高二文科数学期末试卷及答案
高二数学上学期期末考试试卷(文科)(共5套,含参考答案)
高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。
高二文科数学第二学期期末考试试题及答案
答案一、选择题1-5 DABCB 6-10 DADDC 11-12 BC二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1) 16.2ΔABC ΔBOC ΔBDC S =S S ⋅ 三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tan tan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为A,B 都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18………………6分 (Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接BE ,则△ABE 为直角三角形,因为∠ABE =∠ADC =90,∠AEB =∠ACB ,所以△ABE ∽△ADC ,则=,即ABAC =ADAE.又AB =BC ,所以ACBC =ADAE. …………………6分(Ⅱ)因为FC 是⊙O 的切线,所以FC 2=AFBF.又AF =4,CF =6,则BF =9,AB =BF -AF =5.因为∠ACF =∠CBF ,又∠CFB =∠AFC ,所以△AFC ∽△CFB ,则=,即AC ==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分 (Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2cos 的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以|AB |=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >.综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠BAE =∠CAD.因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD.故△ABE ∽△ADC. …………………6分(Ⅱ)因为△ABE ∽△ADC ,所以=,即ABAC =ADAE.又S =ABACsin ∠BAC ,且S =ADAE ,故ABACsin ∠BAC =ADAE.则sin ∠BAC =1,又∠BAC 为三角形内角,所以∠BAC =90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y += 所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--,令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1),半径1r =,则MC =1MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分(Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<.所以(1)()(1)(1)0ab a b a b >+-+=--. 故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长BE 交圆E 于点M ,连接CM ,则∠BCM =90,又BM =2BE =4,∠EBC =30,∴ BC =2,又∵ AB =AC ,∴ AB =BC =.由切割线定理知AF 2=ABAC =3=9.∴ AF =3. …………………6分(Ⅱ)证明:过点E 作EH ⊥BC 于点H ,则△EDH 与△ADF 相似,从而有==,因此AD =3ED . …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=,由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+,即222x y y +=+,整理得22((1)4x y +-=.…………………6分 (II )圆1C 表示圆心在原点,半径为2的圆,圆2C表示圆心为,半径为2的圆, 又圆2C的圆心在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分(II )2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。
高二第一学期期末考试数学试卷(文科)
高二第一学期期末考试数学试卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分)1.不等式250x x -≥的解集是 ( ) A .[0,5] B .[5,)+∞ C .(,0]-∞ D .(,0][5,)-∞+∞2.椭圆2212516x y +=的离心率为( ) A .35 B .45C .34D .16253.等差数列}{n a 中,3a = 2 ,则该数列的前5项的和为 ( )A .32B .20C .16D .104.抛物线y = -2x 2的准线方程是 ( ) A .x=-21 B.x=21 C .y=81 D .y=-815. 数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( )A .1B .56C .16D .1306.椭圆2211625x y +=的焦点为F 1,F 2,P 为椭圆上一点,若12PF =,则=2PF ( )A.2B.4C.6D.8 7.“1x >”是“2x x >”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.双曲线192522=-y x 的渐近线为( )A. .x y 53±= B. 3x -5y = 0 C. 3x +5y = 0 D. 3y -5x = 09. 在ABC ∆中,60B =,2b ac =,则ABC ∆一定是 ( ) A.直角三角形 B.等边三角形 C.锐角三角形 D.钝角三角形10.已知12=+y x ,则y x 42+的最小值为 ( ) A .8 B .6 C .22 D .2311.一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时到达B 处,在B 处看见灯塔M 在北偏东15°方向,此时灯塔M 与渔船的距离是( )A .27海里B .214海里C .7海里D .14海里12.若不等式()()222240a x a x -+--<对任意实数x 均成立,则实数a 的取值范围 是 ( )A .[]2,2- B .(]2,2- C .()2,+∞ D .](,2-∞二、填空题(本大题共4小题,每小题5分,共20分)13、在条件y x z y x y x +=⎪⎩⎪⎨⎧≤+-≤>2,01221目标函数下则函数z 的最大值为 . 14、命题:“存在一个实数x ,使得23+x =0”的否定形式为: 。
高二文科数学第二学期期末考试试题及答案
复习试卷答案一、选择题1-5 6-10 11-12二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1)16.2ΔABC ΔBOC ΔBDC S =S S ⋅三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tantan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分 ()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18.解:(Ⅰ)22列联表如下:………………6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接,则△为直角三角形,因为∠=∠=90,∠=∠,所以△∽△,则=,即=.又=,所以=. …………………6分(Ⅱ)因为是⊙O 的切线,所以2=.又=4,=6,则=9,=-=5.因为∠=∠,又∠=∠,所以△∽△,则=,即==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分(Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >. 综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠=∠.因为∠与∠是同弧上的圆周角,所以∠=∠.故△∽△. …………………6分(Ⅱ)因为△∽△,所以=,即=.又S = ∠,且S =,故 ∠=.则 ∠=1,又∠为三角形内角,所以∠=90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y +=所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--, 令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径1r =,则5MC =.51MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分 (Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<. 所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长交圆E 于点M ,连接,则∠=90,又=2=4,∠=30,∴ =2,又∵ =,∴ ==.由切割线定理知2==3=9.∴ =3. …………………6分(Ⅱ)证明:过点E 作⊥于点H ,则△与△相似, 从而有==,因此=3. …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=, 由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………………6分 ()圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;高二文科数学第二学期期末考试试题与答案11 / 11 当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分()2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。
