经济数学基础(09春)模拟试题
经济数学基础 期末考试复习题及参考答案(山东开放)
经济数学基础补考试题题库及参考答案一、单选题(题数:5,共 10.0 分)1若,则()2.0 分A、B、C、D、正确答案:A2设A是三角形矩阵,若主对角线上元素(),则A可逆。
A、全都是0B、可以有0的元素C、不全为0D、全不为0正确答案:D3“在点处有定义”是当时有极限的()A、必要条件B、充分条件C、充要条件D、无关条件正确答案:D4下列函数在指定区间A、B、C、D、3-x正确答案:B5设,则()A、1B、2C、3D、4正确答案:B二、填空题(题数:15,共 30.0 分)1正确答案第一空: 02甲乙两人打靶,用A表示甲中靶的事件,B表示乙中靶的事件,靶被射中表示为____________。
正确答案第一空: A+B3若A+B=U,AB=,则A是B的____________。
正确答案第一空:对立事件4设一组试验数据为7.3,7.8,8.0,7.6,7.5,则它们的方差是_______________。
正确答案第一空: 0.05845正确答案第一空: 2/36用棉花方格育苗,每方格种两粒种子,棉籽的发芽率是0.9,则两粒都发芽的概率是____________。
正确答案第一空: 0.817若事件A,B,有P(A)=0.5,P(B)=0.4,P(AB)=0.3,则P=____________。
正确答案第一空: 0.758用棉花方格育苗,每方格种两粒种子,棉籽的发芽率是0.9,则两粒都不发芽的概率是____________。
正确答案第一空: 0.019若某种商品的需求量正确答案第一空:10一组样品组成_______________。
正确答案第一空:样本11正确答案第一空: 112若=P(A),则=____________。
正确答案第一空: P(B)13袋中有4个红球,2个白球,从中每次取1球,连续取两次,两次取得白球的概率是____________。
正确答案第一空: 1/1514正确答案第一空:15正确答案第一空:三、判断题(题数:20,共 60.0 分)1可微与可导两个概念是等价的。
经济数学基础期末模拟练习题.doc
经济数学基础期末模拟练习题一、单项选择题1.设1)(+=x x f ,则)1)((+x f f =( ). A . x B .x + 1 C .x + 2 D .x + 3 2. 下列函数中,( )不是基本初等函数.A . xy )e1(= B . 2ln x y = C . xxy cos sin =D . 35x y = 3.设函数⎩⎨⎧>≤=0,00,cos )(x x x x f ,则)4(π-f =().A .)4(π-f =)4(πf B .)2()0(πf f =C .)2()0(π-=f fD .)4(πf =224.若A x f x x =→)(lim 0,则)(x f 在点0x 处( )A .有定义B .没有定义C .极限存在D .有定义,且极限存在5.若4cos)(π=x f ,则=∆-∆+→∆xx f x x f x )()(0lim().A .0B .22 C .4sin π- D .4sin π6.曲线x x y -=3在点(1,0)处的切线是( ). A . 22-=x y B . 22+-=x y C . 22+=x yD . 22--=x y7.已知441x y =,则y ''=( ). A . 3x B . 23x C . x 6 D . 68. 满足方程0)(='x f 的点是函数)(x f y =的( ).A .极大值点B .极小值点C .驻点D .间断点 9.下列结论中( )不正确.A .)(x f 在0x x =处连续,则一定在0x 处可微.B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .若)(x f 在[a ,b ]内恒有0)(<'x f ,则在[a ,b ]内函数是单调下降的. 10.设f x ()的一个原函数是e -2x ,则f x ()=( ). A . e -2xB . --22e xC . x2e4--D . 42e -x11.微分方程y y ='的通解是=y ( ). A . c x +25.0 B . xc e C . xc -eD . c y x+=e12.设一组数据1x =0,2x =10,3x =20,其权数分别为1.01=p ,6.02=p , 3.03=p ,则这组数据的加权平均数是( ).A . 12B . 10C . 6D . 4 13.对任意二事件A B ,,等式( )成立.A .P AB P A P B ()()()= B .P A B P A P B ()()()+=+C .P A B P A P B ()()(())=≠0 D .P AB P A P B A P A ()()()(())=≠014.掷两颗均匀的骰子,事件“点数之和为3”的概率是( ). A .361B . 181C . 121D . 11115.矩阵13210011000010001000-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩是( ) A. 1 B. 2 C. 3 D. 4 16.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=( )时线性方程组有无穷多解.A .1B .4C .2D .1217.若非齐次线性方程组A m ×n X = b 的( ),那么该方程组无解. A .秩(A ) = n B .秩(A )=m C .秩(A )≠ 秩 (A ) D .秩(A )= 秩(A )二、填空题 1.极限=→xx x 1sinlim 0. 2.当k 时,⎩⎨⎧<+≥+=001)(2x kx x x x f 在0=x 处仅仅是左连续.3.函数x x x f ln )(-=的单调增加区间是 . 4.如果f x x x c ()sin d ⎰=+2,则)(x f '= .5.广义积分 ⎰∞-02d e x x = . 6. 0e)(23='+''-y y x是 阶微分方程.7.设随机变量X 的概率分布为则a = .8.设),(~p n B X ,且6)(=X E ,6.3)(=X D ,则n = . 9.设矩阵[]321-=A ,I 是单位矩阵,则I A A -T =_________.三、解答题1. 生产某种产品的固定成本为1万元,每生产一个该产品所需费用为20元,若该产品出售的单价为30元,试求:(1) 生产x 件该种产品的总成本和平均成本; (2) 售出x 件该种产品的总收入;(3) 若生产的产品都能够售出,则生产x 件该种产品的利润是多少? 2.计算下列极限(1)x x x 33sin 9lim 0-+→ (2)1245lim 224--+-→x x x x x(3))1113(lim 21----→x x x x 3.求下列导数或微分: (1)设)11)(1(-+=xx y , 求d y .(2)设x x y x sin e +=,求y d .(3)设121lncos -+=x x y ,求y '. 4.生产某种产品q 台时的边际成本10005.2)(+='q q C (元/台),固定成本500元,若已知边际收入为,20002)(+='q q R 试求(1)获得最大利润时的产量;(2)从最大利润的产量的基础再生产100台,利润有何变化?5.计算下列不定积分或定积分(1)⎰+x x x d 423(2)⎰10d cos x x x π (3)x x d sin 20⎰π6.求微分方程yx y -='2e 满足初始条件0)0(=y 的特解.7.假设事件B A ,相互独立,已知6.0)(3.0)(==B P A P ,,求事件B A 与只有一个发生的概率.8.已知7.0)(=A P ,3.0)(=B P ,5.0)(=B A P ,求)(B A P .9.有甲、乙两批种子,发芽率分别是0.85和0.75,在这两批种子中各随机取一粒,求至少有一粒发芽的概率.10.已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立. 11.设随机变量X 的密度函数为⎩⎨⎧<<-=03)2(3)(2x a x x f求 (1) 常数a ; (2) E X ()12.某类钢丝的抗拉强度服从均值为100 (kg/cm 2),标准差为5 (kg/cm 2)的正态分布,求抗拉强度在90~110之间的概率.(Φ(1) = 0.841 3, Φ(2) = 0.977 2 )13.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 14.设矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111103231A ,求矩阵1-A15.设A ,B 均为n 阶对称矩阵,则AB +BA 也是对称矩阵.16.求下列解线性方程组的一般解⎪⎩⎪⎨⎧=-+-=+-+-=++-0232022023432143214321x x x x x x x x x x x x17. 例45 设线性方程组212132123123123x x x x x x x x x c-+=--+=--+=⎧⎨⎪⎩⎪试问c 为何值时,方程组有解?若方程组有解时,求一般解.参考解答一、单项选择题1.解 由于1)(+=x x f ,得 )1)((+x f f 1)1)((++=x f =2)(+x f 将1)(+=x x f 代入,得)1)((+x f f =32)1(+=++x x 正确答案:D2.解 因为2ln x y =是由u y ln =,2x u =复合组成的,所以它不是基本初等函数.正确答案:B3.解 因为02<-π,故1)2cos()2(=-=-ππf 且 1)0(=f , 所以)2()0(π-=f f正确答案:C4.解 函数在一点处有极限与函数在该点处有无定义无关. 正确答案:C5.解 因为4cos)(π=x f 是常数函数,常数函数是可导的,而且它的导数是0.所以由导数定义可得 =∆-∆+→∆xx f x x f x )()(0lim )0(f '= 0正确答案:A注意:这里的4cos)(π=x f 不是余弦函数.6.解 由导数的定义和它的几何意义可知, 13)()1(='-='x x x y 2)13(12=-==x x是曲线x x y -=3在点(1,0)处的切线斜率,故切线方程是)1(20-=-x y ,即22-=x y正确答案:A7.解 直接利用导数的公式计算: 34)41(x x y ='=', 233)(x x y ='='' 正确答案:B8.解 由驻点定义可知,正确答案:C9.解 因为函数在一点处连续并不能保证在该点处可导,所以,正确答案:A 10. 解 因为f x ()的一个原函数是e-2x,故f x ()=(e -2x )'=--22e x所以正确答案:B11.解 用可分离变量法很容易求解,因此,正确答案:B 12.解 因为加权平均数是203.0106.001.031⨯+⨯+⨯=∑=i ii xp = 12所以,正确答案:A13.由概率乘法公式可知,正确答案:D14.解 两颗均匀的骰子的“点数之和”样本总数有6⨯6 =36个,而“点数之和为3”的事件含有:1+2和2+1两个样本,因此,该事件的概率为181. 正确答案:B15.解 化成阶梯形矩阵后,有3个非0行,故该矩阵的秩为3. 正确答案:C16.解 将增广矩阵化为阶梯形矩阵,⎥⎦⎤⎢⎣⎡=41221λA ⎥⎦⎤⎢⎣⎡-→021021λλ 此线性方程组未知量的个数是2,若它有无穷多解,则其增广矩阵的秩应小于2,即021=λ-,从而λ=12.正确答案:D17.解 根据非齐次线性方程组解的判别定理,得 A m ×n X = b 无解⇔秩(A ) ≠ 秩(A ) 正确答案:C二、填空题1.解 因为当0→x 时,x 是无穷小量,x1sin 是有界变量. 故当0→x 时,xx 1sin 仍然是无穷小量. 所以 =→x x x 1sin lim 00.正确答案:C2.解 因为函数是左连续的,即)0(1)1(lim )0(0f x f x ==+=-→-若 1)(lim )0(2==+=+→+k k x f x即当=k 1时,)(x f 在0=x 不仅是左连续,而且是连续的. 所以,只有当1≠k 时,)(x f 在0=x 仅仅是左连续的. 正确答案:1≠3.解 因为 xx x x f 11)ln ()(-='-='令011)(>-='xx f ,得1>x 故函数的单调增加区间是),1(+∞. 正确答案:),1(+∞4.解 根据不定积分的性质可知f (x )=x c x x x f 2cos 2)2(sin )d )((='+='⎰且 )(x f '= x x 2sin 4)2cos 2(-=' 正确答案:x 2sin 4-5.解 因为 ⎰∞-02d e x x2x e21lim aa -∞→=)e 1(21lim2a a -=-∞→=21所以正确答案:216.解 因为微分方程 0e )(23='+''-y y x中所含未知函数的导数的最好阶数是2次,所以它是2阶微分方程. 正确答案:27.根据离散型随机变量的概率分布的性质:pkk∑=1正确答案:0.38.根据二项分布的期望和方差的定义:6.3)1()(,6)(=-===p np X D np X E得 1- p = 0.6,p = 0.4,n = 15 正确答案:159.解 因为 T A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-321,A A T=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-321[]321- =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----963642321 所以 I A A -T=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----863632320. 