2014年第十二届希望杯四年级1试试题
希望杯第十至第十五届四年级题目
81 =8,82 =64,83 =512,84 =4096,
85 =32768,86 =262144,87 =2097152,88 =16777216,…
则82012 除以10,得到的余数是
.
3.如 果 6 个 连 续 奇 数 的 乘 积 为 135135,那 么 这 6 个 数 的 和 是
弹 ;用 手 枪 射 击 ,发14 发 子 弹 ,每 击 中 靶 心 一 次 奖 励4发 子 弹 .小 王 用 步 枪 射 击 ,
小李用手枪射击,当他们把发的和奖励的子弹都打完时,两 人 射 击 的 次 数 相 等.
如 果 小 王 击 中 靶 心 30 次 ,那 么 小 李 击 中 靶 心
次.
19.东 方 红 小 学 2012 年 的 升 旗 时 间 因 日 期 的 不 同 而 不 同 .规 定 :
15.甲,乙两个商场推出迎新年优惠活动,甲商场规定:“每满 200 元减
101 元 .”乙 商 场 规 定 :“每 满 101 元 减 50 元 .”小 明 的 爸 爸 看 中 了 一 双 标 价
图3
699元的运动鞋和一件标价 910 元的羊毛衫,这两类商品在两个商场都有
销售.问:怎么买更便宜呢? 共需多少钱? 请说明理由.
1 月 1 日 到 1 月 10 日 ,恒 定 为 早 晨 7:13;
图4
1 月 11 日 到 6 月 6 日 ,从 早 晨 7:13 逐 渐 提 前 到 4:46,每 天 依 次 提 前 1 分 钟 ;
6 月 7 日 到 6 月 21 日 ,恒 定 为 早 晨 4:46. 6 月 22 日 到 11 月 16 日 ,从 早 晨 4:46 逐 渐 推 迟 到 7:13,每 天 依 次 推 迟 1 分 钟 ;
第十二--十五届小学“希望杯”邀请赛四年级第1试赛及答案
第十二届小学“希望杯”全国数学邀请赛四年级第Ⅰ试试题2014年3月16日上午8:30至10:00以下每题6分,共120分1、过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生()名。
2、买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是()元()角。
3、图1是4×4的方格图,有3个小正方形有阴影,若再将一个小正方形涂阴影,使方格图成为轴对称图形,则不同的涂法有()种。
4、小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距()米。
5、如图2,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是()厘米。
6、图3是长方形,将它分成7部分,至少要画()条直线。
7、甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍。
那么,原来甲桶中油比乙桶中的油多()千克。
8、甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有()幅。
9、一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是()。
10、如图4,每个小正方形的边长都是1,那么。
图中面积为2的阴影长方形共有()个。
11、如图5,将一张圆形纸片对折,再对折,又对折,……,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是()。
12、自然数a 是3的倍数,a -1是4的倍数,a -2是5的倍数,则a 最小是()。
13、四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生()人。
14、如图6,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形 ABCD 的面积是()。
希望杯数学竞赛第一届至十三历届四年级全部试题与答案打
教育精品资料目录1.第一届小学“希望杯”全国数学邀请赛〔第1试〕 (2)2. 第一届小学“希望杯”全国数学邀请赛〔第2试〕 (5)3. 第二届小学“希望杯”全国数学邀请赛〔第1试〕 (7)4. 第二届小学“希望杯”全国数学邀请赛〔第2试〕 (10)5. 第三届小学“希望杯”全国数学邀请赛〔第1试〕 (12)6. 第三届小学“希望杯”全国数学邀请赛〔第2试〕 (15)7. 第四届小学“希望杯”全国数学邀请赛〔第1试〕 (17)8. 第四届小学“希望杯”全国数学邀请赛〔第2试〕 (20)9. 第五届小学“希望杯”全国数学邀请赛〔第1试〕 (22)10. 第五届小学“希望杯”全国数学邀请赛〔第2试〕 (24)11. 第六届小学“希望杯”全国数学邀请赛〔第1试〕 (26)12. 第六届小学“希望杯”全国数学邀请赛〔第2试〕 (28)13. 第七届小学“希望杯”全国数学邀请赛〔第1试〕 (30)14. 第七届小学“希望杯”全国数学邀请赛〔第2试〕 (34)15. 第八届小学“希望杯”全国数学邀请赛〔第1试〕 (37)16. 第八届小学“希望杯”全国数学邀请赛〔第2试〕 (39)17. 第九届小学“希望杯”全国数学邀请赛〔第1试〕 (41)18. 第九届小学“希望杯”全国数学邀请赛〔第2试〕 (43)19. 第十届小学“希望杯”全国数学邀请赛〔第1试〕 (45)20. 第十届小学“希望杯”全国数学邀请赛〔第2试〕 (47)21.第一届---第八届“希望杯”全国数学邀请赛参考答案 (53)第一届小学“希望杯”全国数学邀请赛〔第1试〕四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C 中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
