD 的顶点A ,C 在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程. (2)当60ABC ∠=︒时,求菱形ABCD 面积的最大值.24.已知函数()32f x x ax bx c =+++,过曲线()y f x =上的点()()1,1P f 处的切线方程为31y x =+.(1)若函数()f x 在2x =-处有极值,求()f x 的解析式; (2)在(1)的条件下,求函数()y f x =在区间[]3,1-上的最大值.25.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 26.已知椭圆22221(0)x y a b a b +=>>的离心率为6,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.2.D解析:D 【解析】 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+Q , 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++, 1(0,1)2∈Q ,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().nnni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑3.C解析:C 【解析】试题分析:由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;164369p == 考点:古典概型的计算.4.B解析:B 【解析】 【分析】分层抽样按比例分配,即可求出各年龄段分别抽取的人数. 【详解】由于样本容量与总体中的个体数的比值为2011005=,故各年龄段抽取的人数依次为14595⨯=,12555⨯=,20956--=.故选:B【点睛】本题考查分层抽样方法,关键要理解分层抽样的原则,属于基础题.5.A解析:A 【解析】 由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项.6.C解析:C 【解析】 【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++232l 23og log 82>+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:a b +≥和不等式222a b ab +≥的应用,属于中档题7.C解析:C 【解析】试题分析:先求得M (2,32,3)点坐标,利用两点间距离公式计算得CM =,故选C .考点:本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用. 点评:简单题,应用公式计算.8.C解析:C 【解析】 【分析】由不等式的性质,对各个选项逐一验证即可得,其中错误的可举反例. 【详解】选项A ,当c =0时,由a >b ,不能推出ac 2>bc 2,故错误; 选项B ,当a =﹣1,b =﹣2时,显然有a >b ,但a 2<b 2,故错误; 选项C ,当a >b 时,必有a 3>b 3,故正确;选项D ,当a =﹣2,b =﹣1时,显然有a 2>b 2,但却有a <b ,故错误. 故选:C . 【点睛】本题考查命题真假的判断,涉及不等式的性质,属基础题.9.C解析:C【解析】 【分析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c =则该双曲线的离心率为 e ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.10.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<<Q{}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.11.C解析:C 【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可. 详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的. 综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.12.B解析:B 【解析】 【分析】先求出A B ⋃,阴影区域表示的集合为()U A B ⋃ð,由此能求出结果. 【详解】Q 全集{1,U =3,5,7},集合{}1,3A =,{}3,5B =,{1,A B ∴⋃=3,5},∴如图所示阴影区域表示的集合为:(){}7U A B ⋃=ð.故选B . 【点睛】本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是中等题.二、填空题13.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立【解析】 【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁. 【详解】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得3,22P ⎛- ⎝⎭,所以212PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得3152P ⎛- ⎝⎭,所以1521512PF k == 【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.14.【解析】【分析】【详解】因为为锐角三角形所以所以所以所以所以 解析:2,3)【解析】 【分析】 【详解】因为ABC ∆为锐角三角形,所以02202B A A B πππ⎧<=<⎪⎪⎨⎪<--<⎪⎩,所以0463A A πππ⎧<<⎪⎪⎨⎪<<⎪⎩,所以(,)64A ππ∈,所以sin 2cos sin b B A a A==,所以(2,3)ba ∈. 15.【解析】【分析】先还原几何体再从底面外心与侧面三角形的外心分别作相应面的垂线交于O 即为球心利用正弦定理求得外接圆的半径利用垂径定理求得球的半径即可求得表面积【详解】由该四棱锥的三视图知该四棱锥直观图 解析:1015π 【解析】【分析】先还原几何体,再从底面外心与侧面三角形SAB 的外心分别作相应面的垂线交于O ,即为球心,利用正弦定理求得外接圆的半径,利用垂径定理求得球的半径,即可求得表面积. 【详解】由该四棱锥的三视图知,该四棱锥直观图如图,因为平面SAB ⊥平面ABCD ,连接AC,BD 交于E ,过E 作面ABCD 的垂线与过三角形ABS 的外心作面ABS 的垂线交于O ,即为球心,连接AO 即为半径,令1r 为SAB ∆外接圆半径,在三角形SAB 中,SA=SB=3,AB=4,则cos 23SBA ∠=, ∴sin 53SBA ∠=,∴132sin 5r SBA ==∠,∴125r =,又OF=12AD =, 可得2221R r OF =+,计算得,28110112020R =+= , 所以210145S R ππ==. 故答案为101.5π 【点睛】本题考查了三视图还原几何体的问题,考查了四棱锥的外接球的问题,关键是找到球心,属于较难题.16.【解析】【分析】先求得的值然后求得的值进而求得的值【详解】由于为锐角且故由解得由于为锐角故【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正切公式属于中档题解析:50【解析】【分析】先求得tan α的值,然后求得tan β的值,进而求得cos β的值.【详解】由于α为锐角,且4cos 5α=,故3sin 5α==,sin 3tan cos 4ααα==.由()tan tan 1tan 1tan tan 3αβαβαβ--==-+⋅,解得13tan 9β=,由于β为锐角,故cos β====. 【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正切公式,属于中档题.17.【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立根据分离变量的方式得到在上恒成立利用二次函数的性质求得的最大值进而得到结果【详解】函数在上单调递增在上恒成立在上恒成立令根据二次函数的 解析:18【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立,根据分离变量的方式得到22a x x ≥-在()0,∞+上恒成立,利用二次函数的性质求得22x x -的最大值,进而得到结果.【详解】Q 函数()21ln f x x x a x =-++在()0,∞+上单调递增()210a f x x x '∴=-+≥在()0,∞+上恒成立 22a x x ∴≥-在()0,∞+上恒成立 令()22g x x x =-,0x > 根据二次函数的性质可知:当14x =时, ()max 18g x = 18a ∴≥,故实数a 的最小值是18本题正确结果:18 【点睛】本题考查根据函数在区间内的单调性求解参数范围的问题,关键是能将问题转化为导函数的符号的问题,通过分离变量的方式将问题转变为参数与函数最值之间的关系问题.18.【解析】试题分析:原式=考点:1指对数运算性质 解析:278【解析】 试题分析:原式=344332542727log log 134588-⎡⎤⎛⎫+⨯=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 考点:1.指对数运算性质.19.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。

高等数学下册期末复习模拟测试试卷含答案

高等数学下册期末复习模拟测试试卷含答案

《高等数学》下册期末模拟训练试卷班别_________ 姓名___________ 成绩_____________要求: 1、本卷考试形式为闭卷,考试时间为1.5小时。

2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。

3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。

4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。

5、考生禁止携带手机、耳麦等通讯器材。

否则,视为为作弊。

6、不可以使用普通计算器等计算工具。

一.选择题:03103'=⨯'1.下列平面中过点(1,1,1)的平面是 .(A)x+y+z=0 (B)x+y+z=1 (C)x=1 (D)x=3 2.在空间直角坐标系中,方程222=+y x 表示 . (A)圆 (B)圆域 (C)球面 (D)圆柱面 3.二元函数22)1()1(y x z -+-=的驻点是 . (A)(0,0) (B)(0,1) (C)(1,0) (D)(1,1) 4.二重积分的积分区域D是4122≤+≤y x ,则=⎰⎰Ddxdy .(A)π (B)π4 (C)π3 (D)π15 5.交换积分次序后=⎰⎰xdy y x f dx 010),( .(A)xd y x f dy y⎰⎰11),( (B)⎰⎰1010),(dx y x f dy (C)⎰⎰ydxy x f dy 010),( (D)⎰⎰100),(dxy x f dy x6.n阶行列式中所有元素都是1,其值是 .(A)n (B)0 (C)n! (D)17.对于n元线性方程组,当r A r A r ==)~()(时,它有无穷多组解,则 . (A)r=n (B)r<n (C)r>n (D)无法确定 8.下列级数收敛的是 . (A)∑∞=-+-111)1(n n n n (B)∑∞=123n n n (C)∑∞=--11)1(n n n (D)∑∞=11n n 9.正项级数∑∞=1n n u 和∑∞=1n n v 满足关系式n n v u ≤,则 .(A)若∑∞=1n n u 收敛,则∑∞=1n n v 收敛 (B)若∑∞=1n n v 收敛,则∑∞=1n n u 收敛(C)若∑∞=1n n v 发散,则∑∞=1n n u 发散 (D)若∑∞=1n n u 收敛,则∑∞=1n n v 发散10.已知:+++=-2111x x x ,则211x +的幂级数展开式为 . (A) +++421x x (B) +-+-421x x (C) ----421x x (D) -+-421x x二.填空题:0254'=⨯' 1.数)2ln(12222y x y x z --+-+=的定义域为 .2.若xy y x f =),(,则=)1,(xyf .3.已知),(00y x 是),(y x f 的驻点,若a y x f y x f y x f xy yy xx=''=''=''),(,12),(,3),(00000,0则 当 时,),(00y x 一定是极小点. 4.矩阵A为三阶方阵,则行列式A 3 5.级数∑∞=1n n u 收敛的必要条件是 .三.计算题(一):0356'=⨯' 1. 已知:y x z =,求:xz∂∂,y z ∂∂. 2. 计算二重积分σd x D⎰⎰-24,其中}20,40|),{(2≤≤-≤≤=x x y y x D .3.已知:XB=A,其中A=⎪⎪⎭⎫⎝⎛-102121,B=⎪⎪⎪⎭⎫ ⎝⎛-100210321,求未知矩阵X.4.求幂级数∑∞=--11)1(n nn nx 的收敛区间.5.求x e x f -=)(的麦克劳林展开式(需指出收敛区间).四.计算题(二): 02201'=⨯'1.求平面x-2y+z=2和2x+y-z=4的交线的标准方程.2.设方程组⎪⎩⎪⎨⎧=++=++=++111z y x z y x z y x λλλ,试问:λ分别为何值时,方程组无解、有唯一解、有无穷多组解.参考答案一.1.C;2.D;3.D;4.D;5.A;6.B;7.B;8.C;9.B;10.D. 二.1.{}21|),(22<+≤y x y x 2.xy3.66<<-a 4.27 5.0lim =∞→n n u四.1.解:y x yzyx x z y y ln 1=∂∂=∂∂- 2.解:31634)4(44232022040222=⎥⎦⎤⎢⎣⎡-=-=-=-⎰⎰⎰⎰⎰-x x dxx dy x dx d x x Dσ3.解:⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=--1542201,10021072111AB B .4.解:,1=R 当|x|〈1时,级数收敛,当x=1时,得∑∞=--11)1(n n n 收敛, 当1-=x 时,得∑∑∞=∞=--=-11121)1(n n n n n 发散,所以收敛区间为]1,1(-. 5.解:.因为∑∞==0!n n xn x e ),(+∞-∞∈x ,所以n n n n n x x n n x e ∑∑∞=∞=--=-=00!)1(!)( ),(+∞-∞∈x . 四.1.解:.求直线的方向向量:k j i kj i s53112121++=--=,求点:令z=0,得y=0,x=2,即交点为(2,0.0),所以交线的标准方程为:.5312zy x ==- 2.解:⎪⎪⎪⎭⎫ ⎝⎛-+---→⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλλλλλλλλλλλλλ1)2)(1(00011011111100110111111111111111111111~2A(1) 当2-=λ时,3)~(,2)(==A A r ,无解;(2) 当2,1-≠≠λλ时, 3)~()(==A A r ,有唯一解:λ+===21z y x ; (3) 当1=λ时, 1)~()(==A A r ,有无穷多组解: ⎪⎩⎪⎨⎧==--=21211cz c y c c x (21,c c 为任意常数)《高等数学》下册期末模拟训练试卷班别_________ 姓名___________ 成绩_____________要求: 1、本卷考试形式为闭卷,考试时间为1.5小时。