正确答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----863632320该例题说明,可转置矩阵不一定是方阵;如果矩阵运算TA A 成立,A 也不一定是方阵.三、解答题1.(1)解 生产x 件该种产品的总成本为x x C 2010000)(+=; 平均成本为: 2010000)(+=xx C .(2)解 售出x 件该种产品的总收入为: x x R 30)(=. (3)解 生产x 件该种产品的利润为:)()()(x C x R x L -==)2010000(30x x +- =1000010-x2.(1)解 对分子进行有理化,即分子、分母同乘33sin 9++x ,然后利用第一重要极限和四则运算法则进行计算.即 x x x 33sin 9lim-+→=)33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =33sin 91lim 3sin lim00++⨯→→x x x x x =21613=⨯(2)解 将分子、分母中的二次多项式分解因式,然后消去零因子,再四则运算法则和连续函数定义进行计算.即1245lim 224--+-→x x x x x )3)(4()1)(4(lim 4----=→x x x x x33414)3()1(lim4=--=--=→x x x(3)解 先通分,然后消去零因子,再四则运算法则和连续函数定义进行计算.即 )1113(lim 21----→x x x x =)1)(1()1()3(lim 1+-+--→x x x x x 112lim1-=+-=→x x 3.(1)解 因为 )11)(1(-+=x x y xx 1+-=且 )1('+-='xx y 32121x x--=)11(21x x+-=d y x x xd )11(21+-=注意:求导数时,要先观察函数,看看能否将函数化简,若能,应将函数化简后再求导数,简化计算过程.导数运算的重点是复合函数求导数,难点是复合函数求导数和隐函数求导数. (2)解 因为 xx x x y xx sin e 2)sin e (+'+='=xx x x xx x sin e 2cos e sin e 1+++所以 x x x x x x y y xx d )s i n e 2)s i n (c o s e 1d d +++='=(3)解 ))12l n ((c o s '--='x x y122)(s i n --'⋅-=x x x ]122s i n 21[-+-=x x x复合函数求导数要注意下面两步:① 分清函数的复合步骤,明确所有的中间变量;② 依照法则依次对中间变量直至自变量求导,再把相应的导数乘起来. 4.解 (1)C R L '-'='=)10005.2(20002+-+q q =10005.0+-q令0='L ,求得唯一驻点2000=q .因为驻点唯一,且利润存在着最大值,所以当产量为2000时,可使利润达到最大.(2)在利润最大的基础上再增加100台,利润的改变量为⎰+-=∆21002000d )10005.0(q q L 2500)100041(210020002-=+-=q q即利润将减少2500元.5.(1)解 用第一换元积分法求之.⎰+x x x d 423=⎰+222d 421x x x =⎰+-22)d 441(21x x = c x x ++-)4ln(2222(2)解 用分部积分法求之.⎰1d cos x x x π=⎰-110d sin 1sin 1x x x x ππππ=12cos 1x ππ=22π-(3)解 因为,当π<<x 0时,0sin >x ,即x x sin sin =; 当ππ2<<x 时,0sin <x ,即x x sin sin -=;x x d sin 20⎰π=x x x x d )sin (d sin 20⎰⎰-+πππ=πππ20cos cos x x +- =1 + 1 + 1 + 1 = 46.解 将微分方程yx y -='2e变量分离,得x y xy d e d e 2=,等式两边积分得c xy +=2e 21e 将初始条件0)0(=y 代入,得21=c . 所以满足初始条件的特解为: )1(e5.0e 2+=xy7.解 B A 与只有一个发生的事件为: B A B A +,且B A 与B A 是互斥事件,于是 )()()(B A P B A P B A B A P +=+ =)()()()(B P A P B P A P + =6.0)3.01()6.013.0⨯-+-⨯(=54.08.解 因为B A AB A +=,且AB 与B A 是互斥事件,得)()()(B A P AB P A P += 所以, )(B A P )()(B P AB P =)()()(B P B A P A P -=323.05.07.0=-=9.设A 表示甲粒种子发芽,B 表示乙粒种子发芽,则A ,B 独立,且 P (A ) = 0.15,P (B ) = 0.25 故至少有一粒发芽的概率为:P (A +B ) = 1 - P (B A +) = 1 - P (B A )= 1 - P (A )P (B )= 1 – 0.15⨯0.25 = 0.9625 10.证 因为事件A ,B ,C 相互独立,即)()()(C P A P AC P =,)()()(C P B P BC P = 且 )()()(])[(ABC P BC P AC P C B A P -+=+=)()()()()()()(C P B P A P C P B P C P A P -+ =)()]()()()([C P B P A P B P A P -+ =)()(C P B A P + 所以)(B A +与C 相互独立.11. (1) 解 根据密度函数的性质1=⎰⎰-=+∞∞-32d )2(3d )(ax x x x f =33)2(ax -= 1-(a -2)3得a = 2所以 ⎩⎨⎧<<-=032)2(3)(2x x x f(2) 解 E X ()=⎰+∞∞-d )(x x xf =⎰-322d )2(3x x x=32234)6443(x x x +-=7412.解 设钢丝的抗拉强度为X ,则X ~N (100,52),且)1,0(~5100N X -. P (90<X <110) = )51001105100510090(-<-<-X P = Φ(2)-Φ(-2) = 2Φ(2) - 1 = 0.954 413.解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435(BA I )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 所以 (BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--25223114. 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100010001111103231][I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340013790001231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340211110001231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→943100211110632101→⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100113010237001349 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-9437323111A15.证 因为 A ,B 是对称矩阵,即 B B A A==T T,且 TT T )()()(BA AB BA AB +=+T T T T B A A B += AB BA +=BA AB += 根据对称矩阵的性质可知,AB +BA 是对称矩阵. 16.解 将系数矩阵化成阶梯形矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=311031101231232121211231A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→010030108001020031108101因为,秩(A ) = 3 < 4,所以,方程组有非零解. 一般解为⎪⎩⎪⎨⎧===03834241x x x x x (4x 是自由未知量) 17.解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=13501350112123111211112A c c ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→c 00013501121 可见,当c = 0时,秩(A ) = 秩(A ) = 2 < 3 ,所以方程组有无穷多解.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0000515310535101A 原方程组的一般解为⎪⎪⎩⎪⎪⎨⎧+=-=323153515153x x x x (3x 是自由未知量)。
经济数学基础练习题与答案
经济数学基础练习题与答案习题一一.单项选择题。
1.y = )。
(A )33x -≤≤ (B )33x -∠∠ (C )99x -≤≤ (D )99x -∠∠ 2.下列选项中是相同的函数的是( )。
(A )()()21,1;1x f x g x x x -==-+ (B )()();f x g x x ==(C )2()ln ,()2ln ;f x x g x x == (D)()cos ,()f x x g x == 3.下列函数中既不是奇函数,也不是偶函数的是( ).1)(11)(11)(1)(22+=+=+==x x y D x y C x y B xy A4. 数列{}n x 与{}n y 的极限分别为A 与B ,且A B ≠,则数列112233,,,,,,......x y x y x y 的极限为( ).(A )A (B ) B (C )A+B (D )不存在 5. 极限0lim ()x x f x A→=成立的充分必要条件是( )。
(A )00lim ()lim ()x x x x f x f x A-+→→== (B )0lim ()x x f x A+→=(C )0lim ()x x f x A-→= (D )lim ()lim ()x x x x f x f x A+→→==6. 下列变量在给定变化过程中是无穷小的是( )。
(A) ()x →+∞ (B )lg x()0x +→ (C )lg x()x →+∞ (D )x e ()0x -→7.()f x 在点0x x =处有定义,是当0x x →时,()f x 有极限的( )。
(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关的条件 8.()f x 在点0x x =处有定义,是()f x 在0x x =处连续的( )。
(A )必要条件 (B )充分条件(C )充分必要条件 (D )无关的条件9. 函数sin ,0(),0xx f x xk x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ()。
经济数学基础模拟试题
