二项式定理11种题型解题技巧

合集下载

二项式定理11种题型解题技巧

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧【知识点及公式】1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。

二项式定理解题技巧

二项式定理解题技巧

二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。

用1r n r r r nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()n b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r rn nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-。

二项式定理各种题型解题技巧知识讲解

二项式定理各种题型解题技巧知识讲解

二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。

二项式定理常见题型

二项式定理常见题型

二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C ab -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项增到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,·1k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。

二项式定理知识点和各种题型归纳带答案

二项式定理知识点和各种题型归纳带答案

二项式定理1•二项式定理:(a b)n=C0a n Ca n」b • ||「c n a n=b r•- C;;b n(n・ N ),2. 基本概念:①二项式展开式:右边的多项式叫做(a - b)n的二项展开式。

②二项式系数:展开式中各项的系数c n (r =0,1,2, , n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项c n a n-b r叫做二项式展开式的通项。

用丁i =C;a n」b r表示。

3. 注意关键点:①项数:展开式中总共有(n 1)项。

②顺序:注意正确选择a , b ,其顺序不能更改。

(a ■ b)n与(b ■ a)n是不同的。

③指数:a的指数从n逐项减到0,是降幕排列。

b的指数从0逐项减到n,是升幕排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是cnw’c:,…,C;,…,c n.项的系数是a与b的系数(包括二项式系数)。

4. 常用的结论:令a =1,b 二x, (1 - x)n=c0C:x C;x2十| • Qx r Fl C;x n(n N )令a =1,b = -x, (1 -x)n=C° -C:x C;x2-川C:x r ||( (-1)n C:x n(n N )5. 性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即c0 - c n , •••C n^Cn J②二项式系数和:令a=b=1,则二项式系数的和为c0 ■ c1 ■ Cn- C;Jll ■ c;-2n,变形式c n C2-Cn^H c; =2^1。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令a =1,b = —1,贝y C0—c n +c2 —Cj+川+(_1)n c n =(1_1)n= 0 ,从而得到:C: +C: +C:…+- = cn +C;+IH+c:r41+ …二丄X2n= 2n_l2④奇数项的系数和与偶数项的系数和:n OnO 小Jn」2n _22[[. nOn 1 2』』L n(a x) C n a x C n a x C*a x . C*a x a。

二项式定理的高考常见题型及解题对策

二项式定理的高考常见题型及解题对策

题型一:求二项展开式1.“n b a )(+”型的展开式 例1.求4)13(xx +的展开式;解:原式=4)13(xx +=24)13(x x +=])3()3()3()3([144342243144042C C C C C x x x x x ++++ =)112548481(12342++++x x x x x=54112848122++++x x x x 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。

2. “n b a )(-”型的展开式 例2.求4)13(xx -的展开式; 分析:解决此题,只需要把4)13(xx -改写成4)]1(3[xx -+的形式然后按照二项展开式的格式展开即可。

本题主要考察了学生的“问题转化”能力。

3.二项式展开式的“逆用”例3.计算c C C C nn nn n n n 3)1( (279313)21-++-+-; 解:原式=nn n nn n n n C C C C C )2()31()3(....)3()3()3(3332211-=-=-++-+-+-+ 小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。

题型二:求二项展开式的特定项1. 求指定幂的系数或二项式系数(1)求单一二项式指定幂的系数例4.(03全国)92)21(x x -展开式中9x 的系数是 ; 解:r rr r x x T C )21()(9291-=-+=r r r r x x C )1()21(2189--=x r r x C 3189)21(--令,9318=-x 则3=r ,从而可以得到9x 的系数为:221)21(339-=-C ,∴填221- (2) 求两个二项式乘积的展开式指定幂的系数例5.(02全国)72)2)(1-+x x (的展开式中,3x 项的系数是 ; 解:在展开式中,3x 的来源有:① 第一个因式中取出2x ,则第二个因式必出x ,其系数为667)2(-C;② 第一个因式中取出1,则第二个因式中必出3x ,其系数为447)2(-C3x ∴的系数应为:∴=-+-,1008)2()2(447667C C 填1008。

项式定理各种题型解题技巧

项式定理各种题型解题技巧

二项式定理1.二项式定理:(a b)n C n0a n C1n a n 1b L C n r a n r b r L C n n b n(n N ) ,2.基本概念:①二项式展幵式:右边的多项式叫做(a b)n的二项展幵式。

