九年级数学概率课件2

合集下载

人教版数学九年级上册25.3用频率估计概率课时2课件

人教版数学九年级上册25.3用频率估计概率课时2课件

.
对接中考
1
解:随机产生m个有序数对(x,y),对应的点在平面直角坐标系中全部在如图
所示的正方形的边界及其内部,
这些点中到原点的距离小于或等于1的n个点在图中阴影部分内,
则有
∴π=
1

4
1
4

=




对接中考
2
如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次
投掷试验,结果统计如下:
答:该地区还需移植这种树苗约15万棵.
新知探究
根据估计的概率可以知道,在 10 000 kg 柑橘中完好柑橘
的质量为
10 000×0.9=9 000(kg).
设每千克柑橘售价为 x 元,则
9 000x -2×10 000=5 000.
解得
x ≈ 2.8(元).
因此,出售柑橘时,每千克定价大约2.8元可获利润5000元.
课堂小结
频率与概率
从所有的柑橘中随机抽取若干柑橘,
进行“柑橘损坏率”统计,并把获得的数
据记录在下表中.请你帮忙完成下表.
柑橘在运输、储存
中会有损坏,公司必
须估算出可能损坏的
柑橘总数,以便将损
坏的柑橘的成本折算
到没有损坏的柑橘售
价中.
柑橘总质量 n /kg
柑橘损坏的概
50
0.1
率是
.(保留
100
一位小数)
150
损坏柑橘质量 m /kg
“兵”字面朝上的次数 14
“兵”字面朝上的频率 0.70
40
18
0.45
60
38
0.63
80
47

人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)

人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)
P(没有中奖).
(1).
练习巩固
练习3 已知:在一个不透明的口袋中装有仅颜色不同的红、白 两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白 球的概率为四分之三,求n 的值.
解:P(摸出白球).
根据题意得n=9.
经检验,n=9是原分式方程的解.
做一做
小明和小刚想通过抽取扑克牌的方式来决定谁去看电影, 现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.
解:(1)指向红色有1种结果, P(指向红色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
各边相等的圆内接多边形是正多边形吗?
以四边形为例
A
已知:如图, O 中内接四边形
ABCD ,
AB=BC=CD=DA .
B
求证:四边形ABCD是正方形.
D O
C
思考
已知:如图, O 中内接四边形ABCDE,
AB=BC=CD=DA .
A
D
求证:四边形ABCD是正方形.
证明: AB BC CD DA ,
你能设计出几种方案?
课堂小结
(1)在计算简单随机事件的概率时需要满足两个前 提条件:
每一次试验中,可能出现的结果只有有限个; 每一次试验中,各种结果出现的可能性相等. (2)通过对概率知识的实际应用,体现了数学知识 在现实生活中的运用,体现了数学学科的基础性.
作业
1.一个质地均匀的小正方体,六个面分别标有数字 “1”“1”“2”“4”“5”“5”.掷小正方体后, 观察朝上一面的数字.

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册
A.


B.


1
2
1
(1,1)
(1,2)
2
(2,1)
(2,2)
C.




D.
由列表可知,两次摸出小球的号码之积共有
4种等可能的情况,
)
知识讲解
知识点2 用列表法求概率
【例 2】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,
2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(3)至少有一个骰子的点数为2.
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(B )
A.


B.


C.


D.


随堂练习
2. 某次考试中,每道单项选择题一般有4个选项,某同学有两道题不
会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两
道题全对的概率是( B )
A.


B.


C.


D.