经济数学基础模拟试题经济数学基础模拟试题一、单项选择题(每小题3分,共15分)1.下列函数中为偶函数的是( ).A .x x y -=2B .11ln +-=x x y C .2e e xx y -+= D .x x y sin 2=2.设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).A .pp32- B . 32-p p C .--32pp D .--p p32 3.下列无穷积分中收敛的是( ).A .⎰∞+0d e x xB . ⎰∞+13d 1x xC .⎰∞+12d 1x xD .⎰∞+1d sin x x 4.设A 为43⨯矩阵,B 为25⨯矩阵,且T T B AC 有意义,则C 是 ( )矩阵.A .24⨯B .42⨯C .53⨯D .35⨯5.线性方程组⎩⎨⎧=+=+32122121x x x x 的解得情况是( ). A . 无解 B . 只有O 解 C . 有唯一解 D . 有无穷多解二、填空题(每小题3分,共15分)6.函数)5ln(21)(++-=x x x f 的定义域是.7.函数1()1e x f x =-的间断点是 . 8.若c x x x f x ++=⎰222d )(,则=)(x f .9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=333222111A ,则=)(A r .10.设齐次线性方程组O X A =⨯⨯1553,且r (A ) = 2,则方程组一般解中的自由未知量个数为 .三、微积分计算题(每小题10分,共20分)11.设x y x cos ln e -=,求y d .12.计算定积分 ⎰e1d ln x x x .四、代数计算题(每小题15分,共30分)13.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=143102010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I ,求1)(-+A I . 14.求齐次线性方程组⎪⎩⎪⎨⎧=-++=+--=-++03520230243214314321x x x x x x x x x x x 的一般解.五、应用题(本题20分)15.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大最大利润是多少经济数学基础模拟试题参考解答一、单项选择题(每小题3分,共15分)1.C 2. D 3. C 4. B 5. A二、填空题(每小题3分,共15分)6. ),2()2,5(∞+-7. 0x =8. x x 42ln 2+9. 1 10.3三、微积分计算题(每小题10分,共20分)11.解:因为 x x x y x x tan e )sin (cos 1e +=--='所以 x x y x d )tan e (d +=12.解: ⎰⎰-=e12e12e 1)d(ln 21ln 2d ln x x x x x x x 414e d 212e 2e 12+=-=⎰x x .四、线性代数计算题(每小题15分,共30分)13.解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+243112011A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+103210012110001011100243010112001011)(I A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→115100012110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→115100127010001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→115100127010126001所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I . 14.解:因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111011101211351223011211A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011102301 所以一般解为⎩⎨⎧-=+-=43243123x x x x x x (其中3x ,4x 是自由未知量)五、应用题(本题20分)15.解:由已知收入函数 201.014)01.014(q q q q qp R -=-==利润函数 22202.0201001.042001.014q q q q q q C R L --=----=-= 于是得到 q L 04.010-='令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大. 且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)。
《经济数学基础》习题答案及试卷(附答案)
习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。
国家开放大学《经济数学基础》期末考试复习题及参考答案
题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则().答案:1 题目10:设在处连续,则().答案:1 题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:题目2:若,则().答案:题目2:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则(). 答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:(). 答案:0题目10:().答案:0题目10:(). 答案:题目11:设,则(). 答案:题目11:设,则().答案:题目11:设,则(). 答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则()答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则()答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1 题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().:答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组()答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解一、计算题(每题6分,共60分)1.解:综上所述,2.解:方程两边关于求导:,3.解:原式=。
经济数学基础试题及答案
经济数学基础试题及答案一、单项选择题(每题2分,共10分)1. 下列函数中,哪一个是偶函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^2 + x \)D. \( f(x) = \sin(x) \)答案:A2. 微积分中,求定积分 \(\int_{0}^{1} x^2 dx\) 的值是多少?A. 0B. 1C. \(\frac{1}{3}\)D. 2答案:C3. 线性代数中,矩阵 \( A \) 与矩阵 \( B \) 相乘,结果矩阵的行列数是什么?A. \( A \) 的行数与 \( B \) 的列数B. \( A \) 的行数与 \( B \) 的行数C. \( A \) 的列数与 \( B \) 的列数D. \( A \) 的列数与 \( B \) 的行数答案:D4. 概率论中,如果事件 \( A \) 和事件 \( B \) 是互斥的,那么\( P(A \cup B) \) 等于什么?A. \( P(A) + P(B) \)B. \( P(A) - P(B) \)C. \( P(A) \times P(B) \)D. \( P(A) / P(B) \)答案:A5. 经济学中,边际效用递减原理指的是什么?A. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐减少B. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐增加C. 随着消费量的增加,每增加一单位商品带来的额外满足感保持不变D. 随着消费量的减少,每增加一单位商品带来的额外满足感逐渐增加答案:A二、填空题(每题3分,共15分)1. 函数 \( f(x) = 2x + 3 \) 的反函数是 ________。
答案:\( f^{-1}(x) = \frac{x - 3}{2} \)2. 函数 \( y = x^2 \) 在 \( x = 1 \) 处的导数是 ________。
经济数学基础年月模拟试题
经济数学基础2009年7月模拟试卷一、单项选择题(每小题3分,共15分)1.函数()1lg +=x x y 的定义域是().A .1->xB .0≠xC .0>xD .1->x 且0≠x题目解读:答案:D2.当+∞→x 时,下列变量为无穷小量的是( )A .)1ln(x +B .12+x xC .21e x-D .xx sin题目解读:答案:D3.若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .)(d )(x F x x f xa=⎰B .)()(d )(a F x F x x f xa-=⎰C .)()(d )(a f b f x x F b a-=⎰D .)()(d )(a F b F x x f ba-='⎰题目解读:答案:B4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =(). A .4 B .3C .2D .1题目解读:答案:C5.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =(). A .只有零解B .有非零解 C .无解D .解不能确定 题目解读:答案:A二、填空题(每小题3分,共15分)6.设21010)(xxx f -+=,则函数的图形关于对称.题目解读:答案:y 轴7.已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在x =1处连续,则=a .题目解读:答案:28.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为 .题目解读:答案:q q R 232)(+=9.设A 为n 阶可逆矩阵,则r (A )=. 题目解读:答案:n10. 已知齐次线性方程组O AX =中A 为53⨯矩阵,则≤)(A r . 题目解读:答案:3三、微积分计算题(每小题10分,共20分)11.设)1ln(2++=xx y ,求)3(y '题目解读:答案:解因为 )1(1122'++++='xx xx y11)11(11222+=++++=xxx xx 所以 )3(y '=211)3(12=+12.计算 x xx d e 2121⎰题目解读:答案:解 x xx d e 2121⎰=21211211e e e)1(d e -=-=-⎰xxx四、代数计算题(每小题15分,共50分)13.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1. 题目解读:答案:解因为AB =⎥⎦⎤⎢⎣⎡--021201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136=⎥⎦⎤⎢⎣⎡--1412 (ABI ) =⎥⎦⎤⎢⎣⎡-→⎥⎦⎤⎢⎣⎡--1210011210140112⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡---→1212121011211102所以 (AB )-1=⎥⎥⎦⎤⎢⎢⎣⎡1221211-14.求线性方程组⎪⎩⎪⎨⎧=++-=++-=+-5532342243214321421x x x x x x x x x x x 的一般解.题目解读:答案:解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---13111311021011551323412121011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→001311012101001311021011故方程组的一般解为:1342342131x x x x x x =++⎧⎨=+-⎩(x 3,4x 是自由未知量〕五、应用题(本题20分)15.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化? 题目解读:答案:解:(1) 因为边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x令0)(='x L ,得x = 7由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点.因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为87287)14(d )214(x x x x L -=-=∆⎰=112–64 – 98 + 49 = -1 (万元)即当产量由7百吨增加至8百吨时,利润将减少1万元.。
经济数学基础12模拟试题(1)(09秋)