高等数学下期末试题七套附答案

高等数学下期末试题七套附答案

高等数学〔下〕试卷一一、填空题〔每空3分,共15分〕〔1〕函数11z x y x y =++-的定义域为〔2〕函数arctany z x =,那么zx ∂=∂〔3〕交换积分次序,2220(,)y y dy f x y dx⎰⎰=〔4〕L 是连接(0,1),(1,0)两点的直线段,那么()Lx y ds +=⎰〔5〕微分方程230y y y '''+-=,那么其通解为二、选择题〔每空3分,共15分〕 〔1〕设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,那么〔〕 A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交〔2〕设是由方程2222xyz x y z +++=确定,那么在点(1,0,1)-处的dz =〔〕A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - 〔3〕Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为〔〕 A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰〔4〕幂级数,那么其收敛半径〔〕A. 2B. 1C. 12 D.2〔5〕微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=〔〕A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题〔每题8分,共48分〕1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 22(,)z f xy x y =,求z x ∂∂,zy ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰,其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程xxy y xe '+=满足11x y ==的特解四.解答题〔共22分〕1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体外表的外侧(10)'2、〔1〕判别级数111(1)3n n n n ∞--=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔6'〕〔2〕在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数〔6'〕高等数学〔下〕试卷二一.填空题〔每空3分,共15分〕〔1〕函数24x y z -=的定义域为; 〔2〕函数xyz e =,那么在(2,1)处的全微分dz =;〔3〕交换积分次序,ln 1(,)e x dx f x y dy⎰⎰=;〔4〕L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,那么L yds =⎰;〔5〕微分方程20y y y '''-+=,那么其通解为.二.选择题〔每空3分,共15分〕〔1〕设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,那么L 与π的夹角为〔〕;A. 0B. 2πC. 3πD. 4π〔2〕设是由方程333z xyz a -=确定,那么z x ∂=∂〔〕;A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D.2xy z xy - 〔3〕微分方程256x y y y xe '''-+=的特解y *的形式为y *=〔〕;A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++〔4〕Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为〔〕; A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰〔5〕幂级数1212nnn n x ∞=-∑,那么其收敛半径〔〕.A. 2B. 1C. 12 D.2三.计算题〔每题8分,共48分〕5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、(sin cos ,)x yz f x y e +=,求z x ∂∂,zy ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程32(1)1y y x x '-=++的通解.四.解答题〔共22分〕1、〔1〕〔6'〕判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔2〕〔4'〕在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学〔下〕模拟试卷三一.填空题〔每空3分,共15分〕1、函数arcsin(3)y x =-的定义域为.2、22(2)lim 332n n n n →∞++-=.3、2ln(1)y x =+,在1x =处的微分dy =. 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题〔每空3分,共15分〕1、2x =是函数22132x y x x -=-+的连续点 〔A 〕可去 〔B 〕跳跃 〔C 〕无穷 〔D 〕振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是。

高三数学下期末模拟试题(带答案)

高三数学下期末模拟试题(带答案)

高三数学下期末模拟试题(带答案)一、选择题1.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .1122.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形3.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ).A B C D4.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}5.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i6.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2B C D .27.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A BC .D .8.<n+1(n∈N *),某同学应用数学归纳法的证明过程如下:(1)当n=1时不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,<k+1. 那么当n=k+1时=<所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确9.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限10.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A 3B .2C 6D 511.已知向量a v ,b v 满足2a =v||1b =v ,且2b a +=v ,则向量a v 与b v 的夹角的余弦值为( ) A .22B .23C 2D .2412.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.16.复数()1i i +的实部为 .17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.19.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .20.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.三、解答题21.已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考: P(K 2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )23.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为5l 的普通方程.24.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)5,0,离心率为53.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.25.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.26.已知3,cos )a x x =r ,(sin ,cos )b x x =r ,函数()f x a b =⋅rr .(1)求()f x 的最小正周期及对称轴方程; (2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.2.C解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==o .所以180454590A =--=o o o o . 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.3.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.4.C解析:C 【解析】 【分析】由题意先解出集合A,进而得到结果. 【详解】解:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C. 【点睛】本题主要考查交集的运算,属于基础题.5.B解析:B 【解析】 【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足21ii z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.6.C解析:C 【解析】 【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可. 【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan BE a EAB AB ∠===.故选C.求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.7.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为2d =, 所以公共弦长为:22222l r d =-=. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.8.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下: 在(2)中假设n k = 时有21k k k +<+ 成立,即2(1)(1)(1)1k k k +++<++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.9.A解析:A 【解析】在复平面内对应的点坐标为在第一象限,故选A.解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y x a y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.11.D解析:D 【解析】 【分析】根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r rcos ,4a b a b a b ⋅∴<>===r r r rr r 本题正确选项:D 【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.12.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.【解析】【分析】【详解】分析:根据独立事件的关系列出方程解出详解:设因为所以所以所以点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系属于中档题 解析:12【解析】 【分析】 【详解】分析:根据独立事件的关系列出方程,解出()P B . 详解:设()()()P A a,P B b,P C c ===, 因为()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=, 所以()()16118118ab b c ab c ⎧=⎪⎪⎪-=⎨⎪⎪-=⎪⎩所以111a ,b ,324c === 所以()1P B 2=点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系,属于中档题.15.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A 时直线解析:6 【解析】 【分析】画出不等式组表示的可行域,由32z x y =-可得322z y x =-,平移直线322zy x =-,结合图形可得最优解,于是可得所求最小值. 【详解】画出不等式组表示的可行域,如图中阴影部分所示.由32z x y =-可得322zy x =-. 平移直线322z y x =-,结合图形可得,当直线322zy x =-经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最小值. 由题意得A 点坐标为(2,0),∴min 326z =⨯=,即32z x y =-的最小值是6. 故答案为6. 【点睛】求目标函数(0)z ax by ab =+≠的最值时,可将函数z ax by =+转化为直线的斜截式:a zy x b b =-+,通过求直线的纵截距z b 的最值间接求出z 的最值.解题时要注意:①当0b >时,截距z b 取最大值时,z 也取最大值;截距zb取最小值时,z 也取最小值;②当0b <时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值. 16.【解析】复数其实部为考点:复数的乘法运算实部 解析:1-【解析】复数(1)11i i i i +=-=-+,其实部为1-. 考点:复数的乘法运算、实部.17.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边解析:79-【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=),所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈.18.【解析】【分析】画出两个函数图像求出三个交点的坐标由此计算出三角形的面积【详解】画出两个函数图像如下图所示由图可知对于点由解得所以【点睛】本小题主要考查正弦函数和正切函数的图像考查三角函数图像交点坐【解析】 【分析】画出两个函数图像,求出三个交点的坐标,由此计算出三角形的面积. 【详解】画出两个函数图像如下图所示,由图可知()()0,0,π,0A C ,对于B 点,由sin 1tan 2y x y x =⎧⎪⎨=⎪⎩,解得π3B ⎛ ⎝⎭,所以1π224ABC S ∆=⨯⨯=.【点睛】本小题主要考查正弦函数和正切函数的图像,考查三角函数图像交点坐标的求法,考查三角函数面积公式,属于中档题.19.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用 解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n nn a a a a qL L --++++-==⨯=,于是当3n =或4时,12na a a L 取得最大值6264=. 考点:等比数列及其应用20.y=sinx (答案不唯一)【解析】分析:举的反例要否定增函数可以取一个分段函数使得f (x )>f (0)且(02]上是减函数详解:令则f (x )>f (0)对任意的x ∈(02]都成立但f (x )在[02]上不解析:y =sin x (答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令0,0()4,(0,2]x f x x x =⎧=⎨-∈⎩,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f(x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f(x )在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.通常举分段函数.三、解答题21.(1) ()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.(2)()0,1. 【解析】试题分析:(Ⅰ)由()1f x a x'=-,可分0a ≤,0a >两种情况来讨论;(II )由(I )知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 最大值为1ln 1.f a a a ⎛⎫=-+- ⎪⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.试题解析:(Ⅰ)()f x 的定义域为()0,+∞,()1f x a x'=-,若0a ≤,则()0f x '>,()f x 在()0,+∞是单调递增;若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.(Ⅱ)由(Ⅰ)知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 在1x a=取得最大值,最大值为111ln 1ln 1.f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,()10g =,于是,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.考点:本题主要考查导数在研究函数性质方面的应用及分类讨论思想.22.(1)列联表见解析;(2)有99.9%的把握认为喜欢游泳与性别有关;(3).【解析】试题分析:(1)根据在100人中随机抽取1人抽到喜欢游泳的学生的概率为35, 可得喜爱游泳的学生,即可得到列联表;(2)利用公式求得2K 与邻界值比较,即可得到结论;(3)利用列举法,确定基本事件的个数,即利用古典概型概率公式可求出恰好有1人喜欢游泳的概率.试题解析:(1)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为, 所以喜欢游泳的学生人数为人其中女生有20人,则男生有40人,列联表补充如下:喜欢游泳 不喜欢游泳 合计 男生 40 10 50 女生 20 30 50 合计 6040100(2)因为所以有99.9%的把握认为喜欢游泳与性别有关(3)5名学生中喜欢游泳的3名学生记为a ,b ,c ,另外2名学生记为1, 2,任取2名学生,则所有可能情况为(a ,b )、(a ,c )、(a ,1)、(a ,2)、(b ,c )、(b ,1)、(b ,2)、(c ,1)、(c ,2)、(1,2),共10种.其中恰有1人喜欢游泳的可能情况为(a ,1)、(a ,2)、(b ,1)、(c ,1)、 (c ,2),共6种所以,恰好有1人喜欢游泳的概率为【方法点睛】本题主要考查古典概型概率公式,以及独立性检验的应用,属于中档题,利用古典概型概率公式,求概率时,找准基本事件个数是解题的关键,在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生.23.(Ⅰ) ()()22219x y -++=;(Ⅱ)34y x =和x=0. 【解析】 【分析】(I )将x cos y sin ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程,化简后可求得对应的直角坐标方程.(II )将直线的参数方程代入曲线方程,利用弦长公式列方程,解方程求得直线的倾斜角或斜率,由此求得直线l 的普通方程.【详解】 解:(Ⅰ)将x cos y sin ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程得:曲线C 的直角坐标方程为:22442x y x y +-=- 即()()22219x y -++=(Ⅱ)将直线的参数方程代入曲线方程:()()22cos 2sin 19t t αα-++=整理得24cos 2sin 40t t t αα-+-= 设点A ,B 对应的参数为1t ,2t , 解得124cos 2sin t t αα+=-,124t t ⋅=- 则()()2212121244cos 2sin 1625AB t t t t t t αα=-=+-=-+=23cos 4sin cos 0ααα-=,因为0απ≤<得3tan 24παα==或,直线l 的普通方程为34y x =和x=0 【点睛】本小题主要考查极坐标方程和直角坐标方程互化,考查利用直线的参数方程来求弦长有关的问题,属于中档题.24.(1)22194x y +=;(2)22013x y +=. 【解析】 【分析】 【详解】试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程. (1)由题意知553a =⇒=,且有2235b -=2b =,因此椭圆C 的标准方程为22194x y +=;(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-, 当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-, 将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360kx k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦, 化简得()2200940y kx k ---=,即()()2220009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()2220009240x k kx y y --+-=的两根,则201220419y k k x -==--,化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.考点:本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用.25.(1)见解析; (2)见解析. 【解析】 【分析】(1)根据DE 平行PC 即可证明(2)利用PC ,可知DE 与FG 平行且相等,即可证明. 【详解】证明:(1)因为D ,E 分别为AP ,AC 的中点,所以DE∥PC. 又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE∥平面BCP. (2)因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, 所以DE∥PC∥FG,DG∥AB∥EF. 所以四边形DEFG 为平行四边形. 又因为PC⊥AB,所以DE⊥DG. 所以四边形DEFG 为矩形. 【点睛】本题主要考查了直线与平面平行的判定及中位线的性质,属于中档题. 26.(1) T π= ;26k x ππ=+(k Z ∈). (2) 5(,]6ππ--,[,]36ππ-和2[,]3ππ【解析】 【分析】(1)化简得()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再求函数的周期和对称轴方程;(2)先求出函数在R 上的增区间为[,36k k ππππ-+] (k Z ∈),再给k 赋值与定义域求交集得解.【详解】解:(1)()2cos cos f x a b x x x =⋅+r r111sin2cos2sin 222262x x x π⎛⎫=++=++ ⎪⎝⎭ 所以()f x 的周期22T ππ==, 令262x k πππ+=+(k Z ∈),即26k x ππ=+(k Z ∈) 所以()f x 的对称轴方程为26k x ππ=+(k Z ∈). (2)令222262k x k πππππ-≤+≤+(k Z ∈)解得36k x k ππππ-≤≤+(k Z ∈),由于(],x ππ∈- 所以当1,0k =-或1时,得函数()f x 的单调递增区间为5,6ππ⎛⎤-- ⎥⎝⎦,,36ππ⎡⎤-⎢⎥⎣⎦和2,3ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查三角恒等变换,考查三角函数的周期的求法和对称轴的求法,考查三角函数的单调区间的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