2014第十二届希望杯复赛四年级
第十二届小学“希望杯”全国数学邀请赛四年级第2试试题2014年4月13日上午:00至11:00一、填空题(每题5分,共60分)1.计算:294287559431687613++++++++=__________.2.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装__________盒.3.将190表示成10个连续偶数的和,其中最大的偶数是__________.4.当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今天的年龄相同,妈妈今年__________岁.5.从1,2,3,4,,30这30个数中任意取10个连续的数,其中恰有2个质数的情况有__________种.6.将面积为36的正方形按图1的方式分成4个周长相等的正方形,则图中阴影长方形的面积为__________.7.图2的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是__________.8.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米,坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是__________秒.9.有4个互不相同的自然数,它们的平均数是10,其中最大的数至少是__________.10.图3中共有三角形__________个.11.两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是__________.12.有白棋子和黑棋子共2014个,按照如图4的规律从左到右排成一行,其中黑棋子的个数是__________.二、解答题(每题15分,共60分,每题写出推算过程)13.如果数A增加2,则它与数B的积比A,B的积大60;如果数A不变,数B减少3,则它们的积比A,B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A,B的积大多少?14.水果店用三种水果搭配果篮,每个果篮有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩下130个火龙果,问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩下多少个猕猴桃?15.如图5,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,从四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面倍这些方框盖住的面积(图6阴影部分的面积).16.如图7,小红和小丽的家分别在电影院的正西和正东方向,某日他们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院,看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家,求两人的家相距多少米.第十二届小学“希望杯”全国数学邀请赛四年级第2试试题参考答案1 2 3 4 5 6 7 8495 36 28 53 4 10 27 209 10 11 12 13 14 15 1612 30 794 1342 30 370,140 74 2196部分详解一、填空题(每题5分,共60分)1.计算:294287559431687613++++++++=__________.【考点】凑整计算【难度】☆【答案】495【分析】(2931)(4268)(8713)(9476)556011010017055495++++++++=++++=.2.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装__________盒.【考点】计算【难度】☆【答案】36【分析】21482836⨯÷=(盒).3.将190表示成10个连续偶数的和,其中最大的偶数是__________.【考点】等差数列【难度】☆☆【答案】28【分析】1901019÷=,所以第五个偶数是18,第六个偶数是20,第十个偶数是28.4.当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今天的年龄相同,妈妈今年__________岁.