2011年中考总复习2-整式的加减
2011数学中考第一轮复习课件 第3讲 整式及其运算
解:原式=-x2+5 当 x= 3,原式=2
考点训练 3
整式及其运算 (训练时间:60分钟 分值:100分)
一、选择题(每小题 3 分,共 45 分)
1.(2010·桂林)下列运算正确的是( ) A.a6÷a2=a3 B.5a2-3a2=2a C.(-a) 2·a3=a5 D.5a+2b=7ab
4.如果 a-3b=-3,那么代数式 5-a+3b 的值是( A.0 B.2 C.5 D.8
D )
5.如果代数式 4y2-2y+5 的值为 7,那么代数式 2y2-y+1 的值等于( A.2 B.3 C.-2 D.4
6.若 m2-n2=6,且 m-n=3,则 m+n=2.
A )
7.化简:(x+3) 2-(x-1)(x-2). 9x+7
1.下列运算中,正确的是( A ) A.x3·x2=x5 B.x+x2=x3 x 3 x3 3 2 C.2x ÷x =x D.( ) = 2 2
2.下列运算正确的是( C ) A.a3·a4=a12 B.a6÷a3=a2 C.2a-3a=-a D.(a-2)2=a2-4
3.下列运算正确的是( D ) A.2x5-3x3=-x2 - B.(-2x2y)3·4x 3=-24x3y3 1 1 1 C.( x-3y)(- x+3y)= x2-9y2 2 2 4 D.(3a6x3-9ax5)÷(-3ax3)=3x2-a5
)
【解析】同类项必须满足所含字母相同并且相同字母的指数也相同. 【答案】C
15.(2011 中考预测题)现规定一种运算:x*y=xy+x-y,其中 x、y 为实数,则 x*y+(y -x)*y 等于( ) A.x2-y B.y2-y C.y2 D.y2-x
中考数学一轮复习讲义2__整式
中考数学一轮复习讲义2 代数式代数式的定义:整式的乘法整式的乘除与因式公解幂的运算法则同底数幂的乘法法则:a m·a n=a m+n(m,n都是正整数)幂的乘方法则:(a m)n=a mn(m,n是正整数)积的乘方法则:(ab)n=a n b n(n是正整数)单项式乘以单项式法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式乘以多项式法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加同底数幂的除法法则:a m÷a n=a m-n(a≠0,m,n都是正整数且m>n)零指数幂的意义:a0=1(a≠0)单项式除以单项式法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式多项式除以单项式法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加乘法公式平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2整式的除法因式分解概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式方法公式法平方差公式:a2-b2=(a+b)(a-b)完全平方公式a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2题型一整式的加减运算例1 已知与是同类项,则a b 的值为. 例2 计算:(7x 2+5x -3)-(5x 2-3x +2). 题型二整式的求值例3 已知(a +2)2+|b +5|=0,求3a 2b 一[2a 2b -(2ab -a 2b )-4a 2]-ab 的值.例例5例例7例8例9A.解析:第二个图案中正三角形的个数为: 第三个图案中正三角形的个数为:..,;第n 个图案中正三角形的个数为: 题型四:幂的运算法则及其逆运用 例1 计算2x 3·(-3x )2= .例2 计算[a 4(a 4-4a )-(-3a 5)2÷(a 2)3]÷(-2a 2)2.3313a x y --533b y x -85a +题型五: 整式的混合运算与因式分解例3 计算[(a -2b )(2a -b )-(2a +b )2+(a +b )(a -b )-(3a )2]÷(-2a ).例4 分解因式. (1)m 3-m ; (2)(x +2)(x +3)+x 2-4.例5 分解因式a 2-2ab +b 2-c 2.例6 (1)已知x +y =7,xy =12,求(x -y )2; (2)已知a +b =8,a -b =2,求ab 的值.15.(2011•临沂,2,3分)下列运算中正确的是( ) A 、(﹣ab )2=2a 2b 2B 、(a+b )2=a 2+1C 、a 6÷a 2=a 3D 、2a 3+a 3=3a 316.(2011泰安,2,3分)下列运算正确的是( ) A .3a 2+4a 2=7a 4B .3a 2-4a 2=-a 2C .3a ×4a 2=12a 2D .2222434)3(a a a -=÷17.(2011四川眉山,2,3分)下列运箅正确的是( ) A .2a 2﹣a=aB .(a+2)2=a 2+4C .(a 2)3=a 6D .3)3(2-=-19.(2011•南充,11,3分)计算(π﹣3)0=.20.(2011四川攀枝花,3,3分)下列运算中,正确的是( ) A 、2+3=5 B 、a 2•a=a 3C 、(a 3)3=a 6D 、327=-3中考真题精选21.(2011泰安,5,3分)下列等式不成立的是( ) A .m 2-16=(m -4)(m +4)B .m 2+4m =m (m +4)C .m 2-8m +16=(m -4)2D .m 2+3m +9=(m +3)22.(2011•丹东,4,3分)将多项式x 3﹣xy 2分解因式,结果正确的是( ) A 、x (x 2﹣y 2)B 、x (x ﹣y )2C 、x (x+y )2D 、x (x+y )(x ﹣y )4.(2011天水,4,4)多项式2a 2﹣4ab +2b 2分解因式的结果正确的是( ) A 、2(a 2﹣2ab +b 2)B 、2a (a ﹣2b )+2b 2C 、2(a ﹣b )2D 、(2a ﹣2b )25.(2011江苏无锡,3,3分)分解因式2x 2﹣4x+2的最终结果是( ) A .2x (x ﹣2)B .2(x 2﹣2x+1) C .2(x ﹣1)2D .(2x ﹣2)26.(2011•台湾5,4分)下列四个多项式,哪一个是2x 2+5x ﹣3的因式( ) A 、2x ﹣1B 、2x ﹣3C 、x ﹣1D 、x ﹣37.(2011台湾,24,4分)下列四个多项式,哪一个是33x +7的倍式( ) A .33x 2-49B .332x 2+49C .33x 2+7xD .33x 2+14x10.(2011梧州,6,3分)因式分解x 2y ﹣4y 的正确结果是( ) A 、y (x+2)(x ﹣2)B 、y (x+4)(x ﹣4)C 、y (x 2﹣4)D 、y (x ﹣2)211.(2011河北,3,2分)下列分解因式正确的是( ) A .-a +a 3=-a (1+a 2) B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)213.(2011,台湾省,25,5分)若多项式33x 2﹣17x ﹣26可因式分解成(ax+b )(cx+d ),其中a 、b 、c 、d 均为整数,则|a+b+c+d|之值为何?( ) A 、3B 、10C 、25D 、2914.(2011浙江金华,3,3分)下列各式能用完全平方式进行分解因式的是() A .x 2 +1 B.x 2+2x -1 C.x 2+x +1 D.x 2+4x +415.(2011浙江丽水,3,3分)下列各式能用完全平方公式进行分解因式的是( ) A 、x 2+1 B 、x 2+2x ﹣1 C 、x 2+x +1D 、x 2+4x +4综合验收评估测试题1一、选择题l. 在代数式-2x 2,3xy ,,,0,mx -ny 中,整式的个数为() A .2 B .3 C .4 D. 5 2. 二下列语句正确的是()A .x 的次数是0B .x 的系数是0 C. -1是一次单项式 D .-1是单项式 3.4.5. 6. 7. 8. C .m ≠-1,n 为大于3的整数 D .m ≠-1,n =5二、填空题9. -mx n y 是关于x ,y 的一个单项式,且系数是3,次数是4,则m =,n =. 10. 多项式ab 3-3a 2b 2-a 3b -3按字母a 的降幂排列是.按字母b 的升幂排列是. 11. 当b =时,式子2a +ab -5的值与a 无关. 12. 若-7xy n +1 3x m y 4是同类项,则m +n .13.多项式2ab -5a 2+7b 2加上等于a 2-5ab .b a 3xy -三、解答题14.先化简,再求值:,其中m =-l ,n =.综合验收评估测试题2一、选择题(每小题3分,共30分) 1.计算(a 3)2的结果是 ( ) A .a 5 B .a 6 C .a 8 D .a 9 2.下列运算正确的是 ( )A .a 2·a 3=a 4B .(-a )4=a 4C .a 2+a 3=a 5D .(a 2)3=a 5 3.已知x -3y =-3,则5-x +3y 的值是 ( ) A .0 B .2 C .5 D .8 4.若m +n =3,则2m 2+4mn +2n 2-6的值为 ( ) A .12 B .6 C .3 D .05.如图15-4所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),把余下的部分拼成一个矩形,根据两个图形中阴影部分的面积相等,可以验证 ( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 6.下列各式中,与(a -b )2一定相等的是 ( )A .a 2+2ab +b 2B .a 2-b 2C .a 2+b 2D .a 2-2ab +b 0 7.已知x +y =-5,xy =6,则x 2+y 2的值为 ( ) A .1 B .13 C .17 D .25 8.下列从左到右的变形是因式分解的是 ( )A .ma +mb -c =m (a +b )-cB .(a -b )(a 2+ab +b 2)=a 3-b 3C .a 2-4ab +4b 2-1=a (a -4b )+(2b +1)(2b -1)D .4x 2-25y 2=(2x +5y )(2x -5y ) 9.下列各式中,能用平方差公式分解因式的是 ( ) A .-a 2+b 2 B .-a 2-b 2 C .a 2+b 2 D .a 3-b 3 10.如果(x -2)(x -3)=x 2+px +q ,那么p ,q 的值是 ( )A .p =-5,q =6B .p =1,q =-6C .p =1,q =6D .p =5,q =-622222212(52)3(2)2m n mn m n mn mn m n ⎛⎫+---- ⎪⎝⎭13二、填空题(每小题3分,共30分) 11.