新高三数学下期末模拟试卷(含答案)(1)

新高三数学下期末模拟试卷(含答案)(1)

新高三数学下期末模拟试卷(含答案)(1)一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.在复平面内,O 为原点,向量OA u u u v对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB uuu v对应的复数为( ) A .2i -+ B .2i -- C .12i +D .12i -+3.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27B .11C .109D .364.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .5.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆229x y +=内的概率为( )A .536B .29C .16D .196.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .427.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( ) A .2,13⎡⎫⎪⎢⎣⎭B .12,32⎡⎤⎢⎥⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦8.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .109.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( )A .过程全部正确B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确 10.已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .211.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .32412.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.复数()1i i +的实部为 . 15.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 17.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________. 18.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.19.已知1OA =u u u r ,3OB =u u u r 0OA OB •=u u u r u u u r,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB =+u u u r u u u r u u u r ,(,)m n R ∈,则mn=__________.20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)三、解答题21.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.22.如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高.(Ⅰ)证明:平面PAC ⊥平面PBD ; (Ⅱ)若AB 6=APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积. 23.设函数()15,f x x x x R =++-∈. (1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围.24.已知数列{n a }的前n 项和Sn =n 2-5n (n∈N +). (1)求数列{n a }的通项公式; (2)求数列{12nn a +}的前n 项和Tn . 25.已知函数()32f x x ax bx c =+++,过曲线()y f x =上的点()()1,1P f 处的切线方程为31y x =+.(1)若函数()f x 在2x =-处有极值,求()f x 的解析式; (2)在(1)的条件下,求函数()y f x =在区间[]3,1-上的最大值.26.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx====---=--∑∑∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可.解:由()xln x f x =e ,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0e e--> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.A解析:A 【解析】 【分析】首先根据向量OA u u u v对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB uuu v对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -,所以向量OB uuu r对应的复数为2i -+.故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.3.D解析:D 【解析】 【分析】 【详解】 由秦九韶算法可得()())((())532231? 02311,f x x x x x x x x x x =++++=+++++0ν1∴=1ν=1303⨯+= 2ν33211=⨯+= 3ν113336=⨯+=故答案选D4.C解析:C【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形. 【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项. 故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 考点:三视图.5.D解析:D 【解析】掷骰子共有36个结果,而落在圆x 2+y 2=9内的情况有(1,1),(1,2),(2,1),(2,2)这4种,∴P=41369=. 故选D6.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。

高数期末考试题及答案下册

高数期末考试题及答案下册

高数期末考试题及答案下册一、选择题(每题2分,共20分)1. 若函数f(x)在点x=a处连续,则下列说法正确的是:A. f(a)存在B. 左极限lim(x→a-) f(x)存在C. 右极限lim(x→a+) f(x)存在D. 所有选项都正确答案:D2. 函数f(x)=x^2在区间[-1,1]上是:A. 单调递增函数B. 单调递减函数C. 有增有减函数D. 常数函数答案:C3. 若f(x)=sin(x),则f'(x)是:A. cos(x)B. -sin(x)C. x*cos(x)D. x*sin(x)答案:A4. 函数f(x)=x^3-6x^2+11x-6的零点个数为:A. 0B. 1C. 2D. 3答案:D5. 曲线y=x^2与直线y=4x在第一象限的交点坐标为:A. (1,1)B. (2,8)C. (4,16)D. (0,0)答案:B6. 若∫(0,1) f(x)dx = 2,则∫(0,1) x*f(x)dx的值为:A. 0B. 1C. 2D. 无法确定答案:B7. 函数f(x)=ln(x)的泰勒展开式在x=0处的前两项为:A. 1-xB. x-x^2/2C. -x^2/2D. -1-x答案:D8. 若函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在该区间内是:A. 单调递减函数B. 单调递增函数C. 有增有减函数D. 常数函数答案:B9. 函数f(x)=e^x的无穷级数展开式为:A. 1+x+x^2/2!+x^3/3!+...B. 1-x+x^2-x^3+...C. 1+x-x^2+x^3-...D. 1-x-x^2+x^3-...答案:A10. 若函数f(x)在区间[a,b]上连续,则∫(a,b) f(x)dx:A. 一定存在B. 可能不存在C. 等于0D. 等于f(a)-f(b)答案:A二、填空题(每题2分,共20分)1. 若函数f(x)在点x=a处可导,则f'(a)表示______。

新高三数学下期末模拟试卷(附答案)(1)

新高三数学下期末模拟试卷(附答案)(1)