②二项式系数: 展开式中各项的系数C n r (r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展幵式中的第r 1项C:a nr b r叫做二项式展幵式的通项。

用T r 1 C n r a n r b r表示。

3.注意关键点:①项数:展幵式中总共有(n 1)项。

②顺序:注意正确选择a, b,其顺序不能更改。

(a b)n与(b a)n是不同的。

③指数:a的指数从n逐项减到0,是降幂排列。

b的指数从0逐项减到n,是升幂排列。

各项的次数和等于n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是Cn.C , .C n', ,C;.项的系数是a与b的系数(包括二项式系数)。

4.常用的结论:令a 1,b x, (1 x)n Cn C:x CnX2 L c;x r L C;x n(n N )令a 1,b x, (1 x)n C O C:X C'x2 L C;x r L ( 1)n C;x n(n N )5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即②二项式系数和:令a b 1,则二项式系数的和为变形式 c n C ; L c n L C :2③奇数项的二项式系数和 二偶数项的二项式系数和: 在二项式定理中,令a 1,b1 ,④奇数项的系数和与偶数项的系数和:n式系数c 2取得最大值。

如果二项式的幂指数n 是奇数时,则中间两项的二项式n 1 n 1系数cF , C 王同时取得最大值⑥系数的最大项: C (a bx)n 展幵式中最大的项,般米用待定系数法。

设展幵式中各项系数分别从而解出r 来6.二项式定理的^一种考题的解法: 题型一:二项式定理的逆用; 例:c n Cn 6 c 3 62 L Cn 6n 1Cn ,-• C n kCnc 0 c n C : L c n LC : 2n ,c 0 c n c ;c n 3 L ( 1)n C n n (1 1) 从而得到:c 0 c 2 c 4 c'rc n CnLc ;r 112n 2n1⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时, 则中间一项的二项为AA, ,A n1,设第r 1项系数最大,应有A 1 A r 1A r A r解:(1 6)n C0c n 6 C;62C;63L C:6n与已知的有一些差距,练: C n 3C2 9C3 L 3n 1C n .设S n C n 3C: 9C3 L 3n 1C:,贝y解:3S n C:3 C232C;33L C;3n C0 C:3 C^2C;33 L C:3n 1 (1 3)n 1(1 3)n 1 4n 1S n3 3题型二:利用通项公式求x n的系数;例:在二项式(4 3F)n的展幵式中倒数第3项的系数为45,求含有x3的项的系数?解:由条件知C:2 45,即C;45,n;n 90 0,解得n 9(舍去)或n 10,由1 2 10 r 2rT r i G0(x 刁)10 r(x;)r,由题意-r 3,解得r 6,4 3贝y含有X3的项是第7项T6 1 C10X3 210x3,系数为210。

二项式定理各种题型解题技巧

二项式定理各种题型解题技巧
解:由条件知 ,即 , ,解得 ,由
,由题意 ,
则含有 的项是第 项 ,系数为 。
练:求 展开式中 的系数
解: ,令 ,则
故 的系数为 。
题型三:利用通项公式求常数项;
例:求二项式 的展开式中的常数项
解: ,令 ,得 ,所以
练:求二项式 的展开式中的常数项
解: ,令 ,得 ,所以
练:若 的二项展开式中第 项为常数项,则
⑥系数的最大项:求 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别
为 ,设第 项系数最大,应有 ,从而解出 来。
6.二项式定理的十一种考题的解法:
题型一:二项式定理的逆用;
例:
解: 与已知的有一些差距,
练:
解:设 ,则
题型二:利用通项公式求 的系数;
例:在二项式 的展开式中倒数第 项的系数为 ,求含有 的项的系数
解:因为二项式的幂指数 是奇数,所以中间两项( )的二项式系数相等,且同时取得最大值,从而有 的系数最小, 系数最大。
例:若展开式前三项的二项式系数和等于 ,求 的展开式中系数最大的项
解:由 解出 ,假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为 ,有
练:在 的展开式中系数最大的项是多少
练:在 的展开式中,二项式系数最大的项是多少
解:二项式的幂指数是偶数 ,则中间一项的二项式系数最大,即 ,也就是第 项。
练:在 的展开式中,只有第 项的二项式最大,则展开式中的常数项是多少
解:只有第 项的二项式最大,则 ,即 ,所以展开式中常数项为第七项等于
例:写出在 的展开式中,系数最大的项系数最小的项
二项式定理各种题型解题技巧
二项式定理
1.二项式定理:

二项式定理常见题型(老师用)

二项式定理常见题型(老师用)

二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C ab -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项增到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L ,变形式1221r n nn n n n C C C C +++++=-L L 。

(完整版)二项式定理题型及解题方法

(完整版)二项式定理题型及解题方法

二项式定理题型及解题方法【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法.2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式.式中的r n r r n C a b -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r r r n T C a b -+=, 其中的系数r n C (r=0,1,2,…,n )叫做二项式系数,2.二项式(a+b)n 的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为r n C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n n n n n n a b C a C a b C a b C b ---=-++-⋅++-⋅(*N n ∈) ②122(1)1n r r n n n n x C x C x C x x +=++++++要点二、二项展开式的通项公式二项展开式的通项:公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是r n C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n.要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n r r n C a b -和(b+a)n 的二项展开式的第r+1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是1(1)r r n r r r n T C a b -+=-(只需把-b 看成b 代入二项式定理).要点三:二项式系数及其性质1.杨辉三角和二项展开式的推导.在我国南宋,数学家杨辉于1261年所著的《详解九章算法》如下表,可直观地看出二项式系数. n b a )(+展开式中的二项式系数,当n 依次取1,2,3,…时,如下表所示:1)(b a +………………………………………1 12)(b a +……………………………………1 2 13)(b a +…………………………………1 3 3 14)(b a +………………………………1 4 6 4 15)(b a +……………………………1 5 10 10 5 16)(b a +…………………………1 6 15 20 15 6 1…… …… ……上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性质.表中每行两端都是1,而且除1以外的每一个数都等于它肩上的两个数的和.用组合的思想方法理解(a+b)n 的展开式中n r r a b -的系数rn C 的意义:为了得到(a+b)n 展开式中n r r a b -的系数,可以考虑在()()()n a b a b a b +++这n 个括号中取r 个b ,则这种取法种数为r n C ,即为n r r a b -的系数.2.()n a b +的展开式中各项的二项式系数0n C 、1n C 、2n C …nn C 具有如下性质: ①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即r n n r n C C -=;②增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2n n C 最大;当n 为奇数时,二项展开式中间两项的二项式系数21-n n C ,21+n n C 相等,且最大.③各二项式系数之和为2n ,即012342n n n n n n n n C C C C C C ++++++=;④二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即15314202-=+++=+++n n n n n n nC C C C C C . 要点诠释:二项式系数与展开式的系数的区别二项展开式中,第r+1项r r n r n b a C -的二项式系数是组合数rn C ,展开式的系数是单项式r r n r n b a C -的系数,二者不一定相等.如(a -b)n 的二项展开式的通项是1(1)r r n r r r n T C a b -+=-,在这里对应项的二项式系数都是r n C ,但项的系数是(1)r r n C -,可以看出,二项式系数与项的系数是不同的概念.3.()na b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且p q r n ++=) r q q r n q r n r n r r n r n n n c b aC C c b a C c b a c b a ----=+=++=++)(])[()( 如:10)(c b a ++展开式中含523c b a 的系数为!5!2!3!105527310⨯⨯=C C C 要点诠释:三项或三项以上的展开式问题,把某两项结合为一项,利用二项式定理解决.要点四:二项式定理的应用1.求展开式中的指定的项或特定项(或其系数).2.利用赋值法进行求有关系数和.二项式定理表示一个恒等式,对于任意的a ,b ,该等式都成立.利用赋值法(即通过对a 、b 取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况.设2012()()n n n f x ax b a a x a x a x =+=++++(1) 令x=0,则0(0)n a f b ==(2)令x=1,则012(1)()n n a a a a f a b ++++==+(3)令x=-1,则0123(1)(1)()n n n a a a a a f a b -+-+-=-=-+ (4)024(1)(-1)2f f a a a ++++= (5)135(1)-(-1)2f f a a a +++= 3.利用二项式定理证明整除问题及余数的求法:如:求证:98322--+n n 能被64整除(*N n ∈)4.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明.①nx x n +>+1)1(;②22)1(1)1(x n n nx x n -++>+;(0>x ) 如:求证:n n )11(2+< 5.进行近似计算:求数的n 次幂的近似值时,把底数化为最靠近它的那个整数加一个小数(或减一个小数)的形式. 当||x 充分小时,我们常用下列公式估计近似值: ①nx x n +≈+1)1(;②22)1(1)1(x n n nx x n -++≈+; 如:求605.1的近似值,使结果精确到0.01;。