已知10m =2,10n =3,则103m+2n=.12.当x =3,y =1时,代数式(x +y )(x -y )+y 2的值是 . 13.若a -b =1,ab =-2,则(a +1)(b -1)= . 14.分解因式:2m 3-8m = . 15.已知y =31x -1,那么31x 2-2xy +3y 2-2的值为. 16.计算:5752×12-4252×12= .17 18192021 22(1)m 2n (m23.已知a ,b 是有理数,试说明a 2+b 2-2a -4b +8的值是正数.24.先化简,再求值:(a +b )(a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =2,b =1.25.(1)计算.①(a -1)(a +1);②(a -1)(a 2+a +1);③(a -1)(a 3+a 2+a +1);④(a -1)(a 4+a 3+a 2+a +1). (2)根据(1)中的计算,你发现了什么规律?用字母表示出来. (3)根据(2)中的结论,直接写出下题的结果. ①(a -1)(a 9+a 8+a 7+a 6+a 5+a 4+a 3+a 2+a +1)=; ②若(a -1)·M =a 15-1,则M =; ③(a -b④(226(1) (2) (3) (4)(5)答案:1.D 解析:不是整式,故选D . 2.D 解析:x 的次数是1,系数是1;-1是单项式.故选D .3.C 解析:所含字母相同,并且相同字母的指数也相同的项叫做同类项.故选C :4.D 解析:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.故选D .5.6.B . 7.2n +38.910 1112137b 2. 142×=1.15 50πa 2+100ab .答:美化这块空地共需资金(50πa 2+100ab )元.点拨:根据题意,可以先求出建造花台及种花所需费用,再求出种草的费用,两者相加即为美化这块空地共需的资金.ba1314π4a ⨯参考答案1.B2.B[提示:选项A :a 2·a 3=a 5;选项C :a 2和a 3不能合并;选项D :(a 2)3=a 6.] 3.D[提示:5-x +3y =5-(x -3y )=5-(-3)=8.]4.A [提示:2m 2+4mn +2n 2-6=2(m +n )2-6=2×32-6=12.]5.6.7.8.9.10111213141531(x -3y )2-216] 17181920] 21+1)(2x -1)-=20002-(200022(x +y -8)2.232)2≥0,∴(a -1)=a 2-b 2+b 2-25n -2+…+a 3+a 2+a +1)=a n +1-1. (3)①a 10-1 ②a 14+a 13+a 12+a 11+…+a 3+a 2+a +1 ③a 6-b 6④32x 5-126.解:(1)各层对应的点数依次为:4,8.12,16,20,24;所有层的总点数依次为:4,12,24,40,60.84. (2)4n . (3)2n (n +1). (4)第24层. (5)有,第25层.。
2008-2010中考数学经典真题题库2、整式的加减(含答案)
2、整式的加减要点一:列代数式表示数量关系 一、选择题1.(2008·镇江中考)用代数式表示―a 的3倍与b 的差的平方‖,正确的是( )A.2(3)a b -B.23()a b -C.23a b - D.2(3)a b -【解析】选A.B 项表示a 与b 差的平方的3倍,C 项表示a 的3倍与b 的平方的差,D 项表示a 与b 的3倍差的平方2.(2009·山西中考)如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n- B .m n - C .2mD .2n答案:选A3.(2010·常德中考)2008年常德GDP 为1050亿元,比上年增长13.2%,提前两年实现了市委、市政府在―十一五规划‖中提出―到2010年全年GDP 过千亿元‖的目标.如果按此增长速度,那么我市今年的GDP 为( )A.1050×(1+13.2%)2B.1050×(1-13.2%)2C.1050×(13.2%)2D.1050×(1+13.2%)【解析】选A 。
根据题中的各量之间的相等关系可以得出我市今年的GDP 为1050×(1+13.2%)2 。
4.(2009·眉山中考)一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( ) A .1019a b +B .1019a b -C .1017a b -D .1021a b -【解析】选B.观察式子得第几个式子a 的指数就是几,第奇数个式子―+‖,第偶数个式子―-‖,ba 的指数是a 的指数的2倍少1,因此第10个式子是1019a b -.m nnn (2)(1)二、填空题5.(2010·嘉兴中考)用代数式表示―a 、b 两数的平方和‖,结果为_______。
中考总复习:数与式综合复习--知识讲解(提高)
中考总复习:数与式综合复习—知识讲解(提高)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点诠释:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解.要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点诠释:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号.分式值为负⇔分子、分母异号. (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数;(3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解1.在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.【思路点拨】通过观察数轴得到a 、b 、c 的符号,通过确定绝对值里的式子的符号,来去掉绝对值符号. 【答案与解析】由上图可得b <c <0<a ,∴ a-b >0,a-c >0,b+c <0.∴ |a-b|+|a-c|-|b+c|=(a-b)+(a-c)-(-b-c)=2a .【总结升华】由绝对值的定义我们知道:如果m >0,那么|m|=m ;如果m <0,那么|m|=-m ;如果m =0,那么|m|=0.要去掉绝对值符号,首先要弄清m 的值是正、是负,还是零.举一反三:【变式】阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-3,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-4,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.O 0b B 图1-2a A O (A ) 0bB 图1-1综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = . 【答案】(1)3,3,4;(2)1x =或3x =-.依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解. (1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+; 因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.2.(2014春•当涂县校级期中)分解因式.(1)﹣18x 2y 2+9x 4﹣6x 3y .(2)1﹣m 2﹣n 2+2mn .(3)﹣a+2a 2﹣a 3.【思路点拨】如果多项式各项含有公因式,就先提出这个公因式,再进一步分解因式.分解因式必须进行到每一个因式都不能再分解为止. 【答案与解析】解:(1)﹣18x 2y 2+9x 4﹣6x 3y=﹣3x 2(6y 2﹣3x 2+2xy );(2)1﹣m 2﹣n 2+2mn=1﹣(m ﹣n )2=(1+m ﹣n )(1﹣m+n );(3)﹣a+2a 2﹣a 3=﹣a (1﹣2a+a 2)=﹣a (1﹣a )2. 【总结升华】(1)如果多项式的第一项系数是负数,一般要提出负号,使括号内的第一项系数是正数,以便于观察是否可以进一步分解因式.(2)在提取公因式时,一是要真确确定公因式,二是要注意一步到位;分解因式一定要彻底.举一反三:【变式】分解因式:2212a a b -+-= .【答案】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组,B baA 图1-3O 0baA 图1-4O 0本题应采用一三分组法进行分解.原式2222(12)(1)a a b a b =-+-=--(1)(1)a b a b =-+--.类型二、分式的有关运算3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,… (1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.【思路点拨】等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n ,则右边第一个分母为(n +1),第二个分母为n (n +1).【答案与解析】(1)□表示的数为6,○表示的数为30;(2)△表示的式为1+n ,⊙表示的式为)1(+n n .验证:)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++=,所以上述结论成立.【总结升华】通过对三组式子的观察,不难找出规律. 举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例6】 【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21【答案】C.4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭. 【思路点拨】在进行分式的四则运算时,一定要注意按运算顺序进行,并注意结合题目的具体情况及时化简,以便简化运算过程. 【答案与解析】222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭2221(2)(2)(2)4x x xx x x x x ⎡⎤+-=--⎢⎥---⎣⎦22221(2)(2)(2)4(2)4x x x xx x x x x x x +-=-------22444x x x x x --=---22(4)()4x x x x ---=- 414x x -==-. 