新高三数学下期末模拟试卷(附答案)(1)一、选择题1.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③2.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .33.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .134.函数2||()x x f x e -=的图象是( )A .B .C .D .5.已知a r 与b r均为单位向量,它们的夹角为60︒,那么3a b -r r 等于( )A 7B 10C 13D .46.已知函数()(3)(2ln 1)xf x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞U7.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+⎪⎝⎭B .2sin 26y x π⎛⎫=-⎪⎝⎭C .2sin 23x y π⎛⎫=+ ⎪⎝⎭D .2sin 23y x π⎛⎫=- ⎪⎝⎭8.<n+1(n∈N *),某同学应用数学归纳法的证明过程如下:(1)当n=1时不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,<k+1. 那么当n=k+1时=<所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确9.已知,a b r r 是非零向量且满足(2)a b a -⊥r r r,(2)b a b -⊥,则a r 与b r 的夹角是( )A .6π B .3π C .23π D .56π 10.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥ C .若a b a b αβ⊂⊂P ,,,则αβ∥ D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r11.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34y x =?C .35y x =±D .53y x =±12.一个样本a,3,4,5,6的平均数是b ,且不等式x 2-6x +c <0的解集为(a ,b ),则这个样本的标准差是( )A .1 BCD .2二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.15.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.16.371()x x+的展开式中5x 的系数是 .(用数字填写答案) 17.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.18.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.19.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)三、解答题21.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 22.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)5,05(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.23.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程. 24.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,xm m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.25.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.26.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.2.C解析:C 【解析】 函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以有43332013222w k k k w w k w ππ=∴=>∴≥∴=≥Q 故选C3.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.4.A解析:A 【解析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A . 【详解】2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B , 故选A 【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.5.A解析:A 【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A .6.C解析:C 【解析】 【分析】求得函数的导数()(2)()x xe af x x x-'=-⋅,根据函数()f x 在(1,)+∞上有两个极值点,转化为0x xe a -=在(1,)+∞上有不等于2的解,令()xg x xe =,利用奥数求得函数的单调性,得到()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,得到()0f x '≥在(1,2)上恒成立,进而得到x a xe ≥在(1,2)上恒成立,借助函数()x g x xe =在(1,)+∞为单调递增函数,求得2(2)2a g e >=,即可得到答案.【详解】由题意,函数()(3)(2ln 1)xf x x e a x x =-+-+,可得2()(3)(1)(2)()(2)()x xxxa xe a f x e x e a x e x x x x-'=+-+-=--=-⋅,又由函数()f x 在(1,)+∞上有两个极值点,则()0f x '=,即(2)()0x xe ax x--⋅=在(1,)+∞上有两解,即0x xe a -=在在(1,)+∞上有不等于2的解,令()xg x xe =,则()(1)0,(1)xg x x e x '=+>>,所以函数()xg x xe =在(1,)+∞为单调递增函数,所以()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,则()0f x '≥在(1,2)上恒成立,即(2)()0x xe ax x--⋅≥在(1,2)上恒成立,即0x xe a -≤在(1,2)上恒成立,即x a xe ≥在(1,2)上恒成立,又由函数()xg x xe =在(1,)+∞为单调递增函数,所以2(2)2a g e >=,综上所述,可得实数a 的取值范围是22a e >,即2(2,)a e ∈+∞,故选C.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.7.B解析:B 【解析】 【分析】首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 【详解】先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D求得函数值为0,,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 【点睛】本题考查三角函数的周期性、对称性,难度较易.8.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下: 在(2)中假设n k =1k <+(1)1k ++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.9.B解析:B 【解析】 【分析】利用向量垂直求得222a b a b ==⋅r rr r ,代入夹角公式即可.【详解】设,a b rr 的夹角为θ;因为(2)a b a -⊥r r r,(2)b a b -⊥,所以222a b a b ==⋅r r r r , 则22|2,|2a a b b a b =⋅⋅=r r r r r r ,则2212cos ,.23aa b a b aπθθ⋅===∴=r rr r r r 故选:B 【点睛】向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=r r r r;二是向量的平方等于向量模的平方22a a =r r . 10.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.11.A解析:A 【解析】 【分析】依据题意作出图象,由双曲线定义可得1122PF F F c ==,又直线PF 2与以C 的实轴为直径的圆相切,可得2MF b =,对2OF M ∠在两个三角形中分别用余弦定理及余弦定义列方程,即可求得2b a c =+,联立222c a b =+,即可求得43b a =,问题得解. 【详解】依据题意作出图象,如下:则1122PF F F c ==,OM a =, 又直线PF 2与以C 的实轴为直径的圆相切, 所以2OM PF ⊥, 所以222MF c a b =-=由双曲线定义可得:212PF PF a -=,所以222PFc a =+, 所以()()()()22222222cos 2222c a c c b OF M c c a c ++-∠==⨯⨯+ 整理得:2b a c =+,即:2b a c -= 将2c b a =-代入222c a b =+,整理得:43b a =, 所以C 的渐近线方程为43b y x x a =±=± 故选A 【点睛】本题主要考查了双曲线的定义及圆的曲线性质,还考查了三角函数定义及余弦定理,考查计算能力及方程思想,属于难题.12.B解析:B【解析】由题意得a +3+4+5+6=5b ,a +b =6, 解得a =2,b =4,所以样本方差s 2=15[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2,. 故答案为B.二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60 【解析】 【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.15.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使解析:34【解析】 【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。

新高三数学下期末模拟试卷(及答案)

新高三数学下期末模拟试卷(及答案)

新高三数学下期末模拟试卷(及答案)一、选择题1.函数ln ||()xx f x e的大致图象是( ) A . B .C .D .2.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .243.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .104.已知平面向量a v ,b v 是非零向量,|a v |=2,a v⊥(a v +2b v ),则向量b v 在向量a v方向上的投影为( ) A .1B .-1C .2D .-25.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-6.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁7.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.158.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v则·BC OM u u u vu u u u v 的值为A .15-B .9-C .6-D .0 9.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .﹣2C .6D .210.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-12.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 16.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________. 17.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.18.已知1OA =u u u r ,3OB =u u u r 0OA OB •=u u u r u u u r,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB=+u u u r u u u r u u u r ,(,)m n R ∈,则mn=__________. 19.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 20.在ABC ∆中,若13AB =3BC =,120C ∠=︒,则AC =_____.三、解答题21.已知直线352 :{132 x tly t=+=+(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cosρθ=.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点的直角坐标为(5,3),直线l与曲线C 的交点为A,B,求MA MB⋅的值. 22.已知数列{n a}的前n项和Sn=n2-5n (n∈N+).(1)求数列{n a}的通项公式;(2)求数列{12nna+}的前n项和Tn .23.已知函数()32f x x ax bx c=+++,过曲线()y f x=上的点()()1,1P f处的切线方程为31y x=+.(1)若函数()f x在2x=-处有极值,求()f x的解析式;(2)在(1)的条件下,求函数()y f x=在区间[]3,1-上的最大值.24.四棱锥P ABCD-中,底面ABCD是边长为2的菱形,3BADπ∠=,PAD∆是等边三角形,F为AD的中点,PD BF⊥.(1)求证:AD PB⊥;(2)若E在线段BC上,且14EC BC=,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求四面体D CEG-的体积.25.已知3,cos)a x x=r,(sin,cos)b x x=r,函数()f x a b=⋅rr.(1)求()f x的最小正周期及对称轴方程;(2)当(,]xππ∈-时,求()f x单调递增区间.26.已知数列{}n a与{}n b满足:*1232()n na a a ab n N++++=∈L,且{}na为正项等比数列,12a=,324b b=+.(1)求数列{}n a与{}n b的通项公式;(2)若数列{}n c满足*2211()log lognn nc n Na a+=∈,nT为数列{}n c的前n项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0ee --> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.A解析:A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.3.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9.故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.4.B解析:B 【解析】 【分析】先根据向量垂直得到a r g (a r +2b r ),=0,化简得到a r g b r=﹣2,再根据投影的定义即可求出. 【详解】∵平面向量a r ,b r 是非零向量,|a r |=2,a r ⊥(a r +2b r), ∴a r g (a r +2b r),=0, 即()2·20a a b +=vv v 即a r g b r=﹣2∴向量b r 在向量a r 方向上的投影为·22a b a -=vv v =﹣1, 故选B . 【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.5.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.6.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.7.D解析:D 【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .8.C解析:C 【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA ==u u u u v u u u v u u u v u u u v可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-u u u v u u u u v u u u v u u u u v ,由题意可知:2211OM ==u u u u v ,12cos1201OM ON ou u u u v u u u v ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-u u u v u u u u v u u u v u u u u v u u u u v u u u v u u u u v u u u u v .本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.9.C解析:C 【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可. 解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素, 当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素, 当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素, 当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素, 故选C .点评:本题考查元素与集合的关系,基本知识的考查.10.A解析:A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.11.B解析:B 【解析】得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ=【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的. 12.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值,因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A. 二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.15.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边解析:79-【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,22cos cos 3αβ=-=(或22cos cos 3βα=-=),所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈.16.2【解析】试题分析:因为四边形是正方形所以所以直线的方程为此为双曲线的渐近线因此又由题意知所以故答案为2【考点】双曲线的性质【名师点睛】在双曲线的几何性质中渐近线是其独特的一种性质也是考查的重点内容解析:2 【解析】试题分析:因为四边形OABC 是正方形,所以45AOB ∠=︒,所以直线OA 的方程为y x =,此为双曲线的渐近线,因此a b =,又由题意知22OB =,所以22222(22)a b a a +=+=,2a =.故答案为2.【考点】双曲线的性质【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.17.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化 解析:12【解析】 【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】因为222,cos ,sin x y x y ρρθρθ=+==,由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,1101a a a =∴=±>∴=+Q ,,【点睛】 (1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.18.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则解析:3【解析】 因为30AOC ∠=o,所以cos cos30OC OA AOC OC OA⋅∠===⋅o u u u r u u u r u u u r u u u r,从而有2=u u u r u u u r u u u r.因为1,0OA OB OA OB ==⋅=u u u r u u u r u u u r u u u r=,化简可得222334m m n =+,整理可得229m n =.因为点C 在AOB ∠内,所以0,0m n >>,所以3m n =,则3m n = 19.660【解析】【分析】【详解】第一类先选女男有种这人选人作为队长和副队有种故有种;第二类先选女男有种这人选人作为队长和副队有种故有种根据分类计数原理共有种故答案为解析:660【解析】【分析】【详解】第一类,先选1女3男,有316240C C =种,这4人选2人作为队长和副队有2412A =种,故有4012480⨯= 种;第二类,先选2女2男,有226215C C =种,这4人选2人作为队长和副队有2412A =种,故有1512180⨯=种,根据分类计数原理共有480180660+=种,故答案为660.20.1【解析】【分析】由题意利用余弦定理得到关于AC 的方程解方程即可确定AC 的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计 解析:1【解析】【分析】由题意利用余弦定理得到关于AC 的方程,解方程即可确定AC 的值.【详解】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去).【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1);(2).【解析】【分析】【详解】试题分析:(1)在方程=2cos ρθ两边同乘以极径ρ可得2=2cos ρρθ,再根据222=,cos x y x ρρθ+=,代入整理即得曲线C 的直角坐标方程;(2)把直线的参数方程代入圆的直角坐标方程整理,根据韦达定理即可得到MA MB ⋅的值.试题解析:(1)=2cos ρθ等价于2=2cos ρρθ①将222=,cos x y x ρρθ+=代入①既得曲线C 的直角坐标方程为 2220x y x +-=,②(2)将35132x y t ⎧=+⎪⎪⎨⎪=⎪⎩代入②得253180t t ++=, 设这个方程的两个实根分别为12,,t t则由参数t 的几何意义既知,1218MA MB t t ⋅==.考点:圆的极坐标方程与直角坐标方程的互化及直线参数方程的应用.22.(1)26()n a n n N +=-∈;(2)112n nn T -=--【解析】【分析】 (1)运用数列的递推式:11,1,1n n n S n a S S n -=⎧=⎨->⎩,计算可得数列{n a }的通项公式;(2)结合(1)求得1322n n n a n +-=,运用错位相减法,结合等比数列的求和公式,即可得到数列{12n n a +}的前n 项和n T . 【详解】(1)因为11,1,1n n n S n a S S n -=⎧=⎨->⎩,()25n S n n n N +=-∈ 所以114a S ==-, 1n >时,()()22 515126n a n n n n n =---+-=- 1n =也适合,所以()+26N n a n n =-∈(2)因为1322n n n a n +-=, 所以12121432222n n n n n T -----=++⋅⋅⋅++ 2311214322222n n n n n T +----=++⋅⋅⋅++ 两式作差得:1211211322222n n n n T +--=++⋅⋅⋅+- 化简得1111222n n n T +-=--, 所以112n nn T -=--. 【点睛】本题考查数列的通项公式的求法,等比数列的求和公式,考查数列的错位相减法,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -.23.(1)()32245f x x x x =+-+;(2)13。