《经济数学基础12》模拟试题(1)(09秋)一、单项选择题(每小题3分,本题共15分) 1.下列函数中为偶函数的是( ).(A) x x y sin = (B) x x y +=2(C) xxy --=22 (D) x x y cos =2.曲线x y sin =在点)0,π((处的切线斜率是( ). (A) 1 (B) 2 (C) 21(D) 1- 3.下列无穷积分中收敛的是( ).(A)⎰∞+1d e x x (B)⎰∞+12d 1x x (C) ⎰∞+13d 1x x(D) ⎰∞+1d 1x x 4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=600321540A ,则=)(A r ( ). (A) 0 (B) 1 (C) 2 (D) 3 5.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡-=06211λA ,则当λ=( )时线性方程组无解.(A) 3 (B) 3- (C) 1 (D) 1-二、填空题(每小题3分,共15分) 6.若函数62)1(2+-=-x x x f ,则=)(x f .7.函数3)2(-=x y 的驻点是 . 8.微分方程3x y ='的通解是. .9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=03152321a A ,当a = 时,A 是对称矩阵. 10.齐次线性方程组0=AX (A 是n m ⨯)只有零解的充分必要条件是 . 三、微积分计算题(每小题10分,共20分) 11.已知2sin 2x x=,求y '. 12.计算x x x d cos 22π0⎰.四、线性代数计算题(每小题15分,共30分)13.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=843722310A ,I 是3阶单位矩阵,求1)(--A I .14.求当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-λ432143214321114724212x x x x x x x x x x x x 有解,并求出一般解.五、应用题(本题20分)15.设生产某产品的总成本函数为 x x C +=5)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 211)(-='(万元/百吨),求:⑴利润最大时的产量;⑵在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?一、单项选择题(每小题3分,本题共15分) 1.A 2.D 3.B 4.D 5. A二、填空题(每小题3分,本题共15分)6. 52+x 7. 2=x 8. c x +449. 1 10. n A r =)( 三、微积分计算题(每小题10分,共20分) 11. 解:由导数运算法则和复合函数求导法则得)(sin 2sin )2()sin 2(222'+'='='x x x y x x x)(cos 2sin 2ln 2222'+=x x x x x22cos 22sin 2ln 2x x x x x += ………10分12. 解:由定积分的分部积分法得x x xx x x x d2sin sin 2d cos 22π02π02π0⎰⎰-=2π-= ………10分 四、线性代数计算题(每小题15分,共30分) 13.解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I 利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100*********111110233010301001111 →---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111 即 ()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111 ………15分 14.解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---273503735024121114712412111112λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→500003735024121λ ………10分当5=λ时,方程组有解,且方程组的一般解为⎪⎪⎩⎪⎪⎨⎧-+=--=432431575353565154x x x x x x其中43,x x 为自由未知量. ………15分五、应用题(本题20分)15.解:⑴因为边际成本为 1)(='x C ,边际利润x x C x R x L 210)()()(-='-'='令0)(='x L ,得5=x 可以验证5=x 为利润函数)(x L 的最大值点. 因此,当产量为5百吨时利润最大. ………10分⑵当产量由5百吨增加至6百吨时,利润改变量为 65265)10(d )210(x x x x L -=-=∆⎰1-=(万元)即利润将减少1万元. ………20分。
09年经济师考试《初级经济基础》模拟试题及答案(五)重点
09年经济师考试《初级经济基础》模拟试题及答案(五)一、单项选择题(共70题,每题1分。
每题的备选项中,只有1个最符合题意)第 1 题根据财务报表所反映的各类信息,有重点、有针对性地对其项目加以分析和考察。
为报表使用者提供判断的决策依据的方法或程序是( )。
A.财务报表阅读B.财务报表分析C.财务报表编制D.财务报表审计第 2 题建立法人治理结构的核心是在企业内部构造( )。
A.现代企业制度B.法人财产制度C.权力制衡机制D.委托代理关系第 3 题价格的形成是商品和货币背后的市场主体,即( )的意志共同决定的。
A.消费者与经营者B.生产者与消费者C.经营者与生产者D.以上均不对第 4 题下述业务不属于商业银行中间业务的是 ( ) 。
A.结算业务B.代理业务C.同业存放D.租赁业务第 5 题 ( )的财政政策,是指那些无须借助外力即可根据经济波动状况而自动发挥调控效果,起到稳定经济作用的政策。
A.相机抉择B.自动稳定C.汲水D.补偿性第 6 题 ( )是国家为实现其职能需要,直接参与社会产品分配所形成的分配活动及所体现的分配关系。
A.国家宏观调控B.国民经济计划C.国家财政D.政府工作报告第 7 题对数值型数据,不能采取的统计方法是( )。
A.计算平均数B.进行参数估计C.参数检验D.计算中位数第 8 题在国民收入初次分配的基础上,通过再分配形式的收入称为( )。
A.企业收入B.派生收入C.原始收入D.再分配收入第 9 题按照调查对象包括的范围不同,可以将统计调查分为( )。
A.全面调查和非全面调查B.经常性调查和一次性调查C.普查和抽样调查D.统计报表、问卷法和访问法第 10 题抽样调查是按照( )从调查对象总体中抽取一部分单位作为样本进行调查,以样本指标来推断总体指标的一种方法。
A.可比原则B.随机原则C.相关性原则D.准确性原则第 11 题外商投资企业的总机构设在中国境内,就来源于( )缴纳所得税。
经济数学基础线性代数部分综合练习及参考答案
《经济数学基础》综合练习及参考答案第三部 分 线性代数一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( )可以进行. A .AB B .AB T C .A +B D .BA T 2.设B A ,为同阶可逆矩阵,则下列等式成立的是( ) A. T T T )(B A AB = B. T T T )(A B AB =C. 1T 11T )()(---=B A ABD. T 111T )()(---=B A AB 3.设B A ,为同阶可逆方阵,则下列说法正确的是( ). A. 若AB = I ,则必有A = I 或B = I B.T T T )(B A AB = C. 秩=+)(B A 秩+)(A 秩)(B D.111)(---=A B AB 4.设B A ,均为n 阶方阵,在下列情况下能推出A 是单位矩阵的是( ). A .B AB = B .BA AB = C .I AA = D .I A =-15.设A 是可逆矩阵,且A AB I +=,则A -=1( ). A. B B. 1+B C. I B + D. ()I AB --16.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( ).A .⎥⎦⎤⎢⎣⎡--6231B .⎥⎦⎤⎢⎣⎡--6321C .⎥⎦⎤⎢⎣⎡--5322D .⎥⎦⎤⎢⎣⎡--5232 7.设下面矩阵A , B , C 能进行乘法运算,那么( )成立.A .AB = AC ,A ≠ 0,则B = C B .AB = AC ,A 可逆,则B = C C .A 可逆,则AB = BAD .AB = 0,则有A = 0,或B = 08.设A 是n 阶可逆矩阵,k 是不为0的常数,则()kA -=1( ).A.kA -1B. 11kA n - C. --kA 1 D. 11k A -9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =( ).A .4B .3C .2D .110.设线性方程组b AX =的增广矩阵通过初等行变换化为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000120004131062131,则此线性方程组的一般解中自由未知量的个数为( ).A .1B .2C .3D .411.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( ).A. 无解B. 只有0解C. 有唯一解D. 有无穷多解12.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=01221λA ,则当λ=( )时线性方程组无解.A .12B .0C .1D .213. 线性方程组AX =0只有零解,则AX b b =≠()0( ).A. 有唯一解B. 可能无解C. 有无穷多解D. 无解14.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组( ).A .有唯一解B .无解C .有非零解D .有无穷多解15.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =( ). A .无解 B .有非零解 C .只有零解 D .解不能确定二、填空题1.两个矩阵B A ,既可相加又可相乘的充分必要条件是 .2.计算矩阵乘积[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡10211000321= . 3.若矩阵A = []21-,B = []132-,则A T B= . 4.设A 为m n ⨯矩阵,B 为s t ⨯矩阵,若AB 与BA 都可进行运算,则m n s t ,,,有关系式 .5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 时,A 是对称矩阵. 6.当a 时,矩阵⎥⎦⎤⎢⎣⎡-=a A 131可逆. 7.设B A ,为两个已知矩阵,且B I -可逆,则方程X BX A =+的解=X .8.设A 为n 阶可逆矩阵,则r (A )= .9.若矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212,则r (A ) = .10.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b.11.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则=λ.12.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于 .13.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一般解为 .14.线性方程组AX b =的增广矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→110000012401021d A 则当d 时,方程组AX b =有无穷多解.15.若线性方程组AX b b =≠()0有唯一解,则AX =0 .三、计算题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113421201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=303112B ,求B A I )2(T -.2.设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算C BA +T . 3.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1121243613,求1-A . 4.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A . 5.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1. 6.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 7.解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--214332X . 8.解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡02115321X . 9.设线性方程组⎪⎩⎪⎨⎧=-+=-+=+bax x x x x x x x 321321312022讨论当a ,b 为何值时,方程组无解,有唯一解,有无穷多解.10.设线性方程组 ⎪⎩⎪⎨⎧=+-=-+--=+052231232132131x x x x x x x x ,求其系数矩阵和增广矩阵的秩,并判断其解的情况.11.求下列线性方程组的一般解:⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 12.求下列线性方程组的一般解:⎪⎩⎪⎨⎧=-+-=-+-=+-126142323252321321321x x x x x x x x x 13.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ 问λ取何值时方程组有非零解,并求一般解.14.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ 有解?并求一般解.15.已知线性方程组b AX =的增广矩阵经初等行变换化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→→300000331013611λ A 问λ取何值时,方程组b AX =有解?