角平分线、高线、中垂线、中线题目

合集下载

专项11-1 三角形的边、高、中线与角平分线等相关计算(解析版)

专项11-1  三角形的边、高、中线与角平分线等相关计算(解析版)

2020—2021八年级上学期专项冲刺卷(人教版)专项11.1 三角形的边、高、中线与角平分线等相关计算姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知三角形中,某两条边的长分别为5和9,则另一条边的长可能是()A.4 B.5 C.3 D.14【答案】B【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:9+5=14,9-5=4,所以第三边在4到14之间,只有B中的5满足.故选:B.【点睛】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和.2.三边都不相等的三角形有两边长分别为3和5,第三长是奇数,则其周长为()A.15 B.13 C.11 D.15或13或11【答案】A【分析】本题可先求出第三边的取值范围,找出其中三边都不相等,且为奇数的数,即为第三边的长,再将三者相加即可得出周长的值.【详解】解:设第三边长为x.根据三角形的三边关系,则有5−3<x<5+3,即2<x<8,因为三边都不相等,第三边长是奇数,所以x =7,所以周长=3+5+7=15.故选:A .【点睛】考查了三角形的三边关系,根据三角形三边长关系,得到第三边长的范围,是解题的关键. 3.如图,线段AD ,AE ,AF 分别是ABC 的高线,角平分线,中线,比较线段AC ,AD ,AE ,AF 的长短,其中最短的是( )A .AFB .AEC .ACD .AD【答案】D【分析】 根据垂线段最短即可得.【详解】解:由三角形的高线的定义得:AD BC ⊥,由垂线段最短得:线段AD 最短,故选:D .【点睛】本题考查了三角形的高线、角平分线、中线、以及垂线段最短,掌握理解垂线段最短是解题关键. 4.如图AB AC ⊥,AD BC ⊥,其中4AC =,3AB =,5BC =,125AD =,165CD =,则B 到AD 距离为( )A .3B .5C .165D .95【答案】D【分析】根据三角形高的定义可知,AD 长度就是点A 到线段BC 的距离,根据此解答即可.【详解】解:∵AB ⊥AC ,AD ⊥BC ,∴BD 垂直于AD ,∴B 到AD 的距离等于BD 的长度=BC -CD =95,∴点B 到线段AD 的距离是95,故选:D .【点睛】本题主要考查了三角形的高的概念,结合图形找出△ABC 边BC 上的高是解题的关键.5.若线段AM 和线段AN 分别是ABC 边BC 上的中线和高,则下列判断正确的是( ) A .AM AN > B .AM AN ≥ C .AM AN < D .AM AN ≤【答案】B【分析】根据三角形的高的概念得到AN ⊥BC ,根据垂线段最短判断.【详解】解:∵线段AN 是△ABC 边BC 上的高,∴AN ⊥BC ,由垂线段最短可知,AM ≥AN ,故选:B .【点睛】本题考查的是三角形的角平分线、中线和高的概念,掌握垂线段最短是解题的关键.6.如图,在ABC ∆中,,AD AE 分别是边BC 上的中线和高,2,3ABD AE S ∆==,则BC =( )A .2B .32C .4D .6【答案】D【分析】 先根据面积公式求出BD ,再根据中线的定义即可求解.【详解】解:∵AE 是ABC ∆边BC 上的高,2,3ABD AE S ∆==,∴BD =2×3÷2=3,∵AD 为ABC ∆边BC 上的中线,∴BC =2BD =6.故选:D【点睛】本题考查三角形的中线和高, 三角形的面积,熟练掌握中线的定义和三角形的面积公式是解题的关键.7.三角形的重心是( )A .三角形三边的高所在直线的交点B .三角形的三条中线的交点C .三角形的三条内角平分线的交点D .三角形三边中垂线的交点【答案】B【分析】根据重心是三角形三边中线的交点,三角形三条高的交点是垂心,三角形三条角平分线的交点是三角形的内心,等知识点作出判断.【详解】解:三角形三条高的交点是垂心,A 选项不符合题意;三角形三条边中线的交点是三角形的重心,B 选项符合题意;三角形三条内角平分线的交点是三角形的内心,C选项不符合题意;三角形三边中垂线的交点三角形的外心,D选项不符合题意.故选:B.【点睛】本题考查了三角形的重心、内心与外心等知识,是基础题,熟记概念是解题的关键.8.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能【答案】C【分析】根据三角形的三条高线与三角形的位置关系即可直接得出结论.【详解】解:锐角三角形的三条高的交点在三角形内部(如图1),钝角三角形的三条高所在直线的交点在三角形外部(如图2),直角三角形的三条高的交点在三角形的直角顶点上(如图3).故选C.【点睛】本题主要考查了三角形的三条高线的交点问题,掌握三角形的三条高线交点的特征是解题的关键. 9.如图,△ABC的中线AD、BE相交于点F.若△ABF的面积是4,则四边形DCEF的面积是()A.3.5 B.4 C.4.5 D.5【答案】B【分析】利用F 点为△ABC 的重心得到AF =2DF ,BF =2EF ,根据三角形面积公式得到S △BDF =2,S △AEF =2,再利用E 点为AC 的中点得到S △BCE =S △ABE =6,然后利用四边形DCEF 的面积=S △BCE -S △BDF 进行计算.【详解】解:∵△ABC 的中线AD 、BE 相交于点F ,∴F 点为△ABC 的重心,∴AF =2DF ,BF =2EF ,∴S △BDF =12S △ABF =12×4=2,S △AEF =12S △ABF =12×4=2, ∵BE 为中线,∴S △BCE =S △ABE =4+2=6,∴四边形DCEF 的面积=S △BCE -S △BDF =6-2=4.故选:B .【点睛】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了三角形面积公式.10.如图,AD 是ABC 的中线,BE 是ABD △的中线,EF BC ⊥于点F .若12,3ABC SBD ==,则EF 长为( )A .1B .2C .3D .4 【答案】B【分析】因为S △ABD =12S △ABC ,S △BDE =12S △ABD ;所以S △BDE =14S △ABC ,再根据三角形的面积公式求得即可. 【详解】 解:∵AD 是△ABC 的中线,S △ABC =12,∴S △ABD =12S △ABC =6,同理,BE 是△ABD 的中线,S △BDE =12S △ABD ,∴S △BDE =14S △ABC ,∵S △BDE =12BD •EF ,∴12BD •EF =14S △ABC ,又∵△ABC 的面积为12,BD =3,∴EF =2,故选B .【点睛】此题考查了三角形的面积,要理解三角形高的定义,根据三角形的面积公式求解.11.在ABC ∆中,AD 是BC 边上的中线,点G 是重心,如果6AG =,那么线段DG 的长为( )A .3B .4C .9D .12【答案】A【分析】根据三角形重心的定义求解即可.【详解】∵AD 是BC 边上的中线,点G 是重心,∴AG :DG=2:1,∵6AG =,∴DG=3.故选A.【点睛】本题考查了三角形重心的性质,熟记重心的性质,并能灵活运用是解题的关键.12.如图,D ,E 分别是ABC 的边AC ,BC 的中点,则下列说法错误的是( )A .DE 是BCD △的中线B .BD 是ABC 的中线C .AD CD BE EC ==, D .BD 是ABC 的角平分线【答案】D【分析】根据三角形的中线、线段中点的定义、三角形的角平分线判断即可得.【详解】点D,E分别是ABC的边AC,BC的中点,∴==,AD CD BE EC,△的边BC上的中线,BD∴是ABC的边AC上的中线,DE是BCD则选项A、B、C正确,∠,因为BD不一定平分ABC所以选项D错误,故选:D.【点睛】本题考查了三角形的中线、线段中点的定义、三角形的角平分线,掌握理解三角形中线的定义是解题关键.二、填空题(本大题共6小题,每小题3分,共18分)13.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是_____.【答案】三角形的稳定性【解析】【分析】本题主要考察三角形稳定性的应用.如果已知三角形的三边长度确定,那么这个三角形的形状和大小就完全确定了,且它的形状和大小是固定不变的,这个性质叫做三角形的稳定性.本题即是根据上述知识解答的.【详解】解:根据三角形的特性可知照相机的底部的三脚架支撑利用的是三角形的稳定性由此可知本题的答案.故答案为:三角形的稳定性.【点睛】本题考察三角形稳定性的应用.14.如图,点O 在ABC 内部,且到三边的距离相等.且∠A=70°,则∠BOC=______°.【答案】125【分析】由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠BOC .【详解】解:∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB ,∴∠BOC =180°-(∠OBC +∠OCB ) =180°-12(∠ABC +∠ACB ) =180°-12(180°-∠A ) =180°-12⨯(180°-70°)=125°,故答案为:125.【点睛】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键. 15.如图,AB CD ∥,BE 平分ABC ∠,CE 平分BCD ∠,则CBE BCE ∠+∠=______°.【答案】90【分析】先根据平行线性质得出180ABC DCB ∠+∠=︒,再根据角平分线定义进行求解即可.【详解】∵AB CD ∥∴180ABC DCB ∠+∠=︒∵BE 平分ABC ∠,CE 平分BCD ∠∴,ABE CBE DCE BCE ∠=∠∠=∠ ∴11118090222CBE BCE ABC DCB ∠+∠=∠+∠=⨯︒=︒ 故填:90.【点睛】 本题考查平行线性质和角平分线定义,熟练掌握性质是关键. 16.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.【答案】2.5【分析】根据三角形的面积公式列方程即可得到结论.【详解】解:根据三角形面积公式可得,1122ABC SAB CE BC AD =⨯=⨯, ∵AB=3,BC=6,CE=5,∴1135622AD ⨯⨯=⨯⨯, 解得 2.5AD =.【点睛】本题考查了三角形的高以及三角形的面积,熟记三角形的面积公式是解题的关键.17.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE的长为_________.【答案】2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4,当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键.18.如图,△ABC的两条中线AD、BE相交于点G,如果S△ABG=2,那么S△ABC=_____.【答案】6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:∵△ABC的两条中线AD、BE相交于点G,∴2GD=AG,∵S△ABG=2,∴S△ABD=3,∵AD是△ABC的中线,∴S△ABC=2S△ABD=6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.如图所示,已知AD,AE分别是△ABC的高和中线,AB=3cm,AC=4 cm,BC=5 cm,∠CAB=90°.(1)求AD的长.(2)求△ABE的面积.【答案】(1)125cm ;(2)3cm 2 【分析】 (1)利用“面积法”来求线段AD 的长度;(2)△AEC 与△ABE 是等底同高的两个三角形,它们的面积相等【详解】解:∵∠BAC=90°,AD 是边BC 上的高,∴12AB•AC=12BC•AD , ∴341255AB AC AD BC ⋅⨯===(cm ),即AD 的长度为125cm ; (2)如图,∵△ABC 是直角三角形,∠BAC=90°,AB=3cm ,AC=4cm , ∴S △ABC =12AB•AC=12×3×4=6(cm 2). 又∵AE 是边BC 的中线,∴BE=EC ,∴12BE•AD=12EC•AD ,即S △ABE =S △AEC , ∴S △ABE=12S △ABC =3(cm 2). ∴△ABE 的面积是3cm 2.【点睛】本题考查了中线的性质.解题的关键是利用三角形面积的两个表达式相等,求出AD .20.如图,在ABC 中,90ACB ∠=︒.(1)作出AB 边上的高CD .(2)5AC =,12BC =,13AB =,求高CD 的长.【答案】(1)见解析 (2)1360=CD 【分析】(1)过C 点作CD ⊥AB 即可;(2)根据三角形的面积求解即可.【详解】解:(1)如图:(2)∵在ABC 中,5AC =,12BC =,13AB =,∠ACB =90°,∴S △ABC =12AC ×BC =12AB ×CD , ∴125601313AC BC CD AB ⋅⨯=== 【点睛】本题考查了做三角形高线和利用三角形的面积求高,属于常考题型,熟练掌握基本知识是解题的关键.21.如图,在89⨯的正方形网格中,每个小正方形的边长为1,ABC 的顶点在网格的格点上(小正方形的顶点即为格点),借助网格完成以下任务.(1)在图中画出ABC 的高AD ,中线BE ;(2)先将ABC 向左平移1格,再向上平移2格:①在图中画出平移后的A B C ''',并分别标注出点A ,B ,C 的对应点A ',B ',C ';②图中与BAC ∠相等的角是________.【答案】(1)见解析;(2)①见解析;②∠B ′A ′C ′,∠AC ′A ′【分析】(1)根据三角形的高和中线的概念作图即可;(2)①将三个顶点分别向左平移1格,再向上平移2格得到其对应点,继而首尾顺次连接即可;②根据平移的性质可得答案.【详解】解:(1)如图所示,线段A D 、BE 即为所求;(2)①如图所示,△A ′B ′C ′即为所求;②由平移的性质知AC ∥A ′C ′,∠BAC =∠B ′A ′C ′,∴∠BAC =∠AC ′A ′,故答案为:∠B ′A ′C ′,∠AC ′A ′.【点睛】本题主要考查作图—平移变换和三角形的高和中线的概念,解题的关键是掌握平移变换的定义和性质,并据此得出变换后的对应点.22.如图,12180,3B ∠+∠=︒∠=∠.(1)求证://EF AB ;(2)求证:AED ACB ∠=∠;(3)若点D E F 、、分别是AB AC CD 、、边上的中点,16ABC S =,求ADFE S 四边形.【答案】(1)见解析;(2)见解析;(3)6【分析】(1)由∠1+∠2=180°和∠1+∠4=180°得到∠2=∠4,根据平行线的判定得AB ∥EF ;(2)根据AB ∥EF 得到∠ADE =∠3,再由∠3=∠B ,得到∠ADE =∠B ,从而判定DE ∥BC ,即可得到结论;(3)根据中点的定义,三角形面积公式,逐步求出S △ADE 和S △DEF 的面积,从而可得结果.【详解】解:(1)∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴EF ∥AB ;(2)∵AB ∥EF ,∴∠ADE =∠3,∵∠3=∠B ,∴∠ADE =∠B ,∴DE ∥BC ,∴∠AED =∠ACB ;(3)∵D 为AB 的中点,∴S △ADC =12S △ABC =8, ∵E 为AC 的中点,∴S △ADE =S △CDE =12S △ADC =4, ∵F 为DC 的中点,∴S △DEF =S △CEF =12S △DEC =2, ∴S 四边形ADFE =S △ADE +S △DEF =4+2=6.【点睛】本题考查了行线的判定与性质:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系;应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.也考查了三角形面积公式.23.如图,AD 、BE 分别是△ABC 的高,AF 是角平分线.(1)若∠ABC=35°,∠C=75°,求∠DAF 的度数;(2)若AC=4,BC=6.求AD 与BE 的比.【答案】(1)20︒;(2)2:3【分析】(1)根据题意易得180357570BAC ∠=︒-︒-︒=︒,1352BAF BAC ∠=∠=︒,然后根据角的和差关系可求解;(2)根据等积法可得1122ABC S BC AD AC BE ∆=⨯=⨯,然后根据题意可进行求解. 【详解】解:(1)∵35ABC ∠=︒,75C ∠=︒,∴180357570BAC ∠=︒-︒-︒=︒,∵AF 平分BAC ∠,∴1352BAF BAC ∠=∠=︒, ∴353570BFB ABC BAF ∠=∠+∠=︒+︒=︒,∵AD 是ABC ∆的高,∴90ADF ︒∠=,∴907020DAF ∠=︒-︒=︒;(2)∵AD BE 、分别是ABC ∆的高, ∴1122ABC S BC AD AC BE ∆=⨯=⨯, ∵4,6AC BC ==,∴116422AD BE ⨯⨯=⨯⨯, 即:2:3AD BE =.【点睛】本题主要考查三角形的高线、中线及角平分线,熟练掌握三角形的高线、中线及角平分线的定义是解题的关键.24.如图,在△ABC 中,∠BAC=120°,AD ,BE 分别为△ABC 的角平分线,连结DE . (1)求证:点E 到DA ,DC 的距离相等;(2)求∠DEB 的度数.【答案】(1)见解析;(2)30°.【详解】(1)过E 作EH ⊥AB 于H ,EF ⊥BC 于F ,EG ⊥AD 于G ,∵AD平分∠BAC,∠BAC=120°,∴∠BAD=∠CAD=60°,∵∠CAH=180°﹣120°=60°,∴AE平分∠HAD,∴EH=EG,∵BE平分∠ABC,EH⊥AB,EF⊥BC,∴EH=EF,∴EF=EG,∴点E到DA、DC的距离相等;(2)解:∵由(1)知:DE平分∠ADC,∴∠EDC=∠DEB+∠DBE,∴12CDA=∠DEB+12∠ABC,∴∠DEB=12(∠CDA﹣∠ABC)=12∠BAD=30°.【点睛】本题考查了角平分线性质,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,到角的两边距离相等的点在角的平分线上;角平分线上的点到角两边的距离相等.。

初中数学冀教版七年级下册第九章 三角形9.3 三角形的角平分线、中线和高-章节测试习题(5)

初中数学冀教版七年级下册第九章 三角形9.3 三角形的角平分线、中线和高-章节测试习题(5)

章节测试题1.【答题】下列结论:①三角形的角平分线、中线、高都是线段;②直角三角形只有一条高;③三角形的中线可能在三角形外部;④三角形的高都在三角形内部.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:①三角形的角平分线、中线、高都是线段,正确;②直角三角形有三条高,故②错误;③三角形的中线可能在三角形外部,错误;④三角形的高都在三角形内部,错误.故正确的只有①,选A.2.【答题】不一定在三角形内部的线段是()A. 三角形的角平分线B. 三角形的中线C. 三角形的高D. 以上都不对【答案】C【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.选C.3.【答题】如图,BD平分∠ABC,CD平分∠ACB,若∠A=50°,则∠D等于()A. 120°B. 130°C. 115°D. 110°【答案】C【分析】根据三角形的角平分线的定义解答即可.【解答】解:∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB).∵∠ABC+∠ACB=180°﹣∠A,∴∠BDC=180°﹣(180°﹣∠A)=90°+∠A=90°+×50°=115°.选C.4.【答题】如图, ∠1=∠2,∠3=∠4,下列结论错误的是()A. BD是△ABC的角平分线B. CE是△BCD的角平分线C. ∠3=∠ACBD. CE是△ABC的角平分线【答案】D【分析】根据三角形的角平分线的定义解答即可.【解答】解:∵∠1=∠2,∴BD是△ABC的角平分线,∵∠3=∠4,∴CE是△BCD的角平分线,∠3=∠ACB,∴A、B、C正确.CE不是△ABC的角平分线,故D错误.选D.5.【答题】下列说法中正确的是()A. 三角形的角平分线和中线都是线段B. 三角形的角平分线和中线都是射线C. 三角形的角平分线是射线,而中线是线段D. 三角形的角平分线是线段,而中线是射线【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三角形的角平分线和中线都是线段.选A.6.【答题】如图,在△ABC中,D,E分别为BC,AD的中点,且S△ABC=4,则S阴影为()A. 2B. 1C.D.【答案】B【分析】本题考查了三角形中线的性质,熟知三角形的中线可将三角形分成面积相等的两部分是解决此题的关键.【解答】解:∵D、E分别为BC,AD的中点,且S△ABC=4,∴S阴影=×S△ADC=×S△ABC=×4=1选B.7.【答题】如图,在△ABC中,BC=6,AD为BC边上的高,A点沿AD所在的直线运动时,三角形的面积发生变化,当△ABC的面积为48时AD的长为().A. B. C. D.【答案】B【分析】根据三角形的高线的定义解答即可.【解答】在△ABC中,BC=6,AD为BC边上的高,A点沿AD所在的直线运动时,三角形的面积发生变化,当△ABC的面积为48时,,即×6·AD=48,∴AD=16,选B.8.【答题】如图,在中,、分别是高线和角平分线,交点为,已知,,则的面积等于().A. B. C. D.【答案】D【分析】根据三角形的中线定义解答即可.【解答】解:过E作EF⊥AC于F,∵AD是BC边上的高线,CH平分∠ACB,DE=1,∴EF=DE=1,∴△ACE的面积S=×AC×EF=×4×1=2,选D.9.【答题】在△ABC中∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A. BC是△ABE的高B. BE是△ABD的中线C. BD是△EBC的角平分线D. ∠ABE=∠EBD=∠DBC【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解: A.BC是△ABE的高,正确,不符合题意;B.BE是△ABD的中线,正确,不符合题意;C.BD是△EBC的角平分线,正确,不符合题意;D.∵BD是△EBC的角平分线,∴∠EBD=∠DBC,∵BE是中线,∴∠ABE≠∠EBD,∴∠ABE=∠EBD=∠DBC不正确,符合题意.选D.10.【答题】到三角形三顶点距离相等的点是(),到三角形三边距离相等的点是()A. 三条角平分线的交点,三条垂直平分线的交点B. 三条角平分线的交点,三条中线的交点C. 三条垂直平分线的交点,三条中线的交点D. 三条垂直平分线的交点,三条角平分线的交点【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】试题分析:到三角形三个顶点矩形相等的点在三条中垂线的交点处,到三角形三边距离相等的点在三条角平分线的交点处.选D.11.【答题】如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A. 2cm2B. 1cm2C. cm2D. cm2【答案】B【分析】本题考查的是三角形的面积,充分运用三角形的面积公式以及三角形的中线的性质.【解答】解:S阴影=S△BCE=S△ABC=1cm2选B.12.【答题】如图,BE、CF都是的角平分线,且∠BDC=110°,则的度数为()A. 50°B. 40°C. 70°D. 35°【答案】B【分析】根据三角形的角平分线定义解答即可.【解答】∵BE、CF都是△ABC的角平分线,∴∠A=180°-(∠ABC+∠ACB)=180°-2(∠DBC+∠BCD),∵∠BDC=180°-(∠DBC+∠BCD),∴∠A=180°-2(180°-∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°-90°)=40°.选B.13.【答题】如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为()A. 135°B. 120°C. 90°D. 60【答案】B【分析】根据三角形的角平分线的定义解答即可.【解答】∵∠A+∠ABC+∠ACB=180°,∠A=60°,∴∠ABC+∠ACB=180°-∠A=120°,∵点O在△ABC内,且到三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=60°,∴∠BOC=180°-(∠OBC+∠OCB)=120°,选B.14.【答题】如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=8cm2,则S阴影面积等于()A. 4cm2B. 3cm2C. 2cm2D. 1cm2【答案】C【分析】本题考查的是三角形的面积,充分运用三角形的面积公式以及三角形的中线的性质.【解答】E是中点,和底相等且高是一半,所以S△AEC=4cm2,F是中点,和是同底等高,所以S阴影面积=2cm2.所以选C.15.【答题】三角形一边上的中线把原三角形一定分成两个()A. 形状相同的三角形B. 面积相等的三角形C. 直角三角形D. 周长相等的三角形【答案】B【分析】根据三角形的中线的定义解答即可.【解答】三角形一边上的中线把原三角形一定分成两个面积相等的三角形.选B.16.【答题】如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是A. 15°B. 30°C. 25°D. 20°【答案】D【分析】根据三角形的高线的定义解答即可.【解答】解:∵AD是BC边上的高,选D.17.【答题】下列说法正确的是()A. 三角形的角平分线、中线、和高都在三角形内部B. 直角三角形只有一条高C. 三角形的高至少有一条在三角形内部D. 三角形的三条高的交点不在三角形内,就在三角形外【答案】C【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】钝角三角形有两条高在三角形外部,所以A错误;每一个三角形都三条高,所以B错误;锐角三角形的三条高都在三角形的内部,直角三角形和钝角三角形只有一条高在三角形的内部,所以C正确;锐角三角形的三条高的交点在三角形有内部,直角三角形的三条高的交点是直角顶点,钝角三角形的三条高的交点在三角形的外部.选C.18.【答题】以下是四位同学在钝角△ABC中画BC边上的高,其中画法正确的是()A.B.C.D.【答案】C【分析】根据三角形的高线的定义解答即可.【解答】A选项是过点B作AC延长线的垂线BD,即BD是AC边上的高,B选项过点A作AB的垂线交BC延长线于点D,AD不是三角形的高,C选项是过点A作BC延长线上的垂线AD,即是AD是BC上的高,D选项是过点C作BC的垂线交AB于点D,不是三角形的高,选C.19.【答题】如图在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC 的面积是4,则△BEF的面积是()A. 1B. 2C. 3D. 3.5【答案】A【分析】本题考查的是三角形的面积,充分运用三角形的面积公式以及三角形的中线的性质.【解答】,E为AD中点,△ABC与△BEC同底,,F为CE的中点,△BEF与△BEC等高,.选A.20.【答题】如图,BO平分∠ABC,CO平分∠ACB,BO=CO,若∠BOC=100°,那么∠BAO等于()A. 10°B. 20°C. 30°D. 40°【答案】A【分析】根据三角形的角平分线定义解答即可.【解答】解:在△OBC中,∠OBC+∠OCB=180°-∠BOC=180°-100°=80°,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=2×80°=160°,在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-160°=20°.∴∠BAO=∠A=.选A.。