随堂练习
3. 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机

浙教版九年级数学(全一册)课件 第2章 简单事件的概率 简单事件的概率2

浙教版九年级数学(全一册)课件 第2章 简单事件的概率 简单事件的概率2

5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
新课讲 由列表得,同时掷两枚骰子,可能出现的结果有36 解 种,它们出现的可能性相等.
(结果1)有满6种足,两则枚P骰(子A)的36=6点 数16 相同. (记为事件A)的
新课讲
观察与思考
第一
第二次 所有可能出现解的结

果 (正、
正) (正、

反)

(反、
正)
(反、
发现:所有可能结果一
反)
样.
归纳:随机事件“同时”与“先后”的关系:“两
个相同的随机事件同时发生”与 “一个随机事件先
后两次发生”的结果是一样的.
2 用列表法求概率
新课讲 解
问题1 利用直接列举法可以比较快地求出简单事件发 生的概率,对于列举复杂事件的发生情况还有什么更好 的方法呢?
列举法
关键
常用 方法
课堂总 在于正确列举出试验结果的各结种可能性.
直接列举 画 树法状 图
法 列表法
(下节课学习)
前提条件
确保试验中每 种结果出现的 可能性大小相
基本步骤
① 列表; ② 确定m、n
值 代入概率公式 计算.
适用对象
两个试验 因素或分 两步进行 的试验.
新课导 入
问题 老师向空中抛掷两枚同样的一元硬币,如果落 地后一正一反,老师赢;如果落地后两面一样,你们 赢.你们觉得这个游戏公平吗?
1 用直接列举法求概率
新课讲 解
例 同时抛掷两枚质地均匀的硬币,求下列事件的概率: 题(1)两枚硬币全部正面向上;

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为


1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能

第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)

第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)
第三章 概率的进一步认识
第三章 复习课
复习目标
1.回顾本章的内容,梳理本章的知识结构,建立有关概率知
识的框架图.
2.知道求概率的一般方法——树状图和列表法.
3.知道试验频率与理论概率的关系;会合理运用概率的思想,
解决生活中的实际问题.
◎重点:会用树状图或列表法计算简单事件的概率,以及用
试验或模拟试验的方法估计复杂事件发生的概率.
时,用列表法.
(3)用树状图或表格求概率的关键:
①各种情况出现的可能性 一定要相同 ;
事件发生的次数 )
②P(A)= 各种情况出现的次数 ;
(
③在统计各种情况出现的次数和某一事件发生的次数时,
要做到不重不漏.
预习导学
4.估计总体数目.
通过试验法估计总体数目的方法:(1) 抽取 法估算总体
数目;(2)用 放入 法估算总体数目.
预习导学
·导学建议·
本节可通过问题的形式引导学生,梳理知识结构,重点关
注以下几个问题:(1)频率与概率的区别;(2)计算概率的两种方
法;(3)概率与统计之间的内在的联系.
合作探究
随机事件的概率计算
1.某市体育中考现场考试内容有三项:50米跑为必测项目,
另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二
(2)小国同学的父亲认为,如果到A处不买,到B处发现比A
处便宜就马上购买,否则到C处购买,这样更有希望买到最低价
格的礼物.这个想法是否正确?试通过树状图分析说明.
解:(1)∵在每一处都有价格最低,最高,较高的可能,

∴P(A处买到最低价格礼物)= .

合作探究
(2)作出树状图如下:

九年级数学上册 25.2用列举法求概率2_1-5

九年级数学上册  25.2用列举法求概率2_1-5

1.小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少?
解:设两双袜子分别为A 1、A 2、B 1、B 2,则
B1A1
B2A2开始
A2B1B2A1B1B2A1A1B2A1A2B1所以穿相同一双袜子的概率为3
1124=
2 .在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?
3.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,当有三辆汽车经过这个十字路口时,求下列事件的概率
(1)三辆车全部继续直行;
(2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左转
解:用树型图法
由图可以看出,可能出现的结果不27个,它们出现的可能性相等。

三辆车全部继续直行的结果只有一个,所以P(三辆车全部直行)=1/27
两辆车向右转, 一辆车向左转的结果有3个,所以P(两辆车向右转, 一辆车向左转)=3/27=1/9
至少有两辆车向左转结果有7个,所以P(至少有两辆车向左转)
=7/27。