当方程组有解时,求方程组b AX =的一般解.16.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=143102010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I ,求1)(-+A I .试题答案 一、单项选择题1. A2. B3. D4. D5. C6. D7. B8. C9.D 10. A 11. A 12. A 13. B 14. B 15. C 二、填空题1.A 与B 是同阶矩阵 2.[4] 3.⎥⎦⎤⎢⎣⎡---264132 4.m t n s ==, 5.0 6.3-≠ 7.A B I 1)(-- 8.n 9.2 10.无解 11.-1 12.n – r 13.⎩⎨⎧=--=4243122x x x x x (其中43,x x 是自由未知量) 14.1-15.只有0解三、计算题1.解 因为 T 2A I -= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000100012T113421201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200020002⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142120311=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----142100311所以 B A I )2(T -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----142100311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-303112=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1103051 2.解:C BA +T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200210 3.解 因为 (A I )= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1001120101240013613⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100112210100701411 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→1302710210100701411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→172010210100141011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→210100172010031001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→210100172010031001 所以 A -1 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---2101720314.解 因为(A I ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-12000101083021041110001000101241121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----211231241125.解 因为AB =⎥⎦⎤⎢⎣⎡--021201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136=⎥⎦⎤⎢⎣⎡--1412 (AB I ) =⎥⎦⎤⎢⎣⎡-→⎥⎦⎤⎢⎣⎡--1210011210140112 ⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡---→121021210112101102 所以 (AB )-1= ⎥⎥⎦⎤⎢⎢⎣⎡1221216.解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BA I )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 所以 (BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--2522317.解 因为⎥⎦⎤⎢⎣⎡--10430132⎥⎦⎤⎢⎣⎡→10431111 ⎥⎦⎤⎢⎣⎡--→23101111⎥⎦⎤⎢⎣⎡--→23103401即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---233443321所以,X =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--212334=⎥⎦⎤⎢⎣⎡-12 8.解:因为⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121 ⎥⎦⎤⎢⎣⎡--→13102501 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153210211-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-13250211= ⎥⎦⎤⎢⎣⎡--41038 9.解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--4210222021011201212101b a b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→310011102101b a 所以当1-=a 且3≠b 时,方程组无解; 当1-≠a 时,方程组有唯一解;当1-=a 且3=b 时,方程组有无穷多解. 10.解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211011101201051223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→300011101201 所以 r (A ) = 2,r (A ) = 3.又因为r (A ) ≠ r (A ),所以方程组无解.11.解 因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量)12.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=1881809490312112614231213252A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→00001941019101 所以一般解为 ⎪⎪⎩⎪⎪⎨⎧+=+=1941913231x x x x (其中3x 是自由未知量)13.解 因为系数矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---61011023183352231λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 所以当λ = 5时,方程组有非零解. 且一般解为⎩⎨⎧==3231x x x x (其中3x 是自由未知量) 14.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=26102610111115014121111λλA⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→λ00026101501 所以当λ=0时,线性方程组有无穷多解,且一般解为:⎩⎨⎧+-=-=26153231x x x x (x 3是自由未知量〕15.解:当λ=3时,2)()(==A r A r ,方程组有解.当λ=3时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000000331010301000000331013611A 一般解为⎩⎨⎧-=-=432313331x x x x x , 其中3x ,4x 为自由未知量.16.解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+243112011143102010100010001A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-103210012110001011100243010112001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→115100012110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→115100127010001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→115100127010126001 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I。
经济数学基础年月模拟试题
经济数学基础2009 年 7 月模拟试卷一、单项选择题(每题 3 分,共15分)x的定义域是().1.函数ylg x 1A .x1B.x0C.x 0D.x1 且 x 0题目解读:答案: D2.当x时,以下变量为无量小量的是()x21sin x2A .ln( 1x )B.C.e x D .x1x题目解读:答案: D3. 若F ( x )是f ( x )的一个原函数,则以下等式建立的是( ).x xA . f ( x ) d x F ( x ) B. f ( x ) d x F ( x ) F ( a )a ab bC. F ( x ) d x f ( b ) f ( a ) D. f ( x ) d x F ( b ) F ( a )a a题目解读:答案: B12034.设A001 3 ,则r( A) =().2413A.4 B.3C.2D.1题目解读:答案: C5.设线性方程组AXb有独一解,则相应的齐次方程组AX O ().A .只有零解B .有非零解C.无解 D.解不可以确立题目解读:1 / 4答案: A二、 填空题(每题 3 分,共 15 分)xx10106.设 f ( x ),则函数的图形对于对称.2题目解读:答案: y 轴21x1 7.已知 f ( x )xx 1,若 f ( x ) 在 x=1 处连续,则 a .ax1题目解读:答案: 28.设边沿收入函数为R (q) = 2 + 3 q ,且 R (0) = 0 ,则均匀收入函数为.题目解读:3 答案: R ( q )2q29.设 A 为 n 阶可逆矩阵,则 r (A)=.题目解读:答案: n10. 已知齐次线性方程组 AXO 中 A 为 35 矩阵,则 r ( A ).题目解读:答案: 3三、微积分计算题(每题10 分,共 20 分)11.设 y ln( xx21 ) ,求 y ( 3 )题目解读:2 / 4答案:解由于y1( x21 )2xx1x1(1x1所以11) y ( 3 ) =22x221( 3 ) 2xx11x112e x12.计算2 d x1x题目解读:1211 1e x122答案:解2 dx=e x d ()e xe e 21x1x1四、代数计算题(每题15 分,共50 分)1 02 632,计算 - 113.设矩阵 A =20,B= 1(AB) .141题目解读:1 02 63 2 1答案:解由于 AB =121 2 = 1 4 1 421 1 02 1 1 0 2 0 1 110 11(ABI ) =11 01211212 240 121所以 (AB)- 1 1 1 = 22211-14.求线性方程组题目解读:x 1 x 2 x 4 2 x 1 2 x 2 x 3 4 x 4 3 的一般解.2 x 13 x 2x 35 x 453 / 4答案:解:将方程组的增广矩阵化为阶梯形11012110121101210121 12143011310113101131 23155011310000000000故方程组的一般解为:x 1x3 2 x 41x 2x3 3 x 4( x 3, x4是自由未知量〕1五、应用题(此题20 分)15.设生产某产品的总成本函数为 C ( x )3x (万元),此中x 为产量,单位:百吨.销售x 百吨时的边沿收入为R ( x )15 2 x (万元/百吨),求:(1) 收益最大时的产量;(2) 在收益最大时的产量的基础上重生产 1 百吨,收益会发生什么变化?题目解读:答案:解: (1) 由于边沿成本为 C ( x ) 1 ,边沿收益L ( x )R ( x ) C ( x ) = 14–2x令 L ( x )0 ,得x= 7由该题实质意义可知,x= 7 为收益函数L(x)的极大值点,也是最大值点. 所以,当产量为7 百吨时收益最大 .(2) 当产量由 7 百吨增添至8 百吨时,收益改变量为88L2–64–98+49 = -1(万元)(142 x ) d x(14 x x ) =11277即当产量由7 百吨增添至8 百吨时,收益将减少 1 万元 .4 / 4。