2021年中考数学复习:三角形的角平分线、中线和高 专项练习题(含答案)

2021年中考数学复习:三角形的角平分线、中线和高 专项练习题(含答案)

2021年中考数学复习:三角形的角平分线、中线和高专项练习题一.选择题1.如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90°C.∠BAF=∠CAF D.S△ABC =2S△ABF2.如图所示,∠1=∠2,∠3=∠4,则下列结论正确的有()①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平分∠BAC.A.4个B.3个C.2个D.1个3.钝角三角形三条高所在的直线交于()A.三角形内B.三角形外C.三角形的边上D.不能确定4.画△ABC中AC边上的高,下列四个画法中正确的是()A.B.C.D.5.下列说法错误的是()A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点6.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A.B.C.D.7.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.8.如图所示,AC⊥BC于C,CD⊥AB于D,图中可以作为三角形“高”的线段有()A.1条B.2条C.3条D.5条9.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定10.如图,在△ABC中,AB边上的高是()A.AD B.BE C.BF D.CF二.填空题11.如图,AD⊥BC于D,那么图中以AD为高的三角形有个.12.已知:AD、AE分别是△ABC的高,中线,BE=6,CD=4,则DE的长为.13.若线段AD是△ABC的中线,且BD=3,则BC长为.14.如图,在△ABC中,BC边上的中垂线DE交BC于点D,交AC于点E,AB=5cm,AC=8cm,则△ABE的周长为.15.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.16.如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长多4cm.若AB=16cm,那么AC=cm.。

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)三角形的中线、高线、角平分线时间:60分钟总分: 100 题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)下列说法错误的是( )A. 三角形三条高交于三角形内一点B. 三角形三条中线交于三角形内一点 C. 三角形三条角平分线交于三角形内一点 D. 三角形的中线、角平分线、高都是线段下面四个图形中,线段BD是△ABC的高的是( ) A. B. C. D. 如图,在△ABC中,若AD⊥BC,点E是BC 边上一点,且不与点B、C、D重合,则AD是几个三角形的高线( ) A. 4个 B. 5个 C. 6个 D. 8个如图,AD⊥BE于D,以AD为高的三角形有( )个. A. 3 B. 4 C. 5 D. 6如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上一点,CF⊥AD于H,下面判断正确的有( ) ①AD是△ABE 的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在( )A. 三条边的垂直平分线的交点B. 三个角的角平分线的交点C. 三角形三条高的交点 D. 三角形三条中线的交点如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,那么点D到AB的距离是( )A. 10/3B. 5/3C. 6/5D. 2 已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是( ) A. 2<x<5 B. 4<x<10 C.3<x<7 D. 无法确定如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=〖60〗^∘,∠C=〖80〗^∘,则∠EOD的度数为( )A. 〖20〗^∘B. 〖30〗^∘C. 〖10〗^∘D. 〖15〗^∘一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( ) A.三角形内部 B. 三角形的一边上 C. 三角形外部 D. 三角形的某个顶点上二、填空题(本大题共10小题,共30.0分)如图,DB是△ABC的高,AE是角平分线,∠BAE=〖26〗^∘,则∠BFE=______.平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为______cm.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=〖50〗^∘,则∠BOC= ______ .如图所示,D是BC的中点,E是AC的中点,若S_(△ADE)=1,则S_(△ABC)= ______ .如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=______cm.在画三角形的三条重要线段(角平分线、中线和高线)时,不一定画在三角形内部的是______ .如图,已知△ABC中,∠B=〖65〗^∘,∠C=〖45〗^∘,AD是∠ABC的高线,AE是∠BAC的平分线,则∠DAE= ______ .如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A_1,得∠A_1;∠A_1 BC与∠A_1 CD的平分线相交于点A_2,得∠A_2;…;∠A_2011 BC与∠A_2011 CD的平分线相交于点A_2012,得∠A_2012,则∠A_2012= ______ .如图,在△ABC中,AB=13,AC=10,AD为中线,则△ABD与△ACD的周长之差= ______ .如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点G,AD与BF相交于点H,∠BAC=〖50〗^∘,∠C=〖70〗^∘,则∠AHB= ______ .三、计算题(本大题共4小题,共24.0分)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=〖40〗^∘,∠C=〖60〗^∘,求∠DAE的度数.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.如图所示:△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=〖60〗^∘,∠C=〖70〗^∘,求∠CAD,∠BOA的度数是多少?如图△ABC中,∠A=〖20〗^∘,CD是∠BCA的平分线,△CDA中,DE 是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.四、解答题(本大题共2小题,共16.0分)如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:(1)∵AE是△ABC的中线,∴BE= ______ =1/2 ______ ;(2)∵AD是△ABC的角平分线,∴∠BAD= ______ =1/2 ______ ;(3)∵AF是△ABC的高,∴∠AFB= ______ =〖90〗^∘;(4)∵AE是△ABC的中线,∴BE=CE,又∵S_(△ABE)=1/2 ______ ,S_(△AEC)=1/2 ______ ,∴S_(△ABE)=S_(△ACE)=1/2 ______ .已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.答案和解析【答案】 1. A 2. A 3. C 4. D 5. B 6. A 7. A 8.A 9. A 10. A 11. 〖64〗^∘ 12. 32或34 13. 〖115〗^∘ 14. 4 15.10 16. 高线 17. 〖10〗^∘ 18. α/2^2012 19. 3 20. 〖120〗^∘ 21. 解:∵∠B=〖40〗^∘,∠C=〖60〗^∘,∴∠BAC=〖180〗^∘-∠B-∠C=〖80〗^∘,∵AE平分∠BAC,∴∠BAE=1/2∠BAC=〖40〗^∘,∴∠AEC=∠B+∠BAE=〖80〗^∘,∵AD⊥BC,∴∠ADE=〖90〗^∘,∴∠DAE=〖180〗^∘-∠ADE-∠AED=〖10〗^∘.答:∠DAE的度数是〖10〗^∘. 22. 解:延长AD到E使AD=DE,连接CE,在△ABD和△ECD中{■(AD=DE@∠ADB=∠EDC@BD=DC)┤,∴△ABD≌△ECD,∴AB=CE=5,AD=DE=6,AE=12,在△AEC中,AC=13,AE=12,CE=5,∴AC^2=AE^2+CE^2,∴∠E=〖90〗^∘,由勾股定理得:CD=√(DE^2+CE^2 )=√61,∴BC=2CD=2√61,答:BC的长是2√61. 23. 解:∵AD⊥BC,∴∠ADC=〖90〗^∘,∵∠C=〖70〗^∘,∴∠CAD=〖180〗^∘-〖90〗^∘-〖70〗^∘=〖20〗^∘;∵∠BAC=〖60〗^∘,∠C=〖70〗^∘,∴∠BAO=〖30〗^∘,∠ABC=〖50〗^∘,∵BF 是∠ABC的角平分线,∴∠ABO=〖25〗^∘,∴∠BOA=〖180〗^∘-∠BAO-∠ABO=〖180〗^∘-〖30〗^∘-〖25〗^∘=〖125〗^∘.故∠CAD,∠BOA的度数分别是〖20〗^∘,〖125〗^∘. 24. 解:∵DE是CA边上的高,∴∠DEA=∠DEC=〖90〗^∘,∵∠A=〖20〗^∘,∴∠EDA=〖90〗^∘-〖20〗^∘=〖70〗^∘,∵∠EDA=∠CDB,∴∠CDE=〖180〗^∘-〖70〗^∘×2=〖40〗^∘,在Rt△CDE中,∠DCE=〖90〗^∘-〖40〗^∘=〖50〗^∘,∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×〖50〗^∘=〖100〗^∘,在△ABC中,∠B=〖180〗^∘-∠BCA-∠A=〖180〗^∘-〖100〗^∘-〖20〗^∘=〖60〗^∘.故答案为:〖60〗^∘. 25. CE;BC;∠CAD;∠BAC;∠AFC;S_(△ABC);S_(△ABC);S_(△ABC) 26. 证明:∵∠1=∠D,∴AE//DC(同位角相等,两直线平行),∴∠EAC=∠2(两直线平行,内错角相等),∵AE是∠BAC的平分线,∴∠1=∠EAC,∴∠1=∠2.【解析】 1. 【分析】本题考查了三角形的角平分线、中线、高线以及三角形的面积和外角性质,熟记概念与性质是解题的关键.根据三角形的高线、外角的性质、角平分线、中线的定义对各选项分析判断后利用排除法求解.【解答】解:A.三角形的三条高所在的直线交于一点,三条高不一定相交,故本选项说法不正确; B.三角形的三条中线交于三角形内一点,故本选项说法正确; C.三角形的三条角平分线交于一点,是三角形的内心,故本选项说法正确;D.三角形的中线,角平分线,高都是线段,因为它们都有两个端点,故本选项说法正确.故选A. 2. 解:线段BD是△ABC的高,则过点B作对边AC的垂线,则垂线段BD为△ABC的高.故选A.根据三角形高的定义进行判断.本题考查了三角形的角平分线、中线和高:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 3. 解:∵在△ABC中,AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,∴AD是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC的高.故选C.根据三角形高的定义可知,三角形的高可以在三角形内部,可以是三角形的边,还可以在三角形外部,结合图形即可求解.本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.注意:锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 4. 解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故选:D.由于AD⊥BC 于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活. 5. 解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选B.根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键. 6. 解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条(边垂直平分线)的交点.故选:A.用线段垂直平分线性质判断即可.此题考查了线段垂直平分线的性质,以及三角形的角平分线、中线和高,熟练掌握性质是解本题的关键. 7. 解:∵AC=5,DE=2,∴△ADC的面积为1/2×5×2=5,∵AD是△ABC的中线,∴△ABD的面积为5,∴点D到AB的距离是2×5÷3=10/3.故选A.根据三角形的面积得出△ADC的面积为5,再利用中线的性质得出△ABD的面积为5,进而解答即可.此题考查三角形的面积问题,关键是根据三角形的面积得出△ADC的面积为5. 8. 解:7-3<2x<7+3,即2<x<5.故选A.根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线. 9. 解:∵∠BAC=〖60〗^∘,∠C=〖80〗^∘,∴∠B=〖40〗^∘.又∵AD 是∠BAC的角平分线,∴∠BAD=1/2∠BAC=〖30〗^∘,∴∠ADE=〖70〗^∘,又∵OE⊥BC,∴∠EOD=〖20〗^∘.故选A.首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.此类题要首先明确思路,考查了三角形的内角和定理及其推论、角平分线的定义. 10. 解:一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在三角形的内部.故选A.根据三角形的高的性质即可判断.本题考查了三角形的高线,锐角三角形的三高线交于三角形内部一点,直角三角形三高线的交点是直角三角形的直角顶点,钝角的三条高所在的直线一定交于一点,这交点一定在三角形的内部. 11. 【分析】本题主要考查了三角形内角和定理以及三角形的高以及角平分线的定义的运用,解决问题的关键是利用角平分线的定义和直角三角形的性质求解.由角平分线的定义可得,∠FAD=∠BAE=〖26〗^∘,而∠AFD 与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.【解答】解:∵AE是角平分线,∠BAE=〖26〗^∘,∴∠FAD=∠BAE=〖26〗^∘,∵DB是△ABC的高,∴∠AFD=〖90〗^∘-∠FAD=〖90〗^∘-〖26〗^∘=〖64〗^∘,∴∠BFE=∠AFD=〖64〗^∘.故答案为〖64〗^∘. 12. 解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD//BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE, (1)当AE=5时,AB=5,平行四边形ABCD的周长是2×(5+5+6)=32; (2)当AE=6时,AB=6,平行四边形ABCD的周长是2×(5+6+6)=34;故答案为:32或34.由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=5时,求出AB的长;(2)当AE=6时,求出AB的长,进一步求出平行四边形的周长.本题主要考查了平行四边形的性质,等腰三角形的判定,三角形的角平分线等知识点,解此题的关键是求出AE=AB.用的数学思想是分类讨论思想. 13. 解;∵∠A=〖50〗^∘,∴∠ABC+∠ACB=〖180〗^∘-〖50〗^∘=〖130〗^∘,∵∠B和∠C的平分线交于点O,∴∠OBC=1/2∠ABC,∠OCB=1/2∠ACB,∴∠OBC+∠OCB=1/2×(∠ABC+∠ACB)=1/2×〖130〗^∘=〖65〗^∘,∴∠BOC=〖180〗^∘-(∠OBC+∠OCB)=〖115〗^∘,故答案为:〖115〗^∘.求出∠ABC+∠ACB=〖130〗^∘,根据角平分线定义得出∠OBC=1/2∠ABC,∠OCB=1/2∠ACB,求出∠OBC+∠OCB=1/2×(∠ABC+∠ACB)=〖65〗^∘,根据三角形的内角和定理得出∠BOC=〖180〗^∘-(∠OBC+∠OCB),代入求出即可.本题考查了三角形的内角和定理和三角形的角平分线等知识点,关键是求出∠OBC+∠OCB的度数. 14. 解:∵D是BC的中点,E是AC的中点,∴△ADC的面积等于△ABC的面积的一半,△ADE的面积等于△ACD的面积的一半,∴△ADE的面积等于△ABC的面积的四分之一,又∵S_(△ADE)=1,∴S_(△ABC)=4.故答案为:4.先根据D是BC的中点,E是AC的中点,得出△ADE的面积等于△ABC的面积的四分之一,再根据S_(△ADE)=1,得到S_(△ABC)=4.本题主要考查了三角形的面积,解决问题的关键是掌握三角形的中线将三角形分成面积相等的两部分. 15. 解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC-AB=2cm,即AC-8=2cm,∴AC=10cm,故答案为:10;依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键. 16. 解:三角形的角平分线和中线都在三角形内部,而锐角三角形的三条高在三角形内部,直角三角形有两条高与直角边重合,另一条高在三角形内部,钝角三角形有两条高在三角形外部,一条高在三角形内部.故答案为:高线.根据三角形的角平分线、中线和高的定义求解.考查了三角形的角平分线、中线和高:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 17. 解:在△ABC中,∵∠BAC=〖180〗^∘-∠B-∠C=〖70〗^∘,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=〖35〗^∘.又∵AD是BC边上的高,∴∠ADB=〖90〗^∘,∵在△ABD中∠BAD=〖90〗^∘-∠B=〖25〗^∘,∴∠DAE=∠BAE-∠BAD=〖10〗^∘.由三角形的内角和定理,可求∠BAC=〖70〗^∘,又由AE是∠BAC的平分线,可求∠BAE=〖35〗^∘,再由AD是BC边上的高,可知∠ADB=〖90〗^∘,可求∠BAD=〖25〗^∘,所以∠DAE=∠BAE-∠BAD=〖10〗^∘.本题考查三角形的内角和定理及角平分线的性质,高线的性质,熟知三角形的内角和定理是解答此题的关键. 18. 解:∵∠ABC与∠ACD的平分线交于点A_1,∴∠A_1 BC=1/2∠ABC,∠A_1 CD=1/2∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A_1+∠A_1 BC=∠A_1 CD,∴∠A_1+∠A_1 BC=∠A_1+1/2∠ABC=1/2(∠A+∠ABC),整理得,∠A_1=1/2∠A=α/2,同理可得,∠A_2=1/2∠A_1=1/2×α/2=α/2^2 ,…,∠A_2012=α/2^2012 .故答案为:α/2^2012 .根据角平分线的定义可得∠A_1 BC=1/2∠ABC,∠A_1 CD=1/2∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A_1+∠A_1 BC=∠A_1 CD,然后整理即可得到∠A_1与∠A的关系,同理得到∠A_2与∠A_1的关系并依次找出变化规律,从而得解.本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,求出后一个角是前一个角的一半是解题的关键. 19. 解:∵AD是△ABC中BC边上的中线,∴BD=DC=1/2 BC,∴△ABD与△ACD的周长之差 =(AB+BD+AD)-(AC+DC+AD) =AB-AC =13-10=3.则△ABD与△ACD的周长之差=3.故答案为3.根据三角形的周长的计算方法得到△ABD的周长和△ADC的周长的差就是AB与AC的差.本题考查三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线,同时考查了三角形周长的计算方法. 20. 解:∵在△ABC中,∠BAC=〖50〗^∘,∠C=〖70〗^∘,∴∠ABC=〖60〗^∘,∵在△AB C中,AD是高,AE,BF是角平线,∴∠EAD=〖90〗^∘-(〖25〗^∘+〖60〗^∘)=5^∘,∴∠AGH=〖25〗^∘+〖30〗^∘=〖55〗^∘,∴∠AHB=〖180〗^∘-〖55〗^∘-5^∘=〖120〗^∘.故答案为:〖120〗^∘.根据三角形的内角和得出∠ABC=〖60〗^∘,再利用角平分线的定义和高的定义解答即可.此题考查三角形的内角和问题,关键是根据三角形的内角和得出∠ABC=〖60〗^∘. 21. 根据三角形的内角和定理求出∠BAC的度数,根据角平分线的定义求出∠BAE的度数,根据三角形的外角性质得到∠AEC的度数,再根据三角形的内角和定理即可求出答案.本题主要考查了三角形的内角和定理,三角形的外角性质,三角形的角平分线,垂直的定义等知识点,能熟练地运用这些性质进行计算是解此题的关键. 22. 延长AD到E 使AD=DE,连接CE,证△ABD≌△ECD,求出AE和CE的长,根据勾股定理的逆定理求出∠E=〖90〗^∘,根据勾股定理求出CD即可.本题综合考查了勾股定理、勾股定理的逆定理、全等三角形的性质和判定、三角形的中线等知识点的应用,关键是正确地作辅助线,把已知条件转化成一个直角三角形,题型较好. 23. 因为AD是高,所以∠ADC=〖90〗^∘,又因为∠C=〖70〗^∘,所以∠CAD度数可求;因为∠BAC=〖60〗^∘,∠C=〖70〗^∘,所以∠BAO=〖30〗^∘,∠ABC=〖50〗^∘,BF是∠ABC的角平分线,则∠ABO=〖25〗^∘,故∠BOA的度数可求.本题考查了三角形内角和定理、角平分线定义.关键是利用角平分线的性质解出∠ABO、∠BAO,再运用三角形内角和定理求出∠AOB. 24. 根据直角三角形两锐角互余求出∠EDA的度数,再根据平角的定义求出∠CDE的度数,再次利用直角三角形两锐角互余求出∠DCE的度数,从而得到∠BCA的度数,最后利用三角形内角和等于〖180〗^∘计算即可.本题考查了三角形的角平分线的定义,三角形的高以及三角形的内角和定理,稍微复杂,但仔细分析图形也不难解决. 25. 解:(1)根据AE是△ABC的中线,可得BE=CE=1/2 BC; (2)根据AD是△ABC 的角平分线,可得∠BAD=∠CAD=1/2∠BAC; (3)根据AF是△ABC的高,可得∠AFB=∠AFC=〖90〗^∘; (4)根据AE是△ABC的中线,可得BE=CE,所以S_(△ABE)=1/2 S_(△ABC),S_(△AEC)=1/2 S_(△ABC),即S_(△ABE)=S_(△ACE)=1/2 S_(△ABC).故答案为:(1)CE,BC;(2)∠CAD,∠BAC;(3)∠AFC;(4)S_(△ABC),S_(△ABC),S_(△ABC). (1)三角形一边的中点与此边所对顶点的连线叫做三角形的中线; (2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线; (3)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高; (4)三角形的中线将三角形分成面积相等的两部分.本题主要考查了三角形的中线、高线以及角平分线的概念的运用,解题时注意:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段,三角形的中线将三角形分成面积相等的两部分. 26. 由∠1=∠D,根据同位角相等,两直线平行可证AE//DC,根据两直线平行,内错角相等可证∠EAC=∠2,再根据角平分线的性质即可求解.本题考查了平行线的判定与性质和三角形的角平分线的性质,有一定的综合性,但难度不大.。