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结二项式定理一、基本知识点1、二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +。

+ C(n,n)b^n (n∈N*)2、几个基本概念1)二项展开式:右边的多项式叫做(a+b)^n的二项展开式2)项数:二项展开式中共有n+1项3)二项式系数:C(n,r) = n!/r!(n-r)!4)通项:展开式的第r+1项,即T(r+1) = C(n,r) * a^(n-r) * b^r3、展开式的特点1)系数都是组合数,依次为C(n,1)。

C(n,2)。

…。

C(n,n)2)指数的特点①a的指数由n到0(降幂)。

②b的指数由0到n(升幂)。

XXX和b的指数和为n。

3)展开式是一个恒等式,a,b可取任意的复数,n为任意的自然数。

4、二项式系数的性质:1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.2)增减性与最值: 二项式系数先增后减且在中间取得最大值当n是偶数时,中间一项取得最大值C(n,n/2)当n是奇数时,中间两项相等且同时取得最大值C(n,(n-1)/2)C(n-1.m) = C(n。

m) + C(n。

m-1)C(n,0) + C(n,1) +。

+ C(n,n) = 2^n3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即 C(n,0) - C(n,2) + C(n,4) -。

= 2^(n-1)二项式定理的常见题型一、求二项展开式1.“(a+b)^n”型的展开式例1.求(3x+2y)^42.“(a-b)^n”型的展开式例2.求(3x-2y)^43.二项式展开式的“逆用”例3.计算1-3C(n,1) + 9C(n,2) - 27C(n,3) +。

+(-1)^n*3nC(n,n)二、通项公式的应用1.确定二项式中的有关元素例4.已知((-ax)/(9x^2+1))^9的展开式中x^3的系数为9,常数a的值为1/32.确定二项展开式的常数项例5.(x-3/x)^10展开式中的常数项是2433.求单一二项式指定幂的系数例6.(x^2-3y)^6中x^3y^3的系数为-540三、求几个二项式的和(积)的展开式中的条件项的系数例7.(x-1)^-1(x-1)^2(x-1)^3(x-1)^4(x-1)^5的展开式中,x^2的系数等于-101.展开式中,求(x-2)(x^2+1)^7展开式中x^3的系数。

二项式定理知识点和各种题型归纳带答案(可编辑修改word版)

二项式定理知识点和各种题型归纳带答案(可编辑修改word版)

练:求 (x2 1 )9 展开式中 x9 的系数? 2x
解: Tr1
C9r
(
x
2
)9
r
(
1 2x
)r
C9r
x182r
(
1 2
)r
xr
C9r
(
1 2
)r
x183r
,令18
3r
9 ,则 r
3

x9
的系数为 C93 (
1 )3 2
21 2

题型三:利用通项公式求常数项;
例:求二项式 (x2 1 )10 的展开式中的常数项? 2x
令x则①1, a0 a1 a2 a3 an (a 1)n
令x则 1, a0 a1 a2 a3 an (a 1)n ②
①② 得奇,数a0项 的 a2 系 a数4 和
an
(a
1)n
2
(a
1) n
(
)
①② 得偶,数a1项 a的3 系a数5 和 an
(a
1)n
(a 2
1) n
(
)
n
⑤二项式系数的最大项:如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数 Cn2 取得最大
值。
n1
n1
如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数 Cn 2 , Cn 2 同时
取得最大值。
⑥系数的最大项:求 (a bx)n 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分
变形式 Cn1 Cn2 Cnr Cnn 2n 1 。
③奇数项的二项式系数和=偶数项的二项式系数和:
在二项式定理中,令 a 1, b 1 ,则 Cn0 Cn1 Cn2 Cn3 (1)n Cnn (11)n 0 ,