专科《经济数学基础》一套练习题库及答案
专科《经济数学基础》一套练习题库及答案《高等数学》练习测试题库及答案一.选择题 1 是x2?1A.偶函数 B.奇函数 C 单调函数 D 无界函数x2.设f(sin)=cosx+1,则f(x)为21.函数y= A 2x2-2 B 2-2x2 C 1+x2 D 1-x2 3.下列数列为单调递增数列的有A.,,,B.2543,,,2345?n?1?n,n为奇数2n?1C.{f(n)},其中f(n)=? D. {n} n2?,n为偶数?1?n4.数列有界是数列收敛的A.充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是A.发散数列必无界B.两无界数列之和必无界C.两发散数列之和必发散D.两收敛数列之和必收敛sin(x2?1)? 6.limx?1x?/2k7.设lim(1?)x?e6 则k=() x?? /6 8.当x?1时,下列与无穷小等价的无穷小是 B. x3-1 C.(x-1)2 (x-1) (x)在点x=x0处有定义是f(x)在x=x0处连续的 A.必要条件B.充分条件 C.充分必要条件D.无关条件10、当|x|A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f=cotx要使f在点:x=0连续,则应补充定义f为A、B、e C、-e D、-e-1 12、下列有跳跃间断点x=0的函数为A、xarctan1/x B、arctan1/x C、tan1/x D、cos1/x 13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是A、f(x)+g(x)在点x0 必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x 0必不连续14、设f(x)=在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<0 15、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有A、B、C、tan[f(x)] D、f[f(x)] 16、函数f(x)=tanx能取最小最大值的区间是下列区间中的A、[0,л]B、C、[-л/4,л/4]D、17、在闭区间[a ,b]上连续是函数f(x)有界的A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在内取零值的A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有A、f(x)=x+1B、f(x)=x-1 C、f(x)=x2-1D、f(x)=5x4-4x+1 20、曲线y=x2在x=1处的切线斜率为A、k=0B、k=1 C、k=2D、-1/2 21、若直线y=x与对数曲线y=logax相切,则A、eB、1/eC、eD、e x1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=0 23、设直线y=x+a与曲线y=2arctanx相切,则a= A、±1B、±л/2C、±(л/2+1)D、±(л/2-1) 24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)= A、a B、-a C、|a|D、0 25、设y=㏑,则y’|x=0= A、-1/2B、1/2C、-1 D、0 26、设y=(cos)sinx,则y’|x=0= A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0= A、0B、1/ ㏑2 C、1D、㏑ 2 28、已知y=sinx,则y(10)= A、sinx B、cosx C、-sinx D、-cosx 29、已知y=x ㏑x,则y(10)= A、-1/x B、1/ x C、/x D、-/x 30、若函数f(x)=xsin|x|,则A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、f``(0)= л 31、设函数y=yf(x)在[0,л]内方程x+cos(x+y)=0所确定,则|dy/dx|x=0=9999A、-1B、0 C、л/2D、 2 32、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K= A、-1B、0 C、1 D、 2 33、函数f(x)在点x0连续是函数f(x)在x0可微的A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x0可微的A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是A、0B、-dx C、dx D、不存在x1?)的未定式类型是36、极限lim(x?11?xlnx A、0/0型B、∞/∞型C、∞ -∞ D、∞型sinxx2)的未定式类型是37、极限lim(xx?01A、00型B、0/0型C、1型D、∞0型∞x2sin38、极限limx?0sinx1x= A、0 B、1C、2 D、不存在39、x x0时,n阶泰勒公式的余项Rn(x)是较x x0 的A、阶无穷小B、n阶无穷小C、同阶无穷小D、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有A、唯一的零点B、至少存在有一个零点C、没有零点D、不能确定有无零点41、曲线y=x2-4x+3的顶点处的曲率为A、2 B、1/2C、1D、0 42、抛物线y=4x-x2在它的顶点处的曲率半径为A、0B、1/2C、1D、243、若函数f(x)在内存在原函数,则原函数有A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2ex/2+C= A、2ex/2B、4 ex/2C、ex/2 +C D、ex/2 45、∫xe-dx = A、xe- -e- +C B、-xe-+e- +C C、xe- +e- +C D、-xe- -e- +C 46、设P为多项式,为自然数,则∫P(x)(x-1)dx A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-1|3x+1|dx= A、5/6B、1/2C、-1/2D、1 48、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于A、лB、2лC、4лD、6л 49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是A、лB、6л/15C、16л/15D、32л/15 50、点与之间的距离为A、B、2 C、31/2D、21/2 51、设曲面方程则用下列平面去截曲面,截线为抛物线的平面是A、Z=4B、Z=0 C、Z=-2 D、x=2 52、平面x=a 截曲面x2/a2+y2/b2-z2/c2=1所得截线为A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为0x xxxx xxxx -nA、原点B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面二、填空题1、求极限limx??1(x2+2x+5)/(x2+1)= 2、求极限lim3x?0 [(x-3x+1)/(x-4)+1]= 3、求极限limx?2x-2/(x+2)1/2= 4、求极限lim [x/(x+1)]x x??= 5、求极限lim1/x x?0 (1-x)= 6、已知y=sinx-cosx,求y`|x=л/6= 7、已知ρ=ψsinψ+cosψ/2,求dρ/dψ| ψ=л/6= 8、已知f(x)=3/5x+x2/5,求f`(0)= 9、设直线y=x+a与曲线y=2arctanx相切,则a= 10、函数y=x2-2x+3的极值是y(1)= 11、函数y=2x3极小值与极大值分别是12、函数y=x2-2x-1的最小值为13、函数y=2x-5x2的最大值为14、函数f(x)=x2e-x在[-1,1]上的最小值为15、点是曲线y=ax3+bx2+c的拐点,则有b= c=16、∫xx1/2dx= 17、若F`(x)=f(x),则∫dF(x)= 18、若∫f(x)dx=x2e2x+c,则f(x)= () 19、d/dx∫baarctantdt= ?12?0x(et2?1) dt?x,x?0 在点x=0连续,则a= 20、已知函数f(x)=??a,x?0?21、∫02(x2+1/x4)dx= 22、∫49 x1/2(1+x1/2)dx= 23、∫031/2a dx/(a2+x2)= 24、∫01 dx/(4-x2)1/2= 25、∫л/3sin(л/3+x)dx= л26、∫49 x1/2(1+x1/2)dx=() 27、∫49 x1/2(1+x1/2)dx= 28、∫49 x1/2(1+x1/2)dx= 29、∫49 x1/2(1+x1/2)dx= 30、∫49 x1/2(1+x1/2)dx= 31、∫4 x1/2(1+x1/2)dx= 932、∫49 x1/2(1+x1/2)dx= 33、满足不等式|x-2|<1的X所在区间为() 34、设f(x) = [x] +1,则f= 35、函数Y=|sinx|的周期是36、y=sinx,y=cosx直线x=0,x=л/2所围成的面积是37、y=3-2x-x2与x轴所围成图形的面积是38、心形线r=a(1+cosθ)的全长为39、三点,,构成的三角形为40、一动点与两定点和等距离,则该点的轨迹方程是41、求过点,且与平面3x-7y+5z-12=0平行的平面方程是42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是() 43、求平行于xoz面且经过的平面方程是44、通过Z轴和点的平面方程是45、平行于X轴且经过两点和的平面方程是三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。
经济数学基础模拟试题2(09秋)概要
经济数学基础模拟试题2(09秋)一、单项选择题(每小题3分,共15分)1.已知xx x f sin 1)(-=,当x( )时,f(x)为无穷小量.2.下列函数在区间),(+∞-∞上是单调下降的是( ).x A sin .x B 3.2.x Cx D -5.3.下列函数中,( )是2sin x x 的原函数.2cos 21.x A2cos 21.x B -2cos 2.x C2cos 2.x D -4.设A ,B 为同阶方阵,则下列命题正确的是( ).A .若AB=0,则必有A=0或B=OB .若O AB =/,则必有O A =/,且O B =/C .若秩0)(=/A ,秩0)(=/B ,则秩0)(=/AB111).(---=B A AB D5.若线性方程组的增广矩阵为,则当A=( )时线性方程组有无穷多解. A .1B .4C .221.D 二、填空题(每小题3分,共15分)6.已知74)2(2-+=+x x xf 7.已知x x f 2cos )(=,则9.设A 是可逆矩阵,且1=+AB A ,则 10.线性方程组AX=b 的增广矩阵A 化成阶梯形矩阵后为则当d=—-------—时,方程组AX=b 有无穷多解.三、微积分计算题(每小题l0分,共20分)11.已知x xe x y +=cos ,求dy . 12.计算.ln 11dx x x ⎰+四、线性代数计算题(每小题15分,共30分)13.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010001,143102010I A ,求1)1(-+A 14.讨论λ勾何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++01305202321321321x x x x x x x x x λ有非零解,并求其一般解.五、应用题(本题20分)15.已知生产某种产品的边际成本函数为q q C +='4)((万元/百台),收入函数=)(q R22110q q -(万元).求使利润达到最大时的产量,如果在最大利润的产量的基础上再增加生产200台,利润将会发生怎样的变化?。
2022年广播电视大学经济数学基础复习资料