高二下学期期末考试数学(文)试卷 Word版含答案
高二数学试题(文科)试卷说明:(1)命题范围:人教版选修1-2,必修1 (2)试卷共两卷(3)时间:120分钟 总分:150分第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1.如果{}5,4,3,2,1=S ,{}3,2,1=M ,{}5,3,2=N ,那么()()N C M C S S 等于( ). A.φ B.{}3,1 C.{}4 D.{}5,2 2.下列函数中,是奇函数,又在定义域内为减函数的是( ).A.xy ⎪⎭⎫⎝⎛=21 B.x y 1= C.)(log 3x y -= D.3x y -=3. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a=2,b=2B .a = 2 ,b=2C .a=2,b=1D .a= 2 ,b= 2 4. 对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④5、若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6、已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若A .21 B .-21 C .2D .-27.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.218、函数1(1)y x =≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y9.在映射:f A B →中,(){},|,A B x y x y R ==∈,且()():,,f x y x y x y →-+,则与A 中的元素()1,2-对应的B 中的元素为()A .()3.1-B .()1,3C .()1,3--D .()3,110.设复数2121),(2,1z z R b bi z i z 若∈+=+=为实数,则b = ( )A.2B.1C.-1D.-211.函数34x y =的图象是( )A .B .C .D .12、在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸中对应横线上. 13.已知复数122,13z i z i =-=-,则复数215z i z + =14.lg25+32lg8+lg5·lg20+lg 22= 15.若关于x 的方程04)73(32=+-+x t tx 的两实根21,x x ,满足21021<<<<x x ,则实数t 的取值范围是16.函数2()ln()f x x x =-的单调递增区间为三、解答题:本大题共6小题,共74分.前五题各12分,最后一题14分. 17.(本小题12分)计算 ()20251002i 1i 1i 1i i 21⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-++18.(本小题12分) 在数列{a n }中,)(22,111++∈+==N n a a a a nnn ,试猜想这个数列的通项公式。
高二下学期文科数学期末复习试题含答案
高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。
高二下学期数学期末试卷及答案(文科)
下期高中二年级教学质量监测数学试卷(文科)(考试时间120分 满分150分)第Ⅰ卷 选择题(满分60分)一、选择题:本大题共12小题;每小题5分;满分60分;每小题只有一个选项符合题目要求;请将正确答案填在答题栏内。
1. 设集合M ={长方体};N ={正方体};则M ∩N =:A .MB .NC .∅D .以上都不是 2. “sinx =siny ”是“x =y ”的:A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3. 下列函数是偶函数的是:A .)0()(2≥=x x x fB . )2cos()(π-=x x f C . x e x f =)(D . ||lg )(x x f =4. 从单词“equation ”中选取5个不同的字母排成一排;含有“qu ”(其中“qu ”相连且顺序不变)的不同排法共有()个: A .480 B . 840 C . 120 D . 7205. 72)12(xx +的展开式中倒数第三项的系数是:A .267CB . 6672CC . 2572CD . 5572C 6. 直线a ⊥平面α;直线b ∥平面α;则直线a 、b 的关系是:A .可能平行B . 一定垂直C . 一定异面D . 相交时才垂直7. 已知54cos ),0,2(=-∈x x π;则=x 2tan : A .274B . 274-C .724 D . 724-8. 抛物线的顶点在原点;焦点与椭圆14822=+x y 的一个焦点重合;则抛物线方程是:A .y x 82±=B . x y 82±=C . y x 42±=D . x y 42±=9. 公差不为0的等差数列}{n a 中;632,,a a a 成等比数列;则该等比数列的公比q 等于: A . 4 B . 3 C . 2 D . 110. 正四面体的内切球(与正四面体的四个面都相切的球)与外接球(过正四面体四个顶点的球)的体积比为: A .1:3 B . 1:9 C . 1:27 D . 与正四面体的棱长无关11. 从1;2;3;…;9这九个数中;随机抽取3个不同的数;这3个数的和为偶数的概率是:A .95 B . 94 C . 2111 D . 2110 12. 如图:四边形BECF 、AFED 都是矩形;且平面AFED ⊥平面BCDEF ;∠ACF =α;∠ABF =β;∠BAC =θ;则下列式子中正确的是: A .θβαcos cos cos •= B .θβαcos sin sin •=C .θαβcos cos cos •=D .θαβcos sin sin •=。
高中数学高二文科期末复习测试卷附参考答案
1.已知复数z 满i i z 2)1(足(i 为虚数单位),则z 的虚部为()A .i B .i21C .1D .212.已知直线m 平面,直线n 平面,则下列命题正确的是()A .若//n ,则//B .若,则n m //C .若n m,则//D .若//,则n m 3.已知R a ,则“1a ”是“11a ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.阅读如图1的程序框,并判断运行结果为A .55B .-55C .5D .-55.已知椭圆222109xy a a 与双曲线22143x y 有相同的焦点, 则a 的值为( ) A .2 B. 10C. 4D .106.已知a ,b ,c 都是正数,则三数111,,a b c b c a ( ) A .都大于 2B .都小于 2C .至少有一个不大于 2D .至少有一个不小于27.已知点P 为双曲线22221xy a b (0a ,0b )上任意一点,过点P 作双曲线的渐近线的平行线,分别与两渐近线交于M ,N 两点,若2||||b PN PM ,则该双曲线的离心率为()b5E2RGbCAP A .2B .2C .332D .38.下边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是( )p1EanqFDPw A .2B .4C .6D . 8 9.下面是关于复数21z i的四个命题: 1p :2z , 2:p 22z i 3:p z 的共轭复数为1i 4:p z 的虚部为1其中真命题为( )A .23,p p B .12,p p C .24,p p D .34,p p 10.如图.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是()DXDiTa9E3dA .2B .3 C. 115 D. 3716RTCrpUDGiT 11.下图是根据变量x y ,的观测数据i i x y ,( 1 2 10i ,,,)得到的散点图,由这些散点图可以判断变量x y ,具有相关关系的图是( )5PCzVD7HxAA .①②B .①④C .②③D .③④12.若曲线f(x)=xsinx +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于()jLBHrnAILgA .-2B .-1C .1D .2二、填空题:(本大题共4小题,每小题4分,共16分,把答案填在答题的相应位置)13.已知x 与y 之间的一组数据:x 0 1 2 3y 1 3 5 7则y 与x 的线性回归方程为?y bx a 必过点的坐标为14.若复数i i a 213(a R ,i 为虚数单位)是纯虚数,则实数a 的值为.15.函数()ln (0)f x x x x 的单调递增区间是____16.下列图形中线段规则排列,猜出第6个图形中线段条数为。