【考点】年龄问题【难度】☆☆☆【答案】53【分析】妈妈和小红的年龄差不变,当小红3岁时,妈妈的年龄和小红今年的年龄相同,说明从今年算起,妈妈和小红同时减少一个年龄差,小红就3岁,当妈妈78岁时,小红的年龄和妈妈今天的年龄相同,说明从今年算起,妈妈和小红同时增加一个年龄差,妈妈78岁,所以妈妈这78岁中,包含了三个年龄差和3岁,所以年龄差为(783)325++=(岁).-÷=(岁),所以妈妈今天32525535.从1,2,3,4,,30这30个数中任意取10个连续的数,其中恰有2个质数的情况有__________种.【考点】枚举计数【难度】☆☆【答案】4【分析】四种情况,18到27中有19和23两个质数;19到28中有19和23两个质数;20到29中有23和29两个质数;21到30中有23和29两个质数.6.将面积为36的正方形按图1的方式分成4个周长相等的正方形,则图中阴影长方形的面积为__________.【考点】直线型面积与周长【难度】☆☆☆【答案】10【分析】由图可知,竖着的三个长方形必然完全相同,所以这三个长方形宽为2,四个长方形周长相等,横着的长方形的长比竖着的长方形的宽多4,所以竖着的长方形的长比横着的长方形的宽多4,而这两个的和是6,由和差问题可知,竖着长方形的长为5,面积为10.7.图2的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是__________.【考点】面积计算【难度】☆☆☆【答案】27【分析】如右图所示:整个“蝙蝠”图案由两个①这样的正方形、三个③这样的三角形和两个②这样的正方形组成,①的面积等于四个阴影部分面积为4;②由四个小正方形组成,每个小正方形面积等于两个阴影三角形面积,所以②的面积为8;③的面积就是阴影部分面积,为1;所以整个图案面积为42821327⨯+⨯+⨯=.8.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米,坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是__________秒. 【考点】火车过桥 【难度】☆☆ 【答案】20【分析】坐在慢车上的人看见快车驶过的时间是21秒,可以用快车的车长除以时间得到快车和慢车的速度和:速度和为3152115÷=米每秒,坐在快车上的人看见慢车驶过的时间应该等于慢车的车长除以两车的速度和,则时间是3001520÷=(秒).9.有4个互不相同的自然数,它们的平均数是10,其中最大的数至少是__________. 【考点】平均数 【难度】☆☆ 【答案】12【分析】四个数的和为40,我们首先看最大的数可不可以是11:若最大数是11,则其余三个数最多分别是8、9、10,四个数之和是38,不及40,不行;如果最大数是12,其他三个数分别是8、9、11即可,因此最大数至少应为12.10.图3中共有三角形__________个.【考点】几何计数 【难度】☆☆☆ 【答案】30【分析】占一个空白区域的三角形有10个,分别是:ABG ∆,AGL ∆,BGN ∆,CDH ∆,DHM ∆ ,COH ∆,EJL ∆,EJM ∆,FKN ∆,FKO ∆;占两个空白区域的的三角形有10个,分别是ABL ∆,ABN ∆,CDM ∆,CDO ∆,EIG ∆ ,EIH ∆,ELM ∆,FIH ∆,FIG ∆,FON ∆; 占三个或三个以上空白区域的三角形有10个,分别是EKB ∆,EKC ∆,EGH ∆,EBC ∆,FIA ∆,FJD ∆,FGH ∆,FAD ∆GEF ∆,HEF ∆; 综上所述,总共有30个三角形.11.两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是__________. 【考点】带余除法 【难度】☆☆ 【答案】742【分析】用830减去2应该得到较小数的23倍,所以较小数为(8302)2336-÷=,较大的数为36222794⨯+=.12.有白棋子和黑棋子共2014个,按照如图4的规律从左到右排成一行,其中黑棋子的个数是__________.【考点】找规律 【难度】☆☆ 【答案】1342【分析】由图可知,图形按照1白1黑1白2黑1白3黑的规律循环排列而成,周期为9,其中白棋子3枚,黑棋子6枚,201492237÷=,所以2014个棋子共有223个循环节,再加上一个周期的前七枚棋子,而前七枚棋子中有四枚黑棋子,所以黑棋子的总数为622341342⨯+=枚.二、解答题(每题15分,共60分,每题写出推算过程)13.如果数A 增加2,则它与数B 的积比A ,B 的积大60;如果数A 不变,数B 减少3,则它们的积比A ,B 的积小24,那么,如果数A 增加2,数B 减少3,则它们的积比A ,B 的积大多少? 【考点】计算【难度】☆☆ 【答案】30【分析】由数A 增加2,则它与数B 的积比A ,B 的积大60,可得(2)60A B AB +-=,化简可得30B =;由数A 不变,数B 减少3,则它们的积比A ,B 的积小24,可得(3)24AB A B --=,化简可得8A =,则240AB =,由数A 增加2,数B 减少3,可得(2)(3)(82)(303)270A B +-=+⨯-=,所以它们两个的差为27024030-=.14.水果店用三种水果搭配果篮,每个果篮有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩下130个火龙果,问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩下多少个猕猴桃?