经济数学基础(11春)模拟试题(一)6月一、单项选择题(每题3分,本题共15分) 1.下列各函数对中,( D )中旳两个函数相等.(A) 2)()(x x f =,x x g =)( (B) 11)(2--=x x x f ,x x g =)(+ 1(C) 2ln x y =,x x g ln 2)(= (D) x x x f 22cos sin )(+=,1)(=x g 2.下列结论中对旳旳是( D ).(A) 使)(x f '不存在旳点x 0,一定是f (x )旳极值点 (B) 若f '(x 0) = 0,则x 0必是f (x )旳极值点 (C) x 0是f (x )旳极值点,则x 0必是f (x )旳驻点(D) x 0是f (x )旳极值点,且f '(x 0)存在,则必有f '(x 0) = 03.在切线斜率为2x 旳积分曲线族中,通过点(1, 4)旳曲线为(C ). (A) 32+=x y (B) 42+=x y (C) 22+=x y (D) x y 4=4.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B AC T 故意义,则C 是( A )矩阵.(A) n s ⨯ (B) s n ⨯ (C) m t ⨯ (D) t m ⨯5.若n 元线性方程组AX =0满足秩n A =)(,则该线性方程组(B ). (A) 有无穷多解 (B) 有唯一解 (C) 有非0解 (D) 无解 二、填空题(每题3分,共15分)1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 旳定义域是 (-5,-2) .2.曲线y =)1,1(处旳切线斜率是 21. 3. =⎰-x x d e d 2x x d e 2- .4.若方阵A 满足 T A A = ,则A 是对称矩阵.5.线性方程组AX b =有解旳充足必要条件是 秩=A 秩)(A . 三、微积分计算题(每题10分,共20分)1. 设x y xtan e5-=-,求y '.1. 解:由微分四则运算法则和微分基本公式得)(tan )e ()tan e (55'-'='-='--x x y x x x x x 25cos 1)5(e -'-=-xx25cos 1e 5--=- 2. 计算定积分⎰2πd sin x x x .2. 解:由分部积分法得⎰⎰+-=2π02π02π0d cos cos d sin x x x x x x x 2π0sin 0x +=1=四、线性代数计算题(每题15分,共30分)1.已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X .解:运用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→121100255010364021121100013210001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A由矩阵乘法和转置运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X2.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ, λ为何值时,方程组有非零解?在有非零解时求其一般解.解:由于⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---61011023183352231λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101500110231λλ因此,当5=λ时方程组有非零解.一般解为⎩⎨⎧==3231x x x x (其中3x 为自由未知量)五、应用题(本题20分)设某产品旳固定成本为36(万元),且边际成本为402)(+='x x C (万元/百台).试求产量由4百台增至6百台时总成本旳增量,及产量为多少时,可使平均成本到达最低.解:当产量由4百台增至6百台时,总成本旳增量为⎰+=∆64d )402(x x C =642)40(x x += 100(万元)又xc x x C x C x ⎰+'=d )()(=x x x 36402++=xx 3640++令 0361)(2=-='xx C , 解得6=x .又该问题确实存在使平均成本到达最低旳产量,因此,当6=x 时可使平均成本到达最小.经济数学基础(11春)模拟试题(二)6月一、单项选择题(每题3分,共15分) 1.设xx f 1)(=,则=))((x f f ( C ). A .x1B .21xC .xD .2x 2.已知1sin )(-=xxx f ,当( A )时,)(x f 为无穷小量.A .x →0B .1→xC .-∞→xD .+∞→x3. 若)(x F 是)(x f 旳一种原函数,则下列等式成立旳是( B ).A .)(d )(x F x x f xa =⎰ B .)()(d )(a F x F x x f xa -=⎰C .)()(d )(a f b f x x F ba -=⎰ D .)()(d )(a Fb F x x f ba -='⎰4.如下结论或等式对旳旳是( C ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠5.线性方程组⎩⎨⎧=+=+012121x x x x 解旳状况是( D ).A. 有无穷多解B. 只有0解C. 有唯一解D. 无解二、填空题(每题3分,共15分)6.设21010)(xx x f -+=,则函数旳图形有关y 轴 对称.7.函数2)1(3-=x y 旳驻点是x =1.8.若c x F x x f +=⎰)(d )(,则⎰=--x f x x d )e (e c F x +--)e ( .9.设矩阵⎥⎦⎤⎢⎣⎡-=3421A ,I 为单位矩阵,则T)(A I -= ⎥⎦⎤⎢⎣⎡--2240 . 10.齐次线性方程组0=AX 旳系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组旳一般解为⎩⎨⎧=--=4243122x x x x x ,(x 3,4x )三、微积分计算题(每题10分,共20分)11.设x x y 2e ln -+=,求y d . 解:由于 x x xx x xy 22e 2ln 21e 2)(ln ln 21---=-'='因此 y d x xx x d )e 2ln 21(2--=12.计算积分⎰202d sin πx x x . 解:⎰⎰=222202d sin 21d sin ππx x x x x x 202cos 21πx -==21-四、代数计算题(每题15分,共50分) 13.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =. 解:由于 ⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121⎥⎦⎤⎢⎣⎡--→13102501 即⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211因此,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221= ⎥⎦⎤⎢⎣⎡-1101 14.讨论当a ,b 为何值时,线性方程组⎪⎩⎪⎨⎧=-+=-+=+bax x x x x x x x 321321312022无解,有唯一解,有无穷多解.解:由于 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--4210222021011201212101b a b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→310011102101b a五、应用题(本题20分)15.生产某产品旳边际成本为C '(q )=8q (万元/百台),边际收入为R '(q )=100-2q (万元/百台),其中q 为产量,问产量为多少时,利润最大?从利润最大时旳产量再生产2百台,利润有什么变化?解:L '(q ) =R '(q ) -C '(q ) = (100 – 2q ) – 8q =100 – 10q 令L '(q )=0,得 q = 10(百台)又q = 10是L (q )旳唯一驻点,该问题确实存在最大值,故q = 10是L (q )旳最大值点,即当产量为10(百台)时,利润最大. 又q q q q L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=q q即从利润最大时旳产量再生产2百台,利润将减少20万元.经济数学基础(模拟试题3)一、单项选择题(每题3分,共15分) 1.函数()1lg +=x xy 旳定义域是(D ).A .1->xB .0≠xC .0>xD .1->x 且0≠x2.函数sin ,0(),0xx f x xk x ⎧≠⎪=⎨⎪=⎩ 在x = 0处持续,则k = ( C ). A .-2 B .-1 C .1 D .2 3.下列不定积分中,常用分部积分法计算旳是( C ). A .⎰+x x 1)d cos(2 B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x x xd 124.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( A )可以进行.A .AB B .AB TC .A +BD .BA T5. 设线性方程组b AX =旳增广矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------124220621106211041231,则此线性方程组旳一般解中自由未知量旳个数为( B ).A .1B .2C .3D .4二、填空题(每题3分,共15分)6.设函数52)1(2++=+x x x f ,则____________)(=x f .42+x7.设某商品旳需求函数为2e10)(pp q -=,则需求弹性=p E .2p -8.积分=+⎰-1122d )1(x x x0 .9.设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵方程X BX A =+旳解X = .1)(--B I10. 已知齐次线性方程组O AX =中A 为53⨯矩阵,则≤)(A r 3 .三、微积分计算题(每题10分,共20分)11.设x x y x +=cos e ,求y d . 12.计算积分⎰x x x d 1sin2.11.解:212cos 23cos 23)sin (e)()(cos e x x x x y xx+-='+'=' x x x y x d )e sin 23(d 2cos 21-=12.解:c x x x x x x +=-=⎰⎰1cos )1(d 1sin d 1sin2四、代数计算题(每题15分,共50分)13.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,计算 1)(-+A I .13.解:由于 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I且 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001因此 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I14.求线性方程组⎪⎩⎪⎨⎧=-+-=-+-=--1261423623352321321321x x x x x x x x x 旳一般解.解:由于增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=18181809990362112614236213352A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101401因此一般解为 ⎩⎨⎧+=+=1143231x x x x (其中3x 是自由未知量)五、应用题(本题20分)15.已知某产品旳边际成本为34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求最低平均成本.解:由于总成本函数为⎰-=q q q C d )34()(=c q q +-322 当q = 0时,C (0) = 18,得 c =18, 即C (q )=18322+-q q 又平均成本函数为 q q q q C q A 1832)()(+-==令 0182)(2=-='qq A , 解得q = 3 (百台)该问题确实存在使平均成本最低旳产量. 因此当x = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台) 经济数学基础(模拟试题4)一、单项选择题(每题3分,共15分)1.下列各函数对中,( D )中旳两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1C .2ln )(x x f =,x x g ln 2)(=D .x x x f 22cos sin )(+=,1)(=x g 2.当+∞→x 时,下列变量为无穷小量旳是( A ).A .xxsin B . 12+x x C .21e x -D .)1ln(x +3.若c x x f xx+-=⎰11e d e )(,则f (x ) =( C ). A .x 1 B .-x 1 C .21xD .-21x4.设A 是可逆矩阵,且A AB I +=,则A -=1( C ).A .B B .1+B C .I B + D .()I AB --1 5.设线性方程组b X A n m =⨯有无穷多解旳充足必要条件是( B ).A .m A r A r <=)()( B .n A r A r <=)()( C .n m < D .n A r <)( 二、填空题(每题3分,共15分)6.已知某商品旳需求函数为q = 180 – 4p ,其中p 为该商品旳价格,则该商品旳收入函数R (q ) = .45q – 0.25q 27.曲线y =)1,1(处旳切线斜率是 .21 8.=+⎰x x xd )1ln(d d e12 0 .9.设A 为n 阶可逆矩阵,则r (A )= n .10.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010********1t A ,则__________t 1-≠时,方程组有唯一解.三、微积分计算题(每题10分,共20分)11.设x y x 5sin cos e +=,求y d .