第十二章全等三角形数学活动
八年级数学上册第十二章全等三角形12.2三角形全等的判定课时1“边边边SSS”教案
第十二章全等三角形12。
2全等三角形的判定课时1 “边边边(SSS)”【知识与技能】(1)明确判定两个三角形全等至少需要三个条件.(2)掌握“边边边(SSS)"条件的内容。
(3)能初步运用“边边边(SSS)”条件判定两个三角形全等.(4)会作一个角等于已知角.【过程与方法】使学生经历探索三角形全等的过程,体验用操作、归纳得出数学结论的过程.【情感态度与价值观】探究三角形全等条件的判定过程,以观察思考,动手画图,合作交流等多种形式让学生共同探讨,培养学生的合作精神。
三角形全等的“边边边(SSS)”判定方法.运用“边边边(SSS)”判定方法进行简单的证明。
多媒体课件.教师引入:如图12-2—1,教师在黑板上画两个三角形,请仔细观察,△ABC与△A′B′C′全等吗?你们是如何判断的?学生各抒己见,如动手用纸剪下一个三角形,将剪下的三角形叠到另一个三角形上,观察这两个三角形是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。
探究1:三角形全等的条件教师提出:(1)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?(2)如果给出两个条件呢?给出两个条件画三角形时,有几种可能的情况,每种情况下画出的三角形一定全等吗?学生讨论有几种可能的情况,然后按照下面的条件画一画:①三角形的一个内角是30°,一条边是3 cm;②三角形的两个内角分别是30°和50°;③三角形的两条边长分别是 4 cm和6 cm.学生分组讨论、画图、探索、归纳,最后以组为单位展示结果.结果展示:(1)只给定一条边时,如图12-2—2。
只给定一个角时,如图12-2-3.(2)给出的两个条件:一边一内角、两内角、两边,如图12-2—4。
可以发现按这些条件画出的三角形都不能保证一定全等。
教师提出:如果给出三个条件画三角形,你能说出有几种情况吗?(三条边,两条边和一个角,一条边和两个角,三个角)在刚才的探索过程中,我们已经发现,已知三个内角不能保证两个三角形全等.下面我们就来逐一探索其余的三种情况.(这节课只讨论第一种情况)探究2:“边边边(SSS)”教师让学生完成以下活动:1。
人教版八年级数学上册第12章全等三角形单元课时教学设计
3.教学内容:
a.全等三角形的定义及判定方法。
b.全等三角形在实际问题中的应用。
c.解决全等三角形问题时,需要注意的问题,如正确识别判定方法、注意几何证明的步骤等。
五、作业布置
1.基础作业:
-请同学们完成教材第12章全等三角形的相关练习题,巩固全等三角形的判定方法。
-结合全等三角形的性质形在立体几何中的应用。
3.拓展作业:
-研究全等三角形的判定方法在古代建筑中的应用,如古建筑中的对称结构、装饰图案等。
-搜集相关资料,了解全等三角形在数学发展史上的地位和作用。
4.作业要求:
-基础作业要求每位同学必须完成,巩固全等三角形的基本概念和判定方法。
-已知三角形的两边和夹角,求第三边的长度。
-已知三角形的两角和一边,求其他角的度数。
2.设计意图:巩固全等三角形的判定方法,提高学生解决问题的能力。
3.教学内容:学生完成练习题,教师进行讲解和点评。
(五)总结归纳
1.教学活动:教师引导学生回顾本节课所学内容,总结全等三角形的判定方法及其在实际问题中的应用。
c. ASA判定法:若两个三角形的两角和一边分别相等,则这两个三角形全等。
d. AAS判定法:若两个三角形的两角和一边(不是夹角)分别相等,则这两个三角形全等。
e. HL判定法:若两个直角三角形的斜边和一条直角边分别相等,则这两个直角三角形全等。
(三)学生小组讨论
1.教学活动:将学生分成若干小组,讨论以下问题:
-定期对学生的作业进行反馈,了解学生的学习进度,调整教学策略,以提高教学效果。
a.举例说明全等三角形在生活中的应用。
b.运用全等三角形的判定方法,解决实际问题。
全等三角形数学教案优秀5篇
全等三角形数学教案优秀5篇更多全等三角形数学教案资料,在搜索框搜索全等三角形数学教案篇1教学目标一、学问与技能1、了解全等形和全等三角形的概念,把握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并把握全等三角形的对应边相等,对应角相等。
教学难点正确查找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以查找全等三角形的对应点、对应边、对应角。
课前预备:老师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:老师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,样子和大小都相同。
你还能说一说自己身边还有哪些样子和大小都相同的图形吗?[学生举例,集体评析] 动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形] 刚才大家所举的各种各样的样子大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
(三)全等三角形的定义动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。
八年级数学人教版上册第十二章数学活动用全等三角形探索筝形教学设计
1.培养学生对数学的兴趣和热爱,激发他们学习数学的积极性,增强自信心。
2.通过小组合作、讨论交流等方式,培养学生的团队协作精神,提高他们的沟通能力。
3.引导学生认识到数学在现实生活中的重要作用,增强他们的数学应用意识,培养他们用数学的眼光看待世界。
在教学过程中,教师要关注学生的个体差异,因材施教,充分调动学生的学习积极性,使他们主动参与到课堂教学中来。以下是根据本章内容制定的教学设计:
作业要求:
1.学生需独立完成作业,确保作业质量。
2.注意书写规范,表达清晰,证明过程要严谨。
3.鼓励学生在作业中展示自己的思考过程,提出疑问。
4.教师在批改作业时,要关注学生的解题思路和方法,及时给予评价和反馈。
(二)讲授新知
1.教学内容:全等三角形的性质、判定方法,以及筝形的定义和性质。