高数下学期期末考试卷子

高数下学期期末考试卷子

高数下学期期末考试卷子一、选择题(每题2分,共20分)1. 函数f(x)=\(\frac{1}{x}\)在区间(-∞,0)∪(0,+∞)上的极限值是:A. 0B. 1C. +∞或-∞D. 无法确定2. 若函数f(x)在点x=a处连续,则下列说法正确的是:A. 极限lim(x→a)f(x)存在B. f(a)=0C. f(a)=aD. 函数f(x)在点x=a处可导3. 曲线y=x^2与直线y=4x-5的交点个数是:A. 0B. 1C. 2D. 34. 若曲线y=\(\sqrt{x}\)在点x=4处的切线斜率为:A. \(\frac{1}{4}\)B. \(\frac{1}{2}\)C. \(\frac{1}{\sqrt{4}}\)D. 25. 微分方程\(\frac{dy}{dx}=x-y\)的通解是:A. \(y=\frac{x^2}{2}+C\)B. \(y=\frac{x^2}{2}-C\)C. \(y=\frac{1}{x}+C\)D. \(y=x^2+C\)...(此处省略其他选择题)二、填空题(每空1分,共10分)1. 若函数f(x)在区间[a,b]上连续,则定积分∫_a^b f(x)dx表示_。

2. 函数f(x)=x^3-3x^2+2x在x=1处的导数是_。

3. 若曲线y=x^3-2x^2+x与x轴相交,则交点的横坐标是_。

...(此处省略其他填空题)三、解答题(共70分)1. 计算定积分∫_0^1 (2x+1)dx,并说明其几何意义。

(10分)2. 求函数f(x)=\(\frac{1}{3}x^3-2x^2+x\)的极值点,并讨论其单调性。

(15分)3. 解微分方程\(\frac{dy}{dx}+2y=x^2e^x\),其中初始条件为y(0)=1。

(15分)4. 证明:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则至少存在一点c∈(a,b),使得f'(c)=0。

高数下期末考试题及答案

高数下期末考试题及答案

高数下期末考试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3在区间[0, 6]上的值域是:A. [2, 9]B. [3, 9]C. [1, 9]D. [2, 12]答案:C2. 若f(x)=3x^2+2x-5,求f(-1)的值:A. -12B. -8C. -4D. -2答案:A3. 曲线y=x^3-6x^2+9x在点(1, 4)处的切线斜率是:A. 0B. 1C. 2D. 3答案:D4. 根据定积分的性质,∫[0, 1] x dx等于:A. 0B. 1/2C. 1D. 2答案:B5. 若函数f(x)在区间[a, b]上连续,且∫[a, b] f(x) dx = 5,那么∫[a, b] 2f(x) dx等于:A. 10B. 5C. 2D. 1答案:A6. 函数y=sin(x)在区间[0, π]上的原函数是:A. -cos(x) + CB. cos(x) + CC. sin(x) + CD. 2sin(x) + C答案:A7. 若∫[0, 1] f(x) dx = 3,且f(x) = 6x - 2,求∫[0, 1] x(6x -2) dx的值:A. 7B. 8C. 9D. 10答案:C8. 曲线y=x^2与直线y=4x在点(2, 4)处的切线相同,求该点处的切线方程:A. y = 4x - 4B. y = 8x - 12C. y = 4xD. y = x^2答案:A9. 若f(x)=x^3-3x^2+2x,求f'(x)的值:A. 3x^2-6x+2B. x^2-6x+2C. 3x^2-9xD. x^3-3x答案:A10. 若f(x)=e^x,求f'(x)的值:A. e^xB. x*e^xC. e^-xD. 1答案:A二、填空题(每题2分,共20分)11. 若f(x)=x^2-4x+3,则f'(x)=________。

答案:2x-412. 曲线y=x^3-2x^2+x在x=1处的导数为________。

高数下期末复习模拟试题3份

高数下期末复习模拟试题3份
P ( x, y ) 及其一阶偏导数 D 的面积为 a ,
2
∂P ∂P = 在 D 内 连 续 , 且 有 ∂x ∂y , 则

L
( P( x, y ) + y )dx + ( P( x, y ) − x)dy =(

2 − 2 a A、 ;
B、 − 2a ;
2
C、 − a ;
2
D、 a

2
7. 设流体速度场 v = ci + y j ( c 为常数 ), 则单 位时间内由半径为 2 的球面内部流出球
u = f ( x, xy ), v = g ( x + xy ) ,
∂u ∂u 求 ∂x , ∂y

x +t
∂u ∂u 2.(8 分)设 u ( x, t ) = ∫ x −t f ( z )dz ,求 ∂x , ∂t 。 四、求解下列问题(共计 15 分) 。
1.计算 I
= ∫ 0 dx ∫ x e dy 。 (7 分)