解:由于 )(cos cos 5)(sin e 4sin '+'='x x x y x x x x x sin cos 5cos e 4sin -=因此 x x x x y x d )sin cos 5cos e (d 4sin -= 12.计算积分 ⎰e1d ln x x x .解:⎰⎰-=e 12e12e1)d(ln 21ln 2d ln x x x x x x x 414e d 212e 2e 12+=-=⎰x x 四、代数计算题(每题15分,共50分)13.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1.解:由于AB =⎥⎦⎤⎢⎣⎡--021201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136=⎥⎦⎤⎢⎣⎡--1412(AB I ) =⎥⎦⎤⎢⎣⎡-→⎥⎦⎤⎢⎣⎡--1210011210140112 ⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡---→121021210112101102 因此 (AB )-1= ⎥⎥⎦⎤⎢⎢⎣⎡12212114.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 旳一般解.解:由于系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201因此一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量)五、应用题(本题20分)15.设生产某种产品q 个单位时旳成本函数为:q q q C 625.0100)(2++=(万元),求:(1)当10=q 时旳总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小?解:(1)由于总成本、平均成本和边际成本分别为:q q q C 625.0100)(2++=,625.0100)(++=q qq C ,65.0)(+='q q C . 因此,1851061025.0100)10(2=⨯+⨯+=C , 5.1861025.010100)10(=+⨯+=C , 116105.0)10(=+⨯='C .(2)令 025.0100)(2=+-='qq C ,得20=q (20-=q 舍去).由于20=q 是其在定义域内唯一驻点,且该问题确实存在最小值,因此当=x 20时,平均成本最小.经济数学基础(模拟试题5)一、单项选择题(每题3分,共15分) 1.若函数xxx f -=1)(, ,1)(x x g +=则=-)]2([g f ( A ). A .-2 B .-1 C .-1.5 D .1.5 2.曲线11+=x y 在点(0, 1)处旳切线斜率为( B ). A .21 B .21- C .3)1(21+x D .3)1(21+-x3.下列积分值为0旳是( C ).A .⎰ππ-d sin x x x B .⎰-+11-d 2e e x xx C .⎰--11-d 2e e x xx D .⎰-+ππx x x d )(cos 4.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( A ).A .⎥⎦⎤⎢⎣⎡--5232B .⎥⎦⎤⎢⎣⎡--6321C .⎥⎦⎤⎢⎣⎡--6231 D .⎥⎦⎤⎢⎣⎡--5322 5. 当条件( D )成立时,n 元线性方程组b AX =有解.A. r A n ()<B. r A n ()=C. n A r =)(D.O b =二、填空题(每题3分,共15分)6.假如函数)(x f y =对任意x 1, x 2,当x 1 < x 2时,有)()(21x f x f > ,则称)(x f y =是单调减少旳.7.已知xxx f tan 1)(-=,当0→x 时,)(x f 为无穷小量. 8.若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰= . c F x +--)e (9. 设D C B A ,,,均为n 阶矩阵,其中C B ,可逆,则矩阵方程D BXC A =+旳解=X 11)(---C A D B .10.设齐次线性方程组11⨯⨯⨯=m n n m O X A ,且)(A r = r < n ,则其一般解中旳自由未知量旳个数等于 n – .三、微积分计算题(每题10分,共20分)11.设xx y --+=1)1ln(1,求)0(y '.解:由于 2)1()]1ln(1[)1(11x x x x y --++---=' = 2)1()1ln(x x -- 因此 )0(y '= 2)01()01ln(--= 0 12.x x x d )2sin (ln +⎰. 解:x x x d )2sin (ln +⎰=⎰⎰+-)d(22sin 21d ln x x x x x =C x x x +--2cos 21)1(ln 四、线性代数计算题(每题15分,共30分)13.设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算)(T C BA r +.解:由于 C BA +T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200210 且 C BA +T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001002200210 因此 )(T C BA r +=2 14.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ 有解?并求一般解.解 由于增广矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=150********λA⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→261026101111λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→λ00026101501 因此,当λ=0时,线性方程组有无穷多解,且一般解为:⎩⎨⎧+-=-=26153231x x x x(x 3是自由未知量〕五、应用题(本题20分)15. 某厂每天生产某种产品q 件旳成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?解:由于 C q ()=C q q()=05369800.q q++ (q >0)'C q ()=(.)05369800q q++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内旳唯一驻点,且该问题确实存在最小值.因此q 1=140是平均成本函数C q ()旳最小值点,即为使平均成本最低,每天产量应为140件.此时旳平均成本为C ()140=0514*******140.⨯++=176 (元/件) 经济数学基础(模拟试题6)一、单项选择题(每题3分,共15分)1.下列函数中为偶函数旳是( D ).A .x x y -=2B .x x y --=e eC .11ln+-=x x y D .x x y sin =2.函数)1ln(1-=x y 旳持续区间是( A ).A .),(),(∞+⋃221B .),(),∞+⋃221[C .),(∞+1D .),∞+1[ 3.设c xxx x f +=⎰ln d )(,则)(x f =( C ). A .x ln ln B .x xln C .2ln 1xx - D .x 2ln 4. 设B A ,为同阶方阵,则下列命题对旳旳是( B ). A.若O AB =,则必有O A =或O B = B.若O AB ≠,则必有O A ≠,O B ≠C.若秩O A ≠)(,秩O B ≠)(,则秩O AB ≠)(D. 111)(---=B A AB5.设线性方程组b AX =有惟一解,则对应旳齐次方程组O AX =( B ).A .无解B .只有0解C .有非0解D .解不能确定二、填空题(每题3分,共15分)6.函数1142++-=x x y 旳定义域是]2,1()1,2[--- 7.过曲线x y 2e -=上旳一点(0,1)旳切线方程为12+-=x y .8.x x d e 03⎰∞-=31. 9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 0 时,A 是对称矩阵.10.线性方程组AX b =旳增广矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→110000012401021d A则当d = -1 时,方程组AX b =有无穷多解.三、微积分计算题(每题10分,共20分)11.设2e cos x x y --=,求y d .11. 解:由于22e x y x -'= 因此2d (e )d x y x x = 12.x xx d ln 112e 0⎰+12.解:x xx d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x+=)13(2-四、代数计算题(每题15分,共30分)13.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=521,322121011B A ,求B A 1-.解:由于 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 因此 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-9655211461351341B A14.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 旳一般解.解:由于系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201因此一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量)五、应用题(20分)15.已知某产品旳销售价格p (单位:元/件)是销量q (单位:件)旳函数p q=-4002,而总成本为C q q ()=+1001500(单位:元),假设生产旳产品所有售出,求产量为多少时,利润最大?最大利润是多少?15.解:由已知条件可得收入函数 R q pq q q ()==-40022利润函数 )1500100(2400)()()(2+--=-=q q q q C q R q L 150023002--=q q求导得'=-L q q ()300,令'=L q ()0得q =300,它是唯一旳极大值点,因此是最大值点.此时最大利润为 L ()30030030030021500435002=⨯--= 即产量为300件时利润最大.最大利润是43500元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济数学基础(09春)模拟试题
一、单项选择题(每小题3分,共15分)
1.函数()
1lg +=x x y 的定义域是( ). A .1->x B .0≠x C .0>x D .1->x 且0≠x
2.当+∞→x 时,下列变量为无穷小量的是( )
A .)1ln(x +
B . 12+x x
C .21
e x - D . x x sin 3. 若)(x F 是)(x
f 的一个原函数,则下列等式成立的是( ).
A .
)(d )(x F x x f x a
=⎰ B .)()(d )(a F x F x x f x
a -=⎰ C .)()(d )(a f
b f x x F b a -=⎰ D .)()(d )(a F b F x x f b a -='⎰
4.设⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =( ). A .4 B .3 C .2 D .1
5.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =( ).
A .只有零解
B .有非零解
C .无解
D .解不能确定
二、填空题(每小题3分,共15分)
6.设2
1010)(x
x x f -+=,则函数的图形关于 对称. 7.已知⎪⎩
⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在x =1处连续,则=a . 8.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为 .
9.设A 为n 阶可逆矩阵,则r (A )= .
10. 已知齐次线性方程组O AX =中A 为53⨯矩阵,则≤)(A r .
三、微积分计算题(每小题10分,共20分)
11.设)1ln(2++
=x x y ,求)3(y '
12.计算 x x x d e 212
1⎰
四、代数计算题(每小题15分,共50分)
13.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡142136,计算(AB )-1. 1-14.求线性方程组⎪⎩⎪⎨⎧=++-=++-=+-553234224321
4321421x x x x x x x x x x x 的一般解.
五、应用题(本题20分)
15.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?。