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (41)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (41)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)一、单选题1.如图,小聪把一块含有30°角的直角三角尺ABC的两个顶点A,C放在长方形纸片DEFG的对边上,若AC平分∠BAE,则∠DAB的度数是()A.100°B.150°C.130°D.120°【答案】D【解析】【分析】利用角平分线定义求得∠BAC=∠CAE=30°,再利用平角定义即可解答.【详解】∵AC平分∠BAE∴∠BAC=∠CAE=30°∵∠DAB+∠BAC+∠CAE=180°∴∠DAB=120°故选D【点睛】本题考查了角平分线的定义以及平角的定义,熟练掌握相关定理是解题关键.2.如图,32ABC ︒∠=,50CBD ︒∠=,BE 平分ABD ∠,则CBE ∠的度数为( )A .8︒B .18︒C .9︒D .10︒【答案】C【解析】【分析】 根据题意,由角度相加,得到∠ABD 的度数,由角平分线性质,得到∠ABE 的度数,然后求出∠CBE.【详解】解:∵32ABC ︒∠=,50CBD ︒∠=,∴∠ABD=82°,∵BE 平分ABD ∠,∴∠ABE=41°,∴∠CBE=41329︒-︒=︒;故选择:C.【点睛】本题考查了角平分线的性质,解题的关键是正确的进行角度的运算.3.下面四个图形中,线段BD 是△ABC 的高的是( )A.B.C.D.【答案】A【解析】【分析】根据三角形高线的定义进行判断.【详解】解:线段BD是△ABC的高,则过点B作对边AC的垂线,垂线段BD为△ABC 的高.故选:A.【点睛】本题考查了三角形高线的定义:三角形有三条高线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.4.如图,已知CD是△ABC的中线,E为CD的中点,若△ABC的面积为1,则△ACE的面积为()A.12B.13C.14D.15【答案】C【分析】根据中线平分三角形的面积,CD为△ABC的中线,E是CD的中点,△ABC 的面积为1,即可求出△ACE的面积.【详解】解:∵CD为△ABC的中线,△ABC的面积为1,∴△ADC的面积为12,∵E是CD的中点,∴△ACE的面积为14,故选C.【点睛】本题考查三角形中线平分三角形的面积,熟练掌握三角形中线平分三角形的面积是解决本题的关键.5.如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接O在AO上取一点F,使得OF=12AF若S△ABC =12,则四边形OCDF的面积为()A.2 B.83C.3 D.103【答案】B 【解析】重心定理:三角形的三条边的中线交于一点,该点叫做三角形的重心.重心和三角形任意两个顶点组成的3个三角形面积相等.【详解】解:∵点D 、E 分别是边AC,AB 的中点,∴O 为△ABC 的重心, ∴13AOC S =ABC S =4, ∴12DOC DOA S S ==AOC S =2,∵OF=12AF , ∴13DOF S =AOD S =23, ∴S 阴=DOC S+DOF S =83. 故选:B.【点睛】本题考查了重心及重心定理,熟练掌握相关定理是解题关键.6.如图,在Rt △ABC 中,∠C =90°,以原点A 为圆心,适当的长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点E ,作射线AE 交BC 于点D ,若BD =5,AB =15,△ABD 的面积30,则AC +CD 的值是( )A .16B .14C .12D .【答案】A【分析】过D点作DF⊥AB,垂足为F,利用三角形ABD的面积,求出CD=DF=4,得到BC=9,再利用勾股定理求出AC,最后即可得答案【详解】过D点作DF⊥AB,垂足为F∵S△ABD=30∴12AB·DF=30∴DF=4根据作图得到AD是∠CAB的角平分线∴CD=DF=4∵BD=5∴BC=5+4=9在Rt△ABC中,12=∴AC+CD=12+4=16故选A【点睛】本题主要考查角平分线性质与勾股定理,解题关键在于能够做出正确辅助线7.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且S△ABC=4,则S△BEF的等于()A.12B.1 C.2 D.3【答案】B【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形可得S△ABD=12S△ABC,S△ACD=12S△ABC,S△BDE=12S△ABD,S△CDE=12S△ACD,然后求出S△BCE=12S△ABC,再根据S△BEF=12S△BCE列式求解即可.【详解】解:∵点D是BC的中点,∴S△ABD=12S△ABC,S△ACD=12S△ABC,∵点E是AD的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△BCE=S△BDE+S△CDE=12(S△ABD+S△ACD)=12S△ABC,∵点F是CE的中点,∴S △BEF =12S △BCE =12×12S △ABC =12×12×4=1. 故选:B .【点睛】本题考查了三角形中线的性质,熟知三角形的中线把三角形分成两个面积相等的三角形是解题关键.8.在△ABC 中,D 是BC 延长线上一点,且BC =m •BD ,过D 点作直线AB ,AC 的垂线,垂足分别为E 、F ,若AB =n •AC .则DE DF =( ) A .1(1)n m + B .1m(1n)- C .1(1)n m - D .1(1)n m - 【答案】C【解析】【分析】连接AD ,根据BC =m •BD ,得到CD =(1﹣m )BD ,根据同高的三角形,底之比等于面积之比得到S △ACD =(1﹣m )S △ABD ,根据三角形的面积公式得到()111,22AC DF m AB DE ⋅⋅=-⋅⋅把AB =n •AC ,代入即可求解. 【详解】解:连接AD ,∵BC =m •BD ,∴CD =(1﹣m )BD∴S △ACD =(1﹣m )S △ABD ,又∵11,,22ABD ACD S S AB DE AC DF =⋅⋅=⋅⋅ ∴()111,22AC DF m AB DE ⋅⋅=-⋅⋅ ∵AB =n •AC ,∴AC •DF =(1﹣m )n •AC •DE∴DF =(1﹣m )n •DE∴1.(1)n DE DF m =- 故选C .【点睛】考查三角形的面积公式,掌握同高的三角形,底之比等于面积之比是解题的关键.9.如图,已知点O 在直线AB 上,90COE ︒∠=,OD 平分AOE ∠,25COD ︒∠=,则BOD ∠的度数为( )A.65︒B.100︒C.115︒D.130︒【答案】C【解析】【分析】先根据∠COE=90°,∠COD=25°,求得∠DOE=90°-25°=65°,再根据OD平分∠AOE,得出∠AOD=∠DOE=65°,最后得出∠BOD=180°-∠AOD=115°.【详解】解:∵∠COE=90°,∠COD=25°,∴∠DOE=90°-25°=65°,∵OD平分∠AOE,∴∠AOD=∠DOE=65°,∴∠BOD=180°-∠AOD=115°,故选:C.【点睛】本题主要考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得∠AOD的度数,再根据邻补角进行计算.10.下列说法错误的是()A.三角形三条高交于三角形内一点B.三角形三条中线交于三角形内一点C.三角形三条角平分线交于三角形内一点 D.三角形的中线、角平分线、高都是线段【答案】A【解析】【分析】根据三角形的高线、外角的性质、角平分线、中线的定义对各选项分析判断后利用排除法求解.【详解】A. 三角形的三条高所在的直线交于一点,三条高不一定相交,故本选项符合题意;B. 三角形的三条中线交于三角形内一点,故本选项不符合;C. 三角形的三条角平分线交于一点,是三角形的内心,故本选项不符合;D. 三角形的中线,角平分线,高都是线段,因为它们都有两个端点,故本选项不符合;故选:A.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握各性质定义.。

初中-数学-人教版-三角形的角平分线、中线和高专题练习

初中-数学-人教版-三角形的角平分线、中线和高专题练习
又∵AB=5cm,AC=3cm,
∴AB-AC=2(cm).
即△ABD与△ACD的周长之差为2cm.
19、【答案】115
【分析】直接根据角平分线平分对应角,三角形内角和为180度进行计算.
【解答】 BP平分∠ABC,CP平分∠ACB,
故答案为115.
20、【答案】③④
【分析】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.
③写出α与β的数量关系,并说明理由;
(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.
参考答案
1、【答案】C
【分析】根据三角形的高的特点对选项进行一一分析,即可得出答案.
【解答】A、锐角三角形,三条高线交点在三角形内,故错误;
B、钝角三角形,三条高线不会交于一个顶点,故错误;
【解答】①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;
②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;
③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;
④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.
∴△ABC的面积=2×△BDC的面积=16,
选C.
11、【答案】C
【分析】根据三角形的高线、中线、角平分线的性质逐一判断即可.
【解答】解:A、正确,锐角三角形的三条高线、三条中线、三条角平分线分别交于一点;
B、正确,钝角三角形有两条高线在三角形的外部;
C、错误,直角三角形也有三条高线;

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案考点一三角形的稳定性考点二三角形的三边关系考点三三角形的高线考点四三角形的中线考点五三角形的角平分线考点一三角形的稳定性例题:(2021·广西·南宁十四中七年级期末)下列图形中没有运用三角形稳定性的是()A.B.C.D.【答案】B【解析】【分析】利用三角形的稳定性解答即可.【详解】解:对于A、C、D选项都含有三角形故利用了三角形的稳定性;而B选项中用到了四边形的不稳定性.故选B.【点睛】本题主要考查了三角形的稳定性需理解稳定性在实际生活中的应用;明确能体现出三角形的稳定性则说明物体中必然存在三角形是解题关键.【变式训练】1.(2022·吉林吉林·二模)如图人字梯中间设计一“拉杆” 在使用梯子时固定拉杆会增加安全性.这样做蕴含的数学道理是()A.三角形具有稳定性B.两点之间线段最短C.经过两点有且只有一条直线D.垂线段最短【答案】A【解析】【分析】人字梯中间设计一“拉杆”后变成一个三角形稳定性提高.【详解】三角形的稳定性如果三角形的三条边固定那么三角形的形状和大小就完全确定了三角形的这个特征叫做三角形的稳定性.故选A【点睛】本题考查三角形的稳定性理解这一点是本题的关键.2.(2022·广东·佛山市惠景中学七年级期中)如图所示的自行车架设计成三角形这样做的依据是三角形具有___.【答案】稳定性【解析】【分析】根据是三角形的稳定性即可求解.【详解】解:自行车的主框架采用了三角形结构这样设计的依据是三角形具有稳定性故答案为:稳定性.【点睛】本题考查的是三角形的性质掌握三角形具有稳定性是解题的关键.考点二三角形的三边关系例题:(2022·黑龙江·哈尔滨市风华中学校七年级期中)下列各组长度的线段为边能构成三角形的是().A.123B.345C.4511D.633【答案】B【解析】【分析】比较三边中两较小边之和与较大边的大小即可得到解答.【详解】解:A、1+2=3不符合题意;B、3+4>5符合题意;C、4+5<11不符合题意;D、3+3=6不符合题意;故选B.【点睛】本题考查构成三角形的条件熟练掌握三角形的三边关系是解题关键.【变式训练】1.(2022·黑龙江·哈尔滨市第六十九中学校七年级期中)下列各组长度的三条线段能够组成三角形的是()A.348B.5611C.5610D.1073【答案】C【解析】【分析】根据三角形三边关系可直接进行排除选项.解:A、3+4<8不符合三角形三边关系故不能构成三角形;B、5+6=11不符合三角形三边关系故不能构成三角形;C、5+6>10符合三角形三边关系故能构成三角形;D、3+7=10不符合三角形三边关系故不能构成三角形;故选C.【点睛】本题主要考查三角形三边关系熟练掌握三角形三边关系是解题的关键.2.(2022·海南·海口市第十四中学七年级阶段练习)在△ABC中三条边长分别为3和6第三边长为奇数那么第三边的长是()A.5或7B.7或9C.3或5D.9【答案】A【解析】【分析】先求出第三边长的取值范围再根据条件具体确定符合条件的值即可.【详解】解:因为三条边长分别为3和6所以6-3<第三边<6+3所以3<第三边<9因为第三边长为奇数∴第三边的长为5或7故选:A.【点睛】本题考查了三角形的三边关系掌握三角形任意两边之和大于第三边任意两边之差小于第三边是解题的关键.3.(2022·江苏·南师附中新城初中七年级期中)已知三角形三边长分别为3x14若x为正整数则这样的三角形个数为()A.4B.5C.6D.7【解析】【分析】直接根据三角形的三边关系求出x的取值范围进而可得出结论.【详解】解:三角形三边长分别为3x14x<<.x143143∴-<<+即1117x为正整数12x=13141516即这样的三角形有5个.故选:B.【点睛】本题考查的是三角形的三边关系熟知三角形两边之和大于第三边两边之差小于第三边是解答此题的关键.考点三三角形的高线例题:(2022·重庆市育才中学七年级阶段练习)下列各组图形中BD是ABC的高的图形是()A.B.C.D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知只有选项B中的线段BD是∴ABC的高故选:B.【点睛】考查了三角形的高的概念掌握高的作法是解题的关键.【变式训练】1.(2022·浙江杭州·中考真题)如图 CD ∴AB 于点D 已知∴ABC 是钝角 则( )A .线段CD 是ABC 的AC 边上的高线B .线段CD 是ABC 的AB 边上的高线C .线段AD 是ABC 的BC 边上的高线 D .线段AD 是ABC 的AC 边上的高线【答案】B【解析】【分析】根据高线的定义注意判断即可.【详解】∴ 线段CD 是ABC 的AB 边上的高线∴A 错误 不符合题意;∴ 线段CD 是ABC 的AB 边上的高线∴B 正确 符合题意;∴ 线段AD 是ACD 的CD 边上的高线∴C 错误 不符合题意;∴线段AD 是ACD 的CD 边上的高线∴D 错误 不符合题意;故选B .【点睛】本题考查了三角形高线的理解 熟练掌握三角形高线的相关知识是解题的关键.2.(2022·湖南怀化·七年级期末)如图 在直角三角形ABC 中 90ACB ∠=︒ AC =3BC =4 AB =5则点C 到AB 的距离为______.【答案】125【解析】【分析】根据面积相等即可求出点C 到AB 的距离.【详解】解:∴在直角三角形ABC 中 90ACB ∠=︒ ∴1122AC BC AB CD ⨯=⨯ ∴AC =3 BC =4 AB =5 ∴1134522CD ⨯⨯=⨯⨯ ∴CD =125故答案为:125. 【点睛】本题考查求直角三角形斜边上的高 用面积法列出关系式是解题关键.3.(2022·重庆·七年级期中)如图 点A 、点B 是直线l 上两点 10AB = 点M 在直线l 外 6MB = 8MA = 90AMB ∠=︒ 若点P 为直线l 上一动点 连接MP 则线段MP 的最小值是______.【答案】4.8【解析】【分析】根据垂线段最短可知:当MP AB ⊥时 MP 有最小值 再利用三角形的面积可列式计算求解MP 的最小值.【详解】解:当MP AB ⊥时 MP 有最小值10AB = 6MB = 8MA = 90AMB ∠=︒AB MP AM BM ∴⋅=⋅即1068MP =⨯解得 4.8MP =.故答案为:4.8.【点睛】本题主要考查垂线段最短 三角形的面积 找到MP 最小时的P 点位置是解题的关键.考点四 三角形的中线例题:(2021·广西·靖西市教学研究室八年级期中)如图 已知BD 是∴ABC 的中线 AB =5 BC =3 且∴ABD 的周长为12 则∴BCD 的周长是_____.【答案】10【解析】【分析】先根据三角形的中线、线段中点的定义可得AD CD = 再根据三角形的周长公式即可求出结果.【详解】 解:BD 是ABC 的中线 即点D 是线段AC 的中点AD CD ∴=5AB = ABD △的周长为1212AB BD AD ∴++= 即512BD AD ++=解得:7BD AD +=7BD CD ∴+=则BCD △的周长是3710BC BD CD ++=+=.故答案为:10.【点睛】本题主要考查了三角形的中线、线段中点的定义等知识点 掌握线段中点的定义是解题关键.【变式训练】1.(2022·陕西·西安市曲江第一中学七年级期中)在ABC 中 BC 边上的中线AD 将ABC 分成的两个新三角形的周长差为5cm AB 与AC 的和为11cm 则AC 的长为________.【答案】3cm 或8cm【解析】【分析】根据三角形的中线的定义可得BD CD = 然后求出ABD △与ADC 的周长差是AB 与AC 的差或AC 与AB 的差 然后代入数据计算即可得解.【详解】如图1 图2∴AD 是BC 边上的中线∴BD CD =∴中线AD 将ABC 分成的两个新三角形的周长差为5cm∴()()5AB BD AD AC CD AD ++-++=或()()5AC CD AD AB BD AD ++-++=∴5AB AC -=或者5AC AB -=∴AB 与AC 的和为11cm∴11AB AC +=∴83AB AC =⎧⎨=⎩或38AB AC =⎧⎨=⎩故答案为:3cm 或8cm .【点睛】本题考查了三角形的中线熟记概念并求出两个三角形的周长的差等于两边长的差是解题的关键.2.(2022·江苏·泰州市第二中学附属初中七年级阶段练习)如图D E分别是∴ABC边AB BC上的点AD=2BD BE=CE设∴ADF的面积为S1∴FCE的面积为S2若S△ABC=16则S1-S2的值为_________.【答案】8 3【解析】【分析】S△ADF−S△CEF=S△ABE−S△BCD所以求出三角形ABE的面积和三角形BCD的面积即可因为AD=2BD BE=CE且S△ABC=16就可以求出三角形ABE的面积和三角形BCD的面积.【详解】解:∴BE=CE∴BE=12BC∴S△ABC=16∴S△ABE=12S△ABC=8.∴AD=2BD S△ABC=16∴S△BCD=13S△ABC=163∴S△ABE−S△BCD=(S1+S四边形BEFD)−(S2+S四边形BEFD)=S1−S2=8 3故答案为83.【点睛】本题考查三角形的面积关键知道当高相等时面积等于底边的比据此可求出三角形的面积然后求出差.3.(2022·江苏·苏州市相城实验中学七年级期中)如图AD 是∴ABC 的中线BE 是∴ABD 的中线EF ⊥BC 于点F.若24ABCS=BD =4则EF 长为___________.【答案】3【解析】【分析】因为S △ABD =12S △ABC S △BDE =12S △ABD ;所以S △BDE =14S △ABC 再根据三角形的面积公式求得即可. 【详解】解:∴AD 是∴ABC 的中线 S △ABC =24∴S △ABD =12S △ABC =12同理 BE 是∴ABD 的中线 612BDE ABD SS ==∴S △BDE =12BD •EF∴12BD •EF =6 即1462EF ⨯⨯= ∴EF =3.故答案为:3.【点睛】此题考查了三角形的面积 三角形的中线特点 理解三角形高的定义 根据三角形的面积公式求解 是解题的关键.考点五 三角形的角平分线例题:(2022·全国·八年级)如图 在ABC 中 90CAB ∠=︒ AD 是高 CF 是中线 BE 是角平分线 BE 交AD 于G 交CF 于H 下列说法正确的是( )①AEG AGE ∠=∠;②BH CH =;③2EAG EBC ∠=∠;④ACF BCF S S =A.①③B.①②③C.①③④D.②③④【答案】C【解析】【分析】①根据∴CAB=90° AD是高可得∴AEG=90°−∴ABE∴DGB=90°−∴DBG又因为BE是角平分线可得∴ABE=∴DBE故能得到∴AEG=∴DGB再根据对顶角相等即可求证该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴EAG+∴DAB=90° ∴DBA+∴DAB=90° 可得∴EAG=∴DBA因为∴DBA=2∴EBC故能得到该说法正确;④根据中线平分面积可得该说法正确.