九年级数学下册课件(冀教版)随机事件的概率

九年级数学下册课件(冀教版)随机事件的概率
解:小明的怀疑理由不充分,理由如下:广告中宣称的中奖概率为 20%,只是销售商设定的一种奖品配送比例,人们购物就相当 于去做试验,由此得到获奖的频率,当重复试验次数很多(购物 的人很多)时,它在概率的上下浮动,但由于其不确定性,并不 能保证在一定人群中都能是20%的中奖率,因此,小明的怀疑 理由不充分.
10
10
2 随机事件的概率的规律:事件发生的可能性越大,则它的 概率越接近____1____;反之,事件发生的可能性越小,则
它的概率越接近____0____.从1~9这九个自然数中任取一 4
个,是2的倍数的概率是____9____.方程5x=10的解为负
数的概率是____0____.
3 对“某市明天下雨的概率是75%”这句话,理解正确的是( D ) A.某市明天将有75%的时间下雨 B.某市明天将有75%的地区下雨 C.某市明天一定下雨 D.某市明天下雨的可能性较大
B.250
C.258
D.无法确定
4 一次数学测试后,某班40名学生的成绩被分为5组,第1~4组
的频数分别为12,10,6,8,则第5组的频率是( A )
A.0.1
B.0.2
C.0.3
D.0.4
知识点 3 概率及其范围
思考: 1.在上面“一起探究”的摸球试验中,任意摸出1个球,有几种 可能的结果?摸到每个球的可能性大小是否相同?能不能用数值 刻画摸到每个球的可能性大小? 2.你能用数值刻画摸到红球的可能性大小吗? 3.你能用数值刻画摸到黄球的可能性大小吗? 4.请你归纳如何用数值描述事件发生的可能性大小.
解:(1)试验总次数:(48+46)÷(1-0.53)=200(次).
(2)如下表所示:
频数 频率
两个正面 一正一反 两个反面

人教版九年级数学上册《概率》概率初步PPT优质课件

人教版九年级数学上册《概率》概率初步PPT优质课件
13
13
4 1.
求简单随机事件的概

练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3

13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概

练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?

九年级数学《用列举法求概率(2)》课件

九年级数学《用列举法求概率(2)》课件

解:(2)120×16=96(个).
20
答:估计达到良好及以上的社区有 96 个. (3)将干垃圾、湿垃圾、可回收垃圾、有害垃圾分别用a,b,c,d表 示,根据题意画树状图如下:
共有 12 种等可能的情况数,其中小明恰好提到干垃圾和湿垃圾的有 2 种, 则小明恰好提到干垃圾和湿垃圾的概率是 2 = 1.
答案图
共有 12 种等可能的结果数,其中两次摸到红球的结果数为 2, 所以两次摸到红球的概率= 2 = 1.
12 6
6.(2020无锡)现有4张正面分别写有数字1,2,3,4的卡片,将4张 卡片的背面朝上,洗匀.
(1)若从中任意抽取 1 张,抽的卡片上的数字恰好为 3 的概率
1
是 4;
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取 1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用 “画树状图”或“列表”等方法写出分析过程)
பைடு நூலகம்
为( C )
A.1
B.1
C.1
D.2
4
3
2
3
8.(创新题)数学课上,李老师准备了四张背面看上去无差别的 卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如 图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中 随机抽取一张卡片后不放回,再随机抽取一张.
a=1 b= 2 c=3 A
解:(1)画树状图得:
答案图
则点Q所有可能的坐标有 (1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3) 共12种.
(2)∵共有 12 种等可能的结果,其中在函数 y=-x+5 的图象上