2.讲解方法:通过PPT、黑板、实物模型等多种方式,生动形象地展示全等三角形和筝形的特征。
3.教学过程:
a.复习全等三角形的性质和判定方法,强调其在解决几何问题中的重要作用。
b.介绍筝形的定义,引导学生认识筝形是由两个全等三角形组成的四边形。
2.教学过程:
(1)导入:展示筝形实例,引导学生观察、思考筝形的特征,激发学习兴趣。
(2)新知:介绍全等三角形在筝形中的应用,引导学生通过自主探究、合作交流掌握筝形的性质。
(3)实践:组织学生动手制作筝形模型,观察筝形的特征,并运用全等三角形的知识解释现象。
(4)巩固:通过课堂练习、课后作业等形式,让学生独立解决与筝形相关的问题,巩固所学知识。
八年级数学人教版上册第十二章数学活动用全等三角形探索筝形教学设计
一、教学目标
(一)知识与技能
八年级数学上册听课记录:第十二章全等三角形《角的平分线的性质:探究角的平分线的性质》
新2024秋季八年级人教版数学上册第十二章全等三角形《角的平分线的性质:探究角的平分线的性质》听课记录教学目标(核心素养)1.知识与技能:学生能够理解并掌握角的平分线的定义及其基本性质,能够运用性质进行简单的推理和证明。
2.过程与方法:通过观察、猜想、验证等数学活动,培养学生的探究能力、逻辑推理能力和空间想象能力。
3.情感态度价值观:激发学生对数学的好奇心和探索欲,培养严谨的科学态度和合作学习的精神。
导入教师行为:•教师利用多媒体课件展示一个包含角的平分线的图形,引导学生观察并提问:“同学们,你们看到这个图形中的特殊线段了吗?它有什么特点?我们如何称呼它?”•引导学生回顾角的定义,进而引出角的平分线的概念,并板书角的平分线的定义。
学生活动:•学生认真观察图形,积极回答教师的问题,回顾角的定义,并尝试给出角的平分线的初步定义。
过程点评:•导入环节通过直观的图形展示和提问,有效激发了学生的学习兴趣和探究欲望,为后续学习角的平分线的性质奠定了良好的基础。
教学过程1. 猜想角的平分线的性质教师行为:•教师提出问题:“既然角的平分线将一个角分为两个相等的角,那么它是否还具有其他特殊的性质呢?请大家根据角的平分线的定义,大胆猜想一下。
”•鼓励学生自由发言,提出自己的猜想,并记录在黑板上。
学生活动:•学生积极思考,提出各种猜想,如“角的平分线到角的两边的距离可能相等”、“角的平分线可能是某条直线的垂直平分线”等。
过程点评:•通过猜想环节,培养了学生的直觉思维和创新能力,同时也为后续的验证活动提供了方向。
2. 验证猜想,探究性质教师行为:•教师引导学生利用尺规作图工具,在纸上画出包含角的平分线的图形,并尝试通过测量、折叠等方法验证之前的猜想。
•同时,教师也可以给出一些具体的例题或任务,让学生分组合作,共同探究角的平分线的性质。
学生活动:•学生动手操作,认真测量、折叠,验证自己的猜想。
在小组合作中,学生积极交流讨论,共同解决问题。
数学全等三角形教案8篇
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
人教版八年级数学第十二章《全等三角形》教案
第十二章全等三角形1.理解和掌握全等三角形的概念,明确对应边、对应角、对应顶点等相关概念.2.掌握两个三角形全等,对应边相等、对应角相等的性质.3.探索并掌握两个三角形全等的条件,并能根据“SSS”“SAS”“ASA”“AAS”“HL”判定两个三角形全等.4.能够画已知角的平分线并掌握角平分线的性质定理和判定定理.1.通过观察、试验、归纳、类比、推理获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性.2.在教学中,注重所学内容与现实生活的联系;注重学生经历观察、操作、推理、想象等探索过程.1.让学生通过动手操作,感受知识的形成过程,树立认真学习的态度,激发学生的学习热情.2.利用小组合作的学习方法,让学生多进行交流,多种感官参与教学,使学生主动探索、发现规律、归纳概括、形成能力,养成学数学、爱数学的情感.中学阶段重点研究的两个平面图形间的关系是全等和相似,本章将以三角形为例研究全等.全等三角形研究的问题和研究方法将为后面学习相似提供思路,而且全等是一种特殊的相似,全等三角形的内容是学生学习相似三角形的重要基础.本章还将借助全等三角形进一步培养学生的推理论证能力,主要包括用分析法分析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程.由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章的内容也是学习等腰三角形、四边形、圆等内容的基础.本章分为三节,主要介绍了全等三角形的概念、性质、判定方法,以及如何利用三角形全等进行证明.第12.1节首先介绍了现实世界中的全等现象,然后从“重合”的角度引入了全等形的概念,在此基础上给出了全等三角形的概念,接着由全等三角形的概念导出了全等三角形的性质.第12.2节由图形的性质与判定在命题陈述上的互逆关系出发,引出判定两个三角形全等的方法.第12.3节首先由平分角的仪器的工作原理引出了作一个角的平分线的尺规作图,然后探究并证明了角的平分线的性质,同时总结了证明一个几何命题的一般步骤,最后给出了角的平分线的性质定理的逆定理.本章将重点研究三角形全等的判定方法,并在其中渗透了研究几何图形的基本方法.本章既有直接利用三角形全等的判定方法证明两个三角形全等的问题,又有通过证明两个三角形全等推出线段相等或角相等的问题,在问题的设计中还融入了平行线的性质与判定、三角形中边和角的等量关系、折纸情境等内容,推理论证的难度比《三角形》一章增大了.【重点】1.全等三角形的性质及各种判定三角形全等的方法.2.角平分线的性质及判定.3.证明的基本过程.【难点】1.根据不同条件合理选用三角形全等的判定方法,特别是对“SSA”不能判定三角形全等的认识.2.角平分线的性质和判定的正确运用.3.用综合法证明的格式.1.用研究几何图形的基本思想和方法贯穿本章的教学.学生在前面的几何学习中研究了相交线与平行线、三角形等几何图形,对于研究几何图形的基本问题、思路和方法形成了一定的认识,本章在教学中要充分利用学生已有的研究几何图形的思想方法,用几何思想贯穿全章的教学.2.让学生充分经历探究过程.本章在编排判定三角形全等的内容时构建了一个完整的探究活动,包括探究的目标、探究的思路和分阶段的探究活动.