【详解】解:①∴∴CAB=90° AD是高∴∴AEG=90°−∴ABE∴DGB=90°−∴DBG∴BE是角平分线∴∴ABE=∴DBE∴∴AEG=∴DGB∴∴DGB=∴AGE∴∴AEG=∴AGE故该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴∴EAG+∴DAB=90° ∴DBA+∴DAB=90°∴∴EAG=∴DBA∴∴DBA=2∴EBC∴∴EAG=2∴EBC故该说法正确;④根据中线平分面积可得S△ACF=S△BCF故该说法正确.故选:C.【点睛】本题考查了三角形的高中线角平分线的性质解题的关键是熟练掌握各线的特点和性质.【变式训练】1.(2022·全国·八年级)如图在∴ABC中∴C=90° D E是AC上两点且AE=DE BD平分∴EBC那么下列说法中不正确的是()A.BE是∴ABD的中线B.BD是∴BCE的角平分线C.∴1=∴2=∴3D.S△AEB=S△EDB【答案】C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∴AE=DE∴BE是∴ABD的中线故本选项不符合题意;B、∴BD平分∴EBC∴BD是∴BCE的角平分线故本选项不符合题意;C、∴BD平分∴EBC∴∴2=∴3但不能推出∴2、∴3和∴1相等故本选项符合题意;D、∴S△AEB=12×AE×BC S△EDB=12×DE×BC AE=DE∴S△AEB=S△EDB故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义熟练掌握三角形中连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.2.(2022·全国·八年级)如图AD BE CF依次是ABC的高、中线和角平分线下列表达式中错误的是( )A .AE =CEB .∴ADC =90° C .∴CAD =∴CBE D .∴ACB =2∴ACF【答案】C【解析】【分析】 根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交 连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中 连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线 顶点和垂足间的线段叫做三角形的高线 简称为高.求解即可.【详解】解:A 、BE 是△ABC 的中线 所以AE =CE 故本表达式正确;B 、AD 是△ABC 的高 所以∴ADC =90 故本表达式正确;C 、由三角形的高、中线和角平分线的定义无法得出∴CAD =∴CBE 故本表达式错误;D 、CF 是△ABC 的角平分线 所以∴ACB =2∴ACF 故本表达式正确.故选:C .【点睛】本题考查了三角形的高、中线和角平分线的定义 是基础题 熟记定义是解题的关键.3.(2021·全国·八年级课时练习)填空:(1)如图(1),,AD BE CF 是ABC 的三条中线 则2AB =______ BD =______ 12AE =______. (2)如图(2),,AD BE CF 是ABC 的三条角平分线 则1∠=______ 132∠=______ 2ACB ∠=______.【答案】 AF 或BF CD AC 2∠ ABC ∠ 4∠【解析】【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点 进而得到答案.(2)根据角平分线定义 从一个角的顶点出发 把这个角分成两个相等的角的射线 叫做这个角的平分线即可解答.【详解】解:(1)∴CF 是AB 边上的中线∴AB =2AF =2BF ;∴AD 是BC 边上的中线∴BD =CD∴BE 是AC 边上的中线∴AE =12AC(2)∴AD 是BAC ∠的角平分线∴12∠=∠∴BE 是ABC ∠的角平分线 ∴132∠=ABC ∠ ∴CF 是ACB ∠的角平分线∴2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线解题的关键是掌握三角形的中线及角平分线的定义.一、选择题1.(2022·黑龙江·哈尔滨市风华中学校七年级期中)画ABC的BC边上的高正确的是()A.B.C.D.【答案】A【解析】【分析】利用三角形的高线的定义判断即可.【详解】解:画△ABC的BC边上的高即过点A作BC边的垂线.∴只有选项A符合题意故选:A.【点睛】本题考查了三角形高线的画法从三角形的一个顶点向对边作垂线顶点与垂足间的线段叫做三角形的高线锐角三角形的三条高线都在三角形的内部钝角三角形的高有两条在三角形的外部.直角三角形的高线有两条是三角形的直角边.2.(2022·山东潍坊·七年级期末)在数学实践课上小亮经研究发现:在如图所示的ABC中连接点A和BC上的一点D线段AD等分ABC的面积则AD是ABC的().A.高线B.中线C.角平分线D.对角线【答案】B【解析】【分析】直接利用三角形中线的性质即可得出结果.【详解】解:∴线段AD等分∴ABC的面积∴∴ABD的面积等于∴ACD的面积∴两个三角形的高为同一条高∴BD=CD∴AD为∴ABC的中线故选:B.【点睛】题目主要考查三角形中线的性质理解三角形中线将三角形分成两个面积相同的三角形是解题关键.3.(2022·河北保定外国语学校一模)能用三角形的稳定性解释的生活现象是()A.B.C.D.【答案】C【解析】【分析】根据各图所用到的直线、线段有关知识即可一一判定【详解】解:A、利用的是“两点确定一条直线” 故该选项不符合题意;B、利用的是“两点之间线段最短” 故该选项不符合题意;C、窗户的支架是三角形利用的是“三角形的稳定性” 故该选项符合题意;D、利用的是“垂线段最短” 故该选项不符合题意;故选:C【点睛】本题考查了两点确定一条直线、两点之间线段最短、三角形的稳定性、垂线段最短的应用结合题意和图形准确确定所用到的知识是解决本题的关键.4.(2022·山东青岛·七年级期末)如图BD是ABC的边AC上的中线AE是ABD△的边BD上的中线BF是ABE△的边AE上的中线若ABC的面积是32则阴影部分的面积是()A.9B.12C.18D.20【答案】B【解析】【分析】利用中线等分三角形的面积进行求解即可.【详解】∴BD是ABC的边AC上的中线∴11321622ABD BCD ABCS S S===⨯=△△∴AE是ABD△的边BD上的中线∴1116822ABE ADE ABDS S S===⨯=又∴BF 是ABE △的边AE 上的中线 则CF 是ACE 的边AE 上的中线 ∴118422BEF ABF ABE S S S ===⨯= 182CEF ACF ADE CED ACE S S S S S =====则4812BEF CEF S SS =+=+=阴影故选:B .【点睛】 本题考查了中线的性质 清晰明确三角形之间的等量关系 进行等量代换是解题的关键.5.(2021·江苏·无锡市侨谊实验中学三模)如图为一张锐角三角形纸片ABC 小明想要通过折纸的方式折出如下线段:①BC 边上的中线AD ②BC 边上的角平分线AE ③BC 边上的高AF .根据所学知识与相关活动经验可知:上述三条线中 所有能够通过折纸折出的有( )A .①②B .①③C .②③D .①②③【答案】D【解析】【分析】 根据三角形中线 角平分线和高的定义即可判断.【详解】沿着A 点和BC 中点的连线折叠 其折痕即为BC 边上的中线 故①符合题意;折叠后使B 点在AC 边上 且折痕通过A 点 则其折痕即为BC 边上的角平分线 故②符合题意; 折叠后使B 点在BC 边上 且折痕通过A 点 则其折痕即为BC 边上的高 故③符合题意;故选D . 【点睛】本题考查三角形中线 角平分线和高的定义.掌握各定义是解题关键.二、填空题6.(2022·湖南邵阳·八年级期末)若ABC 的三条边长分别为3cm xcm 4cm 则x 的取值范围______.【答案】17x <<##71x >>【解析】【分析】根据三角形的三边关系进行求解即可.【详解】解:根据“三角形任意两边之和大于第三边 任意两边之差小于第三边”可得到4343x -<<+∴17x <<.故答案为:17x <<.【点睛】本题主要考查三角形三边关系 熟记“三角形任意两边之和大于第三边 任意两边之差小于第三边”是解答此类题目的关键.7.(2022·云南红河·八年级期末)已知a b c 、、是ABC ∆的三边长 a b 、满足()2610a b -+-= c 为偶数则c =_______.【答案】6【解析】【分析】根据非负数的性质列式求出a 、b 的值 再根据三角形的任意两边之和大于第三边 两边之差小于第三边求出c 的取值范围 再根据c 是偶数求出c 的值.【详解】解:∴a b 满足()2610a b -+-=∴a -6=0 b -1=0解得a =6 b =1∴6-1=5 6+1=7∴5<c <7又∴c 为偶数∴c =6故答案为:6【点睛】本题考查非负数的性质:偶次方 解题的关键是明确题意 明确三角形三边的关系.8.(2021·北京市陈经纶中学分校八年级期中)随着人们物质生活的提高手机成为一种生活中不可缺少的东西手机很方便携带但唯一的缺点就是没有固定的支点.为了解决这一问题某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机这是利用了三角形的______.【答案】三角形的稳定性【解析】【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机这是利用了三角形的稳定性故答案为:三角形的稳定性.【点睛】本题考查了三角形的稳定性解题的关键是掌握三角形具有稳定性.9.(2022·北京市师达中学七年级阶段练习)如图AB∴BD 于点B AC∴CD 于点C且AC 与BD 交于点E已知AE=10DE=5CD=4则AB 的长为_________.【答案】8【解析】【分析】根据三角形高的定义可判断出边上的高然后利用三角形面积求解即可.【详解】解:∴AB∴BD AC∴CD∴AB 是∴ADE 的边DE 上的高 CD 是边AE 上的高∴S △AED =1122DE AB AE CD ⋅=⋅ ∴10485AE CD AB DE ⋅⨯=== 故答案为:8.【点睛】本题考查三角形高的定义 三角形的面积等知识 掌握基本概念是解题关键 学会用面积法求线段的长. 10.(2022·全国·八年级专题练习)如图 在ABC 中 2AB AC == P 是BC 边上的任意一点 PE AB ⊥于点E PF AC ⊥于点F .若ABC S = 则PE PF +=______.【解析】【分析】 根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅ 结合已知条件 即可求得PE PF +的值. 【详解】解:如图 连接APPE AB ⊥于点E PF AC ⊥于点F1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅2AB AC == ABC S =∴1122AB PE AC PF ⋅+⋅PE PF =+=【点睛】本题考查了三角形的高掌握三角形的高的定义是解题的关键.三、解答题11.(2022·全国·八年级)在∴ABC中BC=8AB=1;(1)若AC是整数求AC的长;(2)已知BD是∴ABC的中线若∴ABD的周长为17求∴BCD的周长.【答案】(1)8(2)24【解析】【分析】(1)根据三角形三边关系“两边之和大于第三边两边之差小于第三边”得7<AC<9根据AC是整数得AC=8;(2)根据BD是∴ABC的中线得AD=CD根据∴ABD的周长为17和AB=1得AD+BD=16即可得.(1)解:由题意得:BC﹣AB<AC<BC+AB∴7<AC<9∴AC是整数∴AC=8.(2)解:如图所示∴BD是∴ABC的中线∴AD=CD∴∴ABD的周长为17∴AB +AD +BD =17∴AB =1∴AD +BD =16∴∴BCD 的周长=BC +BD +CD =BC +AD +CD =8+16=24.【点睛】本题考查了三角形 解题的关键是掌握三角形三边的关系和三角形的中线.12.(2022·全国·八年级专题练习)已知:a 、b 、c 满足2(|0a c -=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形 求出三角形的周长;若不能构成三角形 请说明理由.【答案】(1)a = 5b = c =(2)能构成三角形 周长为(51【解析】【分析】(1)根据非负数之和等于零 则每个非负数等于零 分别建立方程求解即可;(2)先比较长三边的大小 再用较小两边之和与最大边比较即可判断能够构成三角形;然后计算三角形的周长即可.(1)解:∴(20a ≥ 0 0c -≥a 、b 、c 满足(20a c -=∴0a = 50b -= 0c -解得a = 5b = c =(2)解:∴81825<<∴5即a c b <<∴5=>∴能构成三角形三角形的周长)5551a b c =++===. 【点睛】本题考查了非负数的性质 二次根式有意义的条件和构成三角形的条件 解题的关键是根据非负数之和等于零的条件分别建立方程和如何判定三边能否构成三角形.13.(2022·四川·威远中学校七年级期中)(1)已知一个三角形的两边长分别是4cm 、7cm 则这个三角形的周长的取值范围是什么?(2)在等腰三角形ABC 中 AB =AC 周长为14cm BD 是AC 边上的中线 △ABD 比△BCD 周长长4cm 求△ABC 各边长.【答案】(1)14<c <22;(2)AB =6 AC =6 BC =2.【解析】【分析】(1)根据三角形三边关系 先求出三角形第三边长的范围 即可求出周长范围.(2)根据三角形中线的定义可得,AD CD = 从而可得4,AB BC -=再根据ABC 的周长是14 以及,AB AC = 可得214AB BC +=进行计算即可解答. 【详解】解:(1)设第三边长为x 根据三角形的三边关系得7474,x ∴-<<+3,x ∴<<11∴三角形的周长C 的取值范围为:1422.c <<(2)如图所示:∴BD是AC边上的中线,AD CD∴=∴△ABD比△BCD周长长4cm()()4,AB AD BD BC CD BD∴++-++=4,AB BC∴-=4,BC AB∴=-ABC的周长是1414,AB AC BC∴++=,AB AC=214,AB BC∴+=2414,AB AB∴+-=6,AB∴=6,AB AC∴==2.BC∴=【点睛】本题主要考查了三角形三边关系等腰三角形的性质熟练掌握等腰三角形的性质是解题的关键.14.(2022·河北邯郸·七年级阶段练习)如图在直角三角形ABC中∴BAC=90° AD是BC边上的高CE 是AB边上的中线AB=12cm BC=20cm AC=16cm求:(1)AD的长;(2)∴BCE的面积.【答案】(1)485;(2)48.【解析】【分析】(1)利用面积法得到12AD•BC=12AB•AC然后把AB=12cm BC=20cm AC=16cm代入可求出AD的长;(2)由于三角形的中线将三角形分成面积相等的两部分 所以S △BCE =12S △ABC .【详解】解:(1)∴∴BAC =90° AD 是BC 边上的高 ∴12AD •BC =12AB •AC∴AD =121620⨯=485(cm );(2)∴CE 是AB 边上的中线∴S △BCE =12S △ABC =12×12×12×16=48(cm 2).【点睛】本题考查三角形中线的性质 涉及等积法 是重要考点 掌握相关知识是解题关键.15.(2022·黑龙江·哈尔滨市风华中学校七年级期中)如图 在6×10的网格中 每一小格均为正方形且边长是1 已知∴ABC 的每个顶点都在格点上.(1)画出∴ABC 中BC 边上的高线AE ;(2)在∴ABC 中AB 边上取点D 连接CD 使3BCD ACD S S =△△;(3)直接写出∴BCD 的面积是__________.【答案】(1)画图见解析(2)画图见解析(3)7.5【解析】【分析】(1)利用网格线过A 作BC 的垂线即可;(2)利用网格线的特点 取格点D 满足3BD AD = 则D 即为所求作的点;(3)利用三角形的面积公式直接计算即可.(1)解:如图 AE 即为BC 上的高.(2)如图 利用网格特点 可得3BD AD =∴D 即为所求作的点 满足3BCD ACD S S =△△.(3)1537.52BCD S =⨯⨯=. 【点睛】本题考查的是画三角形的高 三角形的面积的计算 熟悉等高的两个三角形的面积之间的关系是解本题的关键.16.(2022·江苏·沭阳县怀文中学七年级阶段练习)如图 在ABC 中 CD 、CE 分别是ABC 的高和角平分线 ,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒ 求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.【答案】(1)15DCE ∠=︒(2)2αβ-【解析】【分析】(1)根据三角形的内角和定理求出∴ACB 的值 再由角平分线的性质以及直角三角形的性质求出∴DCE . (2)由(1)的解题思路即可得正确结果.(1) 解:70BAC ∠=︒ 40B ∠=︒∴()180()180704070ACB BAC B ∠=︒-∠+∠=︒-︒+︒=︒CE 是ACB ∠的平分线∴1352ACE ACB ∠=∠=︒.CD 是高线∴90ADC ∠=︒∴9020ACD BAC ∠=︒-∠=︒∴352015DCE ACE ACD ∠=∠-∠=︒-=︒︒.(2) 解:BAC α∠= B β∠=∴()180()180ACB BAC B αβ∠=︒-∠+∠=︒-+CE 是ACB ∠的平分线∴()1118090222ACE ACB αβαβ+∠=∠=⨯︒-+=︒-⎡⎤⎣⎦.CD 是高线∴90ADC ∠=︒∴9090ACD BAC α∠=︒-∠=︒- ∴909022DCE ACE ACD αβαβα+-∠=∠-∠=︒--︒+=.【点睛】本题主要考查角平分线 高线以及角的转换 掌握角平分线 高线的性质是解题的关键.17.(2022·上海·八年级专题练习)如图 ∴ABC 中 ∴BAC =60º AD 平分∴BAC 点E 在AB 上 EG ∴ADEF ∴AD 垂足为F .(1)求∴1和∴2的度数.(2)联结DE 若S △ADE =S 梯形EFDG 猜想线段EG 的长和AF 的长有什么关系?说明理由.【答案】(1)30º;60º(2)相等 理由见解析【解析】【分析】(1)利用角平分线的定义求得BAD ∠ 然后在直角三角形中利用两锐角互余即可求得∴2 再利用平行线的性质即可求得∴1的度数.(2)根据S △ADE =S 梯形EFDG 可得AD =DF +EG 结合图形即可求解.(1)∴∴BAC =60º AD 平分∴BAC ∴1302BAD BAC ∠=∠=︒ 又∴EF ∴AD∴29060BAD ∠=︒-∠=︒ ∴EG ∴AD∴130BAD ∠=∠=︒.(2)相等. 理由如下: ∴EF ∴AD∴S △ADE =12AD EF ⋅ S 梯形EFDG =1()2DE EG EF +⋅ ∴S △ADE = S 梯形EFDG ∴12AD EF ⋅=1()2DE EG EF +⋅∴AD =DF +EG∴AD =AF +DF∴DF +EG =AF +DF即AF =EG .【点睛】本题考查了平行线的性质 角平分线的定义以及三角形和梯形的面积公式 熟练掌握平行线的性质和角平分线的定义是解题的关键.18.(2021·安徽省六安皋城中学八年级期中)如图 AD 是∴ABC 的边BC 上的中线 已知AB =5 AC =3. (1)边BC 的取值范围是 ;(2)∴ABD 与∴ACD 的周长之差为 ;(3)在∴ABC 中 若AB 边上的高为2 求AC 边上的高.【答案】(1)28BC <<;(2)2;(3)103h =. 【解析】【分析】 (1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将∴ABD 与∴ACD 的周长之差转换为AB 和AC 的差即可得出答案;(3)设AC 边上的高为h 根据三角形面积公式列出方程求解即可.【详解】解:(1)∴∴ABC 中AB =5 AC =3∴5353BC -<<+即28BC <<故答案为:28BC <<;(2)∴∴ABD 的周长为AB AD BD ++∴ACD 的周长为AC AD CD ++∴AD 是∴ABC 的边BC 上的中线∴BD CD =∴AB AD BD ++-(AC AD CD ++)=532AB AC -=-=故答案为:2;(3)设AC 边上的高为h 根据题意得:11222AB AC h ⨯=⨯ 即1152322h ⨯⨯=⨯⨯ 解得103h =.【点睛】本题考查了三角形三边关系 三角形的中线 三角形的高等知识点 熟练掌握基础知识是解本题的关键.。

