小学奥数----最佳安排
小学奥数 构造与论证 精选例题练习习题(含知识点拨)
构造与论证教学目标1.掌握最佳安排和选择方案的组合问题.2.利用基本染色去解决相关图论问题.知识点拨知识点说明各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.知识点拨板块一、最佳安排和选择方案【例 1】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证【难度】2星【题型】解答【解析】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.【答案】10次【例 2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例 3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例 4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例 5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例 6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证【难度】4星【题型】解答【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以(2)不能【例 7】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证【难度】4星【题型】解答【解析】当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。
小学奥数题及答案---排队问题及答案
答案:92-45=47(人)女队员有47人。47-45=2(人)。女队员比男队员多2人
7. 小动物们排队做早操,第一排有1个小动物,然后每排每次增加2个小动物,一共排了8排,算一算一共有多少个小动物?
答案:列式1+3+5+7+9+11+13+15=64 (个),一共有64个小动物
答案:8号
9. 5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟.如果只有一个水龙头,试问怎样适当安排他们的打水顺序,才能使每个人排队和打水时间的总和最小?并出最小值.
答案:1×5+2×4+3×3+4×2+5×1=35(分钟)
10. 30个小朋友排队去参观,平均分成2队小华排在第一队,她的前面有3人,她的后面有几人?
答案:案每个小队有30÷2=15人,所以小华后面有15-3-1=11(人)
11. 上体育课时,同学们站好队,1、2报数,然后让报1的学生退出队列;再1、2报数,让报1的学生退出队列;从第三次开始,每次报数后,一律让报2的学生退出队列,直到最后一个人为止,问最后剩下的一个人最初排在队列的第几位?
答案:我们根据队列中最初的位置,按报数的顺序依次给每个学生编上序号1、2、3……,再让这列学生重复1、2报数。①如果每次全队报完数之后,都是报1的学生出列,则 第一次留下的学生是2、4、6……,都是2的倍数; 第二次留下的学生是4、8、12……,都是4(22)的倍数; 第三次留下的学生是8、16、24……,都是8(23)的倍数;……②如果每次全队报完数之后,都是报2的学生出列,则 第一次留下的学生是1、3、5……,都等于2的倍数加1; 第二次留下的学生是1、5、9……,都等于4(22)的倍数加1; 第三次留下的学生是1、9、17……,都等于8(23)的倍数加1;……根据上面的分析可知,在这个游戏中有两条规律一、按第①种规则游戏,n次后留下的学生中第一个的序号就是2n,最后留下的就是这列序号所含的2的最高次幂;二、按第②种规则游戏,则每次留下的学生中,第一个学生都是1号,直到最后留下的还是1号。
小学奥数思维训练-最佳策略问题(通用,含答案)
小学奥数思维训练-最佳策略问题学校:___________姓名:___________班级:___________考号:___________一、解答题1.有一堆棋子共有2002粒,甲、乙两人玩轮流取棋子的游戏.甲先取乙后取,并且规定每次取的棋子不能超过7粒,但不能不取.如果规定取到最后一粒棋子的人为胜者,那么甲应如何制定策略以取胜?2.某学校资金存款的年利息为10%,积压资金100元,相当于损失了10元.现在学校决定在初秋时购买冬季取暖用的煤.根据以往经验,在正常的冬季气温下要消耗煤15吨,但如果冬季比较暖和,只要用煤10吨;若冬季比较寒冷,就要用煤20吨.而煤的价格是根据天气的寒冷程度而变化的,在比较暖和、正常和寒冷的天气下,每吨煤的价钱分别是100元,150元,200元,而在初秋时每吨煤100元,在没有当年冬季气温的长期预测下,该校在初秋时应购进多少吨煤最好?3.用一只平底锅煎饼,每次只能放两张饼,煎熟一只饼需要2分钟(煎熟正面反面各需要1分钟).那么煎三只饼至少要几分钟?煎n(n≥2)只饼至少要几分钟?4.两个人轮流在国际象棋盘的空格内放入“相”棋(国际象棋盘为8×8的方格棋盘,共有64个格,“相”是国际象棋中的一种棋子,它的走法是沿斜线方向,格数不限,并且在它的行走路线上可攻击其他棋).一方持黑棋,另一方持白棋.当任何一方放入“相”棋时,要保证不被对方已放入的“相”棋的攻击.谁先无法放入棋子者为输.请问:先放入棋子者是赢是输?5.这是两人竞赛.