【总结升华】在进行分式的四则运算时,要注意利用运算律,寻找合理的运算途径.举一反三:【变式】计算3213411x x x x x -+----. 【答案】 3213411x x x x x -+---- 31341(1)(1)x x x x x x -+=+--+-33134(1)(1)x x x x x x x -++-+-=+-33(1)(1)x x x -=+-3(1)3(1)(1)1x x x x -==+-+.类型三、二次根式的运算5.已知【思路点拨】这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉a ,b 的符号,但可从a+b=-9,ab=12中分析得到.【答案与解析】∵a+b=-9,ab=12,∴a <0,b <0.··2212 3.a b ab ab b a ab b a ∴=+=-=-=- 【总结升华】1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间B. 7到8之间C. 8到9之间D. 9到10之间 【答案】本题应计算出所给算式的结果,原式1620425=+=+,由于45 6.25<<,即25 2.584259+<<,所以<<. 故选C.6.若a ,b 为实数,且b 355315a a --22b a b a a b a b+++-的值. 【思路点拨】本题中根据b =355315a a --可以求出a ,b ,2b a a b ++2b a a b +-开方数进行配方、化简.【答案与解析】由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><ab >0, 22()()222.b a b a a b a b a b a b ab aba b b a ab ab ab ab a b b a ab abab ab b+-+++-=+-=+-⎛=- ⎝=当32321515.51555a b ===⨯=,时,原式 【总结升华】对于形如22b a b a a b a b++-+或形式的代数式都要变为2()a b ab +或2()a b ab -的形式,当它们作为被开方式进行化简时,要注意.a b a b ab +-和以及的符号举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例7】【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值. 【答案】(1)3;(2)-2.类型四、数与式的综合运用7.(2014秋•延平区校级月考)如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,共有瓷砖 块,其中白色瓷砖 块,黑色瓷砖 块(均用含n 的代数式表示);(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n 的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?【思路点拨】(1)根据第n 个图形的白瓷砖的每行有(n+1)个,每列有n 个,即可表示白瓷砖的数量,再让总数减去白瓷砖的数量即为黑瓷砖的数量;(2)当y=1056时可以代入(1)中函数关系式求出n ;(3)和(1)一样可以推出白瓷砖的总块数为(n+1)×n ,然后可以推出黑瓷砖数目,再根据已知条件即可计算出钱数;【答案与解析】解:(1)在第n 个图中,共有瓷砖(n 2+5n+6)块,其中白色瓷砖(n 2+n )块, 黑色瓷砖(4n+6)块(均用含n 的代数式表示);(2)依题意得:n 2+5n+6=1056,整理得:n 2+5n ﹣1050=0,解得:n=﹣35(舍去),n=30,答:此时n 的值为30;(3)当n=30时4(4n+6)+3(n 2+n )=4×(4×30+6)+3(302+30)=3294(元),答:共花费3294元购买瓷砖.【总结升华】考查了图形的变化规律:解决此题的关键是能够正确结合图形用代数式表示出黑、白瓷砖的数量,再根据题意列方程求解.为大家整理的资料供学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。
整式的加减综合复习
整式的加减综合复习一.选择题(共12小题)1.下列式子a+b,S=ab,5,m,8+y,m+3=2,中,代数式有()A.6个 B.5个 C.4个 D.3个2.下列代数式中符合书写要求的是()A.ab2×4 B.C.D.6xy2÷33.代数式“a2+b2”用文字语言叙述,其中叙述不正确的是()A.a、b两数的平方和B.a与b的和的平方C.a2与b2的和D.边长为a的正方形与边长为b的正方形的面积和4.下列判断错误的是()A.多项式5x2﹣2x+4是二次三项式B.单项式﹣a2b3c4的系数是﹣1,次数是9 C.式子m+5,ab,﹣2,都是代数式D.多项式与多项式的和一定是多项式5.已知3﹣x+2y=0,则2x﹣4y的值为()A.﹣3 B.3 C.﹣6 D.66.下列代数式:,,2x﹣y,(1﹣20%)x,ab,,,其中是整式的个数是()A.2 B.3 C.4 D.57.如果单项式2a n b2c是六次单项式,那么n的值取()A.6 B.5 C.4 D.38.多项式是关于x的四次三项式,则m的值是()A.4 B.﹣2 C.﹣4 D.4或﹣49.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3和x2,则()A.m=﹣5,n=﹣1 B.m=5,n=1 C.m=﹣5,n=1 D.m=5,n=﹣110.设A,B,C均为多项式,小方同学在计算“A﹣B"时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x﹣1,C=x2+2x,那么A﹣B=()A.x2﹣2x B.x2+2x C.﹣2 D.﹣2x11.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则a+b的值为()A.﹣1 B.1 C.﹣2 D.212.求1+2+22+23…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1,仿照以上推理,计算出1+5+52+53+…+52017的值为()A.52017﹣1 B.52018﹣1 C.D.二.填空题(共8小题)13.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式,下列三个代数式:①a﹣b﹣c;②﹣a﹣b﹣c+2;③ab+bc+ca;④a2b+b2c+c2a,其中是完全对称式的是.14.一种电脑,买入价a千元/台,提价10%后出售,这时售价为千元/台,后又降价5%,降价后的售价又为千元/台.15.一个两位数,个位数字是n,十位数字为m,则这个两位数可表示为.16.若单项式2a x+2b2与﹣3ab y的和仍是一个单项式.则x y等于.17.三个连续整数,设中间一个为2n+1,则这三个整数的和是.18.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m=;(2)(m,n)是“相伴数对",则代数式m﹣[n+(6﹣12n﹣15m)]的值为.19.有这样一组数据a1,a2,a3,…a n,满足以下规律:a1=,a2=,a3=,…,a n=(n≥2且n为正整数),则a2017的值为(结果用数字表示)20.找出下列各图形中数的规律,依此,a的值为.三.解答题(共8小题)21.已知单项式﹣2x2y的系数和次数分别是a,b.(1)求a b﹣ab的值;(2)若|m|+m=0,求|b﹣m|﹣|a+m|的值.22.化简下列各式:(1)2(3a+6b)+(﹣5a﹣7a )(2)5x3+4x2y﹣10﹣4x2y+6x3﹣8.23.已知多项式﹣3x2y m+1+x3y﹣3x4﹣1是五次四项式,且单项式3x2n y3﹣m与多项式的次数相同.(1)求m、n的值;(2)把这个多项式按x的降幂排列.24.化简:(1)﹣9y+6x2+3(y﹣x2);(2)5(a2b﹣3ab2)﹣2(a2b﹣7ab2);(3)3x2﹣[7x﹣(4x﹣3)﹣2x2];(4)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].25.(1)化简:(4x+2y)﹣2(x﹣y)(2)先化简再求值:﹣(a2﹣6ab+9)+2(a2+4ab+4。
2011中考数学代数式、整式、分式、二次根式知识点
2. 代数式(分类)2.1. 整式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.1.1. 整式的有关概念用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式. 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.1.2. 同类项、合并同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.2.1.3. 去括号法则去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.2.1.4. 整式的运算法则整式的加减法:整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.整式的乘法:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn nm a a =(n m ,都是正整数). 积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同. ②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.乘法公式:①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+;④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.整式的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的.2.2. 因式分解(包含题目总数:14); ; ; ; ; ; ; ; ; ; ; ; ; ;2.2.1. 