考点30 线段垂直平分线、角平分线、中位线

考点30 线段垂直平分线、角平分线、中位线

考点30 线段垂直平分线、角平分线、中位线一、选择题1.(2015·绥化中考)如图,所示□ABCD的对角线AC,BD相交于点O,AE平分∠BAD交BC于E,且∠ADC=60°,AB=12BC,连结OE.下列结论:①∠CAD=30°,②S□ABCD=AB·AC,③OB=AB,④OE=14BC,成立的有()A.1个B.2个C.3个D.4个【答案】C【解析】∵AE平分∠BAD,∴∠BAE=∠DAE,在□ABCD中,由于AD∥BC,∴∠AEB=∠DAE=∠BAE,∴BA=BE,又∵∠ABC=∠ADC=60°,∴△ABE是等边三角形,∵AB=12 BC,∴BE=CE=AE,可得△BAC为直角三角形,AB⊥AC,∴∠CAD=30°,∴①正确.S□ABCD=AB·AC,∴②正确.□ABCD中,OA=OC,∴OE是△ABC的中位线,OE=12AB=14BC,∴④正确.Rt△AOB中,∠BAO为直角,∴OB>AB,∴③不正确.故选择C .2. (2015·宜昌中考)两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB.詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD.其中正确的结论有()A .0个B .1个C .2个D .3个 【答案】D【解析】∵AD =CD ,AB =CB ,根据线段的垂直平分线的性质定理的逆定理(到线段两端点距离相等的点在线段的垂直平分线上),可知D ,B 在线段AC 的垂直平分线上,所以OA =OC=12AC ,且AC ⊥BD ;因此①,②正确,根据三角形全等的判定方法SSS 可证△ABD ≌△CBD ,故③也正确,因此选D .3. (2015·随州中考)如图,△ABC 中,AB =5,AC =6,BC =4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( ) A .8 B .9 C .10 D .11【答案】C 【解析】∵D 是AB 的垂直平分线上一点,∴AD =BD ,∵△BDC 的周长=DB +BC +CD ,∴△BDC 的周长=AD +CD + BC =AC +BC =6+4=10.故选C .4. (2015·永州中考)如图,在四边形ABCD 中,AB =CD ,BA 和CD 的延长线交于点E ,若点P 使得PABPCDSS=,则满足此条件的点P ( )A.有且只有1个B.有且只有2个C.组成∠E 的平分线D.组成∠E 的平分线所在的直线(E 点除外)【答案】D【解析】因为AB =CD ,若P A BP C D SS =,则AB ,CD 边上的高必须相等,因此考虑点P 所在的位置到AB ,CD 的距离相等,即点P 在∠E 的平分线上;若反向延长∠E 的平分线,则其上面的点到AB ,CD 的距离也相等,同时考虑到点E 在AB 和CD 的延长线上,因此点P 位于点E 时不能构成三角形,所以点P 组成∠E 的平分线所在的直线(E 点除外),故选择D .5. (2015·青岛中考)如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE=1,则BC=( )A.B.2C. 3D.2【答案】C【解析】∵DE ⊥AB 于E ,DE=1,∠B=30°,∴BD=2,∵AD 是△ABC 的角平分线,DE ⊥AB 于E ,∠C=90°,∴DE=DC=1,∴BC=BD+DC=3.故选择C .6.(2015·青岛中考)如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF .若BD=4,则菱形ABCD 的周长为( )A.4B.C.D.28【答案】C【解析】∵E ,F 分别是AB ,BC 边上的中点,AC=2.∵菱形ABCD 的对角线AC 、BD 相交于O 点,∴OB=12BD=2,OA=12AC ⊥BD ,∴在R t △AOB 中,由勾股定理得AB = =.∴菱形ABCD 的周长为,故选择C .7. (2015·滨州中考)顺次连接矩形ABCD 各边中点,所得四边形必定是( ) A .邻边不等的平行四边形 B .矩形 C .正方形 D .菱形 【答案】D【解析】如图,E ,F ,G ,H 为矩形的中点,连接AC ,BD .根据三角形中位线定理,得EF ∥AC ,EF =12AC ,HG ∥AC ,HG =12AC ,EH =12BD .∴EF ∥HG ,EF =HG ,∴四边形EFGH 为平行四边形.又∵AC =BD ,∴EF =EH .∴四边形EFGH 为菱形.8.(2015·东营中考)如图,在△ABC中,AB>AC,点D,E分别是边AB,AC的中点,点F在BC边上,连接DE,DF,EF.则添加下列哪一个条件后,仍无法判定△FCE与△EDF全等()A.∠A=∠DFE B.BF=CF C.DF∥A C D.∠C=∠EDF【答案】A【解析】(1)∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC.当BF=CF时,DF也是△ABC的中位线,∴DF∥AC,∴四边形DECF是平行四边形,∴△FCE与△EDF全等.(2)当DF∥A C时,又DE∥BC,∴四边形DECF是平行四边形,故△FCE与△EDF全等.(3)当∠C=∠EDF时,∵DE∥BC,∴∠DFB=∠EDF,∴∠C=∠DFB,∴DF∥AC,∴四边形DECF是平行四边形,故△FCE与△EDF全等.(4)而添加条件∠A=∠DFE时,无法保证△FCE与△EDF一定全等,如点F与点A关于DE对称时,两三角形就不全等.由以上可知,添加选项B,C,D中的条件,均能判定△FCE与△EDF全等.综上,选A.9.(2015·鄂尔多斯市中考)如图,P是矩形ABCD的对角线AC的中点,E是AD的中点,若AB=6,AD=8,则四边形ABPE的周长为()A.14 B.16C.17 D.18【答案】D【解析】∵矩形ABCD,∴CD=AB=6,BC=AD=8.在Rt△ABC中,AC =10862222=+=+BC AB ,∵点P 为AC 的中点,∴BP =21AC =5.∵点E 为AD 的中点,点P 为AC 的中点,∴PE 为△ADC 的中位线,∴PE =21CD =3.∴四边形ABPE 的周长=AB +PB +PE +AE =6+5+3+4=18,故选择D .10. (2015·沈阳中考)顺次连接对角线相等的四边形的各边中点,所形成的四边形是( ) A.平行四边形 B.菱形 C.矩形 D.正方形 【答案】B 【解析】根据三角形中位线定理和有一组邻边相等的平行四边形是菱形可判定顺次连接对角线相等的四边形的各边中点,所形成的四边形是菱形,故选择B . 11. (2015·山西中考)如图,在△ABC 中,点D ,E 分别是边AB ,BC 的中点.若△DBE 的周长是6,则△ABC 的周长是( ) A .8B .10C .12D .14D【答案】C【解析】方法1:因为点D ,E 分别是边AB ,BC 的中点,所以BC =2BE ,BA =2BD ,且DE 是△ABC 的中位线,所以AC =2DE ,所以AB +BC +AC =2BD +2BE +2DE =2(BD +BE +DE ),即△ABC 的周长是△BED 周长的2倍,又因为△DBE 的周长是6,所以△ABC 的周长是12,故选择C .方法2:因为点D ,E 分别是边AB ,BC 的中点,所以DE 是△ABC 的中位线,所以DE ∥AC ,且△DBE 与△ABC 的相似比为1︰2,又因为△DBE 的周长是6,所以△ABC 的周长是12,故选择C .12. (2015·湖州中考)如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A .10B .7C .5D .4A BC DE【答案】C【解析】如图,过点E 作EK ⊥BC 于点K ,∵BE 平分∠ABC ,CD ⊥AB ,∴EK =ED =2,∴△BCE 的面积=115222BC EK ⨯⨯=⨯⨯=5.故选C .EDCBA K13. (2015·达州中考)如图,△ABC 中,BD 平分∠ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为( )BA .48°B .36°C .30°D .24° 【答案】A【解析】∵BD 平分∠ABC , ∴∠ABD =∠DBC ,∵EF 是BC 的垂直平分线, ∴FB =FC ,∴∠FCB =∠DBC , ∵∠ABD =24°,∴∠FCB =∠DBC =∠ABD =24°, 又∵∠A =60°,∴∠ABC +∠ACB =120°,即∠ABD +∠DB C +∠ACF +∠FCB =120°,∴∠ACF =120°―24°―24°―24°=48°,故选择A.14. (2015·铁岭中考)如图,点D ,E ,F 分别为△ABC 各边中点,下列说法正确的是( )A .DE =DFB .EF =12AB C .S △ABD =S △ACD D .AD 平分∠BAC【答案】C【解析】∵点D ,E ,F 分别为△ABC 各边中点,∴ED ,DF ,FE 是中位线,∴DE =12AC ,DF=12AB , EF =12BC ,但条件中没有明确AB=AC ,BC=AB ,即选项A ,B 错误;∵D 是FE CBADBC 边上的中点,∴AD 是BC 边上的中线,∴S △ABD =S △ACD ,即选项C 正确;由于条件中并没有明确AB =AC ,∴不能保证AD 平分∠BAC ,即选项D 错误.故选择C.15.(2015·遂宁中考)如图,在△ABC 中,AC =4cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7cm ,则BC 的长为( )A .1 cmB .2 cmC .3 cmD .4 cm【答案】C 【解析】∵MN 垂直平分AB ,∴AN =BN ,∴BN +CN =AC =4 cm .∵△BCN 的周长是7 cm ,∴BC =7-4=3(cm ).故选择C .16. (2015·资阳中考)若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是( ) A .矩形 B .菱形 C .对角线相等的四边形 D .对角线互相垂直的四边形 【答案】D【解析】由三角形的中位线定理,可知顺次连接四边形的各边中点所得的四边形是平行四边形,若得到的是矩形,则原四边形的对角线互相垂直,故选择D.17. (2015·乌鲁木齐市中考)如图,△ABC 的面积等于6,边AC =3.现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,点P 在直线AD 上,则线段BP 的长不可能是( ) A.3 B.4 C.5 D.6C【答案】A【解析】作BE ⊥AC 于点E ,BE ′⊥AC ′于点E ′.由翻折可知AB 平分∠DAC ,则BE =BE ′. 在△ABC 中,∵21AC ·BE =6,∴BE =3216 =4.∴BE ′=BE =4.∵BE ′⊥AD 于点E ′,点P 在直线AD 上,由垂线段最短可知BP ≥BE ′,∴BP ≥4. 则线段BP 的长不可能是3,故选择A.18. (2015·西南中考)如图,在平面直角坐标系中,四边形ABCD 是菱形,∠ABC =60°,且点A 的坐标为(4,0),若E 是AD 的中点,则点E 的坐标为A.(-2,B.(2,-)C.(-2,D.(2,-【答案】D【解析】过E 作EF ∥AC ,交BD 于F ,EG ∥BD ,交AC 于G ,∵E 是AD 的中点,∴G 是AO 的中点,F 是OD 的中点.∵点A 的坐标为(4,0),∴点G 的坐标为(2,0).由菱形的性质,知AC ⊥BD ,∠ADB =∠CDB ,又∠ABC =60°,∴∠ADB =30°.∴OD OA=OF =12OD =E (2,-),故选择D .二、填空题1. (2015·荆州中考)如图,△ABC 中,AB =AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于点E ,若△ABC 与△EBC 的周长分别是40cm ,24cm ,则AB =___________cm . 【答案】16【解析】∵DE 垂直平分AB ,∴AE =BE .∵AB +BC +AC =40 cm ,BE +BC +CE =AE +EC +BC =AC +BC =24 cm ,∴AB =16 cm .故答案为 16.2. (2015·衡阳中考)如图所示,小明为了测量学校里一池塘的宽度AB ,选取可以直 达A ,B 两点的点O 处,再分别取OA ,OB 的中点M ,N ,量得MN =20m ,则池塘的宽度AB为 m .【答案】40【解析】因为M ,N 分别是OA ,OB 的中点,所以MN 为△OAB 的中位线,所以MN ∥AB 且12MN AB =,又因为MN =20m ,所以AB =40m ,故答案为40.3. (2015·连云港中考)在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD与△ACD 的面积之比是. 【答案】4︰3【解析】如图,过点D 作DE ⊥AB ,DF ⊥AC ,E ,F 为垂足,又点D 为∠BAC 的平分线AD 上一点,所以DE =DF ,由AB =4,AC =3,又△ABD 的面积为12AB DE ⋅,△ACD 面积为12AC DF ⋅,从而得到△ABD 与△ACD 的面积之比即为AB 与AC 之比,故答案为4︰3.4. (2015·无锡中考)如图,已知矩形ABCD 的对角线长为8cm ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长等于 cm .【答案】16【解析】如图,连结AC ,BD ,因为四边形ABCD 是矩形,所以AC =BD ,因为E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,所以12EF AC =,12HG AC =,12EH BD =,12FG BD =,所以四边形EFGH 的周长等于EF FG GH EH +++=1122AC BD ++1122AC BD +=AC BD +=16(cm ),故答案为16.5.(2015·盐城中考)如图,点D ,E ,F 分别是△ABC 各边的中点,连接DE ,EF ,DF ,若△ABC 的周长为10,则△DEF 的周长为 .【答案】5【解析】由三角形的中位线的性质,得DE =12AC ,EF =12AB ,DF =12BC ,∴△DEF 的周长为DE + EF + DF =12AC +12AB +12BC =12(AC +AB +BC )=12×10=5,故答案为5.6. (2015·宿迁中考)如图,在Rt △ABC 中,∠ACB =90°,点D ,E ,F 分别为AB ,AC ,BC 的中点,若CD =5,则EF 的长为.【答案】5【解析】因为D 是斜边AB 的中点 ,CD =5,所以AB =10.又因为 E ,F 分别为AC ,BC 的中点,所以EF =21AB =51021=⨯,故答案为5.7. (2015·淮安中考)如图,A ,B 两地被一座小山阻隔,为了测量A ,B 两地之间的距离,在地面上选一点C ,连接CA ,CB ,分别取CA ,CB 的中点D ,E ,测得DE 的长度为360A D EF米,测A ,B 两地之间的距离是___________米.【答案】720【解析】∵D ,E 分别是AC ,BC 的中点,∴DE 是△ABC 的中位线,根据三角形的中位线定理,得AB =2DE =720(米),故答案为720.8.(2015·徐州中考)如图,在△ABC 中,∠C =31°,∠ABC 的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么∠A = °.【答案】87 【解析】∵DE 垂直平分BC ,∴BD =CD ,∴∠DBC =∠C =31°,又∵BD 平分∠ABC ,∴∠ABC =2∠DBC =2×31°=62°,根据三角形内角和定理可知∠A =180°-∠ABC -∠C =180°-62°-31°=87°.故填87.9. (2015·泰安中考)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点,若AB =8,AD =12,则四边形ENFM 的周长为 .【答案】20【解析】∵M 是边AD 的中点,∴AM =DM ,在Rt △ABM 与Rt △DCM 中,AM =DM ,AB =CD ,∴Rt △ABM ≌Rt △DCM ,∴BM =CM ,在△BCM 中,点E ,N 分别是BM ,BC 的中点,∴EN ∥CM ,EN =21CM =MF ,同理可得FN ∥BM ,FN =21BM =EM ,∴ME=MF=FN=EN ,因此四边形ENFM 是菱形,在Rt △ABM 中,AB =8,AM =6,由勾股定理可得BM =10,∴EM =5,∴四边形ENFM 的周长为20.10. (2015·南昌中考)如图,OP 平分∠MON ,PE ⊥OM 于E ,PF ⊥ON 于F ,OA =OB ,则图中有 对全等三角形.PMFEBAO【答案】3【解析】∵OP 平分∠MON ,∴∠AOP =∠BOP ,∵OA =OB ,OP =OP ,∴△OAP ≌△OBP (SAS ).∴AP =BP .∵PE ⊥OM ,PF ⊥ON ,∴∠OEP =∠OFP =90°,又∵∠AOP =∠BOP ,OP =OP ,∴△OEP ≌△OFP (AAS ).∴PE =PF .∴Rt △AEP ≌△BFP (HL ).故答案为3 .11. (2015·本溪中考)如图,已知矩形ABCD 的边长分别为a ,b .连接其对边中点,得到四个矩形,顺次连接矩形AEFG 各边中点,得到菱形I 1;连接矩形FMCH 对边中点,又得到四个矩形,顺次连接矩形FNPQ 各边中点,得到菱形I 2;…,如此操作下去,得到菱形I n ,则I n 的面积是 .【答案】2112n ab +⎛⎫⎪⎝⎭【解析】由题意得:菱形I 1 的面积为12×AG ×AE =12×12a ×12b =(12)3•ab ;菱形I 2的面积为12×FQ ×FN =12×(12×12a )×(12×12b )=(12)5•ab ;…;∴菱形I n 的面积为(12)2n +1ab . 12. (2015·巴中中考)如图,在△ABC 中,AB=5,AC=3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,则线段DH 的长为 .【答案】1【解析】在△ABC中,∵AE为△ABC的角平分线,CH⊥AE,∴△AFH≌△ACH.∴AF=AC=3.∵AB=5,∴BF=2,∵AF=AC,CH⊥AE,∴FH=HC.∵AD为△ABC的中线,∴DH为△CBF的中位线,∴DH=12BF=1,故答案为1.13.(2015·广安中考)如图,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为______ cm2.【解析】连接AC,BD. ∵四边形ABCD为菱形,∴AC⊥BD,AO,,∵E,F,G,H分别为菱形ABCD四边的中点,∴EF∥AC且EH且EH∥BD,FG且FG∥BD,∴EH∥FG,EH=FG,∴四边形EFGH,四边形ENOM为平行四边形.又∵AC⊥BD,∴四边形ENOM为矩形.∴∠MEN=90°,∴四边形EFGH为矩形,∵AB=BC,∠ABC=60°,AB=6cm,∴AC=6cm,∴AO=3cm,在Rt△AOB∴FGcm,∴S矩形EFGH=EF·cm2).14. (2015·云南中考)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).ABC【答案】12n【解析】∵BC =1,∴P 1M 1=12;P 2M 2=212⎛⎫ ⎪⎝⎭;P 3M 3=312⎛⎫⎪⎝⎭……∴P n M n =12n .15.(2015·昆明中考)如图,在△ABC 中,AB =8,点D ,E 分别是BC ,CA 的中点,连接DE ,则DE =_______.【答案】4【解析】∵点D ,E 分别是BC ,CA 的中点,∴DE 是△ABC 的中位线.∵AB=8,∴DE =21AB =21×8=4.故答案为4.16. (2015·河池中考)如图,在△ABC 中,D ,E 分别是边AB ,A C 的中点.若BC =10,则DE = .EDCB A【答案】5【解析】∵D ,E 分别是边AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE =12BC =12×10=5,故答案为5.17. (2015·来宾中考)如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE ⊥AC 于点E ,DF ⊥BC 于点F ,且BC=4,DE=2,则△BCD 的面积是 .A B C BBBAAA CC CP 1M 1P 1P 1M 1M 1M 2 M 2 M 3 P 2P 2P 3……【答案】4【解析】∵ CD 平分∠ACB 交AB 于点D ,DE ⊥AC 于点E ,DF ⊥BC 于点F ,且DE=2 ,∴DF=2.∴ △BCD 的面积为2×4÷2=4,故填4 .18. (2015·铜仁中考)如图,∠ACB =90°,D 为AB 的中点,连接DC 并延长到点E ,使CE =41CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为 .【答案】8【解析】∵点D 是AB 的中点,BF ∥DE ,∴DE 是△ABF 的中位线.∵BF =10,∴DE =12BF =5.∵CE =14CD ,∴54CD =5,解得CD =4.∵△ABC 是直角三角形,∴AB =2CD =8.故答案为8.19. (2015·台州中考)如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,DC =3,则点D 到AB 的距离是 .【答案】 3【解析】如图,过点D 作DE ⊥AB 于点E , ∵AD 是△ABC 的角平分线,DC =3 , ∴DE =DC =3. 故答案为 3 .20.(2015·衢州中考)如图,小聪和小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于________.【答案】1.2米【解析】在△ABC中,EF//BC,又E为AB的中点,所以EF为△ABC的中位线,又EF为0.6米,所以BC=2EF=1.2米.故答案为1.2米.21.(2015·广州中考)如图,四边形ABCD中,∠A=90°,AB=AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN 的中点,则EF长度的最大值为_________________.【答案】3【解析】连接DN.∵E,F分别是DM和MN的中点,∴EF是△DMN的中位线,∴EF=12 DN,故当DN长度最大时,EF长度有最大值.当点N运动到点B时,DN的长度最大.在Rt△ABD中,∠A=90°,AD=3,AB=BD6=,∴EF最大值=12DN=12BD=3.故答案为3.三、解答题1.(2015·莆田中考)如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.(1)请判断△OEF的形状,并证明你的结论;(2)若AB =13,AC =10,请求出线段EF 的长. 解: (1)△OEF 是等腰三角形.证明:在菱形ABCD 中,AC ⊥ BD ,AB = AD . 在Rt △AOB 中,点E 是AB 的中点, ∴OE =21AB ,同理 OF =21AD .∴OE = OF . ∴△OEF 是等腰三角形.(2)在菱形ABCD 中,AC = 10, ∴OA =21AC = 5. 在Rt △AOB 中,AB = 13, 1222=-=OA AB OB ,∴BD = 2OB = 24.∵点E ,F 分别是AB ,AD 的中点, ∴EF =21BD =12.2. (2015·厦门中考)如图,在△ABC 中,AB =AC ,点E ,F 分别是边AB ,AC 的中点,点D 在边BC 上.若DE =DF ,AD =2,BC =6,求四边形AEDF 的周长.解:∵AB =AC ,点E ,F 分别是边AB ,AC 的中点,所以AE =AF . 又∵DE =DF ,AD =AD ,∴△AED ≌△AFD .∴∠BAD =∠CAD . ∵AB =AC ,∴BD =CD ,AD ⊥BC .∵DE ,DF 都是△ABC 的中位线,∴DE ∥AC ,DF ∥AB.又∵DE=DF.∴四边形AEDF 为菱形. ∴四边形AEDF 的周长=2AC. 在Rt △ADC 中,AD =2,DC =3,∴AC =1322=+CD AD .因此四边形AEDF 的周长=2AC =132.3. (2015·兰州中考)如图,四边形ABCD 中,AB ∥CD ,AB ≠CD ,BD =AC . (1)求证:AD =BC ;(2)若E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,求证:线段EF 与线段GH 互相 垂直平分.证明:(1)过点B 作BM ∥AC 交DC 的延长线于点M ,∵AB ∥CD ,∴四边形ABMC 为平行四边形,∴AC =BM =BD ,∠BDC =∠M =∠ACD ,在△ACD 和△BDC 中,⎪⎩⎪⎨⎧=∠=∠=,,DC CD BDC ACD BD AC ,∴△ACD ≌△BDC ,∴AD =BC .(2)连接EH ,HF ,FG ,GE ,∵E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点, ∴EH ∥AD ,且HE =21AD ,FG ∥AD ,且FG =21AD ,∴四边形HFGE 为平行四边形, 由(1)知AD =BC ,∴HE =EG ,∴□HFGE 为菱形,∴EF 与GH 互相垂直平分.4.(2015·怀化中考)如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连结EF ,AD ,其交点为O.求证:(1)△CDE ≌△DBF ;(2)OA =OD.证明:(1)∵DE 是△ABC 的中位线,∴DE ∥AB ,DE =12AB ,∴∠CDE =∠B ,又∵F 为AB 的中点,∴AF =BF ,∴DE =BF ,在△CDE 和△DBF 中,⎪⎩⎪⎨⎧=∠=∠=,,BF DE B CDE DB CD ,∴△CDE ≌△DBF .GHF EDCB A MGHF EDCB A(2)由DE 是△ABC 的中位线,∴DE ∥AB ,DE =12AB ,又∵F 是AB 的中点,∴AF =BF ,∴DE ∥AF ,DE =AF ,∴四边形DEAF 为平行四边形,∴OA =OD .5. (2015·锦州中考)如图,△ABC 中,点D ,E 分别是边BC , AC 的中点,连接DE ,AD, 点F 在BA 的延长线上,且AF=12AB ,连接EF. 判断四边形ADEF 的形状,并加以证明.解:四边形ADEF 是平行四边形.证明:∵点D ,E 分别是边BC , AC 的中点, ∴DE ∥AB ,DE=12AB , ∵AF=12AB,∴DE =AF. 又∵点F 在BA 的延长线上,∴DE ∥AF. ∴四边形ADEF 是平行四边形.6. (2015·凉山中考)材料一:一组对边平行,另一组对边不平行的四边形叫梯形.其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰.连接梯形两腰中点的线段叫梯形的中位线,梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1),在梯形ABCD 中,A D ∥BC,∵E ,F 分别是AB ,DC 的中点,∴EF ∥AD ∥BC,1()2EF AD BC =+.材料二:经过三角形一边的中点与另一边平行的直线必平分第三边. 如图(2),在△ABC 中,∵E 是AB 的中点,EF ∥BC ,∴F 是AC 的中点. 请你运用所学知识,结合上述材料,解答下列问题. 如图(3),在梯形ABCD 中,AD ∥BC ,AC ⊥BD 于O ,E ,F 分别是AB ,DC 的中点,∠DBC=30°. (1)求证:EF=AC ;(2)若OD =OC=5,求MN 的长.证明:(1)在梯形ABCD 中,∵E ,F 分别是AB ,DC 的中点,∴EF=()12AD BC +.∵AC ⊥BD ,∴△BOC 为直角三角形.∵∠DBC=30°,∴OC=12BC .∵AD ∥BC ,∴∠ODA=∠DBC=30°.∴在Rt △AOD 中,OA=12AD . ∵OA+OC=12BC +12AD ,即AC=()12AD BC +,∴EF=AC. 解:(2)在Rt △AOD 中,OD=ODA=30°,∴AO=3,AD=6. ∵OC=5,∴AC=AO+OC=3+5=8.∴EF=AC=8.∵EF 是梯形的中位线,∴EF ∥AD ,∴NF ∥AD.在△ACD 中,∵F 为CD 的中点,∴N 为AC 的中点,∴NF=132AD =.同理可得EM=3,∴MN=EF-EM-NF=8-3-3=2.7. (2015·自贡中考)如图,在△ABC 中,D ,E 分别是AB ,AC 边的中点.求证:DE //=12BC .证明:∵D ,E 分别是AB ,AC 边的中点, ∴AD AB =12,AE AC =12. ∴AD AB =AEAC. 又∵∠A =∠A , ∴△ADE ∽△ABC . ∴AD AB =DE BC =12,∠ADE =∠B . ∴BC =2DE ,BC ∥DE ,即DE //=12BC . 8. (2015·云南中考)如图,在矩形ABCD 中,AB =4,AD =6.M ,N 分别是AB ,CD 边的中点,P 是AD 上的点,∠PNB =3∠CBN . (1)求证:∠PNM =2∠CBN . (2)求线段AP 的长.ABC D E证明:(1)∵M,N分别是AB,CD边的中点,∴MN∥BC,∴∠MNB=∠NBC,∵∠PNB=3∠CBN.∴∠PNB-∠MNB=3∠CBN-∠NBC.即∠PNM=2∠CBN.解:(2)连接AN,∵四边形ABCD是矩形,M,N分别是AB,CD边的中点,AB=4,∴∠MNB=∠NBC=∠ANM=∠NAD,DN=2.由(1)知∠PNM=2∠CBN,∴∠DAN=∠PNA,∴AP=PN.∵AD=6,∴AP=PN=6-PD,即PD=6-PN,在Rt△PDN中,PD2+DN2=PN2,∴(6-PN)2+22=PN2,∴AP=PN=103.AMB CNDPAMB CNDP21。

解三角形之中线、角平分线、高线问题+课件-高2025届高三数学一轮复习

解三角形之中线、角平分线、高线问题+课件-高2025届高三数学一轮复习
【例 2】已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且△ABC 的面积为
( +
- )
.
(1)求∠ACB;
(2)若∠A= ,∠ACB 的平分线 CE 与边 AB 相交于点 E,延长 CE 至点 D,使得 CE=DE,求 cos∠ADB.
解:(2)不妨令 AC=3,因为∠ACB= ,可得 AB=3
1
1
1
:
:
sin A sin B sin C
2、求高一般采用等面积法,即求某边上的高,需要求出面积和底边长度
高线两个作用:(1)产生直角三角形;(2)与三角形的面积相关。
例题讲解
三角形的中线问题
【例 1】在 ABC 中, AD 是 BC 边的中线,
, BAC 120 且 AB AC
知识梳理
知识梳理
3、等面积法:
因为
所以
+

+
=

=2
1
1
,所以2 ∙

2
整理的:
2
=
+2 ∙
2
2
+
2
(角平分线长公式)
【作用】
: ①利用角度关系建立各三角形之间的面积关系
②通过面积关系式求解角分线长度
1
=2

知识梳理
三、垂线
1 1 1
a b c
1、 h1,h2,h3 分别为 ABC 边 a,b,c 上的高,则 h1 : h2 : h3 : :
+ -
=
= ,
C,
例题讲解
三角形的高线问题
【例3】在△ABC中,内角A,B,C的对边分别为a,b,c,且(sin B-sin C)2=sin2A-sin Bsin C.