方法是:在如图3所示的井字方格内填写符号,先填一方画“○”后填一方画“×”谁能够先使三个“○”或三个“×”排在一条直线上(水平或竖直或成45度角的直线),谁就获胜.那么,为了取胜,第一个“○”应画在哪里?相应地,第一个“×”又应画在哪里?试分析胜负的情况如何?6.某加油站每次只能对一辆车进行加油.加满一辆大卡车的油需要7分钟;加满一辆三卡车的油需要5分钟;加满一辆小汽车的油需要4分钟.现在有一辆大卡车、一辆三轮卡车、一辆小汽车同时来到加油站加油.问加油站应该怎样安排这三辆车的加油顺序,才能使总共需要的时间(包括加油及等候的时间)最省?7.三堆火柴分别有2001根、2002根、2003根.甲、乙两人轮流从中取出火柴.规则是:每人每次只能从其中的一堆中去取,最少要取一根,最多可全部取走,可以任意选择,谁取完最后一堆的最后一根谁就获胜.如果甲先取,要保证获胜,他应该制定怎样的策略?8.有m个减号“-”号排成一行,甲、乙两人轮流将减号“-”改成加号“+”,每次只能改其中的一个或者是相邻的两个,但不能不改,谁将最后剩下的减号“-”改为加号“+”谁就获胜.如果甲先改,请问甲是否有必胜的策略?9.甲、乙两个人按自然数顺序轮流报数,每人每次只能报1个或2个数,但不能不报.例如,甲报1,乙就接着报2或2、3;而甲也可以报1、2,乙接着报3或3、4.这样连续报下去,谁报出100,谁就获胜.甲要怎样才能获胜?先报还是后报?10.在黑板上写下数1,2,3,4,…,100,101,甲先擦掉其中的一个数,然后乙再擦去一个数.如此轮流下去,直到最后只剩下两个数为止,若最后剩下的两个数互素,则甲胜;若最后剩下的两个数不互素,则乙胜.按此规则,请为甲制定一个必胜策略.11.有2002个空格排成一行,第一格中放入一枚棋子,每次可向前移动3格或6格,由甲乙两人交替走,以先到最后一格者为胜,问先走胜还是后走胜?如何取胜?12.车间内有5台机器同时出了故障,从第1台到第5台的修复时间依次是15、8、29、7、10分钟.每台机器停产一分钟都将造成10元的经济损失.如何安排修复顺序,使经济损失最少?最少要损失多少元?13.有66吨煤要从煤场运到发电厂,大卡车的载重量是5吨,耗油量是10升;小卡车的载重量是2吨,耗油量是5升.如果要使总耗油量最少,应该如何安排大小卡车.14.社办厂生产两种产品:制造一公斤甲种产品要花1个劳动日,用原料5公斤.制造1公斤乙种产品要花2个劳动日,用与甲同样的原料3公斤.假如甲种产品每公斤利润为700元,乙种产品每公斤利润600元,并且社办厂只有750公斤原料,生产两种产品只允许花220个劳动日,试问:甲、乙两种产品各生产多少公斤时,才能使社办厂获利最大?参考答案:1.由于2002÷8=250…2,所以一开始甲先取2粒棋子,以后的每一轮,乙如果取a(1≤a≤7)粒棋子,甲就取(8-a)粒,从而到最后一轮前,只剩下8粒棋子,而轮到乙取,无论乙取几粒棋子,甲都可以将剩下的棋子一次取完,从而获得胜利.【解析】【详解】甲为了能取到最后一粒棋子,必须使得当他取到倒数第二轮时,还有8粒棋子.因为此时轮到乙来取,乙最少要取1粒,最多只能取7粒,因此无论乙取几粒,甲都可以将剩下的棋子一次取完,从而保证必胜.可见,“8”是个关键数字,一开始甲取的棋子数,应该保证余下的棋子数是8的倍数.往后的每一轮,不管乙取多少粒(1至7粒),甲总可以使自己所取的棋子数和乙所取棋子数和为8,从而将主动权控制在自己手中.这样到了最后一轮,只剩下8粒棋子,迫使乙败,从而甲取胜.2.花2000元购进20吨的煤最好.【解析】【分析】注意到在初秋时若少买了煤在冬天要花更多的钱去买煤,而买多了煤,则烧不完有积压资金,会造成损失.因而买多少煤是一个策略问题.根据题意,学校现在有三个策略:购买10吨、15吨、20吨.我们比较这三具策略,选择出最佳策略.【详解】(1)如果学校在初秋时购买了10吨煤,则当天天气正常时要再购进5吨煤,总共花费了100×10+150×5=1750(元);当天气转寒时要再购进10吨煤,总共花费了100×10+200×10=3000(元).(2)如果学校在初秋时购买了15吨煤,则当天天气转暖时,积压资金为5吨煤的钱100×5=500(元),而当天气转寒的时候,需要再购进5吨煤,共花费100×15+200×5=2500(元).(3)如果学校在初秋时购买了20吨煤,则当天气正常时积压资金为100×5=500(元);天气转暖时积压资金为:100×10=1000(元).比较上面三种策略,第一种策略的最大损失是在天气冷的时候,比预先买20吨煤损失了(200-100)×10=100×10=1000(元).第二种策略最大的损失是在天气冷的时候,比预先买20吨煤损失了(150-100)×5=50×5=250(元).第三种策略最大的损失是在天气转暖的时候,此时积压资金为1000元,而学校资金存款的年利息为10%,相当于损失了2年的利息,即损失了1000×10%×2=200(元).所以最佳策略是花2000元购进20吨的煤,此时可能的损失最小.3.煎三只饼至少要3分钟,煎n(n≥2)只饼至少要n分钟【解析】【分析】煎三只饼若是一只一只地煎,要6分钟;但是每次可以放两只饼,可以同时煎熟两种饼,现煎第三只饼,这样共需要4分钟,但是这两种策略都不是最佳策略.【详解】煎三只饼至少需要三分钟.因为,第一次煎两个饼,一分钟后两个饼都熟了一面,此时将第二只取出,第一只翻个面,再放入第三只.又煎了一分钟,第一只煎好取出,第三只翻个面,再将第二只放入,再煎一分钟,全部煎熟了。
小学二年级奥数-合理安排时间
合理安排时间1、小红早晨起床后要做五件事:叠被用3分,刷牙洗脸4分,烧开水10分,吃早饭8分,整理书包2分,冲牛奶1分。