因式分解的概念把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=; ()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()cb ac b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++. 2.2.2. 因式分解的常用方法1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.2.2.3. 因式分解的一般步骤因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.2.3. 分式(包含题目总数:16); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.3.1. 分式及其相关概念分式的概念:一般的,用B A ,表示两个整式,B A 就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式. 注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.分式的相关概念:把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分. 一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.2.3.2. 分式的性质分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式).分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--=. 2.3.3. 分式的系数化整问题分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小.(1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+;(2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568y x y x -+=. 2.3.4. 分式的运算法则1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x .分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到. 2.4. 二次根式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.4.1. 二次根式及其相关概念2.4.1.1. 二次根式的概念式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式.2.4.1.2. 最简二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x1就不是最简二次根式. 化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来. 2.4.1.3. 同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.2.4.1.4. 分母有理化把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. 2.4.2. 二次根式的性质(1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a b ab a.2.4.3. 二次根式的运算法则二次根式的运算法则:二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)再把同类二次根式分别合并.二次根式的乘法法则: 两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则: 两个二次根式相除,被开方数相除,根指数不变,即:ba b a=(0,0>≥b a ).此法则可以推广到多个二次根式的情况.二次根式的混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--. 分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()213122213122+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=321+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值. 分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a .()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=.。
整式的加减乘除及因式分解中考总复习(知识点复习 中考真题题型分类练习)
整式的加减、乘除及因式分解整式加减一、知识点回顾1、单项式:由数与字母的乘积组成的代数式称为单项式。
补充:单独一个数或一个字母也是单项式,如a ,5……单项式系数和次数:系数:次数:2、多项式:几个单项式的和叫做多项式。
在多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项。
多项式里次数最高项的次数,就是这个多项式的次数。
例如,多项式3x-2最高的项就是一次项3x ,这个多项式的次数是1,它是一次二项式4、整式的概念:单项式与多项式统称整式二、整式的加减1、同类项:所含字母相同,相同字母的指数也分别相同的项叫做同类项,所有的常数项都是同类项。
合并同类项:把多项式中同类项合并在一起,叫做合并同类项。
合并同类项时,把同类 项的系数相加,字母和字母的指数保持不变。
2、去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 ;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 .3、整式加减的运算法则(1)如果有括号,那么先去括号。
(2)如果有同类项,再合并同类项。
整式乘除及因式分解一、幂的运算:1、同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。
注n m n m a a a +=∙n m ,意底数可以是多项式或单项式。
2、幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。
如: mn n m a a =)(n m ,10253)3(=-幂的乘方法则可以逆用:即 如:m n n m mn a a a )()(==23326)4()4(4==3、积的乘方法则:(是正整数)。
积的乘方,等于各因数乘方的积。
n n n b a ab =)(n 4、同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不n m n m a a a -=÷n m a ,,0≠)n m 变,指数相减。
5、零指数; ,即任何不等于零的数的零次方等于1。
10=a 二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
中考数学总复习《整式的加减》专项测试卷-附带参考答案
中考数学总复习《整式的加减》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.用正三角形、正四边形和正六边形按如图所示的规律拼图案,则第n个图案中正三角形的个数为( )A.2n+1B.3n+2C.4n+2D.4n−22.根据如图所示的计算程序,若输入的值x=−3,则输出y的值为( )A.−2B.−8C.10D.133.“比a的2倍大1的数”,列式表示是( )A.2(a+1)B.2(a−1)C.2a+1D.2a−14.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为( )A.xy B.x+y C.10y+x D.10x+y 5.单项式−xy3z4的系数及次数分别是( )A.系数是0,次数是7B.系数是1,次数是8C.系数是−1,次数是7D.系数是−1,次数是86.根据以下程序,当输入x=−2时,输出结果为( )A.−5B.−2C.0D.37.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A.84B.336C.452D.5108.下列各式中,不是整式的是( )A.6xy B.yxC.x+9D.4二、填空题(共5题,共15分)9...如果m和n互为相反数,那么化简(3m−n)−(m−3n)的结果是.10.已知21×2=21+2,32×3=32+3,43×4=43+4⋯若ab×10=ab+10(a,b都是正整数),则a+b的最小值是.11. (−√9)2的平方根是x,64的立方根是y,则x+y的值为.12.写出一个单项式,使得它与多项式m+2n的和为单项式:.13.如果关于x的多项式ax2−abx+b与bx2+abx+2a的和是一个单项式,那么a 与b的关系是.三、解答题(共3题,共45分)14.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为T=2π√lg,其中T(s)表示周期,l(m)表示摆长,g取9.8m/s2,假如一台座钟摆针的摆长为0.5m,它每摆动一个来回发出一次滴答声,那么在1min内,该座钟大约发出了多少次滴答声?(π取3.14)15.现有大小两艘轮船,小船每天运x吨货物,大船比小船每天多运10吨货物,现在让大船完成运送100吨货物的任务,小船完成运送80吨货物的任务.(1) 分别写出大船、小船完成任务用的时间;(2) 试说明哪艘轮船完成任务用的时间少.16.已知两个关于x,y的单项式mx3a−4y3与−2nx a+2y3是同类项(其中xy≠0).(1) 求a的值;(2) 如果它们的和为零,求(2m−4n−1)2021的值.参考答案1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】D5. 【答案】D6. 【答案】B7. 【答案】C8. 【答案】B9. 【答案】−110. 【答案】1911. 【答案】1或712. 【答案】−m13. 【答案】a=−b或b=−2a14. 【答案】将l=0.5m,g=9.8m/s2代入T=2π√lg 中,得T=2π√0.59.8≈1.42(s)于是60T =601.42≈42(次).答:在1min内,该座钟大约发出了42次滴答声.15. 【答案】(1) 大船完成任务用的时间为100x+10天,小船完成任务用的时间为80x天.(2) 100x+10−80x=20x−800x(x+10)=20(x−40)x(x+10)(天)因为x>0,所以x+10>0,所以当x>40时20(x−40)x(x+10)>0,即100x+10>80x,小船所用时间少;当x=40时20(x−40)x(x+10)=0,即100x+10=80x,两船所用时间相同;当x<40时20(x−40)x(x+10)<0,即100x+10<80x,大船所用时间少.16. 【答案】(1) 由题意得3a−4=a+2解得a=3.(2) 由题意得m−2n=0∴2m−4n=0∴(2m−4n−1)2021=(−1)2021=−1.。