三角形的高-中线-角平分线测试题

三角形的高-中线-角平分线测试题

三角形的高中线角平分线测试题一、选择题1、能把一个三角形分成面积相等的两部分的是该三角形的一条()A.中线 B.角平分线 C.高线 D.边的垂直平分线2、已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个 C.5个 D.6个3、如图,三边均不等长的△ABC,若在此三角形内找一点O,使得△OAB.△OBC.△OCA的面积均相等.判断下列作法何者正确()A.作中线AD,再取AD的中点OB.分别作中线AD.BE,再取此两中线的交点OC.分别作AB.BC的中垂线,再取此两中垂线的交点OD.分别作∠A.∠B的角平分线,再取此两角平分线的交点O4、如图,在△ABC中E是BC上的一点,BC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=()A、1B、2C、3D、45、如图,G为△ABC的重心,其中∠C=90°,D在AB上,GD⊥AB.若AB=29,AC=20,BC=21,则GD的长度为()A、7B、14C、D、则能摆出不同的三角形的个数是()A.1 B.2 C.3 D.47、已知小明家距离学校10千米,而小蓉家距离小明家3千米.如果小蓉家到学校的距离是d千米,则d满足()A.3<d<10B.3≤d≤10C.7<d<13D.7 ≤d≤138、△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定9.如图,高BD与CE交于O点,若∠BAC=72°,则∠DOE的度数( )A.72°B.18°C.108° D.162°10、已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n-2 B.2n-1 C.2n D.2n+1二、填空题1、一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长为 .2、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于3、四条线段的长分别为5cm,6cm,8cm,13cm,以其中任意三条线段为边可构成三角形个。

七年级数学三角形的三线(中线、角平分线、高线)(北师版)(基础)(含答案)

七年级数学三角形的三线(中线、角平分线、高线)(北师版)(基础)(含答案)

三角形的三线(中线、角平分线、高线)(北师版)(基础)一、单选题(共10道,每道10分)1.如图所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.DE是△ABC的中线答案:D解题思路:在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.D选项中,DE不是连接△ABC的顶点与它对边中点的线段,因此D选项错误.故选D.试题难度:三颗星知识点:三角形的中线2.如图,△ABC的两条中线AM,BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为( )A.4B.3C.4.5D.3.5答案:A解题思路:如图,∵△ABO和△BOM的面积分别为4和2∴S△ABM =6∵AM,BN是△ABC的两条中线∴S△ABM=S△BCN=S△ABC∴S△BCN=6∴S四边形MCNO=S△BCN-S△BOM =4故选A.试题难度:三颗星知识点:等分点转移面积3.已知:如图,△ABC中,AB=AC,BD平分∠ABC,∠BDC=75°,则∠A的度数为( )A.25°B.30°C.40°D.20°答案:C解题思路:如图,题中有角平分线,因此可以考虑设元,设∠ABD=α,则∠C=∠ABC=2α.在△BCD中,由三角形内角和定理可知α+2α+75°=180°,解得α=35°,因此∠C=∠ABC=70°,所以∠A=180°-70°-70°=40°.故选C.试题难度:三颗星知识点:三角形内角和定理4.如图,在△ABC中,BD平分∠ABC,CD平分∠ACB,设∠DCB=α,∠DBC=β,若∠A=40°,则下列说法错误的是( )A. B.C. D.答案:D解题思路:如图,在△BCD中,∠DCB=α,∠DBC=β,则∠D=180°-α-β,因此A选项正确;因为BD平分∠ABC,CD平分∠ACB,则∠ABC=2β,∠ACB=2α,则∠A=180°-2α-2β,因此B选项正确;由∠D=180°-α-β可得α+β=180°-∠D,由∠A=180°-2α-2β,可得α+β=90°-∠A,因此180°-∠D=90°-∠A,整理得∠D=90°+∠A,因此C选项正确;把∠A=40°代入∠D=90°+∠A,得∠D=110°,因此D选项错误.故选D.试题难度:三颗星知识点:三角形内角和定理5.如图,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=40°,∠AEC=35°,则∠ABC 的度数为( )A.30°B.35°C.37.5°D.40°答案:A解题思路:如图,由AD与CE交于点M,得∠ADC+α=∠AEC+β,变形得2∠ADC+2α=2∠AEC+2β,由AD与BC交于点G,得∠ADC+2α=∠ABC+2β,将上述两式消去α和β,可得∠ABC=2∠AEC-∠ADC因为∠ADC=40°,∠AEC=35°,则∠ABC=30°.故选A.试题难度:三颗星知识点:三角形内角和定理6.下列说法正确的是( )A.三角形的三条角平分线有可能在三角形内,也可能在三角形外B.三角形三条高都在三角形内C.三角形的三条高交于一点D.三角形三条中线相交于一点答案:D解题思路:三角形的三条角平分线都在三角形的内部,A选项错误;锐角三角形的三条高都在三角形的内部,直角三角形两条高在直角边上,钝角三角形有两条高在三角形的外部,B选项错误;三角形的三条高所在的直线交于一点,C选项错误;D选项正确,故选D.试题难度:三颗星知识点:三角形的中线7.如图,在△ABC中,AD⊥BC交BC的延长线于D,BE⊥AC交AC的延长线于E,过点C作CF⊥BC交AB于F,下列说法错误的是( )A.FC是△ABC中BC边上的高B.FC是△BCF中BC边上的高C.BE是△ABC中AC边上的高D.BE是△ABE中AE边上的高答案:A解题思路:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线.在△ABC中,过点A向它的对边BC所在直线作垂线,得到高为AD,A选项错误;在△BCF中,过点F向它的对边BC所在直线作垂线,得到高为CF,B选项正确;在△ABC中,过点B向它的对边AC所在直线作垂线,得到高为BE,C选项正确;在△ABE中,过点B向它的对边AE所在直线作垂线,得到高为BE,D选项正确.故选A.试题难度:三颗星知识点:三角形的高8.如图,AB⊥BD于B,AC⊥CD于C,AC与BD交于点E,若AE=5,DE=3,CD=,则AB=( )A.6B.C.3D.答案:C解题思路:如图,因为AB⊥BD,AC⊥CD,所以AB是△ADE的边DE上的高,CD是△ADE的边AE上的高,,把AE=5,DE=3,CD=代入,得到AB=3.故选C.试题难度:三颗星知识点:等积公式9.如图,在△ABC中,AB=20cm,AC=12cm,点D在BC边上,过点D作DE⊥AB于E,DF⊥AC 于F,若DE=5cm,△ABC的面积为122cm2,则DF的长为( )A.9cmB.10cmC.11cmD.12cm答案:D解题思路:如图,连接AD,则△ABC被分成△ABD和△ACD两部分,cm故选D.试题难度:三颗星知识点:等积公式10.如图,∠BAC=90°,AD⊥BC于D,若AB=6,BC=10,则AC:AD=( )A.5:4B.4:5C.5:3D.3:5答案:C解题思路:如图,在△ABC中,∠BAC=90°,所以AB可以看作是AC边上的高,因为AD⊥BC,所以AD可以看作是BC边上的高,所以,把AB=6,BC=10代入,得到AC:AD=5:3.故选C.试题难度:三颗星知识点:等积公式。

(完整版)三角形角平分线、中线、高线证明题

(完整版)三角形角平分线、中线、高线证明题

(完整版)三角形角平分线、中线、高线证明题2.证题的思路:找夹角()性质 1、全等三角形的SAS已知两边 找直角( HL )对应角相等、对应边相找第三边( SSS等。

)2、全等三角形的若边为角的对边,则找 随意角( AAS)找已知角的另一边( )已知一边一角SAS 对应边上的 高对应相边为角的邻边 找已知边的对角()AAS等。

找夹已知边的另一角()ASA3、全等三角形的找两角的夹边()对应角均分线相等。

已知两角ASA4、全等三角形的 找随意一边()AAS对应中线相等。

5、全等三角形面积相等。

6、全等三角形 周长相等。

( 以上能够简称 : 全等三角形的对应元素相等 ) 7、三边对应相等的两个三角形全等。

( SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。

(ASA)10、两个角和此中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)全等三角形问题中常有的协助线的作法常有协助线的作法有以下几种:1) 碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思想模式是全等变换中的“对折” .2) 碰到三角形的中线,倍长中线,使延伸线段与原中线长相等,结构全等三角形,利用的思想模式是全等变换中的“旋转” .3) 碰到角均分线,能够自角均分线上的某一点向角的两边作垂线,利用的思想模式是三角形全等变换中的“对折” ,所考知识点经常是角均分线的性质定理或逆定理. 4) 过图形上某一点作特定的均分线, 结构全等三角形, 利用的思想模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法, 详细做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延伸,是之与特定线段相等,再利用三角形全等的相关性质加以说明. 这类作法,合适于证明线段的和、差、倍、分等类的题目.特别方法:在求相关三角形的定值一类的问题时, 常把某点到原三角形各极点的线段连结起来,利用三角形面积的知识解答.三角形协助线做法图中有角均分线,可向两边作垂线。

角平分线、中垂线性质定理专题复习(解析版)

角平分线、中垂线性质定理专题复习(解析版)

【期末复习】浙教版八年级上册提分专题:角平分线、中垂线性质定理【角平分线】1.如图,△ABC的∠ABC和∠ACB的角平分线BE,CF相交于点O,∠A=60°,则∠BOC的大小为()A.110°B.120°C.130°D.150°【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数.【解答】解:∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC=,,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=60°,∴∠OBC+∠OCB=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故选:B.2.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=.【分析】根据三角形的外角定理可知∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线定义得∠ACD =2∠A1CD,∠ABC=2∠A1BC,代入∠ACD=∠A+∠ABC中,与∠A1CD=∠A1+∠A1BC比较,可得∠A1==,由此得出一般规律.【解答】解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.3.如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,则∠BOA= ,∠DAC= .【分析】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.【解答】解:∵AD是△ABC的高线,∴∠ADC=90°,∵∠ADC+∠C+∠CAD=180°,∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,∴∠ABC=180°﹣70°﹣50°=60°,∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,∴∠BAO=∠BAC=25°,∠ABO=∠ABC=30°,∵∠ABO+∠BAO+∠AOB=180°,∴∠AOB=180°﹣25°﹣30°=125°.故答案为:∠AOB°=125°,∠CAD=20°4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3B.4C.3.5D.2【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.判断出∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,判断出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=7﹣4=3.故选:A.5.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°.则∠FEC的度数为()A.10°B.20°C.30°D.60°【分析】根据AD∥BC,∠DAC+∠ACB=180°,再由∠DAC=120°,得出∠ACB=60°,由∠ACF=20°,得∠BCF的度数,根据CE平分∠BCF,得∠BCE=∠ECF,因为EF∥AD,则EF∥BC,∠FEC=∠BCE,即可得出∠FEC=∠FCE.【解答】解:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,∵∠ACF=20°,∴∠BCF的=40°,∵CE平分∠BCF,∴∠BCE=∠ECF=20°,∵EF∥AD,∴EF∥BC,∴∠FEC=∠BCE,∴∠FEC=∠FCE=20°.故选:B.6.如图,在△ABC中,∠B+∠C=100°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.30°B.40°C.50°D.60°【分析】首先利用三角形的内角和求得∠BAC,进一步求得∠BAD,利用DE∥AB求得∠ADE=∠BAD得出答案即可.【解答】解:∵在△ABC中,∠B+∠C=100°,∴∠BAC=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:B.7.如图,点O是△ABC角平分线的交点,过点O作MN∥BC分别与AB,AC相交于点M,N,若AB=5,BC=8,CA=7,则△AMN的周长为12.【分析】根据角平分线性质和平行线的性质推出∠MOB=∠MBO,推出BM=OM,同理CN=ON,代入三角形周长公式求出即可.【解答】解:∵BO平分∠ABC,∴∠MBO=∠CBO,∵MN∥BC,∴∠MOB=∠CBO,∴∠MOB=∠MBO,∴OM=BM,同理CN=NO,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=5+7=12,故答案为:12.8.如图,Rt△ABC的两直角边AB、BC的长分别是9、12.其三条角平分线交于点O,将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.3:4:5D.2:3:4【分析】过O点作OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为D,E,F,根据角平分线的性质可知:OD=OE =OF,根据勾股定理可求解AC的长,再利用三角形的面积公式计算可求解.【解答】解:过O点作OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为D,E,F,∵△ABC的三条角平分线交于点O,∴OD=OE=OF,在Rt△ABC中,AB=9,BC=12,∴AC=,∴S△ABO:S△BCO:S△CAO=,故选:C.9.如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若BC=10,点D到AB的距离为4,则DB 的长为()A.6B.8C.5D.4【分析】过点D作DE⊥AB于E,根据角平分线的性质定理得到DC=DE=4,结合图形计算,得到答案.【解答】解:过点D作DE⊥AB于E,∵AD平分∠BAC,∠ACB=90°,DE⊥AB,∴DC=DE=4,∴BD=BC﹣DC=10﹣4=6,故选:A.10.如图,AB∥CD,∠CAB和∠ACD的平分线相交于H点,E为AC的中点,若EH=4.则AC=()A.8B.7C.6D.9【分析】先根据平行线的性质得出∠BAC+∠ACD=18°,再由角平分线的性质可得出∠HAC+∠ACH=90°,根据三角形内角和定理即可得出,△AHC是直角三角形.所以根据直角三角形斜边上中线等于斜边的一半解答.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠BAC的平分线和∠ACD的平分线交于点H,∴∠HAC+∠ACH=(∠BAC+∠ACD)=90°,∴∠AHC=180°﹣90°=90°,∴△AHC是直角三角形.∵E为AC的中点,EH=4,∴AC=2EH=8.故选:A.11.到三角形的三条边距离相等的点()A.是三条角平分线的交点B.是三条中线的交点C.是三条高的交点D.以上答案都不对【分析】根据三角形三条角平分线的性质可直接求解.【解答】解:∵三角形三条角平分线交于一点,这点到三角形的三边的距离相等.∴到三角形的三条边距离相等的点是三条角平分线的交点,故选:A.12.如图,点P是∠AOB内的一点,PC⊥OA于点C,PD⊥OB于点D,连接OP,CD.若PC=PD,则下列结论不一定成立的是()A.∠AOP=∠BOP B.∠OPC=∠OPDC.PO垂直平分CD D.PD=CD【分析】依据角平分线的性质、三角形内角和定理以及线段垂直平分线的性质,即可得出结论.【解答】解:∵PC⊥OA于点C,PD⊥OB于点D,PC=PD,∴点P在∠AOB的平分线上,即OP平分∠AOB,∴∠AOP=∠BOP,故A选项正确;∵∠PCO=∠PDO=90°,∠AOP=∠BOP,∴∠OPC=∠OPD,故B选项正确;∵∠OPC=∠OPD,PC⊥OA于点C,PD⊥OB于点D,∴OC=OD,∴点O在CD的垂直平分线上,又∵PC=PD,∴点P在CD的垂直平分线上,∴PO垂直平分CD,故C选项正确;∵∠PDC的度数不一定是60°,∴△CDP不一定是等边三角形,∴PD=CD不一定成立,故D选项错误;故选:D.13.如图,在△ABC中,∠A=90°,AB=3,AC=4,∠ABC与∠ACB的平分线交于点O,过点O作OD⊥AB于点D,则AD的长为【分析】过O点作OE⊥AC于E,OF⊥BC于F,如图,根据角平分线的性质得到OE=OF=OD,在利用勾股定理计算出BC=5,接着利用面积法求出OD=1,然后证明四边形ADOE为正方形,从而得到AD的长.【解答】解:过O点作OE⊥AC于E,OF⊥BC于F,如图,∵BO平分∠ABC,CO平分∠ACB,∴OD=OF,OE=OF,即OE=OF=OD,∵∠A=90°,AB=3,AC=4,∴BC==5,∵S△OAB+S△OAC+S△OBC=S△ABC,∴×3×OD+×4×OE+×5×OF=×4×3,∴OD=1,∵∠DAE=∠ADO=∠AEO=90°,∴四边形ADOE为矩形,∵OD=OE,∴四边形ADOE为正方形,∴AD=OD=1.故答案为:1.14.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB 垂直,若AD=8,则点P到BC的距离是【分析】过点P作PE⊥BC于E,根据角平分线的性质得到PE=AP,PE=PD,根据AD=8计算,得到答案.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BP平分∠ABC,P A⊥AB,PE⊥BC,∴PE=AP,同理可得:PE=PD,∴PE=AD,∵AD=8,∴PE=4,即点P到BC的距离是4,故答案为:4.15.如图,Rt△ABC中,∠C=90°,AC=BC=6,AD为∠BAC的平分线,DE⊥AB垂足为E,则△DBE的周长等于【分析】根据勾股定理求出AB,根据线段垂直平分线的性质得到DE=DC,进而求出BE,根据三角形的周长公式计算,得到答案.【解答】解:在Rt△ABC中,∠C=90°,AC=BC=6,由勾股定理得:AB==6,∵AD为∠BAC的平分线,DE⊥AB,∠C=90°,∴DE=DC,∴AE=AC=6,∴BE=AB﹣AE=6﹣6,∴△DBE的周长=BD+DE+BE=BD+DC+BE=BC+BE=6﹣6+6=6,故答案为:6.16.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm2【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP =S△ECP,推出S△PBC=S△ABC,代入求出即可.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×9cm2=4.5cm2,故选:C.17.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°﹣∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则,其中正确的结论有①③④(填序号).【分析】①根据∠ABC和∠ACB的平分线相交于点G可得出∠EBG=∠CBG,∠BCG=∠FCG,再由EF∥BC 可知∠CBG=∠EGB,∠BCG=∠CGF,故可得出BE=EG,GF=CF,由此可得出结论;②先根据角平分线的性质得出∠GBC+∠GCB=(∠ABC+∠ACB),再由三角形内角和定理即可得出结论;③根据三角形内心的性质即可得出结论;④连接AG,根据三角形的面积公式即可得出结论.【解答】解:①∵∠ABC和∠ACB的平分线相交于点G,∴∠EBG=∠CBG,∠BCG=∠FCG.∵EF∥BC,∴∠CBG=∠EGB,∠BCG=∠CGF,∴∠EBG=∠EGB,∠FCG=∠CGF,∴BE=EG,GF=CF,∴EF=EG+GF=BE+CF,故本小题正确;②∵∠ABC和∠ACB的平分线相交于点G,∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(180°﹣∠A)=90°+∠A,故本小题错误;③∵∠ABC和∠ACB的平分线相交于点G,∴点G是△ABC的内心,∴点G到△ABC各边的距离相等,故本小题正确;④连接AG,∵点G是△ABC的内心,GD=m,AE+AF=n,∴S△AEF=AE•GD+AF•GD=(AE+AF)•GD=nm,故本小题正确.故答案为①③④.18.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,已知CD=4.则AC的长为4+4.【分析】依据角平分线的性质可证明DC=DE,接下来证明△BDE为等腰直角三角形,从而得到DE=EB=4,然后依据勾股定理可求得BD的长,然后由AC=BC=CD+DB求解即可.【解答】解:∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴DE=CD,∵CD=4,∴DE=4,又∵AC=BC,∴∠B=∠BAC,又∵∠C=90°,∴∠B=45°,∴∠BDE=90°﹣45°=45°,∴BE=DE=4,在等腰直角三角形BDE中,由勾股定理得,BD==4,∴AC=BC=CD+BD=4+4,故答案为:4+4.19.如图,已知△ABC,∠BAC=80°,∠ABC=40°,若BE平分∠ABC,CE平分外角∠ACD,连接AE,则∠AEB的度数为30°.【分析】过E点作EF⊥AB于F,EH⊥AC于H,EP⊥BD于P,如图,利用角平分线的性质得到EF=EP,∠ABE=∠ABC=×40°=40°,EH=EP,则EF=EH,再根据角平分线的性质定理的逆定理可判断AE平分∠F AC,则可计算出∠F AE=50°,然后根据三角形外角性质可计算出∠AEB的度数.【解答】解:过E点作EF⊥AB于F,EH⊥AC于H,EP⊥BD于P,如图,∵BE平分∠ABC,∴EF=EP,∠ABE=∠ABC=×40°=40°,∵CE平分外角∠ACD,∴EH=EP,∴EF=EH,∴AE平分∠F AC,∵∠BAC=80°,∴∠F AC=180°﹣80°=100°,∴∠F AE=∠F AC=50°,∵∠F AE=∠ABE+∠AEB,∴∠AEB=50°﹣20°=30°.故答案为30°.20.如图,已知∠ABC、∠EAC的角平分线BP、AP相交于点P,PM⊥BE,PN⊥BF,垂足分别为M、N.现有四个结论:①CP平分∠ACF;②∠BPC=∠BAC;③∠APC=90°﹣∠ABC;④S△APM+S△CPN>S△APC.其中结论正确的为①②③.(填写结论的编号)【分析】①作PD⊥AC于D.根据角平分线性质得到PM=PN,PM=PD,得到PM=PN=PD,于是得到点P 在∠ACF的角平分线上,故①正确;②根据三角形的判定和性质得到AD=AM,∠APM=∠APD,CD=CN,∠NPC=∠DPC,于是得到∠APC=MPN,故②正确;③根据四边形的内角和得到∠ABC+90°+∠MPN+90°=360°,求得∠ABC+∠MPN=180°,于是得到∠APC=90°﹣∠ABC,故③正确;④根据角平分线定义得到∠ACF=∠ABC+∠BAC,∠PCN=∠ACF=∠BPC+∠ABC,得到∠BPC=∠BAC,根据全等三角形的性质得到S△APM+S△CPN=S△APC.故④不正确.【解答】解:①作PD⊥AC于D.∵PB平分∠ABC,P A平分∠EAC,PM⊥BE,PN⊥BF,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上(到角的两边距离相等的点在角的平分线上),故①正确;②∵PB平分∠ABC,CP平分∠ACF,∴∠ABC=2∠PBC,∠ACF=2∠PCF,∵∠ACF=∠ABC+∠BAC,∠PCF=∠PBF+∠BPC,∴∠BAC=2∠BPC,∴∠BPC=∠BAC,故②正确;③∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,∴∠APC=90°﹣∠ABC,故③正确;④∵S△APD=S△APM,S△CPD=S△CPN,∴S△APM+S△CPN=S△APC,故④不正确.综上所述,①②③正确.故答案为:①②③.21.如图,已知∠ABC、∠ACB的平分线相交于点O,EF过点O且EF∥BC.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠BOC=130°,∠1:∠2=3:2,求∠ABC、∠ACB的度数.【分析】(1)由角平分线的定义可求解∠OBC=25°,∠OCB=30°,再利用三角形的内角和定理可求解;(2)由已知条件易求∠1,∠2的度数,根据平行线的性质即可得∠OBC,∠OCB的度数,利用角平分线的定义可求解.【解答】解:(1)∵∠ABC和∠ACB的平分线BO与CO相交于点O,所以∠EBO=∠OBC=,∠FCO=∠OCB=,又∠ABC=50°,∠ACB=60°,∴∠OBC=25°,∠OCB=30°,∴∠BOC=180°﹣∠OBC﹣∠OCB=125°;(2)∵∠BOC=130°,∴∠1+∠2=50°,∵∠1:∠2=3:2,∴,,∵EF∥BC,∴∠OBC=∠1=30°,∠OCB=∠2=20°,∵∠ABC和∠ACB的平分线BO与CO相交于点O,∴∠ABC=60°,∠ACB=40°.22.如图1,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)若AB=4,AC=5,求△AEF的周长.(2)过点O作OH⊥BC于点H,连接OA,如图2.当∠BAC=60°时,试探究OH与OA的数量关系,并说明理由.【分析】(1)证明∠EOB=∠CBO得到EB=EO,同理可得FO=FC,然后利用等线段代换得到△AEF的周长=AB+AC;(2)过O点作OG⊥AE于G,OQ⊥AC于Q,如图2,根据角平分线的性质得到OH=OG,OH=OQ,则OG =OQ,根据角平分线的性质定理的逆定理可判断OA平分∠BAC,所以∠GAO=30°,利用含30度的直角三角形三边的关系得到OG=OA,从而得到OH=OA.【解答】解:(1)∵OB平分∠ABC,∴∠CBO=∠ABO,∵EF∥BC,∴∠EOB=∠CBO,∴△EBO为等腰三角形,∴EB=EO,同理可得FO=FC,∴△AEF的周长=AE+EF+AF=AE+EO+FO+AF =AB+AC=4+5=9;(2)OH=OA.理由如下:过O点作OG⊥AE于G,OQ⊥AC于Q,如图2,∵OB平分∠ABC,OH⊥BC,OG⊥AB,∴OH=OG,∵OC平分∠ACB,∴OH=OQ,∴OG=OQ,∴OA平分∠BAC,∴∠GAO=∠BAC=30°,∴OG=OA,∴OH=OA.23.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,BD=4,∠B=30°,S△ACD=7,求AC的长.【分析】过点D作DF⊥AC于F,根据直角三角形的性质求出DE,根据角平分线的性质求出DF,根据三角形的面积公式计算,得到答案.【解答】解:过点D作DF⊥AC于F,在Rt△BDE中,BD=4,∠B=30°,∴DE=BD=2,∵AD是△ABC中∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE=2,∵S△ACD=7,∴×AC×2=7,解得:AC=7.24.在△ABC中,AD是角平分线,∠B<∠C,(1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;(2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;(3)如图(3),点E在AD的延长线上.EF⊥BC于F,试探究∠DEF与∠B、∠C的关系是∠DEF=(∠C﹣∠B)(直接写出结论,不需证明).【分析】(1)依据角平分线的定义以及垂线的定义,即可得到∠CAD=∠BAC,∠CAE=90°﹣∠C,进而得出∠DAE=(∠C﹣∠B),由此即可解决问题.(2)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C﹣∠B).(3)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C﹣∠B)不变.【解答】解:(1)如图1,∵AD平分∠BAC,∴∠CAD=∠BAC,∵AE⊥BC,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=∠BAC﹣(90°﹣∠C)=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=∠C﹣∠B=(∠C﹣∠B),∵∠B=50°,∠C=70°,∴∠DAE=(70°﹣50°)=10°.(2)结论:∠DEF=(∠C﹣∠B).理由:如图2,过A作AG⊥BC于G,∵EF⊥BC,∴AG∥EF,∴∠DAG=∠DEF,由(1)可得,∠DAG=(∠C﹣∠B),∴∠DEF=(∠C﹣∠B).(3)仍成立.如图3,过A作AG⊥BC于G,∵EF⊥BC,∴AG∥EF,∴∠DAG=∠DEF,由(1)可得,∠DAG=(∠C﹣∠B),∴∠DEF=(∠C﹣∠B),故答案为∠DEF=(∠C﹣∠B).【线段垂直平分线】1.如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,连接AE、AF,若△AEF的周长为2,则BC的长是()A.2B.3C.4D.无法确定【分析】根据线段的垂直平分线的性质得到EA=EB,F A=FC,根据三角形的周长公式即可求出BC.【解答】解:∵AB的垂直平分线交BC于点E,∴EA=EB,∵AC的垂直平分线交BC于点F.∴F A=FC,∴BC=BE+EF+FC=AE+EF+AF=△AEF的周长=2.故选:A.2.如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.2B.4C.6D.8【分析】根据线段的垂直平分线的性质得到EB=EA=4,结合图形计算,得到答案.【解答】解:∵DE是AB的垂直平分线,AE=4,∴EB=EA=4,∴BC=EB+EC=4+2=6,故选:C.3.如图,在△ABC中,BC边上两点D、E分别在AB、AC的垂直平分线上,若BC=24,则△ADE的周长为()A.22B.23C.24D.25【分析】根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算,得到答案.【解答】解:∵点D、E分别在AB、AC的垂直平分线上,∴DA=DB,EA=EC,∴△ADE的周长=DA+DE+EA=DB+DE+EC=BC=24,故选:C.4.如图,已知∠B=20°,∠C=25°,若MP和QN分别垂直平分AB和AC,则∠P AQ等于()A.80°B.90°C.100°D.105°【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到P A=PB,QA=QC,根据等腰三角形的性质得到∠P AB=∠B,∠QAC=∠C,结合图形计算,得到答案.【解答】解:∵∠B=20°,∠C=25°,∴∠BAC=180°﹣∠B﹣∠C=135°,∵MP和QN分别垂直平分AB和AC,∴P A=PB,QA=QC,∴∠P AB=∠B=20°,∠QAC=∠C=25°,∴∠P AQ=∠BAC﹣∠P AB﹣∠QAC=135°﹣20°﹣25°=90°,故选:B.5.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()cmA.3B.4C.7D.11【分析】根据线段垂直平分线的性质得到NA=NB,根据三角形的周长公式计算,得到答案.【解答】解:∵MN是线段AB的垂直平分线,∴NA=NB,∵△BCN的周长是7cm,∴BC+CN+BN=7(cm),∴BC+CN+NA=7(cm),即BC+AC=7(cm),∵AC=4cm,∴BC=3(cm),故选:A.6.元旦联欢会上,同学们玩抢凳子游戏,在与A、B、C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A、B、C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边垂直平分线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最合适.故选:D.7.如图,在Rt△ABC中,∠BAC=90°,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若DE=3,AE =5,则△ACE的周长为16.【分析】根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.【解答】解:∵DE是AB的垂直平分线,∴EA=EB=5,DE⊥AB,∵DE=3,∴AD==4,∴AB=2AD=8,∵∠BAC=∠BDE=90°,∴DE∥AC,∴BE=CE=5,∴AC=2DE=6,BC=10,∴△ACE的周长=AC+EC+EA=AC+EC+EB=AC+BC=AC+BC=16,故答案为:16.8.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=68°,则∠B的度数为68°.【分析】根据角平分线的定义得出∠CAD=∠BAD,根据线段垂直平分线的性质得出F A=FD,根据等腰三角形的性质得到∠FDA=∠F AD,根据三角形的外角性质得出∠FDA=∠B+∠BAD,代入计算即可.【解答】解:∵AD平分∠BAC,∴∠CAD=∠BAD,设∠CAD=∠BAD=x,∵EF垂直平分AD,∴F A=FD,∴∠FDA=∠F AD,∵∠F AC=68°,∴∠F AD=∠F AC+∠CAD=68°+x,∵∠FDA=∠B+∠BAD=∠B+x,∴68°+x=∠B+x,∴∠B=68°,故答案为:68°.9.如图,△ABC中,已知∠C=90°,DE是AB的垂直平分线,若∠DAC:∠DAB=1:2,那么∠BAC=54度.【分析】设∠DAB=2x,则∠DAC=x,根据线段垂直平分线的性质得到DA=DB,则∠B=∠DAB=2x,再利用三角形内角和得到90°+2x+2x+x=180°,解方程求出x,然后计算3x即可.【解答】解:设∠DAB=2x,则∠DAC=x,∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB=2x,∵∠C+∠B+∠CAB=180°,∴90°+2x+2x+x=180°,解得x=18°,∴∠BAC=x+2x=3x=54°.故答案为:54.10.如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为5cm2.【分析】延长AP交BC于E,根据全等三角形的性质得到S△ABP=S△BEP,AP=PE,得到△APC和△CPE等底同高,求得S△APC=S△PCE,设△ACE的面积为m,于是得到结论.【解答】解:延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,在△ABP与△BEP中,,∴△ABP≌△BEP(ASA),∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,设△ACE的面积为m,∴S△ABE=S△ABC+S△ACE=10+m,∴S△PBC=S△ABE﹣S△ACE=5(cm2).故答案为:5.11.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠F AC=∠B.【分析】根据线段垂直平分线得出AF=DF,推出∠F AD=∠FDA,根据角平分线得出∠BAD=∠CAD,根据三角形外角性质推出即可.【解答】证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠F AD=∠FDA,∵∠F AD=∠F AC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠F AC=∠B.12.在△ABC中,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,(1)如图(1),连接AM、AN,求∠MAN的度数;(2)如图(2),如果AB=AC,求证:BM=MN=NC.【分析】(1)由在△ABC中,∠BAC=130°,可求得∠C+∠B的度数,然后由AB、AC的垂直平分线分别交BC于点M、N,根据线段垂直平分线的性质,可得BM=AM,CN=AN,即可得∠CAN=∠C,∠BAM=∠B,继而求得∠CAN+∠BAM的度数,则可求得答案;(2)先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【解答】(1)解:∵∠BAC=120°,∴∠B+∠C=60°,由(1)证得BM=AM,CN=AN,∴∠C=∠CAN,∠B=∠BAM,∴∠CAN+∠BAM=∠C+∠B=60°,∴∠MAN=120°﹣60°=60°;(2)证明:∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC.。