【考点】和差倍问题【难度】☆☆【答案】370,140【分析】(1)所有的果篮用掉2份哈密瓜,4份火龙果,10份猕猴桃,当哈密瓜用完时,火龙果用掉了哈密瓜的2倍,因为火龙果的数量比哈密瓜的3倍多10个,所以剩下的130个火龙果对应了哈密瓜的1倍多10个,所以哈密瓜有13010120⨯+=个;-=个,火龙果有120310370(2)猕猴桃有3702740⨯=⨯=个,而猕猴桃的用量应该是哈密瓜的5倍,所以猕猴桃用了1205600个,所以剩下的猕猴桃有740600140-=个.15.如图5,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,从四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面倍这些方框盖住的面积(图6阴影部分的面积).【考点】面积计算【难度】☆☆【答案】74【分析】大正方形的面积为6636-=,⨯=,挖去的正方形的面积为4416⨯=,所以方框的面积为361620 4个方框的面积为20480⨯⨯=所⨯=,重叠部分是6个边长为1的正方形,所以重叠面积为1166以方框盖住桌子的面积为80674-=.16.如图7,小红和小丽的家分别在电影院的正西和正东方向,某日他们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院,看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家,求两人的家相距多少米.【考点】行程【难度】☆☆☆【答案】2196【分析】因为小红的速度不变,从家到电影院的距离等于从电影院到家的距离,所以小红从家到电影院的时间等于从电影院到家的时间,也就是说小丽从电影院到家比从家到电影院少用4分钟,由(704)(9070)14⨯÷-=(分),可知,小丽从电影院到家用了14分钟,所以从家到电影院用了18分钟,两人的家相距(5270)182196+⨯=(米).。
希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)
球的正上方悬挂有相同的灯泡。A 灯泡位置比 B 灯泡位置低。当灯泡点亮时,受
光照部分更多的是
球。
18.用 20 厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种。 其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长 ______ 厘米,宽______ 厘米。
千米。
13.甲、乙、丙三人中只有 1 人会开汽车。甲说:“我会开。”乙说:“我
不会开。”丙说:“甲不会开。”三人的话只有一句是真话。会开车的是
。
14.为了支援西部,1 班班长小明和 2 班班长小光带了同样多的钱买了同一
种书 44 本,钱全部用完,小明要了 26 本书,小光要了 18 本书。回校后,小明
第一届小学“希望杯”全国数学邀请赛(第 1 试)
四年级 第 1 试
1.下边三个图中都有一些三角形,在图 A 中,有
在图 C 中,有
个。
个;在图 B 中,有
个;
2.写出下面等式右边空白处的数,使等式能够成立:
0.6+0.06+0.006+…=2002÷
。
3.观察 1,2,3,6,12,23,44,x,164 的规律,可知 x =
目录
1. 第一届小学“希望杯”全国数学邀请赛(第 1 试) ........................................2 2. 第一届小学“希望杯”全国数学邀请赛(第 2 试) ........................................5 3. 第二届小学“希望杯”全国数学邀请赛(第 1 试) ........................................7 4. 第二届小学“希望杯”全国数学邀请赛(第 2 试) ......................................10 5. 第三届小学“希望杯”全国数学邀请赛(第 1 试) ......................................13 6. 第三届小学“希望杯”全国数学邀请赛(第 2 试) ......................................16 7. 第四届小学“希望杯”全国数学邀请赛(第 1 试) ......................................18 8. 第四届小学“希望杯”全国数学邀请赛(第 2 试) ......................................21 9. 第五届小学“希望杯”全国数学邀请赛(第 1 试) ......................................23 10. 第五届小学“希望杯”全国数学邀请赛(第 2 试) ......................................26 11. 第六届小学“希望杯”全国数学邀请赛(第 1 试) ......................................28 12. 