九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版

九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版
(1)求两次传球后,球恰在B手中的概率; (2)求三次传球后,球恰在A手中的概率.
∵共有 4 种等可能的结果,两次传球后, 球恰在 B 手中的只有 1 种情况,∴两次传球 后,球恰在 B 手中的概率为14.
(2)画树状图得:
∵共有 8 种等可能的结果,三次传球后,球恰在 A 手中的有 2 种情况, ∴三次传球后,球恰在 A 手中的概率为28=14.
摸到相同颜色的小球的概率.(请结合树状图或列表解答)
8.(1)设袋子中白球有 x 个,根据题意,得x+x 1=23,解得 x=2,经检验, x=2 是原分式方程的解,∴袋子中白球有 2 个. (2)画树状图得:
∵共有 9 种等可能的结果,两次都摸到相同颜色的小球的有 5 种情况, ∴两次都摸到相同颜色的小球的概率为59.
13.某市初中毕业女生体育中考考试项目有四项,其中“立定跳
远”“1 000米跑”“篮球运球”为必测项目,另一项从“掷实心
球”“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实 心球”或“一分钟跳绳”中选择同一个考试项14目的概率是________.
14.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行 涂色,每个区域必须涂色并且只能涂一种颜色,请用树状图法求A, C两个区域所涂颜色不相同的概率.
共 8 种情况,完全相同的有 2 种,则 P(完全相同)=28=14. 1
(3)2n-1.
(请用“画树状图”的方法给出分析过程,并求出结果)
15.画树状图为:
共有 8 种等可能的结果数,其中至少有两瓶为红枣口味的结果数为 4, 所以该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率=48=12.
16.甲、乙、丙、丁四名运动员参加4×100米接力赛,如果甲必须 安排在第二棒,那么,这四名运动员在比赛中的接棒顺序有( C )

华师版九年级数学上册第25章 随机事件概率2 频率与概率

华师版九年级数学上册第25章 随机事件概率2 频率与概率

从上表可以看出,柑橘损坏的频率在常数_0_.1___左右摆动,并且随统计量
的增加这种规律逐渐_稳__定___,那么可以把柑橘损坏的概率估计为这个常
数.如果估计这个概率为0.1,则柑橘完好的概率为__0_.9___.
解:根据估计的概率可以知道,在 10 000 kg 柑橘中完好柑橘的质量为 10 000×0.9=9 000(kg).
知识要点2
等可能事件概率的求法
1.(1)试验法的前提:结果不是有限个或可能性不相等 (2)试验法的条件:相同条件下进行,次数足够多; (3)试验法的特征:频率和概率在试验中可以非常接近,但不一定相
等,每次试验的结果可能不一样.
2.(1)理论分析法的前提:结果数有限且可能性相等;
(2)理论分析法的条件:确定需要的事件包含的结果数m和总的结果
③若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是
0.620
A.①
B.②
C.①② D.①③
3.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,如果 这三种可能性的大小相同.三辆汽车经过这个十字路口,(画树状图)求 下列事件的概率: (1)三辆汽车继续直行的概率; (2)两辆车向右转,一辆车向左转的概率; (3)至少有两辆车向左转的概率.

P(全是酸菜包) = 3 1 .
18 6
B 酸 糖韭
酸 糖 韭 酸 糖韭
C 酸 糖酸 糖 酸 糖 酸 糖 酸 糖 酸 糖 酸 糖 酸 糖 酸 糖
活动三:从一定高度落下的图钉,会有几种可能的结果?它们发生的可 能性相等吗?
试验累计次数 钉帽着地的次数(频数) 钉帽着地的频率( %)
试验累计次数 钉帽着地的次数(频数)

最新人教版初中数学九年级上册《25.2 用列举法求概率(第2课时)》精品教学课件

最新人教版初中数学九年级上册《25.2 用列举法求概率(第2课时)》精品教学课件
例1 某班有1名男生、2名女生在校文艺演出中获演 唱奖,另有2名男生、2名女生获演奏奖.从获演唱 奖和演奏奖的学生中各任选一人去领奖,求两人都 是女生的概率.
解:设两名领奖学生都是女生的事件为A,两种奖 项各任选1人的结果用“树状图”来表示.
探究新知
开始
获演唱奖的