高二数学上学期期末试卷(文科含解析)
高二数学上学期期末试卷(文科含解析)单元练习题是所有考生最大的需求点,只有这样才能保证答题的准确率和效率,以下是店铺为您整理的关于高二数学上学期期末试卷(文科含解析)的相关资料,供您阅读。
高二数学上学期期末试卷(文科含解析)数学试卷(文科)一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.f(x)=x3﹣3x2+2在区间上的最大值是.15.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= .16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥A B.20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 (a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:(0, ).故选D.8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵f(x)=e x﹣mx,∴f′(x)=ex﹣m∵函数f(x)=ex﹣mx在(0,+∞)上是增函数∴ex﹣m≥0在(0,+∞)上恒成立∴m≤ex在(0,+∞)上恒成立∴m≤1∴命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题∵m≤1时,f′(x)=ex﹣m≥0在(0,+∞)上不恒成立,即函数f(x)=ex﹣mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过P(x0,f(x0))的切线的倾斜角的取值范围是,∴f′(x0)=2ax0+b∈,∴P到曲线y=f(x)对称轴x=﹣的距离d=x0﹣(﹣ )=x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1∴ , .而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取00.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x 的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.f(x)=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣10;当0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为215.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= ﹣1 .【考点】导数的运算.【分析】先求出f′(1)的值,代入解析式计算即可.【解答】解:∵f(x)=lnx﹣f′(1)x2+5x﹣4,∴f′(x)= ﹣2f′(1)x+5,∴f′(1)=6﹣2f′(1),解得f′(1)=2.∴f(x)=lnx﹣2x2+5x﹣4,∴f(1)=﹣1.故答案为:﹣1.16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B 两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,A(x1,y1),B(x2,y2),由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.【考点】复数求模;复数的基本概念.【分析】(Ⅰ)设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;(Ⅱ)把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:(Ⅰ)设z=a+bi,∴z+2i=a+(b+2)i,由a+(b+2)i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;(Ⅱ) ,∴ 的模为 .18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:(1)a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅(2)a=0时,A=R,符合题意;┅┅┅┅┅┅┅(3)a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】(1)通过题意,利用 =2 ,可得点M坐标,利用直线OM 的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用×( )=﹣1,即得结论.【解答】(Ⅰ)解:设M(x,y),已知A(a,0),B(0,b),由|BM|=2|MA|,所以 =2 ,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅(Ⅱ)证明:因为C(0,﹣b),所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以×( )=﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】(1)求出f′(x),因为函数在x=1时取极值,得到f′(1)=0,代入求出a值即可;(2)把f(x)的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:(1)f′(x)=ax2﹣3x+(a+1)由于函数f(x)在x=1时取得极值,所以f′(1)=0即a﹣3+a+1=0,∴a=1(2)由题设知:ax2﹣3x+(a+1)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立即a(x2+2)﹣x2﹣2x>0对任意a∈(0,+∞)都成立于是对任意a∈(0,+∞)都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:(1)由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;(2)直线l的斜率显然存在,可设直线l:y=kx+m,由,可得(1+2k2)x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,即为m2=1+2k2,①由,可得k2x2+(2km﹣4)x+m2=0,由直线和抛物线相切,可得△=(2km﹣4)2﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)根据(Ⅰ)通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:(Ⅰ)f(x)=lnx﹣a(x﹣1)2﹣(x﹣1),(x>0),f′(x)=﹣,①a<﹣时,0<﹣ <1,令f′(x)<0,解得:x>1或00,解得:﹣∴f(x)在递减,在递增;②﹣﹣或00,解得:1∴f(x)在递减,在递增;③ ,f′(x)=﹣≤0,f(x)在(0,1),(1+∞)递减;④a≥0时,2ax+1>0,令f′(x)>0,解得:01,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)函数恒过(1,0),由(Ⅰ)得:a≥﹣时,符合题意,a<﹣时,f(x)在(0,﹣ )递减,在递增,不合题意,故a≥﹣ .。
高二数学(文科)第二学期期末考试试题(含参考答案)
A.
或
B.
或
C.
或
D.
或
【答案】 C 【解析】设 A(x 1,y1),B(x 2,y2), 又 F(1,0), 则 =(1-x 1,-y1), =(x 2-1,y 2), 由题意知 =3 ,
因此
即
又由 A 、B 均在抛物线上知
解得
直线 l 的斜率为
=± ,
因此直线 l 的方程为 y= (x-1) 或 y=- (x-1). 故选 C.
【答案】 D
【解析】因为特称命题的否定是全称命题,
为奇函数 不为偶函数
所以 , 命题 p: ? a∈R,f(x) 为偶函数 , 则¬ p 为: ? a∈R,f(x) 不为偶函数
故选: D
7. 某种产品的广告费支出与校舍(单位元)之间有下表关系(
)
2
4
5
6
) 8
30
40
60
50
70
与 的线性回归方程为
2016-2017 学年第二学期期末检测
高二数学(文科)试题
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题 , 每小题 5 分, 共 60 分 . 在每小题给出的四个选项中,只有一 项是符合题目要求的 .
1. 若复数
,则
()
A.
B.
C.
D.
【答案】 C
【解析】由题意得,
,故选 C.
2. 点 极坐标为
区分
与
.
5. 已知双曲线
的离心率为 2,则双曲线 的渐近线的方程为(
)
A.
B.
C.
D.