请你安排一下,用尽可能短的时间做完全部事情。
2、爸爸让小林自己用奶粉冲一杯牛奶,洗水壶要1分,洗杯子和汤匙各要1分,烧开水要12分,取奶粉2分,小明怎样安排最合理,使自己尽快喝上牛奶?3、李涛参加学校的乒乓球队,每次训练时,更换衣服要用3分,更换鞋子要用2分,取球拍要1分,准备活动4分,看黑板上的训练内容要2分,怎样安排,自己能尽快投入训练?4、妈妈每天早晨上班前要做几件事:整理房间8分,刷牙洗脸4分,洗衣服(洗衣机)15分,晾晒衣服4分,吃早饭6分,要使所用的时间最短,应当怎样安排?最短的时间是多少?5、理发店同时进来三位顾客,甲理发、刮胡子不吹风,乙只刮胡子不理发,丙理发、吹风还刮胡子。
店里只有一位理发师,请安排一个合理的先后顺序。
6、王、张、李三人同时到一个小吃部吃早饭,姓王的吃面条要等5分,姓张的吃水饺要等4分,姓李的吃鸡蛋炒饭要等3分。
怎样安排,使得三人等待的时间总和最少?7、给一块小木块两面涂漆,一面刷漆要1分,但必须等5分钟漆干后才能给另一面刷漆,那么漆完6块这样的小木板至少需要多少分?8、用一只平底锅煎饼,每次只能放两块饼,煎一块需要2分(正、反面各需1分)。
煎5块饼至少需要几分?9、两个漆工要给三块同样的木板的正、反面刷漆,每面需2分,怎样安排,油漆的时间最少?最少的时间是几分?10、三个人去开水房冲开水,小王冲一大杯水用1分,小田冲一瓶水需用5分,小方冲一瓶水用6分。
怎样安排使等候时间的总和最少,这个时间最少是多少?12、有6个人各拿1只水桶到水龙头接水,水龙头给6个人的桶注满所需的时间分别是6分,4分,3分,5分,7分和9分。
现在只有一个水龙头可以接水,怎样安排,使他们等候时间最短?这个最短的时间是多少?。
小学生奥数学习计划
小学生奥数学习计划一、学习目标1. 掌握基础数学知识,包括加减乘除和分数运算等;2. 养成良好的数学思维和解题能力;3. 准备参加奥数比赛,争取获得更好的成绩。
二、学习方法1. 注重基础知识的巩固,通过反复练习提高计算速度和准确度。
2. 多做奥数题目,丰富解题思路,提高解题能力。
3. 加强与同学的讨论交流,学习他人的解题方法,取长补短。
4. 遇到难题不懂得及时向老师或家长请教,及时消化问题。
5. 不断激发学习的兴趣,保持积极的学习态度。
三、学习安排1. 每天至少安排1-2个小时专门进行奥数学习,包括巩固基础、做题、讨论。
2. 坚持每周一次的奥数课外辅导班,听取老师讲解,及时解决遇到的问题。
3. 假期时间要加大奥数学习的时间,多做题,参加奥数训练班。
四、监督管理1. 与家长进行交流沟通,定期汇报学习进展和问题,听取家长的建议,及时调整学习计划。
2. 老师定期对学生进行奥数学习情况的考核,及时发现问题解决问题。
五、奖励机制1. 根据学习计划的完成情况,制定奖励机制,鼓励学生取得更好的成绩。
2. 通过参加奥数比赛,获得好成绩的学生给予额外的奖励。
六、学习环境1. 营造良好的学习氛围,提供安静的学习环境。
2. 家庭成员要支持学生的奥数学习,给予鼓励和帮助。
3. 参加奥数学习的同学要互相鼓励和交流,一起进步。
七、注意事项1. 学习奥数的过程需要坚持不懈,不能轻言放弃。
2. 学习奥数不仅需要学习知识,还需要培养学生的逻辑思维和解决问题的能力。
3. 学习过程中要有耐心,不能急于求成,一切顺其自然。
4. 学习过程中要善于总结方法,及时纠正错误,不要犯同样的错误。
以上是小学生奥数学习计划,希望同学们能够按照计划认真学习,踏实进步,取得更好的成绩。
同时,家长和老师也要积极配合,共同努力,为学生提供更好的学习环境和鼓励支持,让他们在奥数学习中有所收获。
广西柳州市小学数学小学奥数系列8-6-1构造与论证
广西柳州市小学数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分) (2019二下·京山期末) 李枫、张亮、刘冰一起排队上车,李枫排在张亮和刘冰的中间,张亮不是第一个,排在第一个的是________,排在最后的是________。
2. (5分)桌子上放着7只茶杯,全部是杯底朝上,每次翻转2只茶杯,称为一次翻动,经过多少次翻动,能使7只茶杯的杯口全部朝上?3. (5分)张老师把红、白、蓝三种颜色的气球分给三位小朋友,根据下面的对话,你能猜出他们分到的各是什么颜色的气球吗?4. (5分)一把11厘米长的尺子,可否只刻3个整数刻度,即可用于量出1到11厘米之间的任何整数厘米长的物品长度?如果可以,问应刻哪几个刻度?5. (10分)振华小学组织了一次投篮比赛,规定投进一球得分,投不进倒扣分.小亮投了个球,投进了个.那么,他应该得多少分?6. (5分)向阳小学有730个学生,问:至少有几个学生的生日是同一天?7. (5分)架子上摆着大、中、小三种皮球,只知道小皮球每只20元,每层皮球的价钱同样多,每只中皮球和大皮球各需要多少元?8. (10分)四个孩子老孙和老陈两家都有两个年龄不到9岁的男孩,四个孩子的年龄各不相同.一位邻居这样介绍:①小明比他哥哥小3岁.②海涛的年龄最大.③小峰的年龄恰好是老陈家其中一个孩子的年龄的一半.④奇志比老孙家第二个孩子大5岁.⑤他们两家五年前都只有一个孩子.谁是哪一家的孩子?每个孩子的年龄各是多少?9. (5分)猴子每分钟能掰一个玉米,在果园里,一只猴子5分钟能掰几个玉米?10. (2分)在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?11. (5分)王大婶有三个儿子,这三个儿子又各有一个姐姐和妹妹,请问王大婶共有几个孩子?12. (5分)东东、西西、北北三人进行乒乓球单循环赛,结果人获胜的场数各不相同.