中考数学专题训练第2讲整式(知识点梳理)
整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。
单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。
2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。
(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。
(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。
3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。
(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。
(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。
(4)运算时,要注意运算顺序。
(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。
2.单项式中不能含有加减法运算,但可以含有除法运算。
3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。
《整式的加减》的总复习2
七年级上学期《整式的加减》总复习2姓名 班级 第 组 正组长评价 (A 、B 、C )一.选择题:(每小题3分,共15分)1.下列说法中正确的是( )。
A .2t 不是整式;B . 33x y -的次数是4;C .4ab 与4xy 是同类项;D .1y是单项式 2.下列说法错误的个数是( )。
①213x π的系数为13;②212xy 的系数为12;③25x -的系数是5;④7xy -的系数是7x - A .1 B .2 C .3 D .43.下列计算正确的是( )A .32x x x -=B .2xy xy xy -=C .495x x -=-D .11033a a -= 4.3(2)x x --等于 ( )。
A . x - B . x C . 5x - D .5x5.若M ,N 都是四次多项式,则多项式M+N 的次数( )A .一定是4B .不超过4C .不低于4D .一定是8二.填空题:(每小题3分,共15分)6.多项式231245xy x y --是_____次_____项式,常数项是________。
7.若3815x y 与28n x y +-是同类项,则n =_______。
8.买一个足球需要a 元,买一个篮球需要b ,则买3个足球、5个篮球共需要_________元。
9.三个连续偶数,中间一个是2n ,则这三个偶数的和为___________。
10.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配椅子 ____ 把. 三.计算题:(11、12每题4分;13、14、15每题5分;16、17每题6分。
共25分)11.36st st -+ 12.222111244a bc a bc a bc -++(1) (2) (3)13.32327486a a a a a a -++--- 14.3322745355xy xy xy xy ++---15.2(23)3(23)a b b a -+- 16.2222222[(2)]x y x x y ---+17.化简求值:32231224(2)33x x x x x x -+--+-,其中3x =-。
数学中考复习 整式的加减乘除与因式分解
第一讲 整式的加减乘除与因式分解代数式、单项式、多项式代数式的定义:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连结而成的式子叫做代数式. 单独的一个数或字母也是代数式.列代数式:列代数式实质上是把“文字语言”翻译成“符号语言”.列代数式的关键是正确地分析数量关系,要掌握和、差、积、商、幂、倍、分、大、小、多、少、增加、增加到等数学概念和有关知识.在列代数式时,应注意以下几点:(1) 在同一问题中,要注意不同的对象或不同的数量必须用不同的字母来表示;(2) 字母与字母相乘时可以省略乘号;(3) 在所列代数式中,若有相除关系要写成分数形式;(4) 列代数式时应注意单位,单位名称在代数式后面写出来,如果结果为加减关系,必须用括号将代数式括起来;(5) 代数式中不要使用带分数,带分数与字母相乘时必须把带分数化成假分数.单项式: 像2-a ,2r π,213-x y ,-abc ,237x yz ,……这些代数式中,都是数字与字母的积,这样的代数式称为单项式.也就是说单项式中不存在数字与字母或字母与字母的加、减、除关系,特别的单项式的分母中不含未知数.!单独的一个字母或数也叫做单项式,例:a 、3-.单项式的次数:是指单项式中所有字母的指数和.例如:单项式212-ab c ,它的指数为1214++=,是四次单项式.单独的一个数(零除外),它们的次数规定为零,叫做零次单项式.单项式的系数:单项式中的数字因数叫做单项数的系数.例如:我们把47叫做单项式247x y 的系数. 同类项: 所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.多项式: 几个单项式的和叫做多项式.例如:27319-+x x 是多项式. 多项式的项: 其中每个单项式都是该多项式的一个项.多项式中的各项包括它前面的符号.多项式中不含字母的项叫做常数项. 多项数的次数:多项式里,次数最高项的次数就是这个多项式的次数.整式: 单项式和多项式统称为整式.【例1】 讲下列代数式分别填入相应的括号内:222221112113232333a x ab x x m n mn n x b x y x-+-+-+-+,,,,,,, 单项式( );多项式( );二项式( );二次多项式( );整式( )【例2】 找出下列各代数式中的单项式,并写出各单项式的系数和次数.223xy ;-a ;a bc ;32+mn ;572t ;233-a b c ;2;-x π【例3】 单项式113+--a b a x y 与23x y 是同类项,求-a b 的值.【巩固】 若12223559+--m m n ab 与2a b 是同类项,求m ,n 的值.板块二 整式加减合并同类项: 把多项式中同类项合并成一项,叫做合并同类项.合并同类项时,只需把系数相加,所含字母和字母指数不变.【例4】 若232+m m n a b 与39a b 的和仍是一个单项式,求m 、n 的值.【例5】 化简:3223225115225363363--+-+++a b a b ab a b ab ba【巩固】 化简:2222222243{3[24(2)]}--+--+-xy x y x y xy xy x y x y xy【例6】 第一个多项式是2222-+x xy y ,第二个多项式是第一个多项式的2倍少3 ,第三个多项式是前两个多项式的和,求这三个多项式的和.【例7】 有这样一道题:“已知222223=+-A a b c ,22232=--B a b c ,22223=+-C c a b ,当1=a ,2=b ,3=c 时,求-+A B C 的值”.有一个学生指出,题目中给出的2=b ,3=c 是多余的.他的说法有没有道理?为什么?幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数. 含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.例如:53表示33333⨯⨯⨯⨯,5(3)-表示(3)(3)(3)(3)(3)-⨯-⨯-⨯-⨯-,53-表示(33333)-⨯⨯⨯⨯52()7表示2222277777⨯⨯⨯⨯,527表示222227⨯⨯⨯⨯ 特别注意负数及分数的乘方,应把底数加上括号.“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:⑴多重负号的化简,这里奇偶指的是“-”号的个数,例如:[](3)3---=-;[](3)3-+-=.⑵有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号, 例如:(3)(2)(6)36-⨯-⨯-=-,而(3)(2)(6)36-⨯-⨯+=.⑶有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如:2(3)9-=,3(3)27-=-.特别地:当n 为奇数时,()n n a a -=-;而当n 为偶数时,()n n a a -=.负数的奇次幂是负数,负数的偶次幂是正数正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”.⑴ 同底数幂相乘.同底数的幂相乘,底数不变,指数相加.用式子表示为:m n m n a a a +⋅=(,m n 都是正整数).⑵ 幂的乘方.幂的乘方的运算性质:幂的乘方,底数不变,指数相乘.用式子表示为:()nm mn a a =(,m n 都是正整数). ⑶ 积的乘方.积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.用式子表示为:()n n n ab a b =(n 是正整数).⑷ 同底数幂相除.同底数的幂相除,底数不变,指数相减.用式子表示为:m n m n a a a -÷= (0a ≠,m ,n 都是正整数)⑸ 规定()010a a =≠;1p p a a-=(0a ≠,p 是正整数). 【例1】 下列计算正确的是( )A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=【巩固】 下列计算错误的是( )A .()333327ab a b -=-B .2326411416a b a b ⎛⎫-= ⎪⎝⎭ C .()326xy xy -=- D .