实际问题与一元二次方程(所有分类)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析: 第一次
a
aX10% 第二次 a(1+10%)X10% 第三次
a+aX10%= a(1+10%)
a(1+10%)+ a(1+10%) X10% = a(1+10%)2
例1:平阳按“九五”国民经济发展规划要求,2003年 的社会总产值要比2001年增长21%,求平均每年增长的 百分率.(提示:基数为2001年的社会总产值,可视为 a)
• 某地因1人患了甲型H1N1流感没有 及时隔离治疗,经过两天的传染后 共有9人患了甲型H1N1流感,每天 平均一个人传染了几人?如果按照 这个传染速度,再经过5天的传染 后,这个地区一共将会有多少人患 甲型H1N1流感?
• 二、增长率问题:
课前热身1:二中小明学习非常认真,学习成绩直线上升, 第一次月考数学成绩是a分,第二次月考增长了10%, 第三次月考又增长了10%,问他第三次数学成绩是多少?
答:平均每年增长的百分率为10% .
练习1:某药品经两次降价,零售价降为原来 的一半.已知两次降价的百分率一样,求每次 降价的百分率.(精确到0.1%) 解:设原价为1个单位, 每次降价的百分率为 x. 根据题意,得 1 x 2 1
解这个方程,得
2
2 但x 1 >1不合题意,舍去 2 2 x 1 29.3%. 答:每次降价的百分率为29.3%. 2
求截去的正方形的边长
• 分析 • 设截去的正方形的边长为xcm之后,关键在于列 出底面(图中阴影部分)长和宽的代数式.结合 图示和原有长方形的长和宽,不难得出这一代数 式.
28-2x 20cm 28cm 20-2x
求截去的正方形边长
• 解:设截去的正方形的边长为xcm,根据题意,得
(28-2x)(20-2x)=180 x2-24x+95=0 解这个方程,得:x1=5,x2=19 经检验:x2=19不合题意,舍去. 所以截去的正方形边长为5cm.
• 五、球赛问题:(握手、签合同、打电话、 送礼) • 要组织一场篮球联赛,赛制为单循环形式 (每两个队只赛一场)。计划安排15场比 赛,应邀请多少个球队参加比赛? • 参加一次聚会的每两个人都握了一次手, 所有人共握手36次,有多少人参加聚会?
• 六、数字问题: • 1.一个两位数,十位数字与个位数字之和 为5,把这个数的十位数字与个位数字对调 后,所得的新两位数与原两位数乘积为736, 求原两位数。
答:这个长方形框的框边宽为5cm
列一元二次方程解应题
6、放铅笔的V形槽如图,每往上一层可以多 放一支铅笔.现有190支铅笔,则要放几层 ?
解:要放x层,则每一 层放(1+x) 支铅笔. 得 x (1+x) =190×2 2 X+ X -380=0 解得X1=19,
X2= - 20(不合题意)
答:要放19层.
20 32
• 3、小明把一张边长为10厘米的正方形硬纸 板的四周各剪去一个同样大小的正方形, 再折合成一个无盖的长方体盒子。如果要 求长方体的底面面积为81平方厘米,那么 剪去的正方形边长为多少?
4、学校课外生物(小组的试验园地是一块长35米、 宽20米的矩形,为便于管理,现要在中间开辟一横两纵 三条等宽的小路(如图),要使种植面积为600平方米, 求小道的宽。(精确到0.1米)
2 2 x1 1 , x2 1 2 2
练习 2: 某药品两次升价,零售价升为原来的 1.2 倍,已知两次升价的百分率一样,求每次升价的 百分率(精确到0.1%) 解,设原价为 a 元,每次升价的百分率为 , 根据题意,得 2
x
a(1 x) 1.2a
解这个方程,得
30 x 1 5 由于升价的百分率不可能是负数, 所以 x 1 30 不合题意,舍去
• 2、有一个两位数,它的个位上的数字与十 位上的数字之和是6,如果把它的个位数字 与十位数字调换位置,所得的两位数乘以 原来的两位数所得的积等于1008,求调换 位置后得到的两位数。
分析:设每年增长率为x,2001年的总产值为a,则
2001年 2002年
a
a(1+x)
2003年
a(1+x) 2
a
增长21%
a+21%a
a(1+x) 2 =a+21%a
解:设每年增长率为x,2001年的总产值为a,则 a(1+x) 2 =a+21%a a (1+x) 2 =1.21 a (1+x) 2 =1.21 1+x =1.1 x =0.1
三、面积问题:
常见的图形有下列几种:
例1、用22cm长的铁丝,折成一个面积 为30cm2的矩形。求这个矩形的长与宽.