【答案】 B
【解析】根据题意 , 双曲线的方程为:
2020-2021学年高二数学文科下册期末考试试题(含解析)
第二学期高二级期末试题(卷)数学(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数(1)(2)i i +-=( ) A. 3i + B. 1i +C. 3i -D. 1i -【答案】A 【解析】 【分析】直接利用复数代数形式的乘法运算化简得答案. 【详解】(1+i )(2﹣i )=2﹣i+2i ﹣i 2=3+i . 故选:A .【点睛】本题考查复数代数形式的乘除运算,是基础题.2.设集合{0U =,1,2,3,4},{0A =,2,4},{2B =,3,4},则()U A B =I ð( ) A. {2,4}B. {0,4}C. {0,1,3}D. {1,2,3}【答案】C 【解析】 【分析】先得到A B I ,再计算()U A B ⋂ð,得到答案【详解】集合{0U =,1,2,3,4},{0A =,2,4},{2B =,3,4}, 则{2A B ⋂=,4},(){0U A B ⋂=ð,1,3}.故选:C .【点睛】本题考查集合的交集运算与补集运算,属于简单题.3.已知平面向量a r ,b r 的夹角为23π,||1a =r ,||2b =r ,则()a a b ⋅+=r r r ( )A. 3B. 2C. 0D. 1【答案】C 【解析】 【分析】由1a =v ,2b =r ,a v ,b r的夹角为23π,先得到a b ⋅v v 的值,再计算()a ab ⋅+r v v ,得到结果.【详解】Q 向量a r ,b r的夹角为23π,1a =r ,2b =r ,∴ 1·1212a b r r ⎛⎫=⨯⨯-=- ⎪⎝⎭, 则()2··110a a b a a b +=+=-=r rr r r r , 故选:C .【点睛】本题考查向量数量积的基本运算,属于简单题.4.已知函数()sin cos f x x x =,则( ) A. ()f x 的最小正周期是2π,最大值是1B. ()f x 的最小正周期是π,最大值是12 C. ()f x 的最小正周期是2π,最大值是12D. ()f x 的最小正周期是π,最大值是1【答案】B 【解析】 【分析】对()f x 进行化简,得到()f x 解析式,再求出其最小正周期和最大值. 【详解】函数()1sin cos sin22f x x x x ==, 故函数的周期为22T ππ==, 当222x k ππ=+,即:()4x k k Z ππ=+∈时,函数取最大值为12. 故选:B .【点睛】本题考查二倍角正弦的逆用,三角函数求周期和最值,属于简单题.5.若a b >,0ab ≠则下列不等式恒成立的是( ) A. 22a b >B. lg()0a b ->C.11a b< D.a b 22>【答案】D 【解析】 【分析】利用不等式的性质、对数、指数函数的图像和性质,对每一个选项逐一分析判断得解. 【详解】对于选项A, 22a b >不一定成立,如a=1>b=-2,但是22a b <,所以该选项是错误的;对于选项B, 1111,,,lg 0,2366a b a b ==-=<所以该选项是错误的; 对于选项C,11,0,b a b a a b ab--=-<Q ab 符号不确定,所以11a b <不一定成立,所以该选项是错误的;对于选项D, 因为a>b,所以a b 22>,所以该选项是正确的. 故选:D【点睛】本题主要考查不等式的性质,考查对数、指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.某程序框图如图所示,该程序运行后输出的值是( )A. 55B. 45C. 66D. 36【答案】A 【解析】 【分析】根据程度框图的要求,按输入值进行循环,根据判断语句,计算循环停止时的S 值,得到答案.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量12310S =+++⋯+的值由于1231055S =+++⋯+=. 故选:A .【点睛】本题考查根据流程框图求输入值,属于简单题.7.抛物线28y x =的焦点到双曲线2214y x -=的渐近线的距离是( )5 25455【答案】C 【解析】 【分析】求得抛物线的焦点,双曲线的渐近线,再由点到直线的距离公式求出结果.【详解】依题意,抛物线的焦点为()2,0,双曲线的渐近线为2y x =±,其中一条为20x y -=,由点到直线的距离公式得455d ==.故选C. 【点睛】本小题主要考查抛物线的焦点坐标,考查双曲线的渐近线方程,考查点到直线的距离公式,属于基础题.8.函数()()2ln 1f x x 的图像大致是=+( )A. B.C.D.【答案】A 【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.9.在ABC ∆中,120A =︒,14BC =,10AB =,则ABC ∆的面积为( ) A. 15 B. 153 C. 40D. 3【答案】B 【解析】 【分析】先利用余弦定理求得b ,然后利用三角形面积公式求得三角形的面积.【详解】由余弦定理得2221410210cos120b b =+-⨯⨯⨯o ,解得6b =,由三角形面积得1106sin1201532S =⨯⨯⨯=o B.【点睛】本小题主要考查余弦定理解三角形,考查三角形面积公式,属于基础题.10.函数()3213f x x x =-在[]1,3上的最小值为( ) A. -2 B. 0C. 23-D. 43-【答案】D 【解析】 【分析】求得函数的导数()22f x x x '=-,得到函数()f x 在区间[]1,3上的单调性,即可求解函数的最小值,得到答案. 【详解】由题意,函数()3213f x x x =-,则()22f x x x '=-, 当[1,2)x ∈时,()0f x '<,函数()f x 单调递减; 当(2,3]x ∈时,()0f x '>,函数()f x 单调递增, 所以函数()f x 在区间[]1,3上的最小值为()321224323f =⨯-=-, 故选D .【点睛】本题主要考查了利用导数求解函数的最值问题,其中解答中熟练应用导数求得函数的单调性,进而求解函数的最值是解答的关键,着重考查了推理与运算能力,属于基础题.11.法国机械学家莱洛(F. Reuleaux 1829-1905)发现了最简单的等宽曲线莱洛三角形,它是分别以正三角形ABC 的顶点为圆心,以正三角形边长为半径作三段圆弧组成的一条封闭曲线,在封闭曲线内随机取一点,则此点取自正三角形ABC 之内(如图阴影部分)的概率是( )D.【答案】B【解析】【分析】先算出封闭曲线的面积,在算出正三角形ABC的面积,由几何概型的计算公式得到答案. 【详解】设正三角形的边长为a,由扇形面积公式可得封闭曲线的面积为(2221322342aS a aππ=⨯⨯⨯-⨯=,由几何概型中的面积型可得:此点取自正三角形ABC之内(如图阴影部分)∴概率是22SPS阴封闭曲线===故选:B.【点睛】本题考查几何概型求概率,属于简单题.12.定义域为R的可导函数()y f x=的导函数为()f x',满足()()f x f x'>,且()02f=,则不等式()2xf x e<的解集为()A. (),0-∞ B. (),2-∞ C. ()0,∞+ D. ()2,+∞【答案】C【解析】【详解】构造函数()()xf xg xe=,根据()()f x f x'>可知()0g x'<,得到()g x在R上单调递减;根据()()02fge==,可将所求不等式转化为()()0g x g<,根据函数单调性可得到解集.【解答】令()()x f x g x e =,则()()()()()20x x x x f x e f x e f x f x g x e e''--'==< ()g x ∴在R 上单调递减 ()02f =Q ()()002f g e ∴== 则不等式()2xf x e >可化为()2xf x e< 等价于()2g x <,即()()0g x g < 0x ∴> 即所求不等式的解集为:()0,∞+ 本题正确选项:C【点睛】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数()()x f x g x e=,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系.二、填空题。
(完整word版)高二期末数学(文科)试卷及答案