【精品】初中数学八年级上册《三角形的高、中线与角平分线》基础练习

【精品】初中数学八年级上册《三角形的高、中线与角平分线》基础练习

《三角形的高、中线与角平分线》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.2.(5分)下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.3.(5分)如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.4.(5分)如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BC D.线段BD5.(5分)如图AD⊥BC于点D,那么图中以AD为高的三角形有()个A.3B.4C.5D.6二、填空题(本大题共5小题,共25.0分)6.(5分)如图所示:在△AEC中,AE边上的高是.7.(5分)如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是.8.(5分)如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为cm.9.(5分)BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是.10.(5分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.12.(10分)如图,在△ABC中,AC=8,BC=4,高BD=3,试作出BC边上的高AE,并求AE的长.13.(10分)如图,△ABC的三条高AD、BE、CF相交于点O.(1)在△BOC中,OB边上的高是,OC边上的高是,BC边上的高是.(2)在△AOC中,OA边上的高是,OC边上的高是,AC边上的高是.(3)在△AOB中,OA边上的高是,OB边上的高是,AB边上的高是.14.(10分)如图,已知CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD 的周长之差是多少?15.(10分)如图,AD、AE分别是△ABC中∠A的内角平分线和外角平分线,它们有什么关系?《三角形的高、中线与角平分线》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.2.(5分)下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BD是△ABC 的高.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.3.(5分)如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:过点B作AC边上的高,垂足为E,则线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.4.(5分)如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BC D.线段BD【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【解答】解:由图可得,△ABC中AC边上的高线是BD,故选:D.【点评】本题主要考查了三角形的高线,钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.5.(5分)如图AD⊥BC于点D,那么图中以AD为高的三角形有()个A.3B.4C.5D.6【分析】由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.【解答】解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故选:D.【点评】此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.二、填空题(本大题共5小题,共25.0分)6.(5分)如图所示:在△AEC中,AE边上的高是CD.【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.根据三角形中高线的概念即可作答.【解答】解:由题意可得:△AEC中,AE边上的高是CD,故答案为:CD.【点评】本题考查了三角形高线的概念,三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.7.(5分)如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是AE.【分析】直接利用三角形高线的定义得出答案.【解答】解:如图所示:∵H是△ABC三条高AD,BE,CF的交点,∴△BHA中边BH上的高是:AE.故答案为:AE.【点评】此题主要考查了三角形的高,正确钝角三角形高线的作法是解题关键.8.(5分)如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为19cm.【分析】根据三角形中线的定义可得BD=CD,再表示出△ABD和△ACD的周长的差就是AB、AC的差,然后计算即可.【解答】解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故答案为19.【点评】本题主要考查了三角形的中线的定义,把三角形的周长的差转化为已知两边AB、AC的长度的差是解题的关键.9.(5分)BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是2.【分析】根据三角形的中线的定义可得AD=CD,再求出△ABD和△BCD的周长的差=AB﹣BC.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差=(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC,∵AB=5,BC=3,∴△ABD和△BCD的周长的差=5﹣3=2.故答案为:2.【点评】本题考查了三角形的角平分线、中线和高线,熟记概念并求出两个三角形的周长的差等于AB﹣BC是解题的关键.10.(5分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=50°.【分析】由AE平分∠BAC,可得角相等,由∠1=30°,∠2=20°,可求得∠EAD的度数,在直角三角形ABD在利用两锐角互余可求得答案.【解答】解:∵AE平分∠BAC,∴∠1=∠EAD+∠2,∴∠EAD=∠1﹣∠2=30°﹣20°=10°,Rt△ABD中,∠B=90°﹣∠BAD=90°﹣30°﹣10°=50°.故答案为50°.【点评】本题考查了三角形的角平分线、中线和高的相关知识;求得∠EAD=10°是正确解答本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.【分析】分别根据角平分线、三角形高线作法以及垂直平分线的作法得出答案即可.【解答】解:由题意画图可得:【点评】此题主要考查了复杂作图中线段垂直平分线的作法以及角平分线作法等知识,熟练掌握作图方法是关键.12.(10分)如图,在△ABC中,AC=8,BC=4,高BD=3,试作出BC边上的高AE,并求AE的长.【分析】利用等积法求得AE的长度即可.【解答】解:如图,过点A作BC边上的高线AE,交CB延长线于点E.∵BC•AE=AC •BD,AC=8,BC=4,高BD=3,∴×4AE=×8×3,则AE=6.【点评】本题考查了三角形的角平分线、中线和高,熟记三角形的面积公式即可解题,属于基础题.13.(10分)如图,△ABC的三条高AD、BE、CF相交于点O.(1)在△BOC中,OB边上的高是CE,OC边上的高是BF,BC边上的高是OD.(2)在△AOC中,OA边上的高是CD,OC边上的高是AF,AC边上的高是OE.(3)在△AOB中,OA边上的高是BD,OB边上的高是AE,AB边上的高是OF.【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高,根据三角形高的定义判断.【解答】解:(1)由图可得,在△BOC中,OB边上的高是CE,OC边上的高是BF,BC 边上的高是OD.(2)由图可得,在△AOC中,OA边上的高是CD,OC边上的高是AF,AC边上的高是OE.(3)由图可得,在△AOB中,OA边上的高是BD,OB边上的高是AE,AB边上的高是OF.故答案为:CE,BF,OD;CD,AF,OE;BD,AE,OF.【点评】本题主要考查了三角形高线的定义,解决问题的关键是掌握:钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.14.(10分)如图,已知CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD 的周长之差是多少?【分析】利用中线的定义可知BD=AD,可知△ACD和△BCD的周长之差即为AC和BC 的差,可求得答案.【解答】解:∵CD是△ABC的中线,∴AD=BD,∵△ACD周长=AC+CD+AD,△BCD周长=BC+CD+BD,∴△ACD周长﹣△BCD周长=(AC+CD+AD)﹣(BC+CD+BD)=AC﹣BC=9﹣3=6(cm),即△ACD和△BCD的周长之差是6cm.【点评】本题主要考查三角形中线的定义,由条件得出两三角形的周长之差即为AC和BC的差是解题的关键.15.(10分)如图,AD、AE分别是△ABC中∠A的内角平分线和外角平分线,它们有什么关系?【分析】根据角平分线的定义和邻补角的定义可得∠DAE=90°,从而得到AD⊥AE.【解答】解:AD⊥AE,理由如下:∵AD、AE分别是△ABC中∠A的内角平分线和外角平分线,∴∠DAE=∠DAC+∠EAC=∠BAC+∠CAF=(∠BAC+∠CAF)=×180°=90°,∴AD⊥AE.【点评】本题考查了三角形的角平分线:三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线,也考查了邻补角的定义以及垂直的定义.。

三角形的高线、中线、角平分线及稳定性

三角形的高线、中线、角平分线及稳定性

三角形的高线、中线、角平分线及稳定性预习归纳 1.从三角形的一个顶点向它的对边___________,顶点和__________间的__________叫做三角形的高.2.在三角形中,连接一个________和它的_________的中点的线段叫做三角形的中线. 3.三角形___________的交点叫做三角形的重心.4.三角形的一个角的__________与这个角的_________相交,连接_____________的__________叫做三角形的角平分线. 5.三角形的________确定了,那么三角形的形状就确定了,这个性质叫做三角形的稳定性,而四边形_________稳定性. 基础过关知识点一:三角形的高1.如图,过ABC △的顶点A 作BC 边上的高,以下做法正确的是( )A .B .C .D .2.如图,已知ABC △和EFD △,分别画出这两个三角形的三条高.知识点二:三角形的中线、角平分线3.如图,在ABC △中,BD 是ABC ∠的角平分线,已知80ABC ∠=︒,则DBC ∠=______.A4.如图,当___________=时,AD 是ABC △的中线;当___________=时,AD 是ABC △的角平分线.5.如图,AM 是ABC △的中线,若用1S 表示ABM △的面积,用2S 表示ACM △的面积,则1S 与2S 的大小关系式( )A .12S S >B .12S S <C .12S S =D .以上三种情况都有可能6.如图,12∠=∠,34∠=∠,下列结论中错误的是( )A .AD 是ABC △的角平分线B .CE 是ACD △的角平分线C .132ACB ∠=∠D .CE 是ABC △的角平分线DCCD7.在Rt ABC △中,90ACB ∠=︒,3cm AC =,4cm BC =,CD 是AB 边上的中线,则AC 边上的高为_________cm ,BCD △的面积2______cm = .知识点三:三角形的稳定性1.下列图形具有稳定性的是( )A .正方形B .矩形C .平行四边形D .直角三角形2.工人师傅砌门时,如图所示,常用木条EF 固定矩形木框ABCD ,使其不变形,这是利用( )A .两点之间线段最短B .三角形的稳定性C .垂线段最短D .两直线平行,内错角相等能力提升1.不是利用三角形的稳定性的是( )A .自行车的三角形车架B .三角形房架C .照相机的三脚架D .学校的栅栏门2.如图,ABC △中,高BE 和CH 的交点为O ,若6AC =,3BE =,则AB CH ⋅的值为______.A3.如图,AD是ABC△△的中线,CE是ACD△的中线,如果DEF△的中线,DF是CDE的面积是2,那么ABC△的面积为()A.12B.14C.16D.184.如图所示,AC为BC的垂线,CD为AB的垂线,DE为BC的垂线,D、E分别在△ABC 的边AB和BC上,则下列说法:①△ABC中,AC是BC边上的高;②△BCD中,DE是BC边上的高;③△DBE中,DE是BE边上的高;④△ACD中,AD是CD边上的高,其中正确的是________________.5.如图,AD是△ABC的角平分线,点P为AD上一点,PM∥AC交AB于M,PN∥AB交AC于N,求证:P A平分∠MPN.6.如图,AD、CE是△ABC的两条高,已知AD=10,CE=9,AB=12.(1)求△ABC的面积;(2)求BC的长.7.在△ABC中,AB=AC,DB为△ABC的中线,且BD将△ABC周长分为12cm与15cm 两部分,求三角形各边长.综合拓展1.张爷爷家有一块三角形的花圃△ABC,张爷爷准备将其分成面积相等的四部分,分别种上不同的花卉.请你帮张爷爷设计三种不同的方案.。

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (57)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (57)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)如图,△ABC的三个顶点A、B、C在正方形网格中,每小方格的边长都为1cm,请在方格纸上面图并回答问题:(1)延长线段AB到点D,使BD=AB;(2)过C点画AB的垂线,垂足为点E;(3)过A点画AF∥BC,交直线CE于点F;(4)△ABC的面积为______cm2.【答案】(1)见解析;(2)见解析;(3)见解析;(4)3.【解析】【分析】(1)根据网格的性质,得出BD=3,延长即可;(2)根据网格的性质,即可画出CE⊥AD;(3)根据网格的性质,即可画出AF∥BC;(4)根据网格的性质,得出AB=3,三角形的高为CE=2,即可得出面积.【详解】(1)根据题意,得AB=3,∴BD=3如图所示:(2)如图所示:(3)如图所示:(4)△ABC的面积为11323AB CE=⨯⨯=cm222【点睛】此题主要考查正方形网格中的三角形综合问题,熟练掌握,即可解题. 62.如图,AD是△ABC中线,DE是△ADB的中线,(1)图中有几对面积相等的三角形?把它们写出来;(2)如果S△ADB=12,求△ABC的面积.【答案】(1)图中有2对面积相等的三角形,它们为:S △ABD =S △ACD ;S △EBD =S △EAD ;(2)S △ABC =24.【解析】【分析】(1)利用“三角形的中线把这个三角形分成两个面积相等的三角形”这一性质,即可得到答案(2)利用“三角形的中线把这个三角形分成两个面积相等的三角形”这一性质,即可求得答案.【详解】(1)图中有2对面积相等的三角形,它们为:S △ABD =S △ACD ;S △EBD =S △EAD ;(2)S △ABC =S △ABD +S △ACD =2S △ABD =2×12=24.【点睛】本题考查了三角形中线的性质,熟练掌握“三角形的中线把这个三角形分成两个面积相等的三角形”这一性质是解题的关键.63.如图,在三角形ABC 中,点D ,E ,F 分别在BC ,AC ,AB 上,E是AC 的中点,AD ,BE ,CF 交于一点G ,2BD DC =,若10BDG S ∆=,4AGE S ∆=,求ABC S ∆.【答案】38【解析】【分析】由BD=2DC 可得S △CGD =12S △BGD ,由E 为AC 中点可得4CGE AGE S S ∆∆==,2ABC BCE S S ∆∆=,根据BCE BGD CGD CGE S S S S ∆∆∆∆=++即可得答案.【详解】∵2BD DC =,10BDG S ∆=, ∴1110522CGD BGD S S ∆∆==⨯=, ∵E 是AC 的中点,4AGE S ∆=,∴4CGE AGE S S ∆∆==,2ABC BCE S S ∆∆=∵105419BCE BGD CGD CGE S S S S ∆∆∆∆=++=++=,∴221938ABC BCE S S ∆∆==⨯=.【点睛】本题考查三角形中线的性质,三角形的中线,把三角形分成两个面积相等的三角形;等底同高的两个三角形的面积相等,同底等高的两个三角形的面积相等,等地等高的两个三角形的面积相等.64.如图所示的方格纸中,每小方格的边长都为1.请在方格纸上画图并回容问题:已知点A 、B .(1)画直线AB ,射线BC ;(2)过点C作垂线段CD⊥AB,垂足为点D.(3)连结AC,则△ABC的面积=_______.(4)已知AB=5,求线段CD的长.【答案】(1)(2)见解析(3)6;(4)125.【解析】【分析】(1)根据图形即可作出直线AB,射线BC;(2)根据垂线的定义即可作出;(3)根据网格的长度及三角形的面积公式即可写出;(4)根据等面积法即可求出斜边上的高.【详解】(1)如图,直线AB,射线BC为所求;(2)线段CD为所求;(3)△ABC的面积=12BC×AC=12×3×4=6,故填:6;(4)∵△ABC的面积=12BC×AC=12AB×CD∴CD=BC ACAB=125.【点睛】此题主要考查直线、射线及三角形的面积、高的求解,解题的关键是熟知其定义.65.已知△ABC的面积为20cm2,AD为BC边上的高,且AD=8cm,CD=2cm,求BD的长度.【答案】BD的长度为3或7【解析】【分析】分两种情况,利用三角形面积公式即可求得.【详解】解:如图1,∵AD为BC边上的高,∴AD⊥BC,∴S△ABC =12BC•AD=12(BD+CD)•AD,∴20=12(BD+2)×8,∴BD=3;如图2,∵AD为BC边上的高,∴AD⊥BC,∴S△ABC =12BC•AD=12(BD﹣CD)•AD,∴20=12(BD﹣2)×8,∴BD=7;故BD的长度为3或7.【点睛】本题考查了三角形的面积,注意分类讨论.66.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作EF⊥BC于点F,已知BC=8,△ABC的面积为24,求EF的长.【答案】EF=3【解析】【分析】根据三角形的中线的性质和三角形面积公式进行解答即可.【详解】解:△AD 是BC 边上的中线,△BD=CD.又△△ABC 的面积为24,△ABD ACD S S =12,又△E 是AD 的中点,△ABC BCD S S = =6,又△BC=8,EF △BC 于点F ,△ BD=CD=4, △ABDC 1•62S CD EF ==, 1462EF ⨯=, △EF=3.【点睛】此题考查三角形面积问题,关键是根据三角形的中线把三角形分成面积相等的两部分解答.67.作图题:如图,已知△ABC 是钝角三角形.(1)作AC 边上的中线BD .(2)作∠C 的角平分线CE.(3)作BC 边上的高线AF.【答案】(1)见解析;(2)见解析;(3)见解析;【解析】【分析】(1)根据三角形中线的定义作图即可;(2)利用角平分线的定义作图即可;(3)利用三角形高线的定义作图即可.【详解】解:(1)如图所示,BD即为所求;(2)如图所示,CE即为所求;(3)如图所示,AF即为所求;【点睛】本题考查了三角形的中线、角平分线、高线的画法,熟练掌握定义是解答本题的关键.68.如图,设一个三角形的三边分别是3,1−3m,8.(1)求m 的取值范围;(2)是否存在整数m 使三角形的周长为偶数?若存在,求出三角形的周长;若不存在,说明理由;(3)如图,在(2)的条件下,当AB=8,AC=1−3m,BC=3时,若D 是AB 的中点,连CD,P 是CD 上动点(不与C,D 重合,当P 在线段CD 上运动时,有两个式子):①ABC APC BPD SS S + ;②PA PB AB+,其中有一个的值不变,另一个的值改变。