女'
女''
获演奏奖的
男1 男2 女1 女2 男1 男2 女1 女2 男1 男2 女1 女2
(1)P(全部继续直行)= 1 ; 27
共有27种行驶方向
(2)P(两车向右,一车向左)= 1 ;
(3)
P(至少两车向左)=
7 27
.
9
探究新知
例2 甲、乙、丙三人做传球的游戏,开始时,球在 甲手中,每次传球,持球的人将球任意传给其余两 人中的一人,如此传球三次. (1)写出三次传球的所有可能结果(即传球的方式); (2)指定事件A:“传球三次后,球又回到甲的手中”, 写出A发生的所有可能结果;
袋中装有2个相同的小球,分别写有数字1和2.从两个
口袋中各随机取出1个小球,取出的两个小球上都写有
数字2的概率是( C )
A.12
B.13
C.1
4
D.16
解析:如图所示,
一共有4种可能,取出的两个小球上都写有数字2的有1种情况, 故取出的两个小球上都写有数字2的概率是:14 .
链接中考
2.在一个不透明的袋子里装有两个黄球和一个白球,它 们除颜色外都相同,随机从中摸出一个球,记下颜色后 放回袋子中,充分摇匀后,再随机摸出一个球.两次都 摸到黄球的概率是( A )
1. 2
问题2 同时抛掷两枚均匀的硬币,出现正面向上的 概率是多少?

人教版初中数学九年级上册 用列举法求概率(第2课时) 课件PPT

人教版初中数学九年级上册 用列举法求概率(第2课时) 课件PPT
(1)P(三辆车全部继续前行)=
1

27
(2)P(两车向右,一车向左)=
1
;
9
(3)P(至少两车向左)=
7
27

13
新课讲解
例2 小刚、小军、小丽三人参加课外兴趣小组,他们都计划从航模小
组、科技小组、美术小组中选择一个、
(1)求三人选择同一个兴趣小组的概率;
(2)求三人都选择不同兴趣小组的概率、
14
第 二十五章 概率初步
25.2 用列举法求概率
第2课时 树状图法
1
学习目标
1
用列举法(画树状图法)求事件的概率(重点)、
2
进一步学习分类思想方法,掌握有关数学技能、
2
新课导入
知识回顾
一般地,如果在一次试验中,有n种可能的结果,并
且它们 发生的可能性相等 ,事件A包含其中的 m 种
m
n
结果,那么事件A发生的概率P(A)=

A A
C C
H I
A A
D D
H I
A
E
H
A B B B B B B
E C C D D E E
I H I H I H I
这些结果的可能性相等、
有 2 个元音字母的结果有4 种, 即ACI, ADI, AEH, BEI,


所以P(2 个元音)=
= 、

8
新课讲解
由树状图可以看出,所有可能出现的结果共有 12种,
(1)两次取出的小球上的数字相同;
(2)两次取出的小球上的数字之和大于10、
19
随堂训练
解:根据题意,画出树状图如下
第一个数字

浙教版九年级数学上册课件:2.2简单事件的概率(二)

浙教版九年级数学上册课件:2.2简单事件的概率(二)