x0 0
ydx −
1 2 x0 y 0 = x0 2
将 ( x 0 , y 0 ) 改为 ( x, y ) 得: 求导得: y ′ −

x
0
ydx −
1 xy = x 2 2
1 y = −4 ,且 y (1) = 1 x
该方程的通解为 y = (c + (−4)e


∫ x dx1dx源自e∫ x dx∂ 2u ∂ 2u 数,则 x ∂x 2 + y ∂y 2
等于(

(A) x + y (B) x ; (C) y
(D)0 。

最新高三数学下期末模拟试卷及答案

最新高三数学下期末模拟试卷及答案

最新高三数学下期末模拟试卷及答案一、选择题1.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( ) A .B .C .D .2.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .$0.4 2.3y x =+ B .$2 2.4y x =- C .$29.5y x =-+D .$0.3 4.4y x =-+4.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27B .11C .109D .365.设函数()()21,04,0x log x x f x x ⎧-<=⎨≥⎩,则()()233f f log -+=( )A .9B .11C .13D .156.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23 B .35C .25D .157.设向量a r ,b r满足2a =r ,||||3b a b =+=r r r ,则2a b +=r r ( )A .6B.C .10D.8.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ). ABCD9.已知函数()(3)(2ln 1)xf x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞U10.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确11.渐近线方程为0x y ±=的双曲线的离心率是( ) A.2B .1 CD .212.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12BCD二、填空题13.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 .14.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.15.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.16.若45100a b ==,则122()a b+=_____________.17.已知α,β均为锐角,4 cos5α=,1tan()3αβ-=-,则cosβ=_____.18.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是19.如图,正方体1111ABCD A B C D-的棱长为1,线段11B D上有两个动点,E F,且2EF=,现有如下四个结论:AC BE①⊥;//EF②平面ABCD;③三棱锥A BEF-的体积为定值;④异面直线,AE BF所成的角为定值,其中正确结论的序号是______.20.已知实数,x y满足不等式组201030yx yx y-≤⎧⎪--≤⎨⎪+-≥⎩,则yx的取值范围为__________.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.22.已知等差数列{}n a满足:12a=,且1a,2a,5a成等比数列.(1)求数列{}n a的通项公式;(2)记n S为数列{}n a的前n项和,是否存在正整数n,使得60800nS n>+?若存在,求n的最小值;若不存在,说明理由.23.在直角坐标系xOy中,直线l1的参数方程为2+,,x ty kt=⎧⎨=⎩(t为参数),直线l2的参数方程为2,,x mmmyk=-+⎧⎪⎨=⎪⎩(为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.24.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy ,已知曲线3cos :sin x a C y a⎧=⎪⎨=⎪⎩(a 为参数),在以O 原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为2cos()124πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 的距离之积.25.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大26.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π224⎛⎫ ⎪⎝⎭,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据函数图象理解二分法的定义,函数f (x )在区间[a ,b ]上连续不断,并且有f (a )•f (b )<0.即函数图象连续并且穿过x 轴. 【详解】解:能用二分法求零点的函数必须在给定区间[a ,b ]上连续不断,并且有f (a )•f (b )<0A 、B 中不存在f (x )<0,D 中函数不连续. 故选C . 【点睛】本题考查了二分法的定义,学生的识图能力,是基础题.2.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.3.A解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.4.D解析:D 【解析】 【分析】 【详解】 由秦九韶算法可得()())((())532231? 02311,f x x x x x x x x x x =++++=+++++0ν1∴=1ν=1303⨯+= 2ν33211=⨯+= 3ν113336=⨯+=故答案选D5.B解析:B 【解析】 【分析】根据自变量所在的范围代入相应的解析式计算即可得到答案. 【详解】∵函数2log (1),0()4,0xx x f x x -<⎧=⎨≥⎩, ∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11.故选B . 【点睛】本题考查函数值的求法,考查指对函数的运算性质,是基础题.6.B解析:B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.7.D解析:D 【解析】【分析】3=,求得2a b ⋅=-r r ,再根据向量模的运算,即可求解. 【详解】∵向量a r ,b r 满足2a =r ,3b a b =+=r r r 3=,解得2a b ⋅=-r r .则2a b +==r r .故选D .【点睛】本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.8.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B.【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.9.C解析:C 【解析】 【分析】求得函数的导数()(2)()x xe af x x x-'=-⋅,根据函数()f x 在(1,)+∞上有两个极值点,转化为0x xe a -=在(1,)+∞上有不等于2的解,令()xg x xe =,利用奥数求得函数的单调性,得到()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,得到()0f x '≥在(1,2)上恒成立,进而得到x a xe ≥在(1,2)上恒成立,借助函数()x g x xe =在(1,)+∞为单调递增函数,求得2(2)2a g e >=,即可得到答案.【详解】由题意,函数()(3)(2ln 1)x f x x e a x x =-+-+,可得2()(3)(1)(2)()(2)()x xxxa xe a f x e x e a x e x x x x-'=+-+-=--=-⋅,又由函数()f x 在(1,)+∞上有两个极值点,则()0f x '=,即(2)()0x xe ax x--⋅=在(1,)+∞上有两解,即0x xe a -=在在(1,)+∞上有不等于2的解,令()xg x xe =,则()(1)0,(1)xg x x e x '=+>>,所以函数()xg x xe =在(1,)+∞为单调递增函数,所以()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,则()0f x '≥在(1,2)上恒成立,即(2)()0x xe ax x--⋅≥在(1,2)上恒成立,即0x xe a -≤在(1,2)上恒成立,即x a xe ≥在(1,2)上恒成立,又由函数()xg x xe =在(1,)+∞为单调递增函数,所以2(2)2a g e >=,综上所述,可得实数a 的取值范围是22a e >,即2(2,)a e ∈+∞,故选C.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.10.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .11.C解析:C 【解析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c 2a = 则该双曲线的离心率为 e 2ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.12.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 二、填空题13.【解析】试题分析:由复数的运算可知是纯虚数则其实部必为零即所以考点:复数的运算 解析:2-【解析】试题分析:由复数的运算可知,()()12i a i -+是纯虚数,则其实部必为零,即,所以.考点:复数的运算.14.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A 时直线解析:6【分析】画出不等式组表示的可行域,由32z x y =-可得322z y x =-,平移直线322zy x =-,结合图形可得最优解,于是可得所求最小值. 【详解】画出不等式组表示的可行域,如图中阴影部分所示.由32z x y =-可得322zy x =-. 平移直线322z y x =-,结合图形可得,当直线322zy x =-经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最小值. 由题意得A 点坐标为(2,0),∴min 326z =⨯=,即32z x y =-的最小值是6. 故答案为6. 【点睛】求目标函数(0)z ax by ab =+≠的最值时,可将函数z ax by =+转化为直线的斜截式:a zy x b b =-+,通过求直线的纵截距z b的最值间接求出z 的最值.解题时要注意:①当0b >时,截距z b 取最大值时,z 也取最大值;截距zb取最小值时,z 也取最小值;②当0b <时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值. 15.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60 【解析】【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++. 故答案为60. 16.【解析】【分析】根据所给的指数式化为对数式根据对数的换地公式写出倒数的值再根据对数式的性质得到结果【详解】则故答案为【点睛】本题是一道有关代数式求值的问题解答本题的关键是熟练应用对数的运算性质属于基 解析:2【解析】【分析】根据所给的指数式,化为对数式,根据对数的换地公式写出倒数的值,再根据对数式的性质,得到结果.【详解】45100a b ==Q ,4log 100a ∴=,5log 100b =,10010010012log 42log 5log 1001a b∴+=+==, 则1222a b ⎛⎫+= ⎪⎝⎭故答案为2【点睛】本题是一道有关代数式求值的问题,解答本题的关键是熟练应用对数的运算性质,属于基础题.17.【解析】【分析】先求得的值然后求得的值进而求得的值【详解】由于为锐角且故由解得由于为锐角故【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正切公式属于中档题解析:50【解析】【分析】先求得tan α的值,然后求得tan β的值,进而求得cos β的值.【详解】由于α为锐角,且4cos 5α=,故3sin 5α==,sin 3tan cos 4ααα==.由()tan tan 1tan 1tan tan 3αβαβαβ--==-+⋅,解得13tan 9β=,由于β为锐角,故22222cos 1cos cos cos sin 1tan ββββββ===++91050=. 【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正切公式,属于中档题.18.2025【解析】设这三个数:()则成等比数列则或(舍)则原三个数:152025解析:20 25【解析】设这三个数:、、(),则、、成等比数列,则或(舍),则原三个数:15、20、2519.【解析】【分析】对于①可由线面垂直证两线垂直;对于②可由线面平行的定义证明线面平行;对于③可证明棱锥的高与底面积都是定值得出体积为定值;对于④可由两个特殊位置说明两异面直线所成的角不是定值【详解】对 解析:①②③【解析】【分析】对于①,可由线面垂直证两线垂直;对于②,可由线面平行的定义证明线面平行;对于③,可证明棱锥的高与底面积都是定值得出体积为定值;对于④,可由两个特殊位置说明两异面直线所成的角不是定值.【详解】对于①,由1,AC BD AC BB ⊥⊥,可得AC ⊥面11DD BB ,故可得出AC BE ⊥,此命题正确;对于②,由正方体1111ABCD A B C D -的两个底面平行,EF 在平面1111D C B A 内,故EF 与平面ABCD 无公共点,故有//EF 平面ABCD ,此命题正确;对于③,EF 为定值,B 到EF 距离为定值,所以三角形BEF 的面积是定值,又因为A 点到面11DD BB 距离是定值,故可得三棱锥A BEF -的体积为定值,此命题正确; 对于④,由图知,当F 与1B 重合时,此时E 与上底面中心为O 重合,则两异面直线所成的角是1A AO ∠,当E 与1D 重合时,此时点F 与O 重合,则两异面直线所成的角是1OBC ∠,此二角不相等,故异面直线,AE BF 所成的角不为定值,此命题错误. 综上知①②③正确,故答案为①②③【点睛】本题通过对多个命题真假的判断,综合考查线面平行的判断、线面垂直的判断与性质、棱锥的体积公式以及异面直线所成的角,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.20.【解析】【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单解析:1 ,22⎡⎤⎢⎥⎣⎦【解析】【分析】作出可行域,yx表示(),x y与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解.【详解】如图,不等式组201030yx yx y-⎧⎪--⎨⎪+-⎩………表示的平面区域ABCV(包括边界),所以yx表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B,,所以122OA OBk k==,,故1,22yx⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.三、解答题21.(1)0.5;(2)0.1【解析】【分析】(1)本题首先可以通过题意推导出()2P X=所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果;(2)本题首先可以通过题意推导出()4P X =所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果.【详解】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球”所以()20.50.40.50.60.5P X ==??(2)由题意可知,()4P X =包含的事件为“前两球甲乙各得1分,后两球均为甲得分” 所以()40.50.60.50.4+0.50.40.50.40.1P X ==创创创= 【点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及()4P X =所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.22.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.【解析】【详解】(1)依题意,2,2,24d d ++成等比数列,故有()()22224d d +=+,∴240d d -=,解得4d =或0d =.∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ;当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),∴最小正整数41n =.23.(1)()2240x y y -=≠(2【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-;消去参数m 得l 2的普通方程()21:2l y x k=+. 设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠.(2)C 的极坐标方程为()()222cos sin 402π,πρθθθθ-=<<≠. 联立()()222cos sin 4,cos sin 20ρθθρθθ⎧-=⎪⎨+-=⎪⎩得()cos sin 2cos sin θθθθ-=+.故1tan 3θ=-, 从而2291cos ,sin 1010θθ==. 代入()222cos sin 4ρθθ-=得25ρ=,所以交点M 的极径为5.【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.24.(1)曲线C :2213x y +=,直线l 的直角坐标方程20x y -+=;(2)1. 【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线C 化为普通方程,再根据cos ,sin x y ρθρθ== 将直线l 的极坐标方程化为直角坐标方程;(2)根据题意设直线1l 参数方程,代入C 方程,利用参数几何意义以及韦达定理得点M 到A ,B 的距离之积试题解析:(1)曲线C 化为普通方程为:2213x y +=, 由2cos 124πρθ⎛⎫+=- ⎪⎝⎭,得cos sin 2ρθρθ-=-, 所以直线l 的直角坐标方程为20x y -+=.(2)直线1l 的参数方程为212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),代入2213x y +=化简得:22220t t --=, 设,A B 两点所对应的参数分别为12,t t ,则121t t =-,121MA MB t t ∴⋅==.25.(1)因为时,所以;(2)由(1)知该商品每日的销售量,所以商场每日销售该商品所获得的利润:222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-; /2()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+-----,令/()0f x =得4x =函数在(3,4)上递增,在(4,6)上递减,所以当时函数取得最大值 答:当销售价格时,商场每日销售该商品所获得的利润最大,最大值为42. 【解析】(1)利用销售价格为5元/千克时,每日可售出该商品11千克.把x=5,y=11代入,解关于a 的方程即可求a..(2)在(1)的基础上,列出利润关于x 的函数关系式, 利润=销售量⨯(销售单价-成品单价),然后利用导数求其最值即可.26.(1)340x y -+=;(2210 【解析】【分析】 (1)求得()04A ,,()22B --,,问题得解. (2)利用直线AB 和曲线C 相切的关系可得:圆心到直线A B 的距离等于圆的半径r ,列方程即可得解.【详解】(1)分别将()π42A ,,()5π224B ,转化为直角坐标为()04A ,,()22B --,, 所以直线AB 的直角坐标方程为340x y -+=.(2)曲线C 的方程为r ρ=(0r >),其直角坐标方程为222x y r +=.又直线A B 和曲线C 有且只有一个公共点,即直线与圆相切,所以圆心到直线A B 的距离等于圆的半径r .又圆心到直线A B 22210431=+r 210. 【点睛】本题主要考查了极坐标与直角坐标互化,还考查了直线与圆相切的几何关系,考查计算能力及点到直线距离公式,属于中档题.。

【常考题】高三数学下期末模拟试卷含答案

【常考题】高三数学下期末模拟试卷含答案

【常考题】高三数学下期末模拟试卷含答案一、选择题1.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( ) A .B .C .D .2.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .423.在二项式42nx x ⎛+ ⎪⎝⎭的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( ) A .16B .14C .512D .134.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种 B .30种C .40种D .60种5.下列各组函数是同一函数的是( )①()32f x x =-与()2f x x x =-;()3f x 2x y x 2x 与=-=-②()f x x =与()2g x x =;③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③C .③ ④D .① ④6.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .577.函数y =2x sin2x 的图象可能是A .B .C .D .8.当1a >时, 在同一坐标系中,函数x y a -=与log a y x =-的图像是( )A .B .C .D .9.函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向右平移6π个单位后关于原点对称,则函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上的最大值为()A .3-B .3 C .12D .12-10.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .11.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u ruu u r,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C .1102± D .3222± 12.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34y x =?C .35y x =±D .53y x =±二、填空题13.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 .14.若,满足约束条件则的最大值 .15.已知向量a r与b r的夹角为60°,|a r|=2,|b r|=1,则|a r+2 b r|= ______ . 16.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.17.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .18.函数232x x --的定义域是 .19.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.20.()sin 5013=oo________________.三、解答题21.已知直线352:{132x l y t=+=(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直角坐标方程; (2)设点的直角坐标为3),直线l 与曲线C 的交点为A ,B ,求MA MB ⋅的值.22.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)5,0,离心率为53.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.23.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围.24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。