()24386a b a b -=计算:()43- 计算:43- 计算:332⎛⎫- ⎪⎝⎭ 计算:332-填空:54x x x ÷⨯= ;填空:()()()324a a a -⋅-⋅-= ; 填空:()()2322a b b ⋅-= ; 填空:()()3223x x x --⋅=【巩固】 ()4m m x x ÷=填空:;()224m a a +⋅=;()234n n n n a b =;()()()284n a a a ⎡⎤==⎣⎦【例2】 计算:()()()24143 6.526313⎛⎫--⨯+-÷-= ⎪⎝⎭__________【例3】 n 为自然数,那么(1)n -= ;2(1)n -= ;21(1)n +-= ;当n 为 数时,()()n 2n 110-+-=;当n 为 数时,()()n 2n112-+-=【例4】 计算:12468...(1)2n n +-+-++-⨯【例5】 计算:23456789102222222222--------+=_____________.计算:6660.12524⨯⨯计算:10200.252⨯计算:1996199519952(1.5)(1)3⎛⎫⨯⨯- ⎪⎝⎭【例6】 已知2m a =,3n a =,求32m n a +的值.【例7】 若2530x y +-=,求432x y ⋅.【巩固】 已知3m a =,2n a =,m 、n 是正整数且m n >.求下列各式的值:①1m a +;②32m n a -.【例8】 已知232122192x x ++-=,求x .板块二 幂的大小比较【例9】 比较503,404,305的大小.【例10】 已知221410103498a b c d ====,,,,则a b c d ,,,的大小关系为整式的乘法⑴单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只有一个单项式里含有的字母,则连同它的指数作为积的一个因式.以下举例说明单项式与单项式相乘的规则如下:23234233ab a b c a b c ⋅=,两个单项式的系数分别为1和3,乘积的系数是3,两个单项式中关于字母a 的幂分别是a 和2a ,乘积中a 的幂是3a ,同理,乘积中b 的幂是4b ,另外,单项式ab 中不含c 的幂,而2323a b c 中含2c ,故乘积中含2c . ⑵单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a b c ++为多项式.⑶多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,公式为:()()m n a b ma mb na nb ++=+++【例11】 若M N ,分别是关于x 的2次多项式与3次多项式,则MN ( )A .一定是5次多项式B .一定是6次多项式C .一定是2次或3次多项式D .无法确定次数【例12】 先化简,在求值:()()()()22215423125a a a a a a a -⋅------,其中1a =-【巩固】 计算2332536()()()()1245x y x y x y y x ⎡⎤+⋅--⋅--⋅-⎢⎥⎣⎦.【巩固】 使22(8)(3)x px x x q ++-+的积中不含2x 和3x ,求p ,q 的值.整式的除法⑴ 单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.如:2322233a b c ab ab c ÷=,被除式为2323a b c ,除式为ab ,系数分别为3和1,故商中的系数为3,a 的幂分别为2a 和a ,故商中a 的幂为21a a -=,同理,b 的幂为2b ,另外,被除式中含2c ,而除式中不含关于c 的幂,故商中c 的幂为2c .⑵ 多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加,公式为:()a b c m a m b m c m ++÷=÷+÷+÷,其中m 为单项式,a b c ++为多项式.【例13】 计算:472632211()()393a b a b ab -÷-;计算:823423236( 1.8)0.655a b a b a b ab --÷【例14】 算:()()()2226969x x x x +-÷++= ;【例15】 如果257x kx -+被52x -除后余6,求k 的值及商式.【例16】 计算:22221112222x y x y x y ⎡⎤⎛⎫⎛⎫⎛⎫-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦因式分解的基本概念因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.因式分解与整式乘法互为逆变形:()m a b c ma mb mc ++++整式的乘积因式分解式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式因式分解的常用方法:提取公因式法、运用公式法、分组分解法、十字相乘法.分解因式的一般步骤:如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式十字相乘法分解,如还不能,就试用分组分解法或其它方法.注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止;②结果一定是乘积的形式;③每一个因式都是整式;④相同的因式的积要写成幂的形式.在分解因式时,结果的形式要求:①没有大括号和中括号;②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;③单项式因式写在多项式因式的前面;④每个因式第一项系数一般不为负数;⑤形式相同的因式写成幂的形式.判断下列各式从左到右的变形是否是分解因式,并说明理由.⑴22()()x y x y x y +-=-; ⑵322()x x x x x x +-=+⑶232(3)2x x x x +-=+-; ⑷1(1)(1)xy x y x y +++=++【例17】 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=-其中是因式分解的有 (填括号)提公因式法提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面.确定公因式的方法:系数——取多项式各项系数的最大公约数;字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.【例18】 分解因式:ad bd d -+【例19】 分解因式:4325286x y z x y -【例20】 分解因式:322618m m m -+- 分解因式:23229632x y x y xy ++ 分解因式:2222224x y x z y z z --+【例21】 不解方程组2631x y x y +=⎧⎨-=⎩,求代数式()()237323y x y y x ---的值.【例22】 若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?【例23】 求代数式的值:22(32)(21)(32)(21)(21)(23)x x x x x x x -+--+++-,其中23x =-.公式法平方差公式:22()()a b a b a b -=+-①公式左边形式上是一个二项式,且两项的符号相反;②每一项都可以化成某个数或式的平方形式;③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.完全平方公式:2222()a ab b a b ++=+2222()a ab b a b -+=-①左边相当于一个二次三项式;②左边首末两项符号相同且均能写成某个数或式的完全平方式;③左边中间一项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定.一些需要了解的公式:3322()()a b a b a ab b +=+-+ 3322()()a b a b a ab b -=-++33223()33a b a a b ab b +=+++ 33223()33a b a a b ab b -=-+-2222()222a b c a b c ab ac bc ++=+++++【例24】 分解因式:44a b -【例25】 分解因式:2249()16()m n m n +--【例26】 分解因式:22()()a x y b y x -+-【例27】 分解因式:229()4()m n m n --+【例28】 分解因式:22(32)16x y y --【例29】 利用分解因式证明:712255-能被120整除.【例30】 分解因式:2242x x -+= ;【例31】 分解因式:244ax ax a -+= ;【例32】 分解因式:2844a a --= ;【例33】 分解因式:2292416x xy y -+=【例34】 分解因式:3269x x x -+【例35】 分解因式:2363x x -+【例36】 在实数范围内分解因式:224x -;【例37】 在实数范围内分解因式:264m m -+【例38】 分解因式:22222(91)36a b a b +--【例39】 若a ,b ,c 为正数,且满足444222222a b c a b b c c a ++=++,那么,,a b c 之间有什么关系?十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解【例40】 分解因式:256x x ++【例41】 分解因式:256x x -+【例42】 分解因式2299x x +-等于( )A .()()911x x --B .()()911x x +-C .()()911x x -+D .()()911x x ++【例43】 分解因式:276x x ++【例44】 分解因式:268x x ++【例45】 分解因式:278x x +-【例46】 分解因式:212x x +-【例47】 分解因式:2376a a --【例48】 分解因式:2383x x --【例49】 分解因式:25129x x +-【例50】 分解因式:2121115x x --板块三:双十字相乘双十字相乘法: 对于某些二元二次六项式22ax bxy cy dx ey f +++++,可以看作先将关于x 的二次三项式22()ax by d x cy ey f +++++的“常数项”2cy ey f ++用十字相乘法分解,然后再次运用十字相乘法将关于x 的二次三项式分解。
中考数学专题复习2整式的运算(原卷版)