问第一名胜了几场?13. (5分)一个乡村小学,A、B、C三位老师共同承担全校语文、数学、品德、体育、音乐、美术六门课,每人教两门.根据下列条件判断他们分别教哪两门课.①A喜欢和体育老师、数学老师游泳.②B和音乐老师、语文老师都喜欢踢足球.③体育老师比语文老师年龄大.④B不是体育老师.⑤品德老师和数学老师喜欢下棋.(提示:是某个学科的老师就在下面用“√”表示,不是就用“×”表示,根据上面的条件,填写下表.)14. (5分)三年级一班新转来三名学生,班主任问他们三人的年龄.刘强说:“我12岁,比陈红小2岁,比李丽大1岁.”陈红说:“我不是年龄最小的,李丽和我差3岁,李丽是15岁.”李丽说:“我比刘强年岁小,刘强13岁,陈红比刘强大3岁.”这三位学生在他们每人说的三句话中,都有一句是错的.请你帮助班主任分析出他们三人各是多少岁?15. (5分)有六位好朋友围着一张圆桌一起吃饭。
小学四年级奥数题
奥数1小学四年级奥数题:统筹规划1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。
现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。
最短时间是多少分钟呢?6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
要过河时间最少?是多少?四年级奥数题:速算与巧算(一)1.【试题】计算9+99+999+9999+999992【试题】计算199999+19999+1999+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)4【试题】计算9999×2222+3333×33345.【试题】56×3+56×27+56×96-56×57+566.【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,儿子23岁。
小学奥数 构造与论证 精选练习例题 含答案解析(附知识点拨及考点)
1. 掌握最佳安排和选择方案的组合问题.2. 利用基本染色去解决相关图论问题.知识点说明 各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.板块一、最佳安排和选择方案 【例 1】 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证 【难度】2星 【题型】解答【解析】 因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.知识点拨知识点拨教学目标构造与论证所以,共需调换4+3+2+1=10次.【答案】10次【例2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证 【难度】4星 【题型】解答【解析】 (1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以 (2)不能【例 7】 在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证 【难度】4星 【题型】解答【解析】 当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。
小学奥数系列8-6-1构造与论证及参考答案
小学奥数系列8-6-1构造与论证一、最佳安排和选择方案1. 一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是________颜色(填“黑”或者“白”).2. 在黑板上写上、、、、……、,按下列规定进行“操怍”:每次擦去其中的任意两个数和,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?3. 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?4. 在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?5. 有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2) 3堆中的所有石子都被取走?6. 在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?7. 在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?8. n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1) n=4是否可能?(2) n=5是否可能?9. 如图,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M。
小学五年级奥数——统筹安排和最佳策略
小学五年级奥数——统筹安排和最佳策略【知识要点】科学的安排时间,合理地设计工作步骤使工作时间最短、需要的人数最少、路线最短、费用最省等等的方法,叫做统筹法,也叫做最佳选择。
游戏当中的统筹安排可以让你,运筹帷幄,决胜千里,把它叫做“最佳策略”是研究具有竞争或者利益对抗活动战术(取胜方法)的一门数学分支,比如我们常玩的游戏“石头、剪子、布”,就是策略问题的典型例子,历史上最著名的以弱胜强,凭借智谋与策略决胜的例子是“田忌赛马”的故事。