2021年九年级数学中考复习分类专题:三角形角平分线、中线和高

2021年九年级数学中考复习分类专题:三角形角平分线、中线和高

2021年九年级数学中考复习分类专题:三角形角平分线、中线和高一.选择题1.下列说法错误的是()A.锐角三角形的三条高交于一点B.直角三角形只有一条高线C.钝角三角形有两条高线在三角形的外部D.任意三角形都有三条高线、中线、角平分线2.如图,在△ABC中,∠C=90°,点D在BC上,DE⊥AB,垂足为E,则△ABD的BD 边上的高是()A.AD B.DE C.AC D.BC3.下列说法错误的个数()①过一点有且只有一条直线与已知直线垂直;②不相交的两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个4.如图,在△ABC中,AD⊥BC,交BC的延长线于点D,BE⊥AC交AC的延长线于点E,CF⊥BD交AB于点F.下列线段是△ABC的高的是()A.BD B.BE C.CE D.CF5.如图,在Rt△ABF中,∠F=90°,点C是线段BF上异于点B和点F的一点,连接AC,过点C作CD⊥AC交AB于点D,过点C作CE⊥AB交AB于点E,则下列说法中,错误的是()A.△ABC中,AB边上的高是CEB.△ABC中,BC边上的高是AFC.△ACD中,AC边上的高是CED.△ACD中,CD边上的高是AC6.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN7.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高8.下列叙述中错误的一项是()A.三角形的中线、角平分线、高都是线段B.三角形的三条高线中至少存在一条在三角形内部C.只有一条高在三角形内部的三角形一定是钝角三角形D.三角形的三条角平分线都在三角形内部9.三角形的一个顶点与对边中点的连线称三角形的中线,这条中线关于这个顶角的平分线对称的直线称为三角形的共轭中线,对于共轭中线下列说法正确的序号是()①等腰三角形底边上的共轭中线就是它的高所在的直线;②直角三角形斜边上的高所在的直线就是斜边的共轭中线;③钝角三角形最大边上的共轭中线就是它的高所在的直线;④△ABC中,若AM为BC边上的中线,AD为BC边上的共轭中线,则∠BAM=∠CAD.A.①②B.①②④C.①③④D.①②③④10.如图,△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,其满足BE⊥AC;F为AB上一点,且CF⊥AD于H,下列判断:①线段AG是△ABE的角平分线;②BE是△ABD边AD上的中线;③线段AE是△ABG的边BG上的高;④∠1+∠FBC+∠FCB=90°.其中正确的个数是()A.1 B.2 C.3 D.4二.填空题11.如图,CD是△ABC的中线,若AB=8,则AD的长为.12.已知:AD、AE分别是△ABC的高,中线,BE=6,CD=4,则DE的长为.13.如图,在△ABC中,AB=2018,AC=2015,AD为中线,则△ABD与△ACD的周长之差=.14.如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD中,BD边上的高是cm.15.如图,以AD为高的三角形共有个.16.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是.17.如图,△ABC中BC边上的高是线段.18.如图,在△ABC,AD是角平分线,AE是中线.AF是高,如果BC=10cm,那么BE =;∠ABC=40°,∠ACB=60°,那么∠BAD=,∠DAF=.三.解答题19.如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长.(2)求BC边的取值范围.20.已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?21.如图,在△ABC中,AD,AE,AF分别为△ABC的高线、角平分线和中线.(1)写出图中所有相等的角和相等的线段;(2)当BF=8cm,AD=7cm时,求△ABC的面积.22.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.23.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?参考答案一.选择题1.解:A、锐角三角形的三条高线交于一点,正确,故本选项不符合题意;B、直角三角形有三条高线,有两条是直角边,故本选项符合题意;C、钝角三角形有两条高线在三角形的外部,正确,故本选项不符合题意;D、任意三角形都有三条高线、中线、角平分线,正确,故本选项不符合题意.故选:B.2.解:∵∠C=90°,∴AC⊥BD,∴△ABD的BD边上的高是AC,故选:C.3.解:①平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;②平面内,不相交的两条直线必平行,故原题说法错误;③三角形的三条高线交于一点,应该是三条高线所在直线交于一点,故原题说法错误:④直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误;⑤过直线外一点有且只有一条直线与已知直线平行,故原题说法错误.错误的说法有5个,故选:D.4.解:如图所示:只有线段BE是△ABC的边AC上的高.故选:B.5.解:∵过点C作CE⊥AB交AB于点E,∠F=90°,∴△ABC中,AB边上的高是CE,BC边上的高是AF,∴A、B两个选项说法正确,不符合题意;∵CD⊥AC交AB于点D,∴△ACD中,AC边上的高是CD,CD边上的高是AC,∴C选项说法错误,符合题意;D选项说法正确,不符合题意;故选:C.6.解:∵线段AN是△ABC边BC上的高,∴AN⊥BC,由垂线段最短可知,AM≥AN,故选:B.7.解:选项A的说法符合高的概念,故正确;选项B的说法符合高的概念,故正确;C选项中,DE是△BDC、△BDE、△EDC的高,故错误;选项D的说法符合高的概念,故正确.故选:C.8.解:A、三角形的角平分线、中线、高都是线段,故此选项正确;B、锐角三角形的三条高都在三角形的内部;直角三角形的一条高在三角形的内部,两条就是直角边;钝角三角形的一条高在三角形的内部,两条高在三角形的外部.故此选项正确;C、根据B中的分析,知只有一条高在三角形内部的三角形可能是直角三角形,也可能是钝角三角形.故此选项错误;D、根据角平分线的定义,知三角形的三条角平分线都在三角形的内部.故此选项正确.故选:C.9.解:∵等腰三角形底边上的中线、高、角平分线“三线合一”,∴等腰三角形底边上的共轭中线就是它的高所在的直线,①正确;如图1,∠BAC=90°,AM是BC边上的中线,∴MA=MB,∴∠BAM=∠A,由题意和翻折变换的性质可知,∠BAM=∠CAD,∵∠B+∠C=90°,∴∠CAD+∠C=90°,即DA⊥BC,则直角三角形斜边上的高所在的直线就是斜边的共轭中线,②正确;③错误;如图2,作∠BAC的平分线AG,则∠BAG=∠CAG,由翻折变换的性质可知,∠MAG=∠DAG,∴∠BAM=∠CAD,④正确,故选:B.10.解:①∵∠1=∠2,∴AD平分∠BAC.∴AG是△ABE的角平分线,故①正确;②∵G为AD中点,∴AG=DG,∴BG是△ABD边AD上的中线.故②错误;③∵BE⊥AC,∴AE⊥BG,∴线段AE是△ABG的边BG上的高.故③正确;④根据三角形外角的性质,∠1+∠AFH=∠1+∠FBC+∠FCB=90°,所以∠1+∠FBC+∠FCB=90°,故④正确.综上所述,正确的个数是3个.故选:C.二.填空题(共8小题)11.解:∵CD是△ABC的中线,∴AD=AB,∵AB=8,∴AD=4,故答案为:4.12.解:当△ABC是锐角三角形时,如图1,∵AD、AE分别是△ABC的高,中线,BE=6,CD=4,∴EC=BE=6,∴ED=EC﹣DC=6﹣4=2,当△ABC是钝角三角形时,如图2,∵AD、AE分别是△ABC的高,中线,BE=6,CD=4,∴EC=BE=6,∴ED=EC+DC=6+4=10,故答案为:2或10.13.解:∵AD是△ABC的中线,∴BD=CD,∵△ABD周长=AB+AD+BD,△ACD周长=AC+CD+AD,∴△ABD周长﹣△ACD周长=(AB+BD+AD)﹣(AC+CD+AD)=AB﹣AC=2018﹣2015=3,即△ACD和△BCD的周长之差是3,故答案为:3.14.解:如图,∵AC⊥BC,∴BD边上的高为线段AC.又∵AC=4cm,∴BD边上的高是4cm.故答案是:4.15.解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故答案为:616.解:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为11,AB=5,BC=3,∴△BCD的周长是11﹣(5﹣3)=9,故答案为9.17.解:△ABC中BC边上的高是AE;故答案为:AE18.解:∵在△ABC,AD是角平分线,AE是中线.AF是高,BC=10cm,∴BE=5cm,∵∠ABC=40°,∠ACB=60°,∴∠BAC=180°﹣40°﹣60°=80°,∴∠BAD=40°,∵AF是高,∴∠CAF=90°﹣60°=30°,∴∠DAF=40°﹣30°=10°,故答案为:5cm;40°;10°.三.解答题(共5小题)19.解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=2,即AB﹣AC=2①,又AB+AC=10②,①+②得.2AB=12,解得AB=6,②﹣①得,2AC=8,解得AC=4,∴AB和AC的长分别为:AB=6,AC=4;(2)∵AB=6,AC=4,∴2<BC<10.20.解:(1)∵,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴.(2)不能,理由如下:∵,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成三角形ABC,则不能求出DC的长.21.解:(1)∵AE是△ABC的角平分线,∴∠BAE=∠CAE.∵AD是△ABC的高,∴∠ADB=∠ADC=90°.∵AF是△ABC的中线,∴BF=CF.图中所有相等的角和相等的线段为:∠BAE=∠CAE,∠ADB=∠ADC=90°,BF=CF.(2)∵BF=CF,BF=8cm,AD=7cm,∴BC=2BF=2×8=16cm,∴S△ABC=BC•AD=×16cm×7cm=56cm2.答:△ABC的面积是56cm2.22.解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.23.解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF即是△BED中BD边上的高.(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED=S△ABC=×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6.。

三角形高、中线、角平分线,中垂线复习

三角形高、中线、角平分线,中垂线复习

• 1.已知:如图,D是BC上一点,AB=3㎝, AC=2㎝,AD是角平分线
• 求: S⊿ABD :S⊿ADC
此时BD:CD=?AD是中线吗?
2.如图,CD是⊿ABC的AB上的高,CB是⊿ADC的
中线,已知AD=10,CD=6,求S⊿ABC,
1.如图,在△ABC中,AD是△ABC的高AE是△ABC的角 平分线.已知∠BAC=82°,∠C=40°,求∠DAE的大小。
A
D
P
B
CE
FQ
R
锐角三角形----三条高都在三角形内部; 直角三角形-----两条就是直角边; 钝角三角形----钝角的两边上的高在三角形外
三角形的高
• 如图,AD,BE是BC,AC边上的高,
• 1) ⊿ABF中AF上的高是
;BF上的高
是 ; ⊿BDF中BD上的高是 .
• 2)若∠C=650,则∠CFD=
A
E
B
D
C
3.在△ABC中,已知AC=27,AB的垂直平分线 交AB于点D,交AC于点E,△BCE的周长等于 50,求BC的长;若∠BEC=70°,求∠A
• 4.如图,在△ABC中,AB=AC,BC=12, ∠BAC=120°,AB的垂直平分线交BC边 于点E,AC的垂直平分线交BC边于点N。 (1)求△AEN的周长 (2)求∠EAN的度数
M
线段垂直平分线
• 性质1)到线段两个端点的距离相等
• 2)是线段的对称轴
1.如图,直线MN和直线DE分别是线段AB、BC
的垂直平分线,它们交于点P,试问PA与PC有
何大小关系?
M
P D
C
A
B
E
N
• 2.已知:如图,在△ABC中,BC的垂直平 分线交AC于E,垂足是D,△ABE的周长是 15cm,BD=6 cm,求△ABC的周长

人教版八年级数学上《三角形的高、中线与角平分线》拔高练习 (1)

人教版八年级数学上《三角形的高、中线与角平分线》拔高练习 (1)

《三角形的高、中线与角平分线》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN2.(5分)在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.3.(5分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形4.(5分)三角形三条高的交点一定在()A.三角形内部B.三角形外部C.三角形内部或外部D.三角形内部、外部或顶点5.(5分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=.7.(5分)三角形的三条高线的交点在三角形的一个顶点上,则此三角形是.8.(5分)如图,△ABC中,AB>AC,AD是中线,AB=10,AD=7,∠CAD=45°,则BC=.9.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于.10.(5分)如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.12.(10分)我们知道,三角形三条高所在直线交于一点.规定:三角形三条高所在直线的交点叫做这个三角形的垂心.如图,AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G.(1)图中哪两个不共顶点的锐角一定相等?请写出一组:.(2)点G是△的垂心.(3)点A是△的垂心.13.(10分)已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.14.(10分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.15.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.《三角形的高、中线与角平分线》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN【分析】三角形一边的中点与此边所对顶点的连线叫做三角形的中线,逐一判断各选项即可.【解答】解:由图可得,F是BC的中点,根据三角形中线的定义,可知线段AF是△ABC的中线,故选:C.【点评】本题主要考查了三角形中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2.(5分)在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点A作直线BC的垂线段,即画BC边上的高,所以画法正确的是D.故选:D.【点评】考查了三角形的高的概念,能够正确作三角形一边上的高.3.(5分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【分析】直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;作出一个直角三角形的高线进行判断,就可以得到.【解答】解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.【点评】本题主要考查了三角形的高的概念,钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.4.(5分)三角形三条高的交点一定在()A.三角形内部B.三角形外部C.三角形内部或外部D.三角形内部、外部或顶点【分析】根据三角形的高线的定义分情况讨论高线的交点,即可得解.【解答】解:锐角三角形,三角形三条高的交点在三角形内部,直角三角形,三角形三条高的交点在三角形直角顶点,钝角三角形,三角形三条高的交点在三角形外部,故选:D.【点评】本题考查了三角形的高线,熟记三种三角形的高线的交点的位置是解题的关键.5.(5分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=45°.【分析】在三角形中,三内角之和等于180°,锐角三角形三个高交于一点.【解答】解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.【点评】考查三角形中,三条边的高交于一点,且内角和为180°.7.(5分)三角形的三条高线的交点在三角形的一个顶点上,则此三角形是直角三角形.【分析】根据直角三角形的高的交点是直角顶点解答.【解答】解:∵三角形的三条高线的交点在三角形的一个顶点上,∴此三角形是直角三角形.故答案为:直角三角形.【点评】本题考查了三角形的高,锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.8.(5分)如图,△ABC中,AB>AC,AD是中线,AB=10,AD=7,∠CAD=45°,则BC=2.【分析】作DH⊥AC于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,作CH⊥AD于H,如图,先证明△ADB≌△EDC得到EC=AB=10,再利用△AEF为等腰直角三角形计算出AF=EF=7,则根据勾股定理可计算出CF=,从而得到AC =6,接着利用△ACH为等腰直角三角形得到AH=CH=6,然后利用勾股定理计算出CD,从而得到BC的长.【解答】解:作DH⊥AC于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,作CH⊥AD于H,如图,∵AD是中线,∴BD=CD,在△ADB和△EDC中,∴△ADB≌△EDC(SAS),∴EC=AB=10,在RtAEF中,∵∠DAC=45°,AE=14,∴AF=EF=AE=7,在Rt△CEF中,CF==,∴AC=AF﹣CF=6,在Rt△ACH中,∵∠HAC=45°,∴AH=CH=AC=6,∴DH=AD﹣AH=1,在Rt△CDH中,CD==,∴BC=2CD=2.故答案为2.【点评】本题考查了三角形的角平分线、中线和高:熟练掌握三角形高、中线的定义;构造等腰直角三角形是解决此题的关键.9.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于5+3或5+5.【分析】分两种情况讨论:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+3或5+5.【解答】解:如图所示,Rt△ABC中,CD⊥AB,CD=AB=,设BC=a,AC=b,则,解得a+b=5,或a+b=﹣5(舍去),∴△AB长度周长为5+5;如图所示,Rt△ABC中,AC=BC,设BC=a,AC=b,则,解得,∴△AB长度周长为3+5;综上所述,该三角形的周长为5+3或5+5.故答案为:5+3或5+5.【点评】本题主要考查了三角形的高线以及勾股定理的运用,解决问题给的关键是利用勾股定理进行推算.10.(5分)如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是2.【分析】根据三角形中线的定义可得AD=CD,然后求出△ABD和△BCD的周长差=AB ﹣BC,代入数据进行计算即可得解.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长差=(AB+AD+BD)﹣(BC+CD+BD),=AB+AD+BD﹣BC﹣CD﹣BD,=AB﹣BC,∵AB=8,BC=6,∴△ABD和△BCD的周长差=8﹣6=2.答:△ABD和△BCD的周长差为2.故答案为:2【点评】本题考查了三角形的中线的定义,是基础题,数据概念并求出△ABD和△BCD 的周长差=AB﹣BC是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.【分析】依据DE∥AC,DF∥AB,即可得到∠ADE=∠DAF,∠ADF=∠EAD,再根据∠ADE=∠ADF,即可得出∠DAF=∠EAD,进而得到AD是∠BAC的角平分线.【解答】解:AD是△ABC的角平分线.理由:∵DE∥AC,DF∥AB,∴∠ADE=∠DAF,∠ADF=∠EAD,又∵∠ADE=∠ADF,∴∠DAF=∠EAD,又∵∠DAF+∠EAD=∠BAC,∴AD是∠BAC的角平分线.【点评】本题主要考查了角平分线的定义以及平行线的性质,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.12.(10分)我们知道,三角形三条高所在直线交于一点.规定:三角形三条高所在直线的交点叫做这个三角形的垂心.如图,AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G.(1)图中哪两个不共顶点的锐角一定相等?请写出一组:∠ABE=∠ACF或∠BAD=∠BCF或∠CAD=∠CBE.(2)点G是△ABC的垂心.(3)点A是△BCG的垂心.【分析】(1)依据BE⊥AC,CF⊥AB,可得∠ABE+∠BAE=∠ACF+∠CAF=90°,即可得到∠ABE=∠ACF;(2)三角形三条高所在直线的交点叫做这个三角形的垂心,据此进行判断;(3)三角形三条高所在直线的交点叫做这个三角形的垂心,据此进行判断.【解答】解:(1)∵BE⊥AC,CF⊥AB,∴∠ABE+∠BAE=∠ACF+∠CAF=90°,∴∠ABE=∠ACF,同理可得,∠BAD=∠BCF,∠CAD=∠CBE,故答案为:∠ABE=∠ACF或∠BAD=∠BCF或∠CAD=∠CBE;(2)∵AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G,∴点G是△ABC的垂心,故答案为:△ABC;(3)∵AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BF,CE交于点A,∴点A是△BCG的垂心,故答案为:△BCG.【点评】本题主要考查了三角形的角平分线高线以及中线,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.13.(10分)已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.【分析】分高AD在△ABC内部和外部两种情况讨论求解即可.【解答】解:①如图1,当高AD在△ABC的内部时,∠BAC=∠BAD+∠CAD=70°+20°=90°;②如图2,当高AD在△ABC的外部时,∠BAC=∠BAD﹣∠CAD=70°﹣20°=50°,综上所述,∠BAC的度数为90°或50°.【点评】本题考查了三角形的高线,难点在于要分情况讨论.14.(10分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.【分析】根据中线的定义知CD=BD.结合三角形周长公式知AC﹣AB=5cm;又AC+AB =11cm.易求AC的长度.【解答】解:∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.【点评】本题考查了三角形的角平分线、中线和高.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.15.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线、高线、中垂线、中线题目
1、在三角形ABC 中AD 是三角形ABC 的外角平分线,点P 是AD 上任意一点 试 猜想AB+AC 与BP+PC 有怎样的大小关系 并征明你的结论
B
1、(2008·重庆)△ABC 中,AB=AC ,∠BAC=100°,两腰AB 、AC 的垂直平分线交于点P ,则( )
A 、点P 在△ABC 内
B 、点P 在△AB
C 底边上
C 、点P 在△ABC 外
D 、点P 的位置与△ABC 的边长有关
2、如果三角形两边的垂直平分线的交点恰好落在第三边上,则这个三角形是( )
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、等边三角形
3、已知A 和B 两点在线段EF 的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB 等于( )
A 、95°
B 、15°
C 、95°或15°
D 、170°或30°
4、(2009·陕西)如图1,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则B M +MN 的最小值是 。

5、(2009·甘肃)如图2,四边形ABCD 中,AD ∥BC ,若∠DAB 的平分线AE 交CD 于E ,连接BE ,且BE 恰好平分∠ABC ,则AB 的长与AD +BC 的长的大小关系是( )
A 、A
B >AD +B
C B 、AB =A
D +BC
C 、AB <A
D +BC D 、无法确定
6、在直角梯形ABCD 中,∠A=∠B=90°,M 是AB 上一点,连接MD 、MC,MD 、MC 分别平分∠ADC 、∠BCD ,求证:(1)AM=BM ; (2)∠DMC=90°.
7、(2009·北京)如图3-①所示,OP 是∠MON 的平分线,请你利用该图形画一
对以OP所在直线为对称轴的全等三角形。

同时请你参考这个作全等三角形的方法,解答下列问题:
(1)如图3-②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。

请你判断并写出FE与FD
之间的数量关系;
(2)如图3-③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证
明;若不成立,请说明理由。

8、(2007·绵阳)如图4,在△ABC中,E、F分别是AB、AC上的点。

①AD
平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF,
以此三个中的两个为条件,另一个为结论,可构成
三个命题,即:①②✂③,①③✂②,②③✂①。

(1)试判断上述三个命题是否正确(直接作答);
(2)请证明你认为正确的命题。

9、如图5,以△ABC两边AB、AC为边,向外作等
边△ABD和等边△ACE,连接BE、CD交于O点,求证:OA平分∠DOE
10、(2007·日照)如图6,在等腰Rt△ABC中,∠ACB=90,D为BC的中点,
DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:AD⊥CF;
(2)连接AF,试判断△ACF的形状,并说明理由。

相关文档
最新文档