【必考题】高三数学下期末模拟试卷及答案

【必考题】高三数学下期末模拟试卷及答案

【必考题】高三数学下期末模拟试卷及答案一、选择题1.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .2.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( )A .49B .29C .12D .133.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .4.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5} 5.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1 B .1 C .2 D .46.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( ) A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角7.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( )A .14B .12C .22 D .2 8.当1a >时, 在同一坐标系中,函数x y a -=与log a y x =-的图像是( )A .B .C .D .9.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o ,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v则·BC OM u u u vu u u u v 的值为A .15-B .9-C .6-D .010.设0<a <1,则随机变量X 的分布列是X 0 a 1 P 13 1313 则当a 在(0,1)内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大11.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<12.已知双曲线C :()222210,0x y a b a b-=>>的焦距为2c ,焦点到双曲线C 的渐近线的距离为32c ,则双曲线的渐近线方程为() A .3y x =±B .2y x =±C .y x =±D .2y x =± 二、填空题13.在区间[1,1]-上随机取一个数x ,cos 2xπ的值介于1[0,]2的概率为 . 14.已知0x >,0y >,0z >,且36x y z ++=,则323x y z ++的最小值为_________.15.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .16.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲17.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.18.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.19.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m=_________ .20.函数()lg 12sin y x =-的定义域是________.三、解答题21.已知函数2()(1)1x x f x a a x -=+>+.(1)证明:函数()f x 在(1,)-+∞上为增函数;(2)用反证法证明:()0f x =没有负数根.22.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程.(2)求经过两圆交点的直线的极坐标方程.23.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证:(1)DE∥平面BCP ;(2)四边形DEFG 为矩形.24.已知椭圆22221(0)x y a b a b +=>>的离心率为6,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22.(1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.25.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.⊥;(1)证明:EF BC(2)求直线EF与平面1A BC所成角的余弦值.26.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.+=”的概率;(Ⅰ)求“抽取的卡片上的数字满足a b c(Ⅱ)求“抽取的卡片上的数字a,b,c不完全相同”的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧,由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C选项.故选C.点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.考点:三视图.2.C解析:C【解析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果.【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键. 3.A解析:A【解析】【分析】确定函数在定义域内的单调性,计算1x =时的函数值可排除三个选项.【详解】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.4.B解析:B【解析】【分析】先求出A B ⋃,阴影区域表示的集合为()U A B ⋃ð,由此能求出结果.【详解】Q 全集{1,U =3,5,7},集合{}1,3A =,{}3,5B =,{1,A B ∴⋃=3,5},∴如图所示阴影区域表示的集合为:(){}7U A B ⋃=ð.故选B .【点睛】本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是中等题.解析:C【解析】【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值.【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tan tan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-, 则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C .【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.6.B解析:B【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角,故选B .7.C解析:C【解析】由题得(1)111122222i i i i z i z i -+====+∴==+. 故选C. 8.D解析:D【解析】【分析】根据指数型函数和对数型函数单调性,判断出正确选项.【详解】由于1a >,所以1x x a y a -=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合.故选:D.本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.9.C解析:C【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA ==u u u u v u u u v u u u v u u u v可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-u u u v u u u u v u u u v u u u u v , 由题意可知: 2211OM ==u u u u v ,12cos1201OM ON o u u u u v u u u v ⋅=⨯⨯=-, 结合数量积的运算法则可得: ()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-u u u v u u u u v u u u v u u u u v u u u u v u u u v u u u u v u u u u v . 本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.10.D解析:D【解析】【分析】利用方差公式结合二次函数的单调性可得结论;【详解】 解:1111()013333a E X a +=⨯+⨯+⨯=, 222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯ 2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<Q ,()D X ∴先减小后增大【点睛】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.11.B解析:B【解析】【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BD PB PB PB PB α===<=β,即αβ>,tan tan PD PD ED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得333222cos sin sin 33α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 12.A解析:A【解析】【分析】利用双曲线C :()222210,0x y a b a b -=>>3,求出a ,b 的关系式,然后求解双曲线的渐近线方程.【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=的距离为2,可得:2c =,可得2b c =,b a =C的渐近线方程为y =. 故选A .【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.二、填空题13.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率 解析:13【解析】 试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤-≤≤-⇒≤≤-≤≤-或或,因此所求概率为22(1)13.1(1)3-=--考点:几何概型概率 14.【解析】【分析】利用已知条件目标可转化为构造分别求最小值即可【详解】解:令在上递减在上递增所以当时有最小值:所以的最小值为故答案为【点睛】本题考查三元函数的最值问题利用条件减元构造新函数借助导数知识 解析:374【解析】【分析】利用已知条件目标可转化为2323453324x y z x x y ⎛++=-+-+ ⎝⎭,构造()33f x x x =-,()24524g y y ⎛⎫=-+ ⎪ ⎪⎝⎭,分别求最小值即可. 【详解】解:323x y z ++= ()32363x y x y ++-- 23334534x x y ⎛⎫=-+-+ ⎪ ⎪⎝⎭令()33f x x x =-,()233454g y y ⎛⎫=-+ ⎪ ⎪⎝⎭, ()()()2'33311f x x x x =-=-+,0x >, ()f x 在()0,1上递减,在()1,+∞上递增,所以,()()min 12f x f ==- 当33y =时,()g y 有最小值:()min 454g y =所以,323x y z ++的最小值为4537244-+= 故答案为374【点睛】本题考查三元函数的最值问题,利用条件减元,构造新函数,借助导数知识与二次知识处理问题.考查函数与方程思想,减元思想,属于中档题.15.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为 解析:【解析】 【分析】 【详解】复数z=1+2i (i 是虚数单位),则|z|==.故答案为.16.1:8【解析】考查类比的方法所以体积比为1∶8解析:1:8 【解析】考查类比的方法,11111222221111314283S hV S h V S h S h ⋅⨯====,所以体积比为1∶8. 17.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化 解析:12【解析】 【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】因为222,cos ,sin x y x y ρρθρθ=+==, 由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,因为直线与圆相切,所以111201 2.2a a a a -=∴=±>∴=+Q ,,,【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.18.y=sinx (答案不唯一)【解析】分析:举的反例要否定增函数可以取一个分段函数使得f (x )>f (0)且(02]上是减函数详解:令则f (x )>f (0)对任意的x ∈(02]都成立但f (x )在[02]上不解析:y =sin x (答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令0,0()4,(0,2]x f x x x =⎧=⎨-∈⎩,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f(x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.通常举分段函数.19.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】 【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.20.【解析】由题意可得函数满足即解得即函数的定义域为解析:513|22,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭【解析】由题意可得,函数lg(12sin )y x =-满足12sin 0x ->,即1sin 2x <, 解得51322,66k x k k Z ππππ+<<+∈, 即函数lg(12sin )y x =-的定义域为513{|22,}66x k x k k Z ππππ+<<+∈. 三、解答题21.见解析. 【解析】试题分析:(1)借助题设条件运用函数的单调性进行推证;(2)借助题设条件运用反证法推证. 试题解析:(1)任取1x ,2(1,)x ∈-+∞,不妨设12x x <,则210x x ->,210x +>,110x +>,又1a >,所以21x x a a >, 所以2121212122()()11x x x x f x f x aa x x ++-=-+-++2121213()0(1)(1)x x x x a a x x -=-+>++, 故函数()f x 在(1,)-+∞上为增函数.(2)设存在00x <(01x ≠-)满足0()0f x =, 则00021x x ax -=+,且001x a <<,所以002011x x -<<+,即0122x <<, 与假设00x <矛盾,故方程()0f x =没有负根.考点:函数单调性的定义及反证法等有关知识的综合运用. 22.(1) x 2+y 2-2x-2y-2=0 (2) ρsin(θ+)= 【解析】(1)∵ρ=2,∴ρ2=4,即x 2+y 2=4. ∵ρ2-2ρcos(θ-)=2,∴ρ2-2ρ (cosθcos +sinθsin )=2.∴x 2+y 2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即ρsin(θ+)=. 23.(1)见解析; (2)见解析. 【解析】 【分析】(1)根据DE 平行PC 即可证明(2)利用PC ,可知DE 与FG 平行且相等,即可证明. 【详解】证明:(1)因为D ,E 分别为AP ,AC 的中点,所以DE∥PC. 又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE∥平面BCP. (2)因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, 所以DE∥PC∥FG,DG∥AB∥EF. 所以四边形DEFG 为平行四边形. 又因为PC⊥AB,所以DE⊥DG . 所以四边形DEFG 为矩形. 【点睛】本题主要考查了直线与平面平行的判定及中位线的性质,属于中档题.24.(1)22162x y +=;(2)2y x =-或2y x =-+.【解析】 【分析】(1)根据椭圆的离心率,三角形的面积建立方程,结合a 2=b 2+c 2,即可求椭圆C 的方程;(2)联立直线方程与椭圆联立,利用韦达定理表示出12x x +及12x x ⋅,结合弦的长度为5即可求斜率k 的值,从而求得直线方程.【详解】解:(1)由椭圆()222210x y a b a b +=>>6得63c a =,33b a =. 由212222S c b =⋅⋅==6a = 2b =22162x y +=. (2)解:设直线():2AB l y k x =-,()11,A x y ,()22,B x y ,AB 中点()00,M x y .联立方程()222360y k x x y ⎧=-⎨+-=⎩得()222213121260k x k x k +-+-=,2212122212126,1313k k x x x x k k -+==++.()22122261113k AB k x x k⋅+=+⋅-=+. 所以202613k x k=+, 点M 到直线1x =的距离为22022316111313k k d x k k -=-=-=++. 由以线段AB 为直径的圆截直线1x =所得的弦的长度为5得222522AB d ⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()22222226131513132k k k k ⎡⎤⋅+⎛⎫⎛⎫-⎢⎥-= ⎪ ⎪ ⎪++⎢⎥⎝⎭⎝⎭⎣⎦, 解得1k =±,所以直线l 的方程为2y x =-或2y x =-+.【点睛】本题考查椭圆的标准方程与几何性质,考查直线与椭圆的位置关系,联立直线与椭圆方程,利用韦达定理,整理出12x x +及12x x ⋅,代入弦长公式()22121214AB k x x x x =++-列方程求解,还考查了圆的弦长计算, ,考查学生的计算能力,属于中档题. 25.(1)证明见解析;(2)35. 【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值. 【详解】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则1A E AC ⊥, 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =,由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =I , 由线面垂直的判定定理可得:BC ⊥平面11A B E , 结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==,据此可得:()()()1330,3,0,,0,0,3,3,02A B A C ⎛⎫- ⎪ ⎪⎝⎭,由11AB A B =u u u r u u u u r 可得点1B 的坐标为1333,322B ⎛⎫⎪⎝⎭, 利用中点坐标公式可得:333,344F ⎛⎫⎪⎝⎭,由于()0,0,0E , 故直线EF 的方向向量为:333,344EF ⎛⎫= ⎪⎝⎭u u u r 设平面1A BC 的法向量为(),,m x y z =u r,则:()()13333,,330223333,,,,002222m A B x y z x y z m BC x y z x y u u u v v u u u v v ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-+= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()3,1m =u r ,333,344EF ⎛⎫= ⎪⎝⎭u u u r 此时4cos ,53552EF m EF m EF m⋅===⨯⨯u u u r u ru u u r u r u u u r u r ,设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ===u u u r u r .【点睛】本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 26.(1)19;(2)89. 【解析】试题分析:(1)所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 共计3个,由此求得“抽取的卡片上的数字满足a b c +=”的概率;(2)所有的可能结果(,,)a b c 共有33327⨯⨯=种,用列举法求得满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 共计三个,由此求得“抽取的卡片上的数字a 、b 、c 完全相同”的概率,再用1减去此概率,即得所求.试题解析:(1) 所有的可能结果(,,)a b c 共有33327⨯⨯=种, 而满足a b c +=的(,,)a b c 有(1,1,2)、(1,2,3)、(2,1,3)共计3个 故“抽取的卡片上的数字满足a b c +=”的概率为31279= (2) 所有的可能结果(,,)a b c 共有33327⨯⨯=种满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 有(1,1,1)、(2,2,2)、(3,3,3)共计三个故“抽取的卡片上的数字a 、b 、c 完全相同”的概率为31279= 所以“抽取的卡片上的数字a 、b 、c 不完全相同”的概率为18199-= 考点:独立事件的概率.【方法点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解.如果采用方法一,一定要将事件拆分成若干个互斥事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.。