第六届小学“希望杯”全国数学邀请赛(第 2 试) ......................................30 13. 第七届小学“希望杯”全国数学邀请赛(第 1 试) ......................................32 14. 第七届小学“希望杯”全国数学邀请赛(第 2 试) ......................................36 15. 第八届小学“希望杯”全国数学邀请赛(第 1 试) ......................................39 16. 第八届小学“希望杯”全国数学邀请赛(第 2 试) ......................................41 17. 第九届小学“希望杯”全国数学邀请赛(第 1 试) ......................................44 18. 第九届小学“希望杯”全国数学邀请赛(第 2 试) ......................................46 19. 第十届小学“希望杯”全国数学邀请赛(第 1 试) ......................................48 20. 第十届小学“希望杯”全国数学邀请赛(第 2 试) ......................................50 21. 第一届---第八届“希望杯”全国数学邀请赛参考答案………………………53
小学四年级希望杯数学竞赛第一届至十一历届全部试题与答案(最新最全)
第一届小学“希望杯”全国数学邀请赛四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在a=20032003×2002和b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
15.长方形被分成了4个小长方形,图4中的数字是它们每个的面积,阴影部分的面积是。
小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
小学四年级希望杯数学竞赛第一届至十一届全部试题与答案
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)
目录1.第一届小学“希望杯”全国数学邀请赛(第1试) (2)2. 第一届小学“希望杯”全国数学邀请赛(第2试) (5)3. 第二届小学“希望杯”全国数学邀请赛(第1试) (7)4. 第二届小学“希望杯”全国数学邀请赛(第2试) (10)5. 第三届小学“希望杯”全国数学邀请赛(第1试) (13)6. 第三届小学“希望杯”全国数学邀请赛(第2试) (16)7. 第四届小学“希望杯”全国数学邀请赛(第1试) (18)8. 第四届小学“希望杯”全国数学邀请赛(第2试) (21)9. 第五届小学“希望杯”全国数学邀请赛(第1试) (23)10. 第五届小学“希望杯”全国数学邀请赛(第2试) (26)11. 第六届小学“希望杯”全国数学邀请赛(第1试) (28)12. 第六届小学“希望杯”全国数学邀请赛(第2试) (30)13. 第七届小学“希望杯”全国数学邀请赛(第1试) (32)14. 第七届小学“希望杯”全国数学邀请赛(第2试) (36)15. 第八届小学“希望杯”全国数学邀请赛(第1试) (39)16. 第八届小学“希望杯”全国数学邀请赛(第2试) (41)17. 第九届小学“希望杯”全国数学邀请赛(第1试) (44)18. 第九届小学“希望杯”全国数学邀请赛(第2试) (46)19. 第十届小学“希望杯”全国数学邀请赛(第1试) (48)20. 第十届小学“希望杯”全国数学邀请赛(第2试) (50)21.第一届---第八届“希望杯”全国数学邀请赛参考答案 (53)第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
第十二届小学“希望杯”全国数学邀请赛 四年级试题解析
8. 甲、乙、丙三校合办画展,参展的画中,有 41 幅不是甲校的,有 38 幅不是乙校的,甲、乙两校
参展的画共 43 幅,那么,丙校参展的画有
幅.
【考点】应用题
【答案】18
【分析】根据题意有:甲+乙=43,乙+丙=41,甲+丙=38,则甲+乙+丙= 43 41 38 2 61 ,
则丙有: 61 43 18 幅.
的时刻是
.
【考点】行程,相遇问题
3
【答案】10:40 【分析】假设汽车到达 C 地时,卡车到达 D 地,且还需要 6 时 30 分到达 C 地,卡车继续走 CD 距离
的三分之一与汽车相遇,需要 2 时 10 分,此时为 10:40.
16. 若两位数 ab 比 cd 大 24,三位数1ab 比 cd1 大 15,则 ad =
字,然后在黑板上写下得到的数;......;如此操作下去,直到在黑板上写下的是一个一位数,它
是
.
【考点】组合,操作
【答案】6
【分析】设每次被操作的数末位为 b ,最高位到十位为 a ,则这个数为10a b ,经过操作后变为 4a b ,
易知每次操作使原数减少 6a ,开始的九位数 222222222 也是 6 的倍数,则每次操作后得到的新数
.