在我们数学竞赛中,也有这一类很有趣味的智力游戏题,利用数学中的原理和方法,正确、合理地选择“战术”策略,那你就能战无不胜,做一名“常胜将军”。
解决策略问题,我们通常采用的方法是:倒推法、对称法、配对法和归纳法。
【例题】例1、【时间最短】现在有一个铁锅,一次只能烤2个饼,每烤一面要3分钟,芳芳要烤3个饼,最少要多少时间?如果要烤1个、5个、10个、n个呢?3个:3×3=9分*1个:3+3=6分5个:3×5=15分10个:3×10=30分n个:当n=1时,需6分当n>1时,需3n分例2、【费用最省】A、B两个粮站分别有大米90吨、80吨,甲、乙、丙三个居民点分别需要大米40吨、50吨、60吨。
从A、B两粮站每运1吨大米到三个居民点的运费如下表所示。
如何调运才能使运费最少?运费是多少?650(元)例3、【人数最少】山区有一个工厂.它的十个车间分散在一条环行的铁道上.四列货车在铁道上转圈运送货物。
货车到了某一车间,就要有装卸工人装上或卸下货物.各车间由于工作量不同,所需装卸工人数也不同,各车间所需装卸工人数如图所示。
当然,装卸工可以固定在车间等车;也可以坐在货车上跟车到各车间去干活;也可以一部分装卸工固定在车间,另一部分跟车.问怎样安排跟车人数和各车间固定人数,才能使装卸工的总人数最少?最少需多少名工人?如跟车人数为57,则各车间都不用安排人,但这样在需要人数少的车间,浪费人力,不行;为此找出各车间人数的平均数,后再调整。
小学五年级奥数——统筹安排和最佳策略
【知识要点】科学的安排时间,合理地设计工作步骤使工作时间最短、需要的人数最少、路线最短、费用最 省等等的方法,叫做统筹法,也叫做最佳选择。
游戏当中的统筹安排可以让你,运筹帷幄,决胜千里,把它叫做“最佳策略”是研究具有竞争 或者利益对抗活动战术(取胜方法)的一门数学分支,比如我们常玩的游戏“石头、剪子、布”就 是策略问题的典型例子,历史上最著名的以弱胜强,凭借智谋与策略决胜的例子是“田忌赛马”的 故事。
在我们数学竞赛中,也有这一类很有趣味的智力游戏题,利用数学中的原理和方法,正确、合 理地选择“战术”策略,那你就能战无不胜,做一名“常胜将军”。
解决策略问题,我们通常采用的方法是:倒推法、对称法、配对法和归纳法。
【例题】例1、【时间最短】现在有一个铁锅,一次只能烤2个饼,每烤一面要3分钟,芳芳要烤3个饼,最少要多少时间?如 果要烤1个、5个、10个、n 个呢?3 个:3X3=9 分*1 个:3+3=6 分5 个:3X5=15 分10 个:3X10=30 分n 个:当n=1时,需6分当n>1时,需3n 分例2、【费用最省】A 、B 两个粮站分别有大米90吨、80吨,甲、乙、丙三个 居民点分别需要大米40吨、50吨、60吨。
从A 、B 两粮 站每运1吨大米到三个居民点的运费如下表所示。
如何调 运才能使运费最少?运费是多少? 650 (元)例3、【人数最少】 山区有一个工厂.它的十个车间分散在一条环行的铁道上. 车在铁道上转圈运送货物。
货车到了某一车间,就要有装卸工人装 上或卸下货物.各车间由于工作量不同,所需装卸工人数也不同, 各车间所需装卸工人数如图所示。
当然,装卸工可以固定在车间等 车;也可以坐在货车上跟车到各车间去干活;也可以一部分装卸工 固定在车间,另一部分跟车.问怎样安排跟车人数和各车间固定人 数,才能使装卸工的总人数最少?最少需多少名工人?小学五年级奥数统筹安排和最佳策略 范配 舌工占 X 甲 乙5. 3 7 :: 二’ 5 1D四列货如跟车人数为57,则各车间都不用安排人,但这样在需要人数少的车间,浪费人力,不行;为此找出各车间人数的平均数,后再调整。
小学奥数(4)简单的统筹规划问题 进位制
• 解:先派20辆车都从A开始运渣土到B,再 空车开往C把砖到D,最后空车跑回A处, 这样,两圈就可以运40车渣土和40车砖, 最后派这20辆车都从A处运渣土到B后空返 回,完成了所有任务。这时空车总共跑了 (240+90)×40+300×20=19200(米)
2、避免对流原则
• 例2、一只勘探队在 五个山头A、B、C、 D、E设立了基地, 人数如右图所示。 为了使各基地人数 相同,如何调动就 方便?(调动时不 考虑路程的远近)
• 解:因为一号与二号仓库的货物共有30吨, 比五号仓库的40吨少,所以全部集中在五 号仓库总运费最少,为 • 0.5×10×400+0.5×20×300 • =2000+3000=5000(元) • 答:
二、下料问题
• 例4 、189米长的钢筋要剪成4米或7米两种 尺寸,如何剪法最省材料? • 分析:显然,无余料是最优化方案, • 设4米长的截x根,7米长的截y根,根据题 意得:4x+7y=189 • 然后用不定方程的同余法求出共有7种截法, y≤27 • 7y≡3y≡189≡1(mod 4)
A 17 B
4
9
E
16
C
14 D
• 右图叫做物资流 向图,用利用流 向图来表述调运 方案,能直观地 看出调运情况及 有无对流现象。 • 有对流现象的调 运方案不可能是 最优化方案。
A 4 B 17
1 9 E
4
4
2
16
C
14 D
原则3、小往大处靠原则
例3、在一条公路上,每隔100 千米有一个仓 库,(如图)共5个仓库。一号仓库里有10 吨货物,二号仓库里有20 吨货物,五号仓 库里有40吨货物。其余两个仓库是空的。 现在想把所有的货物集中存放在一个仓库 里,如果每吨货物运输1千米需要0.5元运输 费,那么,怎样运输才能使运费最少?最 少需要多少运费?