教学中可以让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,按计划逐步探索两个三角形全等的条件.本章在编排中将画图与探究三角形全等的条件结合起来, 既有用尺规画一个三角形与已知三角形全等,又有用技术手段根据已知数据画三角形.教学中要充分利用探索画图方法的过程对形成结论的价值,让学生自主探索画图的步骤、创设多种画法、解释作图依据等,在活动中发现结论.3.重视对学生推理论证能力的培养.本章是初中阶段培养逻辑推理能力的重要章节,主要包括证明两个三角形全等,通过证明三角形全等,进而证得两条线段或两个角相等.教学中要在学生已有推理论证经验的基础上,利用三角形全等的证明,进一步培养学生推理论证的能力.按照整套教科书对推理能力培养的循序渐进的目标,本章的教学重点是引导学生分析条件与结论的关系,书写严谨的证明格式,从具体问题的证明中总结出证明的一般步骤.12.1全等三角形1课时12.2三角形全等的判定4课时12.3角的平分线的性质1课时单元复习1课时12.1全等三角形1.掌握好全等形及全等三角形的定义.2.理解对应顶点、对应边、对应角的含义.3.掌握全等三角形的性质.1.教学时结合实际图片或学生自己动手制作的图片,使学生更加容易接受本节的知识,也能从中体会到数学的乐趣及数学与生活实际的联系.2.通过对一个图形的平移、翻折、旋转等动态变换,使学生的思维更具动态,形成空间观念,对以后的图形观察与总结具有更好的指引作用.1.在全等形的引入中,通过一些实际生活的图片,让学生感受到数学来源于生活实际,又反作用于生活实际.2.在学习中,同学之间以及小组之间相互研讨,可促进学生的团队意识,以及认识合作的价值.【重点】掌握好全等三角形的定义及利用全等三角形的性质解决问题.【难点】全等三角形性质的应用.【教师准备】全等的三角形纸板.【学生准备】剪刀、三角形纸板.导入一:(老师手拿两个全等的三角形纸板,可先分开操作,然后把两个三角形进行重合操作,目的是让学生看出这两个三角形是能够完全重合在一起的) 【师】同学们,你能发现这两个三角形有什么关系吗?【生】这两个三角形是完全重合的.【师】这就是我们今天要学习的全等形中的一种,全等三角形.(同时教师手写板书)[设计意图]本节的内容,对于学生来说还是比较容易接受的,所以此设计比较简捷,单刀直入,可以节省时间,直入主题.导入二:【师】同学们,这节课我们先做个游戏,把你们准备好的剪刀与三角形纸板拿出来,先取一张纸,将准备好的三角形纸板按在纸上,画下图形,照图形裁下来,观察一下,有什么特点?同桌之间互相配合完成,再一起讨论得到的三角形与原三角形之间的关系.[设计意图]同桌之间通过互相帮助,动手探索,既能增强他们的合作意识、团队精神,又能在动手操作中感受到数学的乐趣,增强对全等三角形的认知与理解.导入三:(老师拿出一块硬纸板)同学们请看,每组的两个图形有什么特点?它们的形状、大小一样吗?它们能互相重合吗?[设计意图]这两个问题和实际生活的联系比较密切,引起了学生认知的需要,激发了学生的求知欲,使之在思维情境中进入最佳的学习状态.这就为学生认识和探索全等三角形的性质做了铺垫.一、全等三角形的相关概念1.全等形的概念思路一【师生活动一】多找一些学生举例子.(此过程中,有些学生举的例子是不正确的,如有的学生可能会说“双胞胎”,可先让学生说说此例子是否正确,让学生们一起讨论,然后老师给出正确的指引及错误的原因,对学生的不同回答,只要合理,就给予认可)[设计意图]帮助学生准确地理解定义,以及感受数学知识的严谨性.【师生活动二】(1)上面同学们举的这些例子,有什么共同的特征?(2)有人用“全等形”一词描述上面的图形,你认为这个词是什么含义?同学们畅所欲言,最后老师给出全等形及全等三角形的定义,为了加深理解,可通过列举反例强调定义的条件.全等形的定义:能够完全重合的两个图形叫做全等形.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.思路二【学生活动一】把一块三角形样板按在纸板上,画下图形,照图形裁下来.【问题思考】裁下来的纸板和样板的形状、大小完全一样吗?把样板和裁得的纸板放在一起能够完全重合吗?用同一张底片冲洗出来的两张照片上的图形,放在一起也能够完全重合吗?【学生回答后总结】能够完全重合的两个图形叫做全等形.[设计意图]从学生熟悉的图形和例子引出全等形的概念,可以排除学生对几何的畏惧心理,增强他们的自信心,在教学过程中要强调“重合”的重要性,使全等形的概念的引入显得更加自然.【学生活动二】观察黑板上的两个三角形ΔDEF和ΔABC.【思考】如果把ΔDEF放到ΔABC上,两个三角形可以重合吗?可以重合的三角形称为什么?【生答】全等三角形.[设计意图]通过这个活动及时巩固全等形的概念,同时也为后面的内容做铺垫,起承上启下的作用.[拓展延伸]两个三角形全等指的是两个三角形的形状和大小完全相同,和位置无关.2.全等三角形的相关定义【师生活动一】老师演示以下三种情况:(1)将ΔABC沿直线BC平移得到ΔDEF;(2)将ΔABC沿BC翻折180°得到ΔDBC;(3)将ΔABC绕点A旋转180°得到ΔAED.【议一议】各图中的两个三角形全等吗?它们能完全重合,我们就说它们是全等三角形,其中能重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如上图中的甲,ΔABC与ΔDEF全等,我们就记作ΔABC≌ΔDEF,符号“≌”读作“全等于”,当两个三角形全等时,我们就用它来表示.其中点A与点D,点B与点E,点C与点F是对应顶点;AB与DE,BC与EF,AC与DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.同学们,能不能对上述的图乙,图丙,分别说出它们的记法、读法,以及其中的对应顶点、对应边、对应角.当学生回答两个三角形全等的书写时,教师注意强调书写时对应顶点字母写在对应的位置上.【师生活动二】【师】由上述的演示可以看出,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.在上述三种变换中,怎么能快速地找到对应顶点、对应边、对应角呢?请同学们讨论.[设计意图]学生进行讨论,各抒己见,此过程中学生说的不一定对,在互相的讨论、交流中,学生慢慢地纠正自己的错误,接受别人的好的方法,这样能更加深入地了解与掌握找全等三角形的对应点、对应边、对应角的方法.