整式的运算复习考点攻略(原卷版)考点01 整式的有关概念1.整式:单项式和多项式统称为整式.2.单项式:单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数. 【注意】单项式的系数包括它前面的符号3.多项式:几个单项式的和叫做多项式;多项式中.每一个单项式叫做多项式的项.其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项叫做同类项. 【例1】单项式3212a b 的次数是_____. 【例2】下列说法中正确的是( )A .25xy -的系数是–5 B .单项式x 的系数为1.次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式【例3】若单项式32m x y 与3m nxy +是同类项.2m n +_______________.【例4】按一定规律排列的单项式:a .2a -.4a .8a -.16a .32a -.….第n 个单项式是( ) A .()12n a --B .()2na -C .12n a -D .2n a【例5】如图.图案均是用长度相等的小木棒.按一定规律拼搭而成.第一个图案需4根小木棒.则第6个图案需小木棒的根数是( )A .54B .63C .74D .84考点02 整式的运算1.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -. 2. 整式的加减:几个整式相加减.如有括号就先去括号.然后再合并同类项。
. 3.整式的乘法:(1)单项式与单项式相乘.把它们的系数、相同字母分别相乘.对于只在一个单项式里含有的字母.则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:m (a +b +c )=ma +mb +mc . (3)多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nb .. 4.整式的除法:(1)单项式除以单项式.把系数、同底数的幂分别相除.作为商的因式。
中考数学复习《整式的加减》专项练习题-带有答案
中考数学复习《整式的加减》专项练习题-带有答案一、选择题1.下列各式中,不是整式的是()C.0 D.x+yA.3a B.12x2.单项式−3πxy2z3的系数和次数分别是()A.−π,5B.−1,6C.−3π,6D.−3,73.下列式子中,与−3a2b是同类项的是()A.−3ab2B.−ba2C.2ab2D.2a3b4.多项式2x2y|m|−(m−2)xy+1是关于x.y的四次二项式,则m的值为()A.2 B.-2 C.±2 D.±15.下列各式去括号正确的是()A.−(a−3b)=−a−3b B.a+(5a−3b)=a+5a−3bC.−2(x−y)=−2x−2y D.−y+3(y−2x)=−y+3y−2x6.要使多项式3x2−2(5+x−2x2)+mx2化简后不含x的二次项,则m的值为()A.−7B.7 C.1 D.−37.多项式2x2−7x+3减去5x2−x−4的结果是()A.−3x2−6x+7B.−3x2−8x−1C.7x2−8x+7D.−3x2−6x−18.下列计算结果正确的是()A.x2y−2xy2=−xy2B.3a2+5a2=8a4C.−3(2a−b)=−6a+b D.4m+2n−(n−m)=5m+n二、填空题9.整数n=时,多项式3x2+n+2x2−n+1是三次三项代数式.x2y3按字母x升幂排列是.10.将多项式2−3xy2+5x3y−1311.已知:x2+3x−4=0,则代数式2x2+6x+4的值是x n y4可以合并成一项,则n m= .12.若单项式2x2y m与−1313.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是50km/h,水流速度是akm/h.则3h后两船相距千米.三、解答题14.化简:(1)8a+5b−(3a+4b)(2)5xy2+3x2y−2(3xy2+x2y)15.先化简,再求值:2(−a2+2ab)−3(ab−a2),其中a=2,b=−1.16.已知多项式(3ax+2)−(6x+3)的值与x的大小无关,求代数式2a3−3a+5的值.17.已知多项式-3x m+1y3+x3y-3x4-1是五次四项式,单项式3x3n y2的次数与这个多项式的次数相同. (1)求m,n的值.(2)把这个多项式按x降幂排列.18.已知:A=−3x2+2xy+1,B=3x2−4xy.(1)计算:A+B;(2)若(x+1)2+|y−2|=0,求A+B的值.参考答案1.B2.C3.B4.A5.B6.A7.A8.D9.±1x2y3+5x3y10.2−3xy2−1311.1212.1613.30014.(1)8a+5b−(3a+4b)=8a+5b-3a-4b=5a+b;(2)5xy2+3x2y−2(3xy2+x2y)= 5xy2+3x2y−6xy2−2x2y= x2y−xy2 .15.解:原式=a2+ab.∴当a=2,b=−1时,原式=2 16.解:(3ax+2)−(6x+3)=3ax+2−6x−3=(3a−6)x−1∵多项式(3ax+2)−(6x+3)的值与x的大小无关∴3a−6=0解得a=2则2a3−3a+5=2×23−3×2+5=15.17.(1)解:由题意得:m+1+3=5,3n+2=5∴m=1,n=1(2)解:-3x4+x3y-3x2y3-118.(1)解:原式=−3x2+2xy+1+3x2−4xy=−3x2+3x2+2xy−4xy+1=1−2xy;(2)解:根据题意得,x+1=0,y−2=0∴x=−1,y=2∴原式=1−2×(−1)×2=1+4=5.。
中考数学复习专项知识总结—整式(中考必备)
中考数学复习专项知识总结—整式(中考必备)1、定义(1)单项式:用数或字母的乘积表示的式子叫做单项式。
单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
(2)多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里,次数最高项的次数,叫做这个多项式的次数。
单项式与多项式统称整式。
(3)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
(4)合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
2、整式的运算(1)整式的加减:几个整式相加减,如有括号就先去括号,然后再合并同类项。
去括号法则:同号得正,异号得负。
即括号外的因数的符号决定了括号内的符号是否改变:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
(2)整式的乘除运算①同底数幂的乘法:a m·a n=a m+n。
同底数幂相乘,底数不变,指数相加。
①幂的乘方:(a m)n=a mn。
幂的乘方,底数不变,指数相乘。
①积的乘方:(ab)n=a n b n。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
①单项式与单项式的乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
①单项式与多项式的乘法:p(a+b+c)=pa+pb+pc。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
①多项式与多项式的乘法:(a+b)(p+q)=ap+aq+bp+bq。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
平方差公式:(a+b)(a-b)=a2-b2。
中考数学总复习:整式的加减
中考数学总复习:整式的加减中考数学总复习:整式的加减上学的时候,大家都没少背知识点吧?知识点是指某个模块知识的重点、核心内容、关键部分。
哪些才是我们真正需要的知识点呢?以下是店铺为大家收集的中考数学总复习:整式的加减,欢迎阅读与收藏。
一、重点单项式及其相关的概念;多项式及其相关的概念;去括号法则,准确应用法则将整式化简。
二、难点区别单项式的系数和次数;区别多项式的次数和单项式的次数;括号前面是“-”号去括号时,括号内各项变号容易产生错误。
三、知识点、概念总结1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。
所有字母的指数之和叫做这个单项式的次数。
任何一个非零数的零次方等于1.3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:单项式和多项式统称为整式。
8. 多项式的加法:多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
中考专题复习--整式的加减
中考专题复习--整式的加减一、专题知识导图展示二、导学案难题错题分析1、(教师指引:系数是“数字部分” 次数是“字母指数之和”)2、(教师指引:区别“项”和“项数”,“项”包括其前的符号!)3、xy ,- 2x2 y ,4x3 y ,- 8x4 y ,16x5 y ,…按此规律写出第7 个单项式(教师提出问题)能否写出第 n 项?4、(教师指引:)注意:去括号的“符号变化”!合并之前先“分类”!化简至最简结果,代入求值不能忘!三、思维拓展解决3、请从课本中找寻一道题,涉及到你所归纳的知识方法,写在下面(只抄题干,不用解答)。
由学生指出错误和分析原因由学生分析其找出第 7项的思路和方法,并拓展至第 n 项学生指出同学的计算错误并分析其原因学生书写及知识点总结展示这些问题虽小,但却是中考选择填空及计算题中的易错题。
学生经常会而不对,利用课前导学案,找出错误例子,利用“生生互批”的方式,由学生分析归纳与整式有关的概念和计算要点!提高中考概念及计算得分率。
通过同类型题目的展示,归纳“去括号”和“合并同类项”的应用。
例 1 每本练习本m 元,甲买了5 本,乙买了2 本,两人一共花了元,甲比乙多花了元变式 1:如图,用字母表示图中阴影部分的面积是变式2:一个三位数,个位数字是a,十位数字是b,百位数字是c,这个三位数是变式 3:如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第 n 个图案中阴影小三角形的个数是(用含有 n 的代数式表示).变式例题及变式练习,部分同学分析思路过程规律性问题是整式表达的一个中考难点!通过变式训练,感受“用字母表示数”“用字母表示规律”,并从数形两方面探究找规律的方式。
例 2 若单项式2x2y m 与x n y3 是同类项,则m+n=变式1:单项式3a m b2 与﹣a4b n﹣1 的和是单项式,那么m= ,n= .变式2:若(m + 2)2 x3 y n-2 是关于x,y 的六次单项式,则m ,n变式 3:若多项式4x2-6xy+2x-3y与ax2+bxy+3ax-2by的和不含二次项,求a 、b 的值变式练习,完成待定系数的确定,部分同学分析思想过程通过变式训练,深化理解单项式和同类项的概念,强化“系数”概念,理解“系数”的重要性。
中考数学总复习资料(备考大全)