【易错题】高三数学下期末模拟试卷及答案

【易错题】高三数学下期末模拟试卷及答案

【易错题】高三数学下期末模拟试卷及答案一、选择题1.若圆与圆222:680C x y x y m +--+=外切,则m =( )A .21B .19C .9D .-112.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15 B .20C .30D .353.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<4.函数2||()x x f x e -=的图象是( )A .B .C .D .5.若,αβvv 是一组基底,向量γv=x αu v +y βu v(x,y ∈R),则称(x,y)为向量γv在基底αu v ,βuv 下的坐标,现已知向量αu v 在基底p u v =(1,-1), q v =(2,1)下的坐标为(-2,2),则αu v 在另一组基底m u v=(-1,1), n v=(1,2)下的坐标为( ) A .(2,0) B .(0,-2) C .(-2,0) D .(0,2)6.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( )A .-1B .1C .2D .4 7.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A 2B 3C .22D .328.已知函数()32cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]9.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定10.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A .53 B .532C .53 D .13 11.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭( ) A .13-B .13C .-3D .312.在[0,2]π内,不等式3sin x <-的解集是( ) A .(0)π,B .4,33ππ⎛⎫⎪⎝⎭C .45,33ππ⎛⎫⎪⎝⎭D .5,23ππ⎛⎫⎪⎝⎭二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.15.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.16.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.17.函数2()log 1f x x =-________. 18.计算:1726cos()sin 43ππ-+=_____. 19.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.20.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.三、解答题21.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △6AP 的方程. 22.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.23.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由. 24.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at =+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是224πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)己知直线l 与曲线C 交于A 、B 两点,且7AB =,求实数a 的值.25.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.26.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP V ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP V 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以250m ->25m ⇒<且圆2C 的圆心为()3,4,25m -根据圆与圆外切的判定(圆心距离等于半径和)可得()()223040125m -+-=-9m ⇒=,故选C.考点:圆与圆之间的外切关系与判断2.C解析:C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的系数为2466151530C C +=+= 故选:C 【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题. 3.C 解析:C 【解析】 【分析】分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.4.A解析:A 【解析】 【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A . 【详解】2||()x x f x e-=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B , 故选A【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.5.D解析:D 【解析】 【分析】 【详解】由已知αu r =-2p u r +2q r =(-2,2)+(4,2)=(2,4), 设αu r =λm u r +μn r=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),则由224λμλμ-+=⎧⎨+=⎩解得02λμ=⎧⎨=⎩∴αu r =0m u r +2n r ,∴αu r在基底m u r , n r 下的坐标为(0,2).6.C解析:C 【解析】 【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值. 【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tantan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-,则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C . 【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.7.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为2d =, 所以公共弦长为:22222l r d =-=. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.8.B解析:B 【解析】 【分析】 【详解】试题分析:利用辅助角公式化简函数为()3sin 2cos 2f x x x m=+-,令,则,所以此时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.9.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.10.C解析:C 【解析】试题分析:先求得M (2,32,3)点坐标,利用两点间距离公式计算得CM =,故选C .考点:本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用. 点评:简单题,应用公式计算.11.A解析:A 【解析】 【分析】由题意可知3124tan tan πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,由题意结合两角和的正切公式可得3tan πα⎛⎫+ ⎪⎝⎭的值.【详解】3124tan tan πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭ 112431124tan tantan tan ππαππα⎛⎫++ ⎪⎝⎭==-⎛⎫-+ ⎪⎝⎭,故选A .【点睛】本题主要考查两角和的正切公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.12.C解析:C 【解析】 【分析】根据正弦函数的图象和性质,即可得到结论. 【详解】解:在[0,2π]内,若sin x 32-<,则43π<x 53π<, 即不等式的解集为(43π,53π), 故选:C . 【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题.二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:22y x =±【解析】 【分析】由题意知,渐近线方程是b y x a =±,1223a c =⨯,再据222c ab =+,得出 b 与a 的关系,代入渐近线方程即可. 【详解】∵双曲线22221x y a b-= (0,0)a b >>的两个顶点三等分焦距,∴1223a c =⨯,3c a =,又222c a b =+,∴22b a = ∴渐近线方程是22by x x a=±=±,故答案为22y x =±. 【点睛】本题考查双曲线的几何性质即双曲线22221x y a b-= (0,0)a b >>的渐近线方程为b y xa =±属于基础题.14.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.15.【解析】【分析】画出两个函数图像求出三个交点的坐标由此计算出三角形的面积【详解】画出两个函数图像如下图所示由图可知对于点由解得所以【点睛】本小题主要考查正弦函数和正切函数的图像考查三角函数图像交点坐 解析:34π 【解析】 【分析】画出两个函数图像,求出三个交点的坐标,由此计算出三角形的面积. 【详解】画出两个函数图像如下图所示,由图可知()()0,0,π,0A C ,对于B 点,由sin 1tan 2y xy x =⎧⎪⎨=⎪⎩,解得π3,3B ⎛⎫ ⎪ ⎪⎝⎭,所以133ππ2ABCS ∆=⨯⨯=.【点睛】本小题主要考查正弦函数和正切函数的图像,考查三角函数图像交点坐标的求法,考查三角函数面积公式,属于中档题.16.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使解析:34【解析】 【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期终模拟试卷(三)
一.填空题(本题共7小题,每小题 4分,满分为28分):
(1)微分方程01e =-'y x 的通解是______________;
(2)设函数),(y x z z =由方程05242222=++-+-z x z y x 所确定,则
=-=)
0,1,1(),,(d z y x z
___________________;
(3)设]),([y y x g x f z -+=,其中f 具有二阶连续偏导数,g ''存在,则=∂∂y
z ____________,
=∂∂2
2
y
z ____________;
(4)二次积分=⎰

y y x x
d )sin(d 3
2
3
3
π
π
_______________;
(5)已知三向量→
-→-→-c b a ,,两两垂直,且

-→
-→
-→
-→
-→
-→
-++====c b a s c b a
,3,2,1,
并设→
-s 与→
-c 夹角为θ,则=θcos ________________; (6)设x
yz xyz x u xy
arctan
)ln(e
+++=,则
=∂∂x
u ___________,
=-∂∂∂)
1,0,1(2
y x u
_________________________;
(7)设容器的内壁由抛物线2x y =绕y 轴旋转而成,容器内原来盛有)cm (83
π的水,后
来又注入)cm (643
π的水,设此时水面比原来提高了)cm (h ,则=h __________________.
二.选择题(本题共4小题,每小题4分,满分为16分):
(1)两个互相平行的平面方程分别为0218419:1=++-z y x π 与
0428419:2=++-z y x π,则它们之间的距离为 ( )
(A )21; (B )21
1; (C )2; (D )1.
(2)微分方程02)
4(=+''-y y y
的通解是=y ( )
(A )4321e e C C x C C x
x +++-;
(B )x x C x C x C C -+++e sin cos e 4321; (C )x x x C C x C C -+++e )(e )(4321 ; (D )x x C C x x C C sin )(cos )(4321+++.
(3)(I )星形线⎩⎨⎧==t
a y t
a x 3
3sin cos 的全长=S ( ) (A )⎰-π
d )cos sin 3(2t t t a ; (B )⎰-0
d )cos sin 3(2π
t t t a ;
(C )⎰
-20
d )cos sin 3(4π
t t t a ; (D )⎰-0
2
d )cos sin 3(4πt t t a .
(3)(II )在0x x =点处,函数)()(x z x y 、对x 的弹性分别为b a 、,则在0x x =点处,函数)()(x z x y 对x 的弹性为 ( ) (A )ab ; (B )
b
a 11+; (C )
b
a a
b +; (D )b a +.
(4)讨论函数n
n x
x x f 211lim )(++=∞
→的间断点,其结论为 ( )
(A)存在间断点1-=x ; (B) 存在间断点0=x ; (C)存在间断点1=x ; (D) 不存在间断点.
三.(本题6分) 求方程)1ln()1(x y y x +='+''+的通解. 四.(I )(本题6分) 求平面区域D :2
40x y -≤≤的形心坐标. 四.(II )(本题6分)设25
.075
.0100y
x Q =,求Q 关于x 的弹性与Q 关于y 的弹性之和.
五.(本题6分) 计算二次积分
+
+⎰⎰
--y y x x x
x
x d d 20
422
22
2
y y x x x x x
d d 20
242
22
2


----
+.
六.(本题6分) 求微分方程
2
d d x
y x x
y +=
的通解.
七.(本题8分)求曲线⎩⎨⎧=-+-=-++0
453203222z y x x z y x 在点)1,1,1(0=P 处的切线方程与法平面方程.
八.(本题8分) 设平面曲线L 上任一点M 处的切线与y 轴的交点A 始终满足OA
MA =
(即点A 到点M 的距离与点A 到点O 的距离相等),且L 经过点)2
3
,23(0=P ,求曲线L 的
方程.
九.(本题8分) 求函数y x y x y x f 43),(22+-+=在平面区域
{
}
25),(2
2≤+=y
x y x D 上的最大值与最小值.
十.(本题8分) 求具有二阶连续导数的函数)(u f ,使)sin e (y f z x = 满足方程
z y
z x
z x
22
2
22
e
=∂∂+
∂∂.
__________________________
期终模拟试卷(三)
一.(1)C y x +-=-e ; (2)y x d 2d -;
(3)21f g f '+'⋅'-; 2212211
12)(f g f g f g f ''+'⋅''-'⋅''+''⋅'; (4)
3
2; (5)
14
3;
(6)2
2
2
1e 1z
y x yz x
y xy +-
+
+ ,2. (7).8.
二.(1).D ; (2).C ; (3).D ; (4).C . 三. 322)1ln()(C x x C x y +-++=. 四.(I ) )58
,0(),(=y x .
四.(II )1[提示
75.0=∂∂x
Q Q x ,
25.0=∂∂y
Q Q y ]
五.93238-
π. 六.2
1e
22--=y C x y

七.
1
19
116
1
--=
-=
-z y x , 24916=-+z y x .
八.2
2
3x x y -=.
九.最大值50)4,3(=-f ,最小值4
25)2,23
(-
=-f .
十.u
u C C u f -+=e
e )(21.。

相关文档
最新文档