【师最后总结】在全等三角形中,找出对应角和对应边,关键是先找出对应顶点,然后按对应顶点的字母顺序记两个三角形全等,再按顺序写出对应边和对应角.全等三角形的面积一定相等,但是面积相等的两个三角形不一定是全等三角形.[知识拓展]找对应元素的常用方法有两种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度后能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两三角形重合来找对应元素.(二)根据元素位置来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.3.公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角.4.全等三角形中一对最短的边(或最小的角)是对应边(或对应角).二、全等三角形的性质学生们纷纷发言,在此过程中,老师引导学生从全等三角形可以完全重合出发找等量关系,得到全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.[知识拓展](1)全等三角形的对应边上的高、中线以及对应角的平分线相等;(2)全等三角形的周长相等,面积相等;(3)平移、翻折、旋转前后的图形全等.三、例题讲解如图所示,ΔOCA≌ΔOBD,C和B,A和D是对应顶点.(1)ΔOCA≌ΔOBD说明这两个三角形可以重合,那么通过怎样的变换可以使这两个三角形重合?(2)说出这两个三角形中相等的边和角.解:(1)将ΔOCA翻折可以使ΔOCA与ΔOBD重合.(2)∠C=∠B,∠A=∠D,∠AOC=∠DOB;AC=DB,OA=OD,OC=OB.如图所示,已知ΔABE≌ΔACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.〔解析〕对应边和对应角只能从两个三角形中找,所以需将ΔABE和ΔACD从复杂的图形中分离出来.根据元素位置来找,有相等元素,它们就是对应元素,再依据已知的对应元素找出其余的对应元素.解:对应角为∠BAE和∠CAD.对应边为AB与AC,AE与AD,BE与CD.1.能够完全重合的图形叫做全等形.能够完全重合的三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.全等三角形的对应边相等,对应角相等.2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等.3.在运用全等三角形的定义和性质时应注意规范书写格式.1.如图所示,ΔABC≌ΔDEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对解析:因为ΔABC≌ΔDEF,所以AB=DE,AC=DF,BC=EF,因为BC=EF,即BE+EC=CF+EC,所以BE=CF,即有4对相等的线段.故选D.2.如图所示,ΔACB≌ΔA'CB',∠A'CB=30°,∠ACB'=110°,则∠ACA'的度数是()A.20°B.30°C.35°D.40°解析:∵ΔACB≌ΔA'CB',∴∠ACB=∠A'CB',∴∠ACB-∠A'CB=∠A'CB'-∠A'CB,即∠ACA'=∠BCB',∵∠A'CB=30°,∠ACB'=110°,∴∠ACA'=1(110°-30°)=40°.故选D.23.如图所示,找出由七巧板拼成的图案中的全等三角形.解:三角形1和三角形2,三角形6和三角形7.4.如图所示,已知ΔABC≌ΔADE,试找出对应边、对应角.解析:方法1:可以发现∠A是公共角,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以对应边为AB与AD,AC与AE,BC与DE.对应角为∠A与∠A,∠B与∠D,∠ACB与∠AED.方法2:沿A与BC和DE的交点O的连线将ΔABC翻折180°后,它正好和ΔADE重合,这时就可以找到对应边为AB与AD,AC与AE,BC与DE.对应角为∠A与∠A,∠B与∠D,∠ACB与∠AED.解:对应边为AB与AD,AC与AE,BC与DE.对应角为∠A与∠A,∠B与∠D,∠ACB与∠AED.12.1全等三角形一、全等三角形的相关概念二、全等三角形的性质例1例2一、教材作业【必做题】教材第32页练习第1,2题.【选做题】教材第33页习题12.1第3,4,5题.二、课后作业【基础巩固】1.下列各组图形中是全等图形的是()2.下列各组图形中,是全等形的是()A.对应钝角相等的两个等腰三角形B.两个含60°角的直角三角形C.边长为3和5的两个等腰三角形D.腰对应相等的两个直角三角形3.如图所示,ΔABC≌ΔBAD,点A和点B,点C和点D是对应顶点,如果AB=6cm,BD=5 cm,AD=4 cm,那么AC的长是()A.6 cmB.5 cmC.4 cmD.无法确定4.如图所示,RtΔABC≌RtΔDEF,则∠D的度数为()A.30°B.45°C.60°D.90°【能力提升】5.如图所示,四边形ABCD的对角线AC,BD相交于点O,ΔABC≌ΔBAD.求证:(1)OA=OB;(2)∠OCD=∠ODC.6.如图所示,ΔABC≌ΔAEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求ΔAEC各内角的度数.【拓展探究】7.如图所示,已知ΔABD≌ΔACE,且点E在BD上,CE交AB于点F,若∠CAB=20°,求∠DEF的度数.【答案与解析】1.B(解析:根据全等图形的定义可得.)2.D3.B(解析:∵ΔABC≌ΔBAD,点A与点B,点C与点D是对应顶点,∴AC=BD,又∵BD=5 cm(已知),∴AC=5 cm.故选B.)4.A(解析:∵RtΔABC≌RtΔDEF,∴∠D=∠A.∵在RtΔABC中,∠A+∠B=90°,且∠B=60°,∴∠A=30°,∴∠D=30°.故选A.)5.证明:(1)∵ΔABC≌ΔBAD,∴∠CAB=∠DBA,∴OA=OB. (2)∵ΔABC≌ΔBAD,∴AC=BD,又∵OA=OB,∴AC-OA=BD-OB,即OC=OD,∴∠OCD=∠ODC.6.解:∵ΔABC≌ΔAEC,∴∠ACE=∠ACB,∠EAC=∠BAC,∠E=∠B,又∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∴∠EAC=65°.7.