是一男一女的概率是 ( D )
A.16
B.15
C.25
D.53
5.(4 分)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果
三枚卵全部成功孵化,则三只雏鸟中有两只雌鸟的概率是 ( B )
1
3
5
2
A.6
B.8
C.8
D.3
6.(4 分)小芳同学有两根长度为 4 cm,10 cm 的木棒,她想
钉一个三角形相框,桌上有五根木棒供他选择(如图所示),从中 任选一根,能钉成三角形相框的概率是_25___.
15.(16分)甲、乙两位同学玩转盘游戏时,把质地相同的两 个盘A,B分别平均分成2份和3份,并在每一份内标有数字如图 所示.游戏规则:甲、乙两位同学分别同时转动两个转盘各一 次,当转盘停止后,指针所在区域的数字之和为偶数时甲胜; 数字之和为奇数时乙胜.若指针恰好在分割线上,则需要重新 转动转盘.
(1)用树状图或列表的方法,求甲获胜的概率; (2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.
解:画树状图如下:
∵所有等可能的结果共有 6 种,其中和为偶数有 2 种,和为奇数有 4 种.∴P(甲 获胜)=62=13,P(乙获胜)=64=23. (2)由(1)得出 P(甲获胜)=26=31,P(乙获胜)=46=32. ∵31<23,即 P(甲获胜)<P(乙获胜),∴这个游戏对甲、乙双方不公平.
14.(14 分)妈妈买回 6 个粽子,其中 1 个花生馅,2 个肉馅,3 个枣(馅1).若从女外儿表只看吃,一6个个粽粽子子,完则全她一吃样到,肉女馅儿的有概事率先是吃_13_.__;
(2)若女儿只吃两个粽子,求她吃到的两个都是肉馅的概率.
解:(1)13 (2)设 A 表示 1 个花生馅粽子,B1,B2 分别表示 2 个肉馅粽子,C1,C2,C3 分别表示 3 个枣馅粽子.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