银川一中2016/2017学年度(上)高二期末考试数学试卷(文科)一、选择题(每小题5分,共60分) 1.抛物线241x y =的准线方程是( )A .1-=yB .1=yC .161-=xD .161=x2.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 ( ) A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)3.若双曲线E :116922=-y x 的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于 ( ) A .11B .9C .5D .3或94.已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的 A .充分必要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件5.一动圆P 过定点M (-4,0),且与已知圆N :(x -4)2+y 2=16相切,则动圆圆心P 的轨迹方程是 ( )A .)2(112422≥=-x y xB .)2(112422≤=-x y x C .112422=-y xD .112422=-x y6.设P 为曲线f (x )=x 3+x -2上的点,且曲线在P 处的切线平行于直线y =4x -1,则P 点的坐标为( ) A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)7.已知椭圆E 的中心为坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,点A 、B 是C 的准线与E 的两个交点,则|AB |= ( )A .3B .6C .9D .128.若ab ≠0,则ax -y +b =0和bx 2+ay 2=ab 所表示的曲线只可能是下图中的 ( )9.抛物线y =x 2到直线 2x -y =4距离最近的点的坐标是 ( )A .)45,23(B .(1,1)C .)49,23(D .(2,4) 10. 函数x e y x =在区间⎥⎦⎤⎢⎣⎡221,上的最小值为 ( ) A .e 2B .221e C .e1D .e11.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为 ( )A .43B .23 C .1 D .212.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,C 与过原点的直线相交于A 、B 两点,连接AF 、BF . 若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为 ( ) A.35B.57C.45D.67二、填空题(每小题5分,共20分)13.若抛物线y ²=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,则点M 的坐标为________. 14.已知函数f (x )=31x 3+ax 2+x +1有两个极值点,则实数a 的取值范围是 . 15.过椭圆22154x y +=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为__________.16.双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,左、右顶点为A 1、A 2,过F 作A 1A 2的垂线与双曲线交于B 、C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线斜率为__________. 三、解答题(共70分) 17. (本小题满分10分)(1)是否存在实数m ,使2x +m <0是x 2-2x -3>0的充分条件? (2)是否存在实数m ,使2x +m <0是x 2-2x -3>0的必要条件?18. (本小题满分12分)已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另外一条切线,且l 1⊥l 2. (1)求直线l 2的方程.(2)求由直线l 1,l 2和x 轴围成的三角形的面积.19. (本小题满分12分)双曲线C 的中心在原点,右焦点为⎪⎪⎭⎫⎝⎛0,332F ,渐近线方程为x y 3±=. (1)求双曲线C 的方程;(2)设点P 是双曲线上任一点,该点到两渐近线的距离分别为m 、n .证明n m ⋅是定值.20. (本小题满分12分)已知抛物线C 的顶点在坐标原点O ,对称轴为x 轴,焦点为F ,抛物线上一点A 的横坐标为2,且10=⋅.(1)求此抛物线C 的方程.(2)过点(4,0)作直线l 交抛物线C 于M 、N 两点,求证:OM ⊥ON21. (本小题满分12分)已知函数),()(23R b a bx ax x x f ∈++=,若函数)(x f 在1=x 处有极值4-. (1)求)(x f 的单调递增区间;(2)求函数)(x f 在[]2,1-上的最大值和最小值.22. (本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M 、N .(1)求椭圆C 的方程.(2)当△AMN 的面积为310时,求k 的值.高二期末数学(文科)试卷答案一.选择题(每小题5分,共60分) 1-6ADBBCC 7-12BCBDDB 二.填空题(每小题5分,共20分)13 (-9,6)或(-9,-6) 14 ()()∞+⋃-∞-,11, 15 3516 1± 二.解答题(共70分) 17. (1)欲使得是的充分条件, 则只要或,则只要即,故存在实数时, 使是的充分条件.(2)欲使是的必要条件,则只要或,则这是不可能的,故不存在实数m 时, 使是的必要条件.18. (1)由题意得y′=2x+1.因为直线l 1为曲线y=x 2+x-2在点(1,0)处的切线, 直线l 1的方程为y=3x-3. 设直线l 2过曲线y=x 2+x-2上的点B (b ,b 2+b-2),则l 2的方程为y-(b 2+b-2)=(2b+1)(x-b).因为l 1⊥l 2,则有k 2=2b+1=-,b=-,所以直线l 2的方程为y=-x-.(2)解方程组得.所以直线l 1、l 2的交点坐标为(,-).l 1、l 2与x 轴交点的坐标分别为(1,0)、(-,0).所以所求三角形的面积为S=××|-|=.19. (1)易知 双曲线的方程是1322=-y x .(2)设P ()00,y x ,已知渐近线的方程为:x y 3±=该点到一条渐近线的距离为:13300+-=y x m到另一条渐近线的距离为13300++=y x n412232020=⨯-=⋅y x n m 是定值.20.(1)根据题意,设抛物线的方程为(),因为抛物线上一点的横坐标为,设,因此有, ......1分 因为,所以,因此,......3分解得,所以抛物线的方程为; ......5分(2)当直线的斜率不存在时,此时的方程是:,因此M,N,因此NO M O ρρ⋅,所以OM ⊥ON ; ......7分当直线的斜率存在时,设直线的方程是,因此,得,设M,N,则,,, ......9分所以NO M O ρρ⋅,所以OM ⊥ON 。
高二数学下学期期末考试试卷 文含解析 试题
2021—2021学年第二学期高二期末考试文科数学试题一、选择题:本大题一一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,选出符合题目要求的一项。