二项式定理各种题型解题技巧

二项式定理各种题型解题技巧

二项式定理1.二项式定理:(a + b)n = cy + 叫+ ••• + cy-r b r + …+ C;:b" (neN*),2.基本概念:①二项式展开式:右边的多项式叫做(a + b)n的二项展开式。

②二项式系数:展开式中各项的系数C:(厂=0,1,2,•••,“).③项数:共(r + 1)项,是关于a与b的齐次多项式④通项:展开式中的第厂+ 1项C;,a n-r b r叫做二项式展开式的通项。

用T r+{ = C;t a''-r b r表示。

3.注意关键点:①项数:展开式中总共有(n +1)项。

②顺序:注意正确选择a,b,其顺序不能更改。

(a + b)n与e + a)"是不同的。

③指数:a的指数从"逐项减到0,是降幕排列。

"的指数从0逐项减到〃,是升幕排列。

各项的次数和等于④系数:注意正确区分二项式系数与项的系数,二项式系数依次是…,C:,…,C;:.项的系数是d与方的系数(包括二项式系数)。

4.常用的结论:令a = \,b = x y (1 + x)n = C:: + C> + C>2 + …+ C;t x r + …+ C;:x” (neN*)令a = \,b = -x, (1-x)n = C;; -C\x + C>2 _... + + …+ (-1)"C;:x”(neN*)5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C;【= C;;,・・・U②二项式系数和:令a = h = \,则二项式系数的和为C,; + G +…+ C:+…+ C;: = 2",变形式C* + C; +-. + C; + ..•+ C; = 2n -1 o③奇数项的二项式系数和二偶数项的二项式系数和:在二项式定理中,令"=1/ = 一1,则u _C + c: _ C:+…+(_I)”c;: = (I _ = 0,从而得到:C;:+C:+C:・・・+C,7+••• = (?,;+C; +…+ C;E+••• = [><2“ = 2心2④奇数项的系数和与偶数项的系数和:①-②得,q +为4,设第厂+1项系数,从而解出r 来。

二项式定理各种题型解题技巧

二项式定理各种题型解题技巧

二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。

二项式定理题型种种及解析

二项式定理题型种种及解析

二项式定理题型种种及解析
二项式定理主要应用在排列组合概念上,可以求解给定n个物体,选择m个物体排列组合成一组并且可以重复计算出选择不同个数的物体组合的数量。

二项式定理考题主要有以下几种:
一、从n个元素中取m个元素的所有可能性
这种考题的关键就在于搞清楚n个元素中取m个元素的所有可能性有多少种。

二项式定理可以游刃有余的解决这种题目,前提条件是没有重复的元素选择。

具体的求解方法是运用二项式定理:Cnm=n(n-1)(n-2)…(n-m+1)/m!
二、从n个元素中取m个元素的组合数
二项式定理也可以求解从n个元素中取m个元素的组合数,它可以求出在选取不需要重复元素的情况下,挑选m个组合的数量。

公式是:组合数=C(n,m)/m!
三、n的阶乘的计算
二项式定理也可以求解n的阶乘,其计算公式是:n!=n(n-1)(n-2) (1)
/2!,也就是二项式定理中NSm=0时的值。

二项式定理解题技巧

二项式定理解题技巧

二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rnC (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C ab -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()na b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论: 令1,,a b x == 0122(1)()n r rn nnn n n n x C C x C x C x C x n N *+=++++++∈ 令1,,ab x ==- 0122(1)(1)()n r r n n n nn n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -=②二项式系数和:令1ab ==,则二项式系数的和为0122rnn nn n n n C C C C C ++++++=,变形式1221rnn nn n n C C C C +++++=-。

③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n nn n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。