解析:根据全等三角形的性质求出∠C=∠B,再根据三角形内角和定理和对顶角相等求出∠BEF=∠CAB=20°,代入∠DEF=180°-∠BEF即可求出∠DEF.解:∵ΔABD≌ΔACE,∴∠C=∠B,∵∠BFE=∠CFA,∠CAF=180°-∠C-∠CFA,∠BEF=180°-∠B-∠BFE,∠CAB=20°,∴∠BEF=∠CAB=20°,∴∠DEF=180°-∠BEF=180°-20°=160°.本节内容与图形是紧密相连的,图形也是学生非常喜欢的,所以本节课的引入,重点以图形为主,既让学生感受到学数学的乐趣,又引发了学生学习本节课的信心,并且对学生更加热爱生活、找到数学与生活实际的联系起到了非常重要的作用.本节课的另外一个特点是图形的平移、翻折与旋转,要求学生具有空间想象能力,这既是数学的美,也是一些学生感到吃力的地方,为了突破难点,在教学设计上,引入了几何画板,进行动态演示,让学生能在非常生动、精彩的课件中找到自信,另外,也为他们日后的学习起到了重要的铺垫作用.本节课中,全等形、全等三角形的定义都是比较浅显的,学生们非常容易接受,本节的难点是全等三角形的书写及找出对应边、对应角,在突破难点上,讲解没有达到非常生动.让学生在非常欢乐的气氛中达到难点突破是我们的教学目标.为了能突破难点,在设计上可先让学生拿着自己制作好的两个全等三角形进行平移、翻折与旋转,观察前后的变化,同时写出每次变换后的对应边、对应角,可同桌之间互相考察,也可一名学生指派另一名学生答题,然后老师再用几何画板进行动态演示,把实际操作逐步变为头脑中的印象,最后达到不用任何辅助手段就能在头脑中达到上述目的.练习(教材第32页)1.解:图(2)中,AB和DB,BC和BC,AC和DC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.图(3)中,AB和AD,BC和DE,AC和AE是对应边;∠BAC和∠DAE,∠B和∠D,∠C和∠E是对应角.2.解:相等的边:AC=DB,OA=OD,OC=OB;相等的角:∠A=∠D,∠C=∠B,∠AOC=∠DOB.习题12.1(教材第33页)1.解:AC和CA是对应边;∠B和∠D,∠BAC和∠DCA,∠BCA和∠DAC是对应角.2.解:其他对应边:AN和AM,BN和CM,其他对应角:∠ANB和∠AMC,∠BAN 和∠CAM.3.解:∵三角形内角和为180°,∴a所对的角为180°-60°-54°=66°,又∵两个三角形全等,∴∠1=66°.4.解:(1)其他对应边:EF和NM,FG和MH,EG和NH;其他对应角:∠E和∠N,∠FGE和∠MHN. (2)因为ΔEFG≌ΔNMH,所以NM=EF=2.1cm,EG=NH=3.3 cm,所以HG=EG-EH=3.3-1.1=2.2(cm),所以线段NM的长度是2.1 cm,线段HG的长度是2.2 cm.5.解:∠ACD和∠BCE相等.因为ΔABC≌ΔDEC,所以∠ACB=∠DCE.又因为∠ACB=∠ACE+∠BCE,∠DCE=∠ACD+∠ACE,所以∠ACD=∠BCE.6.解:(1)对应边:AE和AD,AC和AB,EC和DB;对应角:∠A和∠A,∠AEC和∠ADB,∠ACE和∠ABD. (2)因为ΔAEC≌ΔADB,所以∠ACE=∠ABD.又因为∠×(180°-1=∠2,所以∠ACE+∠2=∠ABD+∠1,即∠ACB=∠ABC,所以∠ABC=12∠A)=65°,所以∠1=∠ABC-∠ABD=65°-39°=26°.如图所示,ΔEFG≌ΔNHM,在ΔEFG中,FG是最长的边,在ΔNHM 中,MH是最长的边,∠F和∠NHM是对应角,且EF=2.4 cm,FH=1.9cm,HM=3.5 cm.(1)写出对应相等的边及对应相等的角;(2)求线段GN及线段HG的长度.〔解析〕(1)由于ΔEFG≌ΔNHM,根据两个三角形的最长边是对应边可知FG与MH对应相等,又∠F和∠NHM是对应角,所以∠FGE和∠HMN对应相等,剩下的一对角∠E和∠N也就对应相等了;进而根据对应顶点的关系可得到EF与HN对应相等,EG与MN对应相等;(2)由HM=3.5 cm可得它的对应边FG=3.5 cm,根据FH=1.9 cm可求得HG=FG-FH=1.6 cm;又由EF=2.4 cm可得它的对应边HN的长也是2.4 cm,则GN=2.4-1.6=0.8(cm).解:(1)对应相等的边有:FG=MH,EF=HN,EG=NM;对应相等的角有:∠F=∠NHM,∠E=∠N,∠EGF=∠M.(2)根据全等三角形的性质,得HN=EF=2.4cm,HG=FG-FH=HM-FH=3.5-1.9=1.6(cm),GN=HN-HG=2.4-1.6=0.8(c m).如图所示,A,D,E三点在同一直线上,且ΔBAD≌ΔACE.(1)试说明BD=DE+CE;(2)ΔABD满足什么条件时,BD∥CE?〔解析〕(1)要说明BD=DE+CE,由于ΔBAD≌ΔACE,所以BD和AE相等,因此我们只需说明AE=DE+CE即可,又AE=AD+DE,所以本题只需说明AD=CE即可,而这对线段恰好是全等三角形的对应边.(2)要使BD∥CE,则必须有∠BDE=∠E,根据全等三角形的对应角相等可知∠ADB=∠E,所以需要条件∠ADB=90°.解:(1)∵ΔBAD≌ΔACE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE.(2)当ΔABD满足∠ADB=90°时,BD∥CE.〔解题策略〕证明形如“BD=DE+CE”的问题有两种思路:思路一是将BD拆成两段,证明这两段分别等于DE和CE;思路二是找一条等于DE+CE 的线段,然后证明该线段等于BD.12.2三角形全等的判定1.熟练掌握“边边边”定理、“边角边”定理、“角边角”定理、“角角边”定理、“斜边直角边”定理.2.会用这些判定方法判定两个三角形全等.1.让学生通过分类讨论和作图的方法探索三角形全等的判定定理,并让学生用运动变换的方法证实.2.在探索全等三角形的判定方法的过程中,渗透分类讨论的思想.3.培养学生观察、概括、归纳的能力.1.让学生体验分类的思想,培养学生的合作精神.2.培养学生学习数学的兴趣,体会研究问题的思想和方法.【重点】全等三角形的判定方法.【难点】能用全等三角形的判定方法判定两个三角形全等.第课时1.掌握“边边边”定理的内容.2.