,,那么A. B. C. D.【答案】C【解析】【分析】先化简集合A,再判断选项的正误得解.【详解】由题得集合A=,所以,A∩B={0},故答案为:C【点睛】此题主要考察集合的化简和运算,意在考察学生对这些知识的掌握程度和分析推理才能.2.(为虚数单位) ,那么A. B. C. D.【答案】B【解析】【分析】由题得,再利用复数的除法计算得解.【详解】由题得,故答案为:B【点睛】此题主要考察复数的运算,意在考察学生对该知识的掌握程度和分析推理计算才能.是定义在上的奇函数,当时,,那么A. B. C. D.【答案】D【解析】【分析】利用奇函数的性质求出的值.【详解】由题得,故答案为:D【点睛】(1)此题主要考察奇函数的性质,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)奇函数f(-x)=-f(x).4.以下命题中,真命题是A. 假设,且,那么中至少有一个大于1B.C. 的充要条件是D.【答案】A【解析】【分析】逐一判断每一个选项的真假得解.【详解】对于选项A,假设x≤1,y≤1,所以x+y≤2,与矛盾,所以原命题正确.当x=2时,2x=x2,故B错误.当a=b=0时,满足a+b=0,但=﹣1不成立,故a+b=0的充要条件是=﹣1错误,∀x∈R,e x>0,故∃x0∈R,错误,故正确的命题是A,故答案为:A【点睛】〔1〕此题主要考察命题的真假的判断,考察全称命题和特称命题的真假,考察充要条件和反证法,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕对于含有“至少〞“至多〞的命题的证明,一般利用反证法.,那么该抛物线的焦点坐标为( )A. B. C. D.【答案】C【解析】【分析】先求出p的值,再写出抛物线的焦点坐标.【详解】由题得2p=4,所以p=2,所以抛物线的焦点坐标为〔1,0〕.故答案为:C【点睛】〔1〕此题主要考察抛物线的简单几何性质,意在考察学生对该知识的掌握程度和分析推理才能.(2)抛物线的焦点坐标为.是增函数,而是对数函数,所以是增函数,上面的推理错误的选项是A. 大前提B. 小前提C. 推理形式D. 以上都是【答案】A【解析】【分析】由于三段论的大前提“对数函数是增函数〞是错误的,所以选A. 【详解】由于三段论的大前提“对数函数是增函数〞是错误的,只有当a>1时,对数函数才是增函数,故答案为:A【点睛】(1)此题主要考察三段论,意在考察学生对该知识的掌握程度和分析推理才能.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才是正确的.,,,那么A. B. C. D.【答案】C【解析】【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解.【详解】由题得,a>0,b>0.所以.故答案为:C【点睛】(1)此题主要考察指数函数对数函数的单调性,考察实数大小的比拟,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕实数比拟大小,一般先和“0〞比,再和“±1〞比.,,假设∥,那么A. B. C. D.【答案】D【解析】【分析】根据∥得到,解方程即得x的值.【详解】根据∥得到.故答案为:D【点睛】(1)此题主要考察向量平行的坐标表示,意在考察学生对该知识的掌握程度和分析推理计算才能.(2) 假如=,=,那么||的充要条件是.那么的值是.A. B. C. D.【答案】C【解析】【分析】先计算出f(2)的值,再计算的值.【详解】由题得f(2)=,故答案为:C【点睛】(1)此题主要考察分段函数求值,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)分段函数求值关键是看自变量在哪一段.10.为等比数列,,,那么〔〕A. B. C. D.【答案】D【解析】试题分析:,由等比数列性质可知考点:等比数列性质视频11.某几何体的三视图(单位:cm)如下图,那么该几何体的体积是( )A. 72 cm3B. 90 cm3C. 108 cm3D. 138 cm3【答案】B【解析】由三视图可知:原几何体是由长方体与一个三棱柱组成,长方体的长宽高分别是:6,4,3;三棱柱的底面直角三角形的直角边长是4,3;高是3;其几何体的体积为:V=3×4×6+×3×4×3=90〔cm3〕.故答案选:B.上的奇函数满足,且在区间上是增函数.,假设方程在区间上有四个不同的根,那么A. -8B. -4C. 8D. -16【答案】A【解析】【分析】由条件“f〔x﹣4〕=﹣f〔x〕〞得f〔x+8〕=f〔x〕,说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【详解】f(x-8)=f[(x-4)-4]=-f(x-4)=-·-f(x)=f(x),所以函数是以8为周期的函数,函数是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×〔﹣6〕=-12,另两个交点的横坐标之和为2×2=4,所以x1+x2+x3+x4=﹣8.故答案为:A【点睛】(1)此题主要考察函数的图像和性质〔周期性、奇偶性和单调性〕,考察函数的零点问题,意在考察学生对这些知识的掌握程度和数形结合分析推理才能.(2)解答此题的关键是求出函数的周期,画出函数的草图,利用数形结合分析解答.二、填空题:本大题一一共4小题,每一小题5分,一共20分。
高二文科下学期期末考试数学试题(含答案)
高二文科下学期期末考试数学试题一、单选题1.设集合U={-1,0,1,2,3,4,5}, A={1,2,3}, B={-1,0,1,2},则A∩(C U B)=A. {1,2,3}B. {3}C.D. {2}2.已知iA. 1+iB. 1-iC.D. 3.设:12,:21x p x q <><,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知抛物线24x y =上一点A 纵坐标为4,则点A 到抛物线焦点的距离为( )A. B. 4 C. 5 D. 5.正项数列{a n }成等比数列,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是A. -24B. 21C. 48D. 246 cos (等于A. B. C. D. 7.设f′(x )是函数f (x )的导函数,y=f′(x )的图象如图所示,则y=f (x )的图象最有可能的是( )A. B.C. D.8 A. 有最大值3,最小值-1 B. 有最大值2,最小值-2C. 有最大值2,最小值0D. 有最大值3,最小值029.执行如图程序框图,输出的 为( )A. B. C. D. 10.若函数f(x) = x 3-ax-2在区间(1,+∞)内是增函数,则实数a 的取值范围是 A. (],3-∞ B. (],9-∞ C. (-1, +∞) D. (-∞,3)11.如图,三棱柱A 1B 1C 1 - ABC 中,侧棱AA 1丄底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是A. CC 1与B 1E 是异面直线B. AC 丄平面ABB 1A 1C. A 1C 1∥平面AB 1ED. AE 与B 1C 1为异面直线,且AE 丄B 1C 112.过椭圆A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F 2C 的离心率的取值范围是A.B.C.D.二、填空题13.已知向量a =(1,-1) , b =(6,-4).若a 丄(t a +b ),则实数t 的值为____________.14.若x , y∈ R,且满足1{230 x x y y x≥-+≥≥,则z=2x+3y 的最大值等于_____________.15.已知ABC ∆三内角,,A B C 对应的边长分别为,,a b c,又边长3b c =,那么sin C = __________.16.已知函数()()3,0{ 1,0x x f x ln x x ≤=+>,若()()22f x f x ->,则实数x 的取值范围是____________.三、解答题17.选修44-:坐标系与参数方程选讲 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为 (Ⅰ)求圆C 的圆心到直线l 的距离;(Ⅱ)设圆C 与直线l 交于点A B 、,若点P 的坐标为18.在等差数列{a n }中,a 1 =-2,a 12 =20.(1)求数列{a n }的通项a n ;(2)若b n a n ++,求数列{3n b}的前n 项和.419.如图所示,已知AB 丄平面BCD ,M 、N 分别是AC 、AD 的中点,BC 丄 CD.(1)求证:MN//平面BCD ;(2)若AB=1,AC 与平面BCD 所成的角.20.已知椭圆C 1: ,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆Q 的方程;(2)设0为坐标原点,点A ,B 分别在椭圆C 1和C 2上,,求直线AB 的方程.21.已知函数()()3x f x a bx e =-,()f x 的图象在点()1,e 处的切线与直线210ex y +-=平行.(1)求,a b ;(2)求证:当()0,1x ∈时, ()()2f x g x ->.1参考答案1.B2.B3.A4.C5.D6.D7.C8.D9.A10.A11.D12.B13.-514.151516.(-2,1)17.(1(218.(1)24n a n =-;(219.(1)见解析;(2)30°.20.(1) ;(2) 或 .21.(1)a 2,b 1==;(2)见解析.。