中考数学复习资料2011年中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
整式的加减知识点及中考常见题型
第二章 整式的加减知识网络结构图重点题型总结及应用题型一 整式的加减运算例1 已知3313a x y --与533b y x -是同类项,则a b 的值为 . 解析:由同类项的定义可得a -3=3,5-b =3,所以a =6,b =2.因而a b =62=36.答案:36点拨 所含字母相同,相同字母的指数也分别相同,这是两个单项式成为同类项必须具备的条件,即⎧⎨⎩字母相同,相同字母的指数也分别相同⇔同类项.例2 计算:(7x 2+5x -3)-(5x 2-3x +2).解:原式=7x 2+5x -3-5x 2+3x -2=2x 2+8x -5.方法 本题考查整式的加减及去括号法则.合并同类项时注意字母和字母的指数不变,只把系数相加减.题型二 整式的求值例3 已知(a +2)2+|b +5|=0,求3a 2b 一[2a 2b -(2ab -a 2b )-4a 2]-ab 的值.分析:由平方与绝对值的非负性,得a =-2,b =-5.先化简,再代入求值.解:因为(a +2)2≥0,|b +5|≥0,且(a +2)2+|b +5|=0,所以a +2=0,且b +5=0.所以a =-2,b =-5.3a 2b -[2a 2b -(2ab -a 2b )-4a 2]-ab=3a 2b -2a 2b +2ab -a 2b +4a 2-ab=4a 2+ab .把a =-2,b =-5代入4a 2+ab ,得原式=4×(-2)2+(-2)×(-5)=16+10=26.例4 已知2a 2-3ab =23,4ab +b 2=9,求整式8a 2+3b 2的值.解:因为2a 2-3ab =23,所以8a 2-12ab =92,所以12ab =8a 2-92.因为4ab +b 2=9,所以12ab +3b 2=27,所以12ab =27-3b 2.由此得8a 2-92=27-3b 2,即8a 2+3b 2=119.题型三 整式的应用例5 图2-3-1是一个长方形试管架,在a cm 长的木条上钻了4个圆孔,每个孔的直径为2 cm ,则x 等于( )A. 85a +cmB. 165a - cmC. 45a - cmD. 85a - cm 解析:由题意得5x +2×4=a ,所以x =85a -(cm ). 答案:D 点拨 本题要注重结合图形来分析问题,以提高综合解决问题的能力.例6 用正三角形和正六边形按如图2-3-2所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为 (用含”的代数式表示).解析:第一个图案中正三角形的个数为: 4=2×1+2;第二个图案中正三角形的个数为:6=2×2+2;第三个图案中正三角形的个数为:8=2×3+2;..,;第n 个图案中正三角形的个数为:2n +2.答案:2n +2思想方法归纳1. 整体思想整体思想就是在考虑问题时,将具有共同特征的某一项或某一类看成一个整体,从宏观上进行分析,抓住问题的整体结构和本质特点,全面关注条件和结论,加以研究、解决,使问题的解答简捷、明快,往往能化繁为简,由难变易,获得解决问题的捷径,从而促进问题的解决.例1 计算当a =1,b =-2时,代数式11()()2436a b a b a b a b +--+++-的值. 分析:因为a =1,b =-2,所以a +b =-1,a -b =3.解:原式=1111()()()()2634a b a b a b a b ⎡⎤⎡⎤---++++⎢⎥⎢⎥⎣⎦⎣⎦ 17()()312a b a b =-++. 当a =l ,b =-2时,原式17753(1)13121212=⨯+⨯-=-=. 点拨 把(a -b ),(a +b )分别看做一个整体,直接合并同类项,而不是去括号再合并同类项.例2 若a 2+ab =20,ab -b 2=-13,求a 2+b 2及a 2+2ab -b 2的值.分析:把a 2+ab ,ab - b 2分别看做一个整体.解:∵a 2+ab -(ab - b 2)=a 2+b 2,∴a 2+b 2=20-(-13)=33.又∵(a 2+ab )+(ab - b 2)=a 2+2ab -b 2,∴a 2+2ab - b 2=20-13=7.点拨 通过对已知条件相减或相加,得出待求的多项式,从而求出多项式的值.考查了学生的洞察能力.2 数形结合思想例3 如图2-3-3所示,已知四边形ABCD 是长方形,分别用整式表示出图中S l ,S 2,S 3,S 4的面积,并表示出长方形ABCD 的面积.解:S 1=m (2m -n )=2m 2-mn ,S 2=n (2m -n )=2mn - n 2,S 3= n 2,S 4=mn .S 长方形ABCD =S 1+S 2+S 3+S 4=(2m 2-mn )+(2mn - n 2)+n 2+mn =2m 2-mn +2mn - n 2+n 2+mn =2 m 2+2mn .中考热点聚焦考点1 单项式考点突破:单项式是整式中的基础知识,在中考中的考查一般难度不大,多以选择题或填空题的形式出现.解决此类问题要理解单项式的定义及单项式次数的含义.例1 (2011•柳州)单项式3x 2y 3的系数是 3 .考点:单项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:a2+b2
7.多项式8x2+2x-5与另一个多项式的差是5x2-x+3,则另一个 多项式是_____________. 【解析】另一个多项式是(8x2+2x-5)-(5x2-x+3) =8x2+2x-5-5x2+x-3=3x2+3x-8. 答案:3x2+3x-8
8.(2010·宿迁中考)若2a-b=2,则6+8a-4b=______. 【解析】6+8a-4b=6+4(2a-b)=14.
答案:14
9.已知3a4x-1by+1和- 1 a3b4是同类项,则xy=___________.
2
【解析】由题意,得 4x-1=3 , ∴x=1,y=3,∴xy=13=1.
y+1=4
答案:1
三、解答题(共46分)
ቤተ መጻሕፍቲ ባይዱ
10.(每小题5分,共10分)化简:
(1)(2a2+3a-4)-(-3a2+7a-1). (2)(3xn+2+10xn-7x)-(x-9xn+2-10xn). 【解析】(1)原式=2a2+3a-4+3a2-7a+1 =5a2-4a-3. (2)原式=3xn+2+10xn-7x-x+9xn+2+10xn =12xn+2+20xn-8x.
【解析】选B.(mx2-mnx+n)+(nx2+mnx+2m) =mx2-mnx+n+nx2+mnx+2m
=(m+n)x2+(n+2m).
要使和为单项式,必须m+n=0或n+2m=0, 即m=-n或n=-2m.
5.若a+b=1,则3a-b+(5+3b-a)的值为( (A)5 (B)6 (C)7
) (D)8
a+1=0 , ∴ 2(b-2)=0
解得a=-1,b=2.
∴5a-3b=5×(-1)-3×2=-5-6=-11. (2)∵|a-1|+(b-2)2=0,∴a=1,b=2, 又∵A-B=3a2-6ab+b2-(-a2-5) =3a2-6ab+b2+a2+5=4a2-6ab+b2+5,
∴A-B=4×12-6×1×2+22+5
=4-12+4+5=1.
12.(每小题6分,共12分)先化简,再求值:
10 (1)(2x2-x-1)-(x2-x- 1 )+(3x2),其中x= 3 . 3 3 2 3 2-{-4a2+[5a-8a2-(2a2-a)+9a2] (2)当a=时,试求:15a 2
-3a}的值.
【解析】(1)原式=2x2-x-1-x2+x+ 1 +3x2- 10 =4x2-4.
一、选择题(每小题6分,共30分)
1.下列说法正确的是(
)
(A)单项式xy2的次数是2,系数是0 (B)单项式72a2b的次数是5,系数是72 (C)单项式-7a2b3的次数是5,系数是-7 (D)单项式π R2的次数是3,系数是π
2 3 2 3 原式=20×() -3×()=45+ 9 = 99 . 2 2 2 2
方法二:原式=15a2+4a2-[5a-8a2-(2a2-a)+9a2]+3a =15a2+4a2-5a+8a2+(2a2-a)-9a2+3a
=15a2+4a2-5a+8a2+2a2-a-9a2+3a
=20a2-3a.
11.(每小题6分,共12分)
(1)已知关于x、y的多项式ax2+2bxy+x2-x-4xy+y不含二次 项,求5a-3b的值.
(2)若|a-1|+(b-2)2=0,A=3a2-6ab+b2,B=-a2-5,试求A-B的值.
【解析】(1)由题可得,将上式合并同类项后,其二次项系数 为0. ∵ax2+2bxy+x2-x-4xy+y =(a+1)x2+2(b-2)xy-x+y,
【解析】选C.∵a+b=1, ∴3a-b+(5+3b-a)=3a-b+5+3b-a=2a+2b+5 =2(a+b)+5=2×1+5=7.
二、填空题(每小题6分,共24分) 6.(2010·嘉兴中考)用代数式表示“a、b两数的平方和”, 结果为________. 【解析】a、b两数的平方和是指a的平方与b的平方的和,即 a2+b2.
3 3 当x= 时, 2 3 原式=4×( )2-4=4× 9 -4=9-4=5. 2 4 3
(2)方法一:原式=15a2-[-4a2+(5a-8a2-2a2+a+9a2)-3a] =15a2-[-4a2+(-a2+6a)-3a] =15a2-(-4a2-a2+6a-3a) =15a2+5a2-3a=20a2-3a,∴当a=- 3 时,
【解析】选C.A中次数应为3,系数是1,B中次数应为3,D中
次数应为2,π是系数.
2.(2009·嘉兴中考)下列运算正确的是( (A)-2(a-b)=-2a-b (C)-2(a-b)=-2a-2b
)
(B)-2(a-b)=-2a+b (D)-2(a-b)=-2a+2b
【解析】选D.根据去括号法则:-2(a-b)=-2a+2b.
1 ,从第二个数起, 3
每个数都等于1与前面那个数的差的倒数.
【解析】
3.(2010·潼南中考)计算3x+x的结果是( (A)3x2 (B)2x (C)4x
) (D)4x 2
【解析】选C.合并同类项3x+x=(3+1)x=4x.
4.如果关于x的多项式mx2-mnx+n与nx2+mnx+2m的和是一个单
项式,那么m与n的关系是(
(A)m=n (C)m=0或n=0
)
(B)m=-n或n=-2m (D)m=n=1
3 3 2 3 时,原式=20×() -3×() 2 2 2 9 99 . =45+ = 2 2
∴当a=-
13.(12分)有若干个数,第1个数记为a1,第2个数记为a2,第
3个数记为a3,„,第n个数记为an,若a1=(1)分别求出a2、a3、a4的值; (2)计算a1+a2+a3+„+a36的值.