降水概率90%
人们用概率描叙事件发生的可能性的大小。 例如,天气预报说明天的降水概率为90%,就 意味着明天有很大可能下雨(雪)。
1 1 当A是必然发生的事件时,P(A)= -------------------。 0 当B是不可能发生的事件时,P(B)= --------------。 0 ≦ P(C)≦ 1 。 当C是随机事件时,P(C)的范围是-----------------------
n 就叫做事件A的概率,记为 P(A)=p.
事件一般用大写英文字母A,B,C,D...表示
因为在n次试验中,事件A发生的频数m满足0≦ m ≦ n ,
m 所以0 ≦ ≦ 1 ,进而可知频率m/n所稳定到的常数p n m 因此0 ≦P(A) ≦ 1 满足0 ≦ ≦ 1, n
1、当A是必然发生的事件时,P(A)是多少 当A是必然发生的事件时,在n次实验中,事 件A发生的频数m=n,相应的频率 m n =1,随 着n的增加频率始终稳定地为1, n n 因此P(A)=1. 2、当A是不可能发生的事件时,P(A)是多少
次数m 频率m/n
2048 4040 10 000
1061 2048 4979
0.518 0.5069 0.4979
Байду номын сангаас
皮尔逊 皮尔逊
12 000 24 000
6019 12012
0.5016 0.5005
随着抛掷次数的增加,“正面向上” 的频率的变化趋势有何规律?
一般地,在大量重复试验中,如果事件A发生 的频率 m 稳定在某个常数p附近,那么这个常数p
wrg63xua
胎牛血清是一种性状、外观 浅黄色澄清、无溶血、无异物稍粘稠液体。胎牛血清应取自剖腹产的胎牛;新牛血清取自出生24小时之内的新生牛; 小牛血清取自出生10-30天的小牛。显然,胎牛血清是品质最高的,因为胎牛还未接触外界,血清中所含的...
群散去的差不多了,她依旧在充当吃瓜群众。看着正在相互交涉的买卖双方,她又凑近了一些。(古风一言)剑指山河兵临城下,不为夙愿,只为 守护你的安然。第076章 嫌弃这马真是可爱,慕容凌娢对马的了解很少,自然不敢妄下断言,但等到人群散去的差不多了,她依旧在充当吃瓜群 众。看着正在相互交涉的买卖双方,她只是更仔细的观察着这匹黑马。正在她肆无忌惮的观察时,那匹黑马突然一扭头,她们一人一马四目相对, 时间仿佛停顿了下来……一切都变得很慢很慢……“噗~”那马看着慕容凌娢,打了一个响鼻,然后嫌弃的翻了一个白眼,满满地都是怨气摇摇 脑袋,甩甩尾巴,便再也不理睬她了。这……这也太尴尬了,慕容凌娢居然会被一只马嫌弃!简直是受到了1000点的暴击!慕容凌娢感觉整个人 都不好了,生无可恋啊~“算了算了,还是去别处看看吧。”慕容凌娢回过神来,发现围观的人都已经走光了。“唉!”那大汉重重的叹了口气, 摸了摸马的鬃毛,“如今这般落魄,留着你也是受罪,还不如给你个痛快……”他说着便要解开拴在木桩上的绳子,那黑马似乎也明白了什么, 开始焦躁不安的挣扎,无奈被绳子束缚,再怎么用力拽也无用。这是要杀马的套路啊!当慕容凌娢脑子转过来弯时,大汉已经准备把马迁走了。 “等等!”慕容凌娢拦住了他,大义凌然的挡在黑马身边,“这马我要了。”“二十两银子,不能再少了!”在醉影楼呆了那么久,慕容凌娢已 经搞清楚了这个年代的物价,一两银子差不多是500RMB,二十两银子……大概就是1WRMB。这也太贵了!自己这回出来,总共就带了四两银子,可 是这马,要是没人要,就要惨死在街头了……怎么办?这个年代又没有动物保护协会这样的组织,她实在不想看见这只马就这样死 掉……“我……”情急之下,慕容凌娢摸到了自己挂在脖子上的那块血玉,就是穿越时拿着的那块。“我用这块玉来换可以吗?”“这是……” 大汉接过慕容凌娢的玉,摆弄了几下,又丢了回来,“我又不知道这东西是真是假,万一你给我个假的,我不就亏大了吗!”“这个绝对是真 的!”慕容凌娢着急着想解释,可是那大汉始终不为所动。“二十两银子是吗?”“韩哲轩!”慕容凌娢惊喜的回过头,“你刚才跑哪里去了! 找你半天,还以为你丢了呢……”“方蛤蟆?慌什么?,人多,被挤掉线了而已,看来该换网了。”韩哲轩依旧是不紧不慢态度,没有想要认真回 答慕容凌娢。他脸上带着常有的笑意,把钱袋递给了大汉,“这么多够了吧?”“够了够了!”“那马我带走了。”韩哲轩把马的缰绳接下来, 交到了慕容凌娢手里,“归你了,不用谢我。”“公子您慢走!”……“老哥(稳),这回坑了不少钱吧!”等韩哲轩
25.1 概

随 机 事 件 发 生 的 可 能 性 究 竟 有 多 大 ?
抛硬币
(1)抛掷一枚均匀的硬币,有几种可能呢?
正面向上
开始
反面向上
(2)这两个随机事件的可能性各是多少呢? 对这个问题,你的直 觉是两个可能性相等 吗?
试验者 棣莫弗 布 丰 费 勒
抛掷次数n “正面向上” “正面向上”
2 投掷一枚骰子,出现点数不超过4的概率约是0.667 -------。
3一次抽奖活动中,印发奖券10000张,其中一等奖 一名奖金5000元,那么第一位抽奖者,(仅买一张) 中奖概率为—————— 。 1/10000
BI胎牛血清 /xueqing/BI-xueqing.html BI胎牛血清
事件发生的可能性越来越小
0 1 概率的值
不可能发生
事件发生的可能性越来越大
必然发生
事件发生的可能性越大,则它的概率越 接近1;事件发生的可能性越小,则它的概率 越接近0.
从上面可知,概率是通过大量重复试验中 频率的稳定性得到的一个0-1的常数,它反映 了事件发生的可能性的大小.需要注意,概率 是针对大量试验而言的,大量试验反映的规律 并非在每次试验中一定存在.
相关文档
最新文档