高二上学期期末考试数学(文)试题及答案 (6)
高二年级期末统考数学(文科)试卷命题学校: 命题人:参考资料:一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列变量是线性相关的是( )A .人的身高与视力B .角的大小与弧长C .收入水平与消费水平D .人的年龄与身高 2.给出以下问题:①求面积为1的正三角形的周长; ②求所输入的三个数的算术平均数; ③求所输入的两个数的最小数; ④求函数=)(x f3x x 3x x 22<≥,,,当自变量取0x 时的函数值.其中不需要用条件语句来描述算法的问题有( )A .1个B .2个C .3个D .4个 3.以下是解决数学问题的思维过程的流程图:在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( )A .①—综合法,②—分析法B .①—分析法,②—综合法C .①—综合法,②—反证法D .①—分析法,②—反证法4.为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做100次和150次试验,并且利用线性回归方法,求得回归直线分别为1t 和2t ,已知两人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( )A .t 1和t 2有交点(s,t)B .t 1与t 2相交,但交点不一定是),(t s)d b )(c a )(d c )(b a ()bc ad (n K ++++-=22C .t 1与t 2必定平行D .t 1与t 2必定重合5.从装有两个红球和两个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“至少有一个红球”C .“恰好有一个黑球”与“恰好有两个黑球”D .“至少有一个黑球”与“都是红球”6.设i 为虚数单位,a,b ∈R,下列命题中:①(a+1)i 是纯虚数;②若a>b,则a+i>b+i;③若(a 2-1)+(a 2+3a+2)i 是纯虚数,则实数a=±1;④2i 2>3i 2.其中,真命题的个数有( ) A.1个 B.2个 C.3个 D.4个7.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y|的值为( )A .1B .2C .3D .48.如右图,小黑圆表示网络的结点,结点之间的连线表示它们有网线相连.连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )A .26B . 24C .20D .199.在等腰三角形ABC 中,过直角顶点C 在∠ACB 内作一条射线CD 与线段AB 交于点D ,则AD<AC 的概率是( ).A.22 B.41 C.222 D.43 10.某程序框图如图所示,若该程序运行后输出的k 的值是6,则满足条件的整数S 0的个数是( ) A.31 B.32 C.63 D.6411.定义A*B 、B*C 、C*D 、D*B 分别对应下列图形,那么下面的图形中,可以表示A*D ,A*C 的分别是( )开始 输出k 结束k=0,S=S 0k=k+1S>0?是否S=S-2k 4 63 7 561212 86 BAA .(1)、(2)B .(2)、(3)C .(2)、(4)D .(1)、(4)12.设a ,b ,c 大于0,a +b +c =3,则3个数:a +1b ,b +1c ,c +1a 的值( )A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于2二、填空题 (本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)13.下面是关于复数z =i12+-的四个命题:P 1:|z|=2;P 2:z 2=2i ;P 3:z 的共轭复数为1+i ;P 4:z 的虚部为-1.其中的真命题个数为 .14.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =a +bx i +e i (i =1,2,…,n),若e i 恒为0,则R 2等于________.15.把十进制108转换为k 进制数为213,则k=_______. 16.正偶数列有一个有趣的现象:2+4=6;8+10+12=14+16;18+20+22+24=26+28+30,…按照这样的规律,则2016在第 等式中.三、解答题( 本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17. (Ⅰ)计算(本小题满分6分):))(()(i 1i 45i 54i 222--++)(;(Ⅱ)(本小题满分6分)在复平面上,平行四边形ABCD 的三个顶点A,B,C 对应的复数分别为i,1,4+2i.求第四个顶点D 的坐标及此平行四边形对角线的长. 18.(本小题满分12分).按右图所示的程序框图操作:(Ⅰ)写出输出的数所组成的数集. (Ⅱ)如何变更A 框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{}n 2的前7项?(Ⅲ)如何变更B 框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{}2n 3-的前7项?19.(本小题满分12分).设f(x)331x +=,先分别计算f(0)+f(1),f(-1)+f(2),f(-2)+f(3)的值,然后归纳猜想一般性结论,并给出证明.20.(本小题满分12分)田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A 、B 、C ,田忌的三匹马分别为a 、b 、c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二文科数学期末试卷及答案
高二文科数学期末试卷及答案
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、是直线和直线垂直的()
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
2、抛物线y=2x2的焦点坐标是( )
A.(0,) B.(,0) C.(0,) D.(,0)
3、在△ABC中,A=60°,a=4 ,b=4 ,则B=( )
A.45° B.135° C.45°或135° D.以上答案都不对
4、在等比数列{an}中,若a3a6=9,a2a4a5=27,则a2的值为( )
A.2 B.3 C.4 D.9
5、已知 ,则的最小值是()
A.4 B.3 C.2 D.1
6、设a,b是实数,命题“ ab>0,都有a>0,b>0”的否定是( )
A.ab≤0,使得a≤0,b≤0 B.ab≤0,使得a≤0或b≤0
C. ab>0,使得a≤0,b≤0 D. ab>0,使得a≤0或b≤0
7、已知数列{an}中,a1=3,a2=6,an+2=an+1﹣an,则a2009=( )
A.6 B.﹣6 C.3 D.﹣3
8、已知a,b,c为的三个内角A,B,C的对边,向量=(,-1),= (cosA,sinA),若⊥ ,且,则角B=()
A. B. C. D.
9、等比数列{an}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x ﹣a2)…(x﹣a8),则f′(0)=( )
A.26 B.29 C.212 D.215
10、设变量x, y满足约束条件则目标函数的最小值为()
A.-7 B.-4 C.1 D.2
11、已知F1,F2为双曲线的左,右焦点,点P在C上,,则()
A. B. C. D.
12、在R上定义运算=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),则a+b的值为( )
A.1 B.2 C.4 D.8
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题5分,共20分。
13、曲线在点处的切线的倾斜角是__________.