【考点】数论,整除 【答案】23 【分析】被 5 除余 3,易知 b 3或8 ,被 11 除余 0,则:
b 3 时,1 6 3 8 a a 2 ,18623 32 ab 23 b 8 时,1 6 8 8 a a 7 ,18678 30
20. 黑板上写着一个九位数 222222222,对它做如下操作:擦掉末位数后又乘以 4,再加上刚擦去的数
2. 买 5 斤黄瓜用了 11 元 8 角,比买 4 斤西红柿少用 1 元 4 角,那么,每斤西红柿的价格是
小学四年级希望杯数学竞赛第一届至十一届全部试题与答案
小学四年级希望杯数学竞赛第一届至十一届全部试题与答案第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+=2002÷3.观察1,2,3,6,12,23,44,某,164的规律,可知某=4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定ab=13某a-b÷8,那么1724的最后结果是6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在a=20032003某2002和b=20022003某2003中,较大的数是,它比较小的数大12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第1试)
2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第1试)一、以下每题6分,共120分1.(6分)过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.2.(6分)买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元角.3.(6分)如图是4×4的方格图,有3个小正方形有阴影,若再将一个小正方形涂阴影,使方格图成为轴对称图形,则不同的涂法有种.4.(6分)小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.5.(6分)如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.6.(6分)如图是长方形,将它分成7部分,至少要画条直线.7.(6分)甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.8.(6分)甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.9.(6分)一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.10.(6分)如图,每个小正方形的边长都是1,那么.图中面积为2的阴影长方形共有个.11.(6分)如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.12.(6分)自然数a是3的倍数,a﹣1是4的倍数,a﹣2是5的倍数,则a最小是.13.(6分)四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.14.(6分)如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.15.(6分)一辆汽车和一辆卡车分别从A、B两地同时相向而行,已知汽车的速度是卡车的2倍,汽车在8:30到达途中C地,卡车在当日15:00到达C地,两车到达C地时不停车,继续前行,则两车相遇的时刻是.16.(6分)若两位数比大24,三位数比大15,则=.17.(6分)体操表演者排成每一横行和每一竖列中的人数相同的方阵,每个方阵最外一圈有16人,若四个这样的方阵恰好可以并成一个大方阵,则大方阵的最外一圈有人.18.(6分)2013年12月31日是星期二,那么,2014年6月1日是.(用数字作答:星期一用1表示,星期二用2表示,星期三用3表示,星期四用4表示,星期五用5表示,星期六用6表示,星期日用7表示.)19.(6分)五位数,被3除余2,被5除余3,被11除余0,则=.20.(6分)黑板上写着一个九位数222222222,对它做如下操作:擦掉末位数后又乘4,再加上刚擦去的数字,然后在黑板上写下得数;如此操作下去,直到在黑板上写下的是一个一位数,那么,它是.2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析一、以下每题6分,共120分1.(6分)过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生42名.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.【解答】解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.2.(6分)买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是3元3角.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.【解答】解:11元8角=11.8元,1元4角=1.4元(11.8+1.4)÷4=13.2÷4=3.3(元);3.3元=3元3角;答:每斤西红柿的价格是3元3角.故答案为:3,3.【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.3.(6分)如图是4×4的方格图,有3个小正方形有阴影,若再将一个小正方形涂阴影,使方格图成为轴对称图形,则不同的涂法有2种.【分析】根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可.【解答】解:在①②处涂,都可以,所以有2种;故答案为:2.【点评】求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点.