《二项式定理》题型突破

《二项式定理》题型突破

《二项式定理》题型突破1.二项式定理的应用正用:将()n a b +展开,得到一个多项式,即二项式定理从左到右使用是展开.对较复杂的式子,可先对其化简再用二项式定理展开.逆用:将多项式整理成()n a b +的展开式的形式,再逆用二项式定理,即二项式定理从右到左使用是合并.对于化简、求和、证明等问题的求解,要熟悉公式的特点,例如项数、各项幂指数的规律以及各项系数的规律.对于化简多个式子的和时,可以考虑二项式定理的逆用. 2.二项展开式的通项的理解对于1C k n k kk n T ab -+=,应注意: (1)它表示()n a b +的展开式的第1k +项,而不是第k 项. (2)式中a 和b 的位置不能颠倒,且a 与b 的指数和为n .(3)它表示二项展开式中的任意项,只要n 和k 确定,1k T +这一项也随之确定,当k 依次取0,1,2,,n 时,得到展开式的第1,2,,1n +项.(4)对于()n a b -的二项展开式的通项,应是1k T +=(1)C k k n k kn ab --. (5)()n a b +的展开式的通项中,C (0,1,2,,)k n k n =是“二项式系数”,而不是“项的系数”,如在7(12)x +的展开式中,第4项37333343177C 1(2)8C T T x x -+==⨯⨯=,该项的二项式系数为37C ,而项的系数是378C .3.二项式系数与项的系数(1)二项展开式的二项式系数是指01C ,C ,,C n n n n 这些组合数,即()na b +的展开式的通项1C k n k kk n T ab -+=中的C (0,)k n k n k ≤≤∈N .求二项展开式中某一项的二项式系数,关键是要确定k 的值,要注意通项为展开式的第1k +项.(2)项的系数即该项中除变量外的常数部分,求二项展开式的指定项的系数,可直接写出二项展开式的通项,并令该项的次数与指定项的次数相等,求出k 的值,则指定项的系数就是把k 代入组合数式和常数式的乘积计算后所得的值.4.求二项展开式的特定项的常见题型:(1)求第1k +项,1C k n k kk n T ab -+=;(2)求含p x 的项(或p q x y 的项);(3)求常数项;(4)求有理项. 5.求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是项的字母的指数为0(即0次项).(2)对于有理项,一般是先写出展开式的通项,然后令其所有的字母的指数都等于整数.解这类问题必须合并通项中同一字母的指数,根据具体要求,令其为整数,进而求解.典型例题剖析题型1二项式定理的应用例1(1)52322x x ⎛⎫- ⎪⎝⎭的展开式为______.(2)1212C 4C 2C n nn n n ++++=_______.解析:(1)5051455232C (2)C (2)2x x x x ⋅⎛⎫-=+ ⎪⎝⎭23233255222333C (2)C (2)222x x x x x ⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭454552552233180C (2)C 3212022x x x x x x ⎛⎫⎛⎫-+-=-+- ⎪ ⎪⎝⎭⎝⎭4710135405243832x x x +- (2)原式01122C C 2C 2C 2(12)n nn n n n n =++++=+3n =.答案:(1)52471018013540524332120832x x x x x x -+-+- (2)3n变式训练1化简:543(2)5(2)10(2)x x x -+-+-+210(2)5(2)x x -+-.答案:原式051423555C (2)C (2)C (2)x x x =-+-+-+3245555C (2)C (2)C 1x x -+-+-56[(2)1]1(1) 1.x x =-+-=--题型2求二项展开式中的特定项或特定项的系数例2在7x ⎛- ⎝的展开式中,含4x 的项为_______.解析:x ⎛⎝的展开式的通项为1k T +=3772772C C (0,1,,7)3kkk k k k x x k --⎛⎛⎫=-= ⎪ ⎝⎭⎝.今3742k -=,解得2k =.中含4x 的项为22447228C 33x x ⎛⎫-⨯= ⎪⎝⎭.答案:6283x 解析:写出二项展开式的通项,令x 的指数等于4,求得k 的值,再求出含4x 的项. 总结归纳利用化简后的二项展开式的通项求常数项,只需令字母的指数为0;求有理项,只需令其所有的字母的指数都等于整数.变式训练2求91x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数.答案:91x x ⎛⎫- ⎪⎝⎭的展开式的通项是919C k k k T x -+=.9291(1)C kk k kx x -⎛⎫-=- ⎪⎝⎭.由题意,得923k -=,所以3k =.因此,展开式中3x 的系数为339(1)C 84-⨯=-.解析:利用二项式定理求展开式中的某一项的系数,可以通过二项展开式的通项进行求解.题型3多项展开式问题例3(1)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =_____. A.4- B.3- C.2-D.1-(2)5(12)(2)x x -+的展开式中3x 的系数是______.