能初步应用“边边边”定理判定两个三角形全等.3.会作一个角等于已知角.让学生探索三角形全等的条件,体验用操作、归纳得出数学结论的过程.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探索的良好品质,以及发现问题的能力.【重点】“边边边”定理.【难点】探索三角形全等的条件.【教师准备】多媒体课件.【学生准备】复习全等三角形的性质,准备直尺和圆规.导入一:【提出问题】(1)全等三角形相等,相等.(2)已知ΔAOC≌ΔBOD,则∠A=∠B,∠C=,AC=,=OB,=OD.[设计意图]通过复习让学生进一步掌握全等三角形的性质,为下一步学习全等三角形的判定打下基础.导入二:通过前面的学习我们知道,如果两个三角形具备三条边和三个角分别对应相等,那么这两个三角形一定全等.但是要想画一个三角形与已知的三角形全等一定需要六个条件吗?条件能否尽可能地少呢?一个条件行吗?两个条件呢?一、探究三角形全等的条件【学生活动一】(1)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?(2)如果给出两个条件呢?给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?学生讨论有几种可能的情况,然后按照下面条件画一画:①三角形一个内角是30°,一条边是3 cm;②三角形两个内角分别是30°和50°;③三角形的两条边分别是4 cm和6 cm.学生分组讨论、画图、探索、归纳,最后以组为单位出示结果.【结果展示】(1)只给定一条边时.只给定一个角时.(2)给出的两个条件可能是:一边一内角、两内角、两边.可以发现按这些条件画出的三角形都不能保证一定全等.【议一议】如果给出三个条件画三角形时,你能说出有几种情况吗?(三条边,两条边一个角,一条边两个角,三个角)在刚才的探索过程中,我们已经发现已知三内角不能保证两个三角形全等.下面我们就来逐一探索其余的三种情况.(这节课只讨论第一种情况)【学生活动二】拼一拼.用你们准备的4 cm,5 cm,7 cm长的三根细木棒拼一个三角形,与其他同学拼成的三角形比较,它们一定全等吗?你又发现了什么?以小组为单位,把拼好的三角形画在纸上并剪下来,再把剪下的三角形重叠在一起,发现都能够重合,这说明这些三角形都是全等的.二、探究运用“SSS”判定两个三角形全等思路一【出示问题】先任意画一个ΔABC,再画一个ΔA'B'C',使得A'B'=AB,B'C'=BC,A'C'=AC,把画出的ΔA'B'C'剪下来,放在ΔABC上,看它们能完全重合吗?(即全等吗?)【学生活动】拿出直尺和圆规,按上面的要求作图并验证.画法:(1)画B'C'=BC;(2)分别以点B',C'为圆心,线段AB,AC的长为半径画弧,两弧相交于点A';(3)连接A'B',A'C'.【教师活动】巡视、指导、引入课题,这个作图的结果反映了什么规律?【学生活动】在思考、实践的基础上,归纳出判定三角形全等的方法.【教师板演】三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).[设计意图]通过学生画图、观察、比较、思考等活动,一步一步地探索出结论,感悟基本事实的正确性,在概括基本事实的过程中,引导学生透过现象看本质,锻炼学生用数学语言概括结论的能力,同时也增加了学生的数学体验,让他们充分感受到成功的喜悦.思路二。
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第2课时》教学设计
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第2课时》教学设计一. 教材分析本节课的内容是全等三角形12.2三角形全等的判定第2课时。
这部分内容主要包括SSS全等判定、SAS全等判定、ASA全等判定、AAS全等判定四种判定方法。
这些判定方法是解决三角形全等问题的重要工具,对于学生理解和掌握全等三角形的性质具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了全等图形的概念、性质以及全等图形的判定方法。
但是对于部分学生来说,对于全等三角形的判定方法仍然存在一定的困惑,特别是对于各种判定方法的适用范围和条件理解不透彻。
因此,在教学过程中,需要针对学生的实际情况进行讲解,引导学生理解和掌握各种判定方法。
三. 教学目标1.知识与技能:使学生理解和掌握SSS全等判定、SAS全等判定、ASA全等判定、AAS全等判定四种判定方法,能够运用这些方法判定两个三角形是否全等。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间观念和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.重点:SSS全等判定、SAS全等判定、ASA全等判定、AAS全等判定四种判定方法。
2.难点:各种判定方法的适用范围和条件的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、交流等方式自主学习,培养学生的空间观念和逻辑思维能力。
2.运用多媒体教学手段,展示全等三角形的判定过程,增强学生的直观感受。
3.学生进行小组合作学习,培养学生的团队合作意识和交流沟通能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备一些实际的三角形图形,用于引导学生观察和操作。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习全等图形的概念和性质,引导学生回顾全等图形的判定方法,为新课的学习做好铺垫。
2.呈现(10分钟)介绍SSS全等判定、SAS全等判定、ASA全等判定、AAS全等判定四种判定方法,并通过具体的例子进行讲解和展示。
第12章全等三角形-手拉手模型(教案)
b.全等三角形的判定方法选择:学生在面对具体问题时,可能会对选择合适的判定方法感到困惑。
c.手拉手模型的实际操作:学生在动手操作过程中可能会遇到技术难题,影响对全等三角形判定方法的理解。
举例解释:
-对于全等三角形性质的理解,教师可以设计动画或实物模型,直观地展示全等三角形的各个对应角和对应边是如何一一对应的,帮助学生深入理解性质。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的基本概念、判定方法和实际应用。通过实践活动和小组讨论,我们加深了对全等三角形判定方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和手拉手模型的应用这两个重点。对于难点部分,我会通过具体例子和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行手拉手模型的制作和验证。这个操作将演示全等三角形判定方法的基本原理。
五、教学反思
在今天的教学中,我发现学生们对全等三角形的概念和判定方法的理解存在一些挑战。在导入新课环节,通过日常生活中的例子引入全等三角形的概念,学生们表现出了一定的兴趣,但同时也暴露出他们对几何图形在实际应用中的认识还不够深入。
在理论介绍和新课讲授环节,我发现有些学生对全等三角形的判定方法掌握不够牢固,特别是SAS和ASA的判定条件容易混淆。我通过反复举例和对比分析,希望帮助他们建立起清晰的认识。此外,我注意到在讲解过程中,需要更多地引导学生参与到课堂讨论中,而不是单向灌输知识。
第十二章全等三角形构造辅助线的方法(教案)
在教学过程中,教师要针对重点内容进行详细讲解和示范,对于难点内容,要采用生动的例子和多种教学方法,帮助学生理解和掌握。通过反复练习,使学生能够灵活运用所学知识解决实际问题。
四、教学流程
(一)导入新课(用时5分钟)
-举例:已知三角形ABC中,AB=AC,BC边上的中线AD等于BC的一半,证明三角形ABD和三角形ACD全等。
2.教学难点
a.辅助线构造的时机与位置选择:如何根据题目条件,判断在何处构造辅助线,这是学生解题过程中的一个难点。
-举例:在三角形ABC中,角BAC为直角,AB=AC,点D在BC上,且BD=DC,如何通过构造辅助线证明三角形ABD和三角形ACD全等?
在学生小组讨论环节,我对每个小组的讨论成果进行了点评和总结。我认为这是一个很好的机会,让学生从不同角度看待问题,拓展思维。但同时,我也为了提高学生的课堂专注力,我打算在接下来的教学中,引入一些课堂互动游戏,让同学们在轻松愉快的氛围中学习。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的性质、构造辅助线的方法及其在几何证明中的应用。通过实践活动和小组讨论,我们加深了对全等三角形构造辅助线的理解。我希望大家能够掌握这些知识点,并在解决几何问题时能够灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,在实践活动和小组讨论环节,我发现同学们的参与度很高,能够积极发表自己的观点和想法。但在讨论过程中,也有部分同学显得比较被动,可能是因为他们对讨论主题不够熟悉,或者是对自己的观点缺乏信心。针对这一问题,我计划在今后的教学中,多设计一些开放性的问题和实践活动,鼓励同学们大胆表达,提高他们的自信心。
第12章全等三角形-角平分线的判定(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的判定方法和角平分线的性质,以及它们在实际中的应用。通过实践活动和小组讨论,我们加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-举例:通过实际作图,让学生观察并理解角平分线的作用和性质。
2.教学难点
(1)全等三角形判定方法的灵活运用:学生需要能够根据不同图形特点,选择合适的全等判定方法。
-难点解析:举例说明如何根据已知条件,快速判断适用哪种全等判定方法。
(2)角平分线性质的证明:学生需要掌握如何通过全等三角形的性质,证明角平分线上的点到角两边距离相等。
三、教学难点与重点
1.教学重点
(1)全等三角形的判定方法:SSS、SAS、ASA、AAS,这是本节课的核心内容,是判定角平分线的基础。
-举例:通过具体全等三角形的图形,让学生识别并运用这四种判定方法。
(2)角平分线的定义及其性质:理解角平分线将角等分的性质,以及角平分线上的点到角两边距离相等的性质。
(3)强化学生问题解决与实际应用能力,能将所学知识应用于解决实际问题,体会数学知识在实际生活中的价值;
(4)培育学生数学抽象与概括能力,通过全等三角形的性质,提炼出角平分线的判定方法,并理解其背后的数学原理;
(5)提高学生合作交流与表达能力,在小组讨论与问题解决过程中,学Байду номын сангаас倾听他人意见,阐述自己的观点,共同探索数学问题。
本节课,我们将通过探究全等三角形的性质,学习如何判定角平分线,并运用这一性质解决实际问题。
全等三角形数学活动—筝形+课件+-2023-2024学年人教版数学八年级上册
板书
筝形
筝形定义:两组邻边分别相等的四边形叫做筝形. 筝形的性质:
边: 两组邻边分别相等
角: 一组对角相等
对角线: 一条对角线垂直平分另一条对角线,并且平 分它所在的一组对角
筝形的判定:定义
A
B
D
O
对角线 AC⊥BD,且AC 平分BD,即BO =DO. AC 平分一组对角
C
活动二:探究“筝形”的性质发现图形的“美”
归纳
筝形的性质: 1、两组邻边分别相等 2、一组对角相等 3、一条对角线垂直平分另一条对角线,并且平分它所在 的一组对角
活动三:再探定义
定义:如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把
图形元素的特殊化----角的特殊化
图形元素的特殊化----角的特殊化
一组角的 特殊化
两组角的 特殊化
筝形
完美筝形
正方形
发现:完美筝形及正方形都是特殊的筝形
图形元素的特殊化----边的特殊化
图形元素的特殊化----边的特殊化
另两组邻边也分别相等
筝形
发现:菱形是特殊的筝形 菱形
平行四边形,矩形是特殊的筝形吗?
李邦河院士曾说:“数学根本上是玩概念的, 技巧微不足道也。”数学概念是数学思维的细胞, 是开展一切数学活动的基础。
所以,在遇到数学困难时,请记住“回到定 义中去”。
课堂小结
收获
疑惑
布置作业
1、请同学们课后完成下发的学案。 2、请同学们制作一个风筝,周末和家人或伙伴去放放风
筝,尽情享受这美好的春天吧。
用符号表示:
A
在四边形ABCD中, ∵__A_B_=_A_D_,_C_B_=_CD__ ∴四边形ABCD是筝形.