后依次连结各特征点即可.4.(6分)小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距550米.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.【解答】解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.5.(6分)如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是172厘米.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.【解答】解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.6.(6分)如图是长方形,将它分成7部分,至少要画3条直线.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.【解答】解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.7.(6分)甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多30千克.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可【解答】解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.8.(6分)甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有18幅.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.【解答】解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.9.(6分)一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是128.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.【解答】解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.10.(6分)如图,每个小正方形的边长都是1,那么.图中面积为2的阴影长方形共有34个.【分析】根据题意,每个小正方形的边长都是1,面积就是1,面积为2应该是两个小正方形的面积,要求图中面积为2的阴影长方形共有多少个,就分别数出2、0、1、4这4个数字中有几个相邻的两个小正方形,然后相加即可解答.【解答】解:“2”中面积为2的阴影长方形有10个,“0”中面积为2的阴影长方形有12个,“1”中面积为2的阴影长方形有4个,“4”中面积为2的阴影长方形有8个,所以一共有10+12+4+8=34(个).故答案为:34.【点评】本题考查了组合图形的面积,要知道边长是1,面积也是1,关键是数清楚每个数字上面有几个相邻的两个小正方形的个数即可.11.(6分)如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是320.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.【解答】解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.12.(6分)自然数a是3的倍数,a﹣1是4的倍数,a﹣2是5的倍数,则a最小是57.【分析】因为自然数a是3的倍数,a﹣1是4的倍数,a﹣2是5的倍数,那么该自然数就是被3整除,倍4除余1,被5除余2,应用列举法即可.【解答】解:因为自然数a是3的倍数,a﹣1是4的倍数,a﹣2是5的倍数,那所以这个数被5除余2,因为5的倍数个位上是0或者是5,加上2后个位上是2或者7,且这个数还是3的倍数,所以列举3的倍数个位是2或者7的即可.如:12,27,42,57,…而(57﹣1)÷4=14,所以符合条件的是57.故答案为:57.【点评】解答本题的关键是:熟练掌握3,4,5的倍数特征,而5的倍数特征个位很特别,所以本题从讨论5的倍数开始讨论.13.(6分)四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生18人.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.【解答】解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.14.(6分)如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是20.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.【解答】解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.15.(6分)一辆汽车和一辆卡车分别从A、B两地同时相向而行,已知汽车的速度是卡车的2倍,汽车在8:30到达途中C地,卡车在当日15:00到达C地,两车到达C地时不停车,继续前行,则两车相遇的时刻是10:40.【分析】同时相向而行,也就是说在相遇时所用的时间相同,即从任何一个时刻开始都是如此,因此从汽车在8:30到达途中C地开始考虑,二车经过C地的时间差是6个半小时,即6×60+30=390分钟,因为二车速度比是2:1,所以在相遇时行的路程比也是2:1,所以行完这段路所用时间比是1:2,把所用时间看作一个整体,卡车需要用390÷3=130分钟两车相遇,所以相遇时刻应该是8:30,再加是130分钟,即在10:40分相遇.【解答】解:由题意分析:从汽车在8:30到达途中C地开始考虑,二车经过C地的时间差是6个半小时,即6×60+30=390分钟;因为二车速度比是2:1,所以在相遇时行的路程比也是2:1,所以行完这段路所用时间比是1:2;卡车到相遇需要用390÷3=130分钟,所以相遇时刻应该是8:30再加是130分钟,即在10:40分相遇.