解析:(1)5(1)x +的展开式的通项为15C k k k T x +=, 令1,2k =得1222535C ,C T x T x ==,因此5(1)(1)ax x ++的展开式中含2x 的系数为2155C C 5a +=,解得1a =-.(2)由多项式乘法的运算法则,可知5(12)(2)x x -+的展开式中3x 的系数是5(12)x -的展开式中3x 的系数的2倍与5(12)x -的展开式中2x 的系数的和.因为5(12)x -的展开式的通项为15(2)C k k kk T x +=-, 令3k =,得到3x 的系数为358C 80-⨯=-,令2k =,得到2x 的系数为254C 40⨯=, 所以5(12)(2)x x -+的展开式中3x 的系数是80-⨯240120+=-. 答案:(1)D (2)120- 规律总结1.形如()()m n a b c d ++的展开式中的特定项问题(1)分别对()m a b +与()n c d +的二项展开式进行分析,发现它们各自项的特点. (2)找到构成展开式中特定项的组成部分. (3)分别求解再相乘,求和即可. 2.形如()n a b c ++的展开式问题应根据式子a b c ++的特点,将其转化为可以直接使用二项式定理的形式来解决(有些题目也可转化为计数问题解决),转化的方法通常为配方、因式分解、项与项结合,项与项结合时要注意合理性和简捷性.变式训练3 512x x ⎛++ ⎝的展开式中的常数项为______(用数字作答).答案:2解析:551122x x x x ⎡⎛⎛⎫+=+ ⎪⎢⎝⎝⎭⎣,且它的展开式的通项为521512C (0,1,,5)2kk k k x T k x -+⎛⎫=+= ⎪⎝⎭.设512kx x -⎛⎫+ ⎪⎝⎭的展开式的通项为515C r k rr k T x--+-=.5552522C (05,)k r r k r r r k k x x r k r -++-+----=-∈N . 令520r k --=,则25k r +=,可得1,2k r ==或3,1k r ==或5k =,0r =.当1,2k r ==时,所求常数项为1122254C 2C 2-⨯⨯⨯=2; 当3,1k r ==时,所求常数项为31152C C 2-⨯⨯=当5,0k r ==时,所求常数项为55C ⨯=综上,512x x ⎛+ ⎝+=. 题型4整除或近似计算例4 8386+被49除所得的余数是( ) A.14- B.0 C.14 D.35解析:由二项式定理展开,得838386(71)6+=++83182812828383837C 7C 7C 716=+⨯++⨯+⨯++278377M =+⨯+(M 是正整数)494912M =+⨯49N =(N 是正整数) 所以8386+被49除所得的余数是0. 答案:B变式训练4计算61.05=_______(精确到0.01). 答案:1.34解析6621.05(10.05)160.05150.05=+=+⨯+⨯++610.0510.30.0375 1.34⨯≈++≈.规律方法总结1.要牢记C k n k kn ab -是展开式的第1k +项,而非第k 项. 2.求解形如()()m n a bcd ++的展开式问题的思路 (1)若,m n 中有一个比较小,可考虑把它展开,如()222()()2()n n a b c d a ab b c d ++=+++,然后根据已知条件求解.(2)观察()()a b c d ++是否可以合并,如57(1)(1)x x +-⋅()55222[(1)(1)](1)1(1)x x x x x =+--=--.(3)分别得到(),()m n a b c d ++的二项展开式的通项,综合考虑. 3.二项式定理应用的常见题型及求解策略(1)整除问题和求近似值是能运用二项式定理解决的两类常见问题,整除问题中关注展开式的最后几项,而求近似值则关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用,注意选择合适的形式. (3)利用二项式定理进行近似计算:当n 不很大,||x 比较小时,0011(1)C C 1n n n x x x nx +≈+=+.若精确度要求较高,则可使用更精确的公式0011(1)C C n n n x x x +≈++222(1)C 12n n n x nx x -=++.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理知识点及11种答题技巧1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n nn n n n n C C C C C -+-++-=-=L ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=L ④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nn n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L L L 令则①令则024135(1)(1),()2(1)(1),()2n n n n nn a a a a a a a a a a a a ----++-++++=+---+++=L L ②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。