14、数列{an}是公差不为零的等差数列,若a1,a3,a4成等比数列,则公比q= .
15、若命题“ x∈R,使得x2+(a﹣1)x+1<0”是真命题,则实数a的取值范围是.
16、设F1、F2是椭圆的两个焦点,点P在椭圆上,且满足,则△F1PF2的面积等于
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17、(本小题满分10分)
已知a>0,且 .设命题:函数在(0,+∞)上单调递减,命题:曲线与x轴交于不同的两点,如果是假命题,是真命题,求a的取值范围.
18、(本小题满分12分)
在△ABC中,角A、B、C的对边分别是a、b、c,若
(1)求角A;
(2)若4(b+c)=3bc,,求△ABC的面积S.
19、(本小题满分12分)已知Sn为公差不为0的等差数列{an}的前n项和,且a1=1,S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)设,求数列{bn}的前n项和.
20、(本小题满分12分)
已知的不等式的解集为.
(1)求的值;
(2)当时,解关于的不等式(用表示).
21、(本小题满分12分)已知椭圆的离心率为,点在上.
(1)求的标准方程;
(2)设直线过点,当绕点旋转的过程中,与椭圆有两个交点,,求线段的中点的轨迹方程.
22、(本小题满分12分)已知函数f(x)=x﹣alnx(a∈R).
(1)当a=2时,求曲线f(x)在x=1处的'切线方程;
(2)设函数h(x)=f(x)+ ,求函数h(x)的单调区间;
参考答案
一、选择题
ACABA DBACA CC
9、【答案】C
【解析】试题分析:对函数进行求导发现f′(0)在含有x项均取0,再利用等比数列的性质求解即可.
试题解析:解:考虑到求导中f′(0),含有x项均取0,
得:f′(0)=a1a2a3…a8=(a1a8)4=212.
故选:C.
11、【答案】C
【解析】由双曲线定义得,又,所以由余弦定理得,选C.
12、【答案】C
【解析】试题分析:根据定义,利用一元二次不等式的解法求不等式的解集.
试题解析:解:∵x y=x(1﹣y),
∴(x﹣a)(x﹣b)>0得
(x﹣a)[1﹣(x﹣b)]>0,
即(x﹣a)(x﹣b﹣1)<0,
∵不等式(x﹣a)(x﹣b)>0的解集是(2,3),
∴x=2,和x=3是方程(x﹣a)(x﹣b﹣1)=0的根,
即x1=a或x2=1+b,
∴x1+x2=a+b+1=2+3,
∴a+b=4,
故选:C.
二、填空
13、 14、 15、【答案】(﹣∞,﹣1)∪(3,+∞)16、1
三、解答
【答案】 .
解题思路:先化简命题,得到各自满足的条件;再根据真值表判定的真假,进一步求的取值范围.规律总结:当都为真命题时,为真命题;当都为假命题时,为假命题.
因为函数在(0,+∞)上单调递减,所以p:,
又因为曲线与x轴交于不同的两点,
所以,解得q:或,
因为是假命题,是真命题,所以命题p,q一真一假,
①若p真q假,则所以;
②若p假q真,则所以.
故实数a的取值范围是.
18、【答案】试题分析:(1)由正弦定理化简已知可得:,结合三角形内角和定理及三角函数恒等变换的应用化简可得,结合A为内角,即可求A的值.
(2)由余弦定理及已知可解得:b+c=6,从而可求bc=8,根据三角形面积公式即可得解.
试题解析:
解:(1)由正弦定理得:…
又∵sinB=sin(A+C)
∴
即…
又∵sinC≠0
∴
又∵A是内角
∴A=60°…
(2)由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2﹣bc=(b+c)2﹣3bc…
∴(b+c)2﹣4(b+c)=12得:b+c=6
∴bc=8…
∴S= …
19、解:(Ⅰ)∵Sn为公差不为0的等差数列{an}的前n项和,且a1=1,S1,S2,S4成等比数列,
∴由已知,得,
即,
整理得,
又由a1=1,d≠0,解得d=2,
故an=1+(n﹣1)×2=2n﹣1.n∈N.
(Ⅱ)∵ ,an=2n﹣1,
∴ = ,
∴数列{bn}的前n项和:
=
=
= ,n∈N.
20、【答案】(1)已知得是方程的两个实数根,且
所以即
(2)由(1)得原不等式可化为即
所以当时,所求不等式的解集为
当时,所求不等式的解集为
当时,所求不等式的解集为
21、试题解析:(1)因为椭圆的离心率为,所以
不妨设椭圆的标准方程为,代入点,得到
所以椭圆的标准方程为
(2)设线段AB的中点,
若直线l斜率不存在,即为,易得线段AB中点为
若直线l斜率存在,设直线方程为,两交点坐标、,
易得减得
又因为
化简得,代入满足方程.
所以线段AB的中点M的轨迹方程为
22、【答案】(Ⅰ)当a=2时,f(x)=x﹣2lnx,f(1)=1,切点(1,1),
∴ ,∴k=f′(1)=1﹣2=﹣1,
∴曲线f(x)在点(1,1)处的切线方程为:y﹣1=﹣(x﹣1),即x+y﹣2=0.
(Ⅱ),定义域为(0,+∞),,
①当a+1>0,即a>﹣1时,令h′(x)>0,
∵x>0,∴x>1+a
令h′(x)<0,∵x>0,∴0<x<1+a.
②当a+1≤0,即a≤﹣1时,h′(x)>0恒成立,
综上:当a>﹣1时,h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增.
当a≤﹣1时,h(x)在(0,+∞)上单调递增.
【高二文科数学期末试卷及答案】。