故答案为:10:40.【点评】解决本题的关键是找准起始点,合理使用所给的数据信息,列出方程,另外要注意的是计算时间差要仔细,还有不要把半小时看成了50分钟.16.(6分)若两位数比大24,三位数比大15,则=32.【分析】通过分析:由得到b=1+5=6,把b=6代入:得d=6﹣4=2,把b=6,d=2代入+15=,得出a=2+1=3,c=1,所以=36,据此解答即可.【解答】解:因为:所以b=1+5=6,把b=6带入:得d=6﹣4=2,把b=6,d=2代入+15=得出:a=2+1=3,c=1所以:所以=32故答案为:32.【点评】此题考查用字母表示数量,解决此题关键是根据是由由+15=,得到b=1+5=6,然后一步步解答即可.17.(6分)体操表演者排成每一横行和每一竖列中的人数相同的方阵,每个方阵最外一圈有16人,若四个这样的方阵恰好可以并成一个大方阵,则大方阵的最外一圈有36人.【分析】由于四个顶点上的人属于相邻的两个边公共的人,所以每边的人数是:16÷4+1=5(人),因此每个方阵共有学生5×5=25(人),四个这样的方阵恰好可以并成一个大方阵,则大方阵的总人数为25×4=100(人),因为100=10×10,所以每行就有10人,最外圈的人数就是10×4﹣4=36(人).据此解答.【解答】解:16÷4+1=5(人)5×5=25(人)25×4=100(人)10×4﹣4=36(人)答:大方阵的最外一圈有36人.故答案为:36.【点评】本题关键是求出每边的人数;方阵问题相关的知识点是:四周的人数=(每边的人数﹣1)×4,每边的人数=四周的人数÷4+1,中实方阵的总人数=每边的人数×每边的人数,空心方阵的总人数=(最外层每边的人数﹣空心方阵的层数)×空心方阵的层数×4,外层边长数2﹣中空边长数2=实面积数.18.(6分)2013年12月31日是星期二,那么,2014年6月1日是7.(用数字作答:星期一用1表示,星期二用2表示,星期三用3表示,星期四用4表示,星期五用5表示,星期六用6表示,星期日用7表示.)【分析】先求12月31日到6月1日经过了多少天,再求这些天里有几周,还余几天,再根据余数判断.【解答】解:2014÷4=503 (2)所以今年是平年,2月有28天,1、3、5是大月有31天,4月是小月有30天,共有28+31×3+30+1=152(天)152÷7=21 (5)余数是5,2+5=7答:那么2014年6月1日是星期日;故答案为:7.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.19.(6分)五位数,被3除余2,被5除余3,被11除余0,则=23.【分析】五位数被3除余2,则10a+b=3k+2,被5除余3,则b为3或8,被11除余0,则1+6+b﹣8﹣a=11n,因为a、b均小于10,则n=0,b=a+1,综上所述,可得a=2,b=3,此五位数为18623,据此求出.【解答】解:五位数被3除余2,则10a+b=3k+2,被5除余3,则b为3或8,被11除余0,则1+6+b﹣8﹣a=11n,因为a、b均小于10,则n=0,b=a+1,所以a=2,b=3,此五位数为18623,所以=23.故答案为:23.【点评】本题考查数的整除性的知识,难度较大,解答本题时要注意被11恰好整除,这是解答此类题目的关键.20.(6分)黑板上写着一个九位数222222222,对它做如下操作:擦掉末位数后又乘4,再加上刚擦去的数字,然后在黑板上写下得数;如此操作下去,直到在黑板上写下的是一个一位数,那么,它是6.【分析】原数是偶数,那么擦掉的末尾一定是偶数,乘4后的数也是偶数,再加上也是偶数,所以最终结果一定是偶数.如果原数能被3整除,设原数为10a+b,其中b为最后一个数字,那么一次变换后为4a+b,两次做差,为9a,说明如果原数是3的倍数,那么后来也是3的倍数.综上,最后只能是6.【解答】解:如果原数能被3整除,设原数为10a+b,其中b为最后一个数字,那么一次变换后为4a+b,两次做差,为6a,说明如果原数是3的倍数,那么后来也是3的倍数.因为是偶数,因此这个一位数是6.故答案为:6.【点评】此题解答的关键在于推出最后得到的数字的特点,解决问题.。
希望杯数学竞赛第一届至十三历届四年级全部试题与答案打
教育精品资料目录1.第一届小学“希望杯”全国数学邀请赛(第1试) (2)2. 第一届小学“希望杯”全国数学邀请赛(第2试) (5)3. 第二届小学“希望杯”全国数学邀请赛(第1试) (7)4. 第二届小学“希望杯”全国数学邀请赛(第2试) (10)5. 第三届小学“希望杯”全国数学邀请赛(第1试) (12)6. 第三届小学“希望杯”全国数学邀请赛(第2试) (15)7. 第四届小学“希望杯”全国数学邀请赛(第1试) (17)8. 第四届小学“希望杯”全国数学邀请赛(第2试) (20)9. 第五届小学“希望杯”全国数学邀请赛(第1试) (22)10. 第五届小学“希望杯”全国数学邀请赛(第2试) (24)11. 第六届小学“希望杯”全国数学邀请赛(第1试) (26)12. 第六届小学“希望杯”全国数学邀请赛(第2试) (28)13. 第七届小学“希望杯”全国数学邀请赛(第1试) (30)14. 第七届小学“希望杯”全国数学邀请赛(第2试) (34)15. 第八届小学“希望杯”全国数学邀请赛(第1试) (37)16. 第八届小学“希望杯”全国数学邀请赛(第2试) (39)17. 第九届小学“希望杯”全国数学邀请赛(第1试) (41)18. 第九届小学“希望杯”全国数学邀请赛(第2试) (43)19. 第十届小学“希望杯”全国数学邀请赛(第1试) (45)20. 第十届小学“希望杯”全国数学邀请赛(第2试) (47)21.第一届---第八届“希望杯”全国数学邀请赛参考答案 (53)第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C 中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。