(完整word版)7小学奥数练习题--合理安排时间定
小学奥数练习题(最合理安排)姓名1、放假期间,小丽跟妈妈学烧鱼,她有条理地作如下几件事:洗鱼、切姜片、洗锅、将锅烧热、把油烧热、煎鱼,分别用2分钟、1分钟、2分钟、1分钟、1分钟、10分钟.问小丽烧好鱼至少要用( )分钟。
2、芳芳要为奶奶冲杯热果汁,可是开水用光了,她需要烧开水(6分钟),打开果汁瓶(1分钟),洗茶杯(2分钟),她至少需要( )分钟,才能让奶奶喝上果汁。
3、小林为家里做饭,他择菜需要3分钟,洗菜要2分钟,淘米要2分钟,煮饭要15分钟,切菜要4分钟,炒菜6分钟,如果只有单火头煤气灶,做完这些事情至少需要()分钟。
4、小明每天早晨起床后要做如下事情︰洗漱用5分钟,收拾床褥用4分钟,听广播15分钟,吃早飯8分钟。
要完成這些事情,小明至少要花费多长时间?5、小美招待客人,要烧水沏茶。
洗开水壶要3分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯要用5分钟,拿茶叶要用1分钟。
小美估算了一下,完成这些工作最多要用21分钟。
为了使客人早点喝上茶,怎样安排,多少分钟能沏好茶?6、小明帮妈妈做家务,需要做:用洗衣机洗衣服(20分钟)、扫地(10分钟)、整理书桌(10分钟)、晾衣服(5分钟)。
帮小明想一想怎样合理安排呢?7、小明需要完成的作业:上网查资料(10分钟)、打印资料(5分钟)、读英语故事(4分钟)、练口算(3分钟),他应该如何合理安排完成各项作业呢?8、妈妈中午做饭的工序是:淘米1分钟,煮饭18分钟,洗菜、切菜2分钟,炒菜5分钟,洗碗4分钟,擦桌子3分钟。
请你为妈妈设计一下,怎样做更省时,最少要几分钟?9 A、B、C、D四位同学分别拿着5、3、4、2个暖瓶去打开水,热水龙头只有一个,怎么安排他们打水的顺序,才使他们打完水所花的总时间(含排队、打水的时间)最少?假如打满一瓶水需1分钟,那么打水的总时间是多少分钟?10、妈妈用一只平底锅煎鱼,每次只能放两条鱼,煎一条需要2分钟(正、反两面各需1分钟),煎9条鱼至少需要几分钟11、在火炉上烤烧饼,烤好一个烧饼需要4分钟,每烤完一面需要2分钟,炉上只能同时烤2个饼,現在要烤3个烧饼,至少需要多长时间?12、学校大扫除,四位同学各拿大小不一的桶一同去打水,注满这些水桶,第一人需要5分钟,第二人需要3分钟,第三人需要4分钟,第四人需要2分钟.现在只有一个水龙头,应如何安排这四个人打水次序,使他们花费的等候时间总和最少,这个时间等于()分钟.13、在一条公路上,每隔100千米有一个仓库,共有5个仓库,一号仓库有10吨货物,二号仓库有20吨货物,五号仓库有40吨货物,其余两个仓库是空的,现在要把所有货物集中到一个仓库里,如果每吨货物运输1千米需要1元运费,那么最少的运费是()元.14、小蓝比小红少10 只笔,后来小蓝送给妹妹4只,小红又买来6只,这时小红的笔数比小蓝多2倍,问原来小蓝和小红各有多少只笔?。
小学奥数之最佳安排
最佳安排我们每天的生活、学习都离不开时间,但是你知道时间有大学问吗?合理地安排时间,往往会达到事半功倍的效果。
科学地安排时间的方法,就叫做最佳安排。
小朋友在进行最佳安排时,要考虑以下几个问题:(1)要做哪几件事:(2)做每件事需要的时间;(3)要弄清所做事的程序,即先做什么,后做什么,哪些事可以同时做。
在学习、生产和工作中,只有尽可能地节省时间、人力和物力,才能发挥出更大的效率。
例题1 明明早晨起来要完成以下几件事情:洗水壶1分钟,烧开水12分钟,把水灌入水瓶要2分钟,吃早点要8分钟,整理书包2分钟。
应该怎样安排时间最少?最少要几分钟?思路导航:经验表明:能同时做的事尽量要同时去做,这样节省时间。
水壶不洗,不能烧开水,因而洗水壶不能和烧开水同时进行;而吃早点和整理书包可以和烧开水同时进行。
这一过程可用方框图表示:1分钟从图上可以看出,洗水壶要1分钟,接着烧开水要12分钟,在等水开的同时吃早点、整理书包,水开了就灌入水瓶,共需15分钟。
练习一1,红红早晨起来刷牙洗脸要4分钟,读书要8分钟,烧开水要10分钟,冲牛奶1分钟,吃早饭5分钟。
红红应怎样合理安排?起床多少分钟就能上学了?2,玲玲想给客人烧水沏茶。
洗水壶要2分钟,烧开水要12分钟,买茶叶5分钟,洗茶杯要1分钟,冲茶要1分钟。
要让客人尽早喝上茶,你认为最合理的安排需要多少分钟客人就能喝上茶了?3,小李阿姨要出门,出门之前她要完成以下几件事:整理房间5分钟,把衣服和水放入洗衣机要1分钟,洗衣服自动洗涤要12分钟,擦鞋要3分钟。
怎样合理安排,小李阿姨在多少分钟后就可以出发了?例题2 贴烧饼的时候,第一面需要烘3分钟,第二面需要烘2分钟,而贴烧饼的架子上一次最多只能放2个烧饼。