如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC-,12n nC+同时取得最大值。

⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法。

设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。

【二项式定理的十一种考题的解法】题型一:二项式定理的逆用;例:12321666 .n n n n n n C C C C -+⋅+⋅++⋅=L解:012233(16)6666n n nn n n n n C C C C C +=+⋅+⋅+⋅++⋅L 与已知的有一些差距,123211221666(666)6n n nn n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅L L 0122111(6661)[(16)1](71)666n n n n n n n n C C C C =+⋅+⋅++⋅-=+-=-L练:1231393 .n nn n n n C C C C -++++=L 解:设1231393n nn n n n n S C C C C -=++++L ,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+-L L (13)14133n n n S +--∴==题型二:利用通项公式求nx 的系数;例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n nC -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r r rrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。

练:求291()2x x-展开式中9x 的系数? 解:291821831999111()()()()222rr r r r r r r r r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。

题型三:利用通项公式求常数项; 例:求二项式210(x 的展开式中的常数项? 解:5202102110101()()2r rrrr r r T C x C x --+==,令52002r -=,得8r =,所以88910145()2256T C ==练:求二项式61(2)2x x-的展开式中的常数项? 解:666216611(2)(1)()(1)2()22r r r r r r r r rr T C x C xx ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=-练:若21()n x x+的二项展开式中第5项为常数项,则____.n =解:4244421251()()n n n n T C x C xx--==,令2120n -=,得6n =. 题型四:利用通项公式,再讨论而确定有理数项;例:求二项式9展开式中的有理项?解:12719362199()()(1)r r rrrr r T C x x C x--+=-=-,令276rZ -∈,(09r ≤≤)得39r r ==或, 所以当3r =时,2746r -=,334449(1)84T C x x =-=-, 当9r =时,2736r -=,3933109(1)T C x x =-=-。

题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若n 展开式中偶数项系数和为256-,求n .解:设n 展开式中各项系数依次设为01,,,n a a a ⋅⋅⋅1x =-令,则有010,n a a a ++⋅⋅⋅=①,1x =令,则有0123(1)2,n nn a a a a a -+-+⋅⋅⋅+-=② 将①-②得:1352()2,n a a a +++⋅⋅⋅=-11352,n a a a -∴+++⋅⋅⋅=-有题意得,1822562n --=-=-,9n ∴=。

练:若n的展开式中,所有的奇数项的系数和为1024,求它的中间项。

解:0242132112r r n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=Q L ,121024n -∴=,解得11n =所以中间两个项分别为6,7n n ==,565451462nT C x -+==⋅,611561462T x -+=⋅题型六:最大系数,最大项;例:已知1(2)2n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:46522,21980,n n n C C C n n +=∴-+=Q 解出714n n ==或,当7n =时,展开式中二项式系数最大的项是45T T 和34347135()2,22T C ∴==的系数,434571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,7778141C ()234322T ∴==的系数。

练:在2()na b +的展开式中,二项式系数最大的项是多少?解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即2112nn T T ++=,也就是第1n +项。

练:在(2nx的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少? 解:只有第5项的二项式最大,则152n+=,即8n =,所以展开式中常数项为第七项等于6281()72C =例:写出在7()a b -的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有34347T C a b =-的系数最小,43457T C a b =系数最大。

例:若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项?解:由01279,n n n C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22x x +=+Q1111212111212124444r r r r r r r rr r r r A A C C A A C C --+++++⎧≥≥⎧⎪∴=⎨⎨≥≥⎪⎩⎩,化简得到9.410.4r ≤≤,又012r ≤≤Q ,10r ∴=,展开式中系数最大的项为11T ,有121010101011121()4168962T C x x ==练:在10(12)x +的展开式中系数最大的项是多少?解:假设1r T +项最大,1102r r rr T C x +=⋅Q111010111121010222(11)12(10)22,r r r r r r r r r r r r C C A A r r A A r r C C --+++++⎧≥≥-≥⎧⎧⎪∴=⎨⎨⎨≥+≥-≥⎩⎪⎩⎩解得,化简得到6.37.3k ≤≤,又010r ≤≤Q ,7r ∴=,展开式中系数最大的项为7777810215360.T C x x == 题型七:含有三项变两项;例:求当25(32)x x ++的展开式中x 的一次项的系数?解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)r r r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x 它的系数为1445423240C C =。

相关文档
最新文档