人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计
人教版八年级数学上册《第十二章全等三角形》——大单元整体教学设计一、内容分析与整合(一)教学内容分析《全等三角形》作为人教版初中八年级数学上册第十二章的核心内容,不仅是几何学知识体系中的一个重要里程碑,也是学生深化几何思维、培养逻辑推理能力的关键章节。
本章内容设计逻辑严密,层次分明,旨在通过系统的学习,使学生全面掌握全等三角形的基本概念、判定方法及其在实际问题中的应用,为后续深入探索相似三角形、三角函数等更高级的数学概念打下坚实的基础。
本章首先从全等三角形的定义切入,明确了两个三角形在完全重合时被称为全等三角形,这一基本概念为后续的学习奠定了理论基础。
教材详细展开了三角形全等的几种主要判定方法,即SSS(三边相等)、SAS(两边及夹角相等)、ASA(两角及夹边相等)和AAS(两角及非夹边相等),每一种判定方法都配以清晰的图形说明和严密的逻辑推理,帮助学生理解并掌握如何根据给定的条件判断两个三角形是否全等。
为了增强学生的实践能力和探索精神,本章还特别融入了“信息技术应用:探究三角形全等的条件”这一环节,鼓励学生利用计算机软件或数学工具进行动态演示和实验操作,通过直观的视觉体验加深对三角形全等判定方法的理解。
这种信息技术与数学教学的深度融合,不仅丰富了教学手段,也极大地提升了学生的学习兴趣和参与度。
本章末尾引入了“角的平分线的性质”这一内容,进一步拓展了全等三角形的应用范畴。
通过学习角的平分线如何影响三角形的形状和大小,学生能够从更广阔的视角理解全等三角形的本质,同时也为后续学习其他几何概念提供了有力的支撑。
《全等三角形》这一章节不仅是对几何学基础知识的深入探索,更是培养学生逻辑思维、空间想象能力和实践操作能力的重要载体。
通过本章的学习,学生不仅能够建立起全等三角形的完整知识体系,还能够在解决实际问题的过程中,体验到数学的严谨之美,为后续的数学学习和个人发展奠定坚实的基础。
教师应充分利用教材资源,结合多样化的教学方法,激发学生的学习兴趣,引导他们主动探索,从而在掌握知识的同时,培养良好的数学素养和创新能力。
第12章《全等三角形》全章教案(11页,含反思)
第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。
人教版数学八年级上册第12章《全等三角形》数学活动用全等三角形研究筝形教学设计
2.教学过程:
-导入:通过展示筝形图案,激发学生的学习兴趣,引导学生思考全等三角形与筝形之间的关系。
-新课:讲解全等三角形的定义、性质及判定方法,让学生掌握基本理论知识。
-实践:设计筝形拼接、图案设计等实践活动,让学生在实际操作中运用全等三角形的知识。
-总结:引导学生总结全等三角形与筝形的关系,概括解题思路和技巧。
-作业:布置具有挑战性的作业,巩固学生的知识,提高学生的应用能力。
3.教学评价:
-采用多元化评价方式,包括课堂表现、作业完成情况、实践操作能力等。
-关注学生的个体差异,给予每个学生个性化的评价和指导。
-鼓励学生自我评价,培养学生的自我反思和自主学习能力。
3.培养学生的审美观念,感受数学图形的美,提高学生的审美能力。
4.培养学生勇于挑战、克服困难的意志,增强学生的自信心。
二、学情分析
八年级的学生已经在之前的学习中掌握了三角形的基本概念和性质,具备了一定的几何图形识别和分析能力。在此基础上,学生对全等三角形的学习将更加深入,但同时也可能面临一些困难。一方面,全等三角形的判定方法较多,学生容易混淆;另一方面,将全等三角形应用于筝形的研究,需要学生具备较强的空间想象能力和逻辑推理能力。因此,在教学过程中,教师应关注以下几点:
1.充分了解学生的知识基础,针对学生的薄弱环节进行有针对性的教学。
2.注重启发式教学,引导学生主动探究全等三角形的性质和判定方法,培养学生的逻辑思维。
3.创设丰富的教学情境,激发学生的学习兴趣,提高学生参与课堂的积极性。
4.关注学生的个体差异,鼓励学有余力的学生拓展思维,同时关注学习困难的学生,给予他们更多的关心和指导。
数学人教版八年级上册第12章第一节全等三角形教案
本节课的核心素养目标旨在培养学生在新教材要求下的综合能力,为学生的全面发展奠定基础。
三、教学难点与重点
1.教学重点
-全等三角形的定义:理解全等三角形的含义,即能够完全重合的两个三角形。
-全等三角形的判定方法:掌握SSS、SAS、ASA、AAS四种判定方法,并能准确应用。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法(SSS、SAS、ASA、AAS)和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示全等三角形的基本原理和判定方法。
-实际问题转化为数学模型:学生需要将现实生活中的几何问题抽象为全等三角形的数学模型,这是学生感觉难度较大的地方。
举例解释:
-在判定方法的选择上,教师可以通过对比不同判定方法的特点,指导学生如何根据题目条件快速选择合适的方法。
-对于空间想象力的培养,教师可以设计一些动手操作的活动,如让学生制作全等三角形的模型,通过实际操作来增强空间感知。
-全等三角形的性质:了解全等三角形的对应角相等、对应边相等等性质,并能够运用这些性质解决几何问题。
-实际应用:将全等三角形的性质和判定方法应用于解决实际问题,,可以通过实际操作教具或多媒体演示,让学生直观理解全等的概念。
-在讲解判定方法时,通过具体例题,如两个三角形的三边分别相等,引导学生运用SSS判定全等。
-在实际问题转化的教学中,教师可以提供一些典型例题,如房屋建筑中的三角形结构问题,引导学生如何将实际问题抽象为数学模型,并应用全等三角形的性质和判定方法来解决。