要贴3个烧饼至少需要几分钟?思路导航:先放第一、二两个烧饼贴第一面,过3分钟后,拿下第一个,并把第二个翻过去,并放上第三个烧饼;过2分钟拿下第二个,并放第一个烧饼,过1分钟把第三个烧饼翻过来;再过1分钟取下第一个烧饼,再过1分钟三个烧饼全贴完了,只用了8分钟。
黑龙江省佳木斯市数学小学奥数系列8-6-1构造与论证
黑龙江省佳木斯市数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分)甲、乙、丙、丁四个足球队进行单循环赛,就是每两个队之间都要比一场,胜者得3分,负者得0分,平者各得1分.比赛结束后,甲队共得6分,乙队共得4分,丙队共得2分,那么丁队共得________分.2. (5分) (2020五下·郯城期中) 小刚去买文具,日记本3元一本、钢笔4元一支、文具盒12元一个。
如果小刚买了一些钢笔和文具盒,他付给营业员50元,找回17元,找的钱对吗?写出你的理由。
3. (5分)四个同学参加网上棋类比赛,每两个人都要赛一场.规定如下:胜者得分,负者不得分,平局得分.比赛结果如下:两名同学并列第一名,两名同学并列第三名.已知比赛中有平局,那么第一名同学得多少分?4. (5分)(2011·广州模拟) 甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?5. (10分)想一想,小动物们怎样才能过河?只有下面两艘船,5只小动物要同时过河,该怎样乘船?6. (5分)在长为100m的笔直马路一侧站了12人,不管他们怎样站,至少有两人的距离小于10m.这是为什么呢?7. (5分)学校新来了一位老师,五个学生分别听到如下的情况:⑴是一位姓王的中年女老师,教语文课;⑵是一位姓丁的中年男老师,教数学课;⑶是一位姓刘的青年男老师,教外语课;⑷是一位姓李的青年男老师,教数学课;⑸是一位姓王的老年男老师,教外语课.他们每人听到的四项情况中各有一项正确.问:真实情况如何?8. (10分)有三个女孩穿着崭新的连衣裙去参加游园会。
一个穿花的,一个穿白的,一个穿红的,但不知哪一个姓王,哪一个姓李,哪一个姓刘。
小学奥数专题--排列组合
.✧排列问题题型分类:1.信号问题2.数字问题3.坐法问题4.照相问题5.排队问题✧组合问题题型分类:1.几何计数问题2.加乘算式问题3.比赛问题4.选法问题✧常用解题方法和技巧1.优先排列法2.总体淘汰法3.合理分类和准确分步4.相邻问题用捆绑法5.不相邻问题用插空法6.顺序问题用“除法”7.分排问题用直接法8.试验法9.探索法10.消序法11.住店法12.对应法13.去头去尾法14.树形图法15.类推法16.几何计数法17.标数法18.对称法分类相加,分步组合,有序排列,无序组合基础知识(数学概率方面的基本原理)一.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1中不同的方法,在第二类办法中有M2中不同的方法,……,在第N类办法中有M n种不同的方法,那么完成这件事情共有M1+M2+……+M n种不同的方法。
二.乘法原理:如果完成某项任务,可分为k个步骤,完成第一步有n1种不同的方法,完成第二步有n2种不同的方法,……完成第k步有nk种不同的方法,那么完成此项任务共有n1×n2×……×nk种不同的方法。
三.两个原理的区别⏹做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。
每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)⏹做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同⏹这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.四.排列及组合基本公式1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号P m n表示.P m n =n(n-1)(n-2)……(n-m+1)=n!(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号C m n表示.C m n = P m n /m!=n! (n-m)!×m!一般当遇到m比较大时(常常是m>0.5n时),可用C m n = C n-m n来简化计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最佳安排
1、小龙早晨起来要做这几件事:洗发壶1分钟,烧开水15分钟,拿牛奶2分钟,吃早点8分钟,整理书包4分钟,灌水瓶2分钟,小龙应该怎样安排时间最少?最少要用几钟?
2、小红想给客人浇水沏茶,洗水壶要2分钟,烧开水要12分钟,买茶叶要5分钟,洗茶杯要1分钟,沏茶要1分钟,你认为最合理的安排需要多少分钟?
3烤面包的架子上一次最多只能放两个面包,烧一个面包每面需要2分钟,小华要烤3个面包,最少需要多少分钟?
4、星期日,小华要家学做家务活,她扫地要5分钟,拖地要10分钟,擦桌椅5分钟,用洗衣机洗衣服35分钟,整理房间8分钟,晾晒洗好的衣服5分钟。
小华应该怎样安排呢?请你帮她把要做的事情的顺序设计一下,再算一算最少要用多长时间?
5、有一人要带着鸡、狗和一筐菜渡河到对岸去,当这个人在场时,狗不敢追鸡,鸡不敢吃菜,渡河时,这个人每次只能带一物过河,怎样才能使这个人和鸡、狗、菜全部渡过河去?请你设计一下?
6、甲、乙、丙三人同时到某公司洽谈业务,甲10分钟能洽谈完,乙16分钟能洽谈完,丙12分钟能洽谈完,怎样安排三人洽谈的顺序,使三人的总时间最少,最少是多少分钟?
7、小丽早上起来刷牙洗脸要3分钟,洗开水壶1分钟,读书要8分钟,烧开水要18分钟,灌开水2分钟,冲牛奶1分钟,吃早饭5分钟,小丽要怎样安排?最少要几分钟?
8、家里有客人来,小明准备烧水烧沏茶,洗开水壶要用1分钟,烧开水要用14分钟,洗茶壶要2分钟,洗茶杯要用5分钟,拿茶叶要用2分钟,沏茶要用2分钟,你认为怎样安排才能让客人在最短的时间内喝上茶?最短要多长时间?
9、用一平底锅煎饼,每次只能同时放两个饼,如果煎一个饼需要4分钟(正面、反面各需要2分钟),现在需要煎三个饼,最少需要几分钟?
10、小红要和妈妈上街去,出门之前她们要完成以下几件事:整理5分钟,用洗衣机自动洗涤20分钟,晾洗好的衣服2分钟,擦鞋4分钟,梳头洗脸8分钟,收拾包袋2分钟。
请你帮她们把要做的事情合理安排一下,算一算她们在多长时间后变可以出发了。
11、有一个人乘坐小船过河,他带了一只狐狸、一只鸡和一筐米。
他每次过河只能带一样东西,而且没人在的时候,狐狸会吃鸡,鸡会吃米。
这个人怎样过河,才能使三样东西都能完整地渡河?
12、三个同学去图书馆借阅图书。
甲需要 4分钟,乙需要8分钟,丙需要3分钟,怎样安排他们借书的顺序,使他们花的时间最少?最少要多少时间?
13、丁丁每天早晨要完成这样几件事?烧开水15分钟,灌开水1分钟,整理书包2分钟,收拾3分钟,吃早饭10分钟,为了尽快做完这些事,怎样安排最合理?最少要用几分钟?
14、家里要来客人,妈妈烧开水准备给客人沏茶。
烧开水要10分钟,洗开水壶要1分钟,洗茶杯要3分钟,取茶叶要2分钟,沏茶要1分钟。
为了让客人尽早喝上茶,该怎样安排?最少要几分钟?
15、用一只平底锅煎饼,每次能同时放两块饼,如果煎一块饼需要6分钟(正反面各需3分钟),那么煎9块饼最少需要几分钟?
16、小玲给奶奶煮面条,买面条5分钟,切葱花2分钟,洗锅1分钟,烧开水8分钟,把面条煮熟3分钟,洗碗2分钟,请你帮忙设计一下如何安排可以让奶奶尽快吃到面条,最少需要几分钟?
17、一位动物管理员带了狼、兔和一筐萝卜要渡河到对岸去,他每次过河只能带一样东西,而且在没人的时候,狼会吃兔,兔会吃萝卜。
这位管理员应该怎样过河才能保证三样东西都完整?
18、学校医务室里有三名同学等候医生治病。
甲需要打针5分钟,乙需要换纱布8分钟,丙需要点眼药水2分钟,怎样安排他们在医务室等候的时间才能使时间总和最少?最少是几分钟?。