22 解:设这个矩形的长为xcm,则宽为 x(cm). 2 22 根据题意,得 x( x ) 30
整理后,得x2-11x+30=0
2
解这个方程,得x1=5,x2=6 22 由x1=5得 x 6 (与题设不符,舍去) 2 22 由x2=6,得 x5 2 答:这个矩形的长是6cm,宽是5cm。
例2、在宽为20米、长为32米的矩形地面上, 修筑同样宽的两条互相垂直的道路,余下部 分作为耕地,要使耕地面积为540米2,道路 的宽应为多少?
20m
32m
分析:此题的相等关系是 矩形面积减去道路面积等 于540米2。 解法一、
x米
20m 32m
如图,设道路的宽为x米, 2 则横向的路面面积为 32x 米 纵向的路面面积为 20x 米2 。
列一元二次方程解应题
补充练习: (98年北京市崇文区中考题)如图,有一面 积是150平方米的长方形鸡场,鸡场的一边靠墙 (墙长18米),墙对面有一个2米宽的门,另三边 (门除外)用竹篱笆围成,篱笆总长33米.求鸡 场的长和宽各多少米?
18米
2米
• 四、利润问题:总利润=单件利润*销量 • 1、爱家超市将进货单价为40元的商品, 按50元销售时,能卖出500个,已知该商 品每涨1元钱就少卖10个。为了赚8000 元的利润,应涨多少元钱?
例4:建造一个池底为正方形,深度为2.5m
的长方体无盖蓄水池,建造池壁的单价是 120元/m2,建造池底的单价是240元/m2,总 造价是8640元,求池底的边长. 分析:池底的造价+池壁的造价=总造价 解:设池底的边长是xm. 2 根据题意得: 240x 120 2.5x 4 8640
• 一、传播问题: • 有一人患了流感,经过两轮传染 后共有121人患了流感,每轮传 染中平均一个人传染了几个人?
• 某种电脑病毒传播非常快,如果一 台电脑被感染,经过两轮感染后就 会有81台电脑被感染,求每轮感染 中平均一台电脑能感染几台?若病 毒得不到有效控制,三轮感染后, 被感染的电脑会不会超过700台?
再往下的计算、格式书写与解法1相同。
练习1:用一根长22厘米的铁丝,能否折 成一个面积是30厘米的矩形?能否折成一 个面积为32厘米的矩形?说明理由。 2:在一块长80米,宽60米的运动场外 围修筑了一条宽度相等的跑道,这条 跑道的面积是1500平方米,求这条跑 道的宽度。
3. 如图,在长为40米,宽为22米的矩 形地面上,修筑两条同样宽的互相垂直 的道路,余下的铺上草坪,要使草坪的 面积为760平方米,道路的宽应为多少?
5
30 x 1 9.5% 5
答:每次升价的百分率为9.5%.
练习 4. 市第四中学初三年级初一开学时就参 加课程改革试验,重视学生能力培养 .初一阶 段就有 48人在市级以上各项活动中得奖,之 后逐年增加,到三年级结束共有 183 人次在 市级以上得奖 .求这两年中得奖人次的平均年 增长率.
• 2、某商场销售一批名牌衬衫,平均每 天可售出20件,每件盈利40元,为了 扩大销售,经量减少库存,商场决定 适当的降低售价,经调查发现,如果 每件衬衫降价1元,商场平均每天可多 售出2件,若商场平均每天销售这种衬 衫的盈利要达到1200元,则每件衬衫 应降价多少元?
• 3、某商户以2元/千克的价格,购进一批小 西瓜,以3元/千克的价格出售,每天可售出 200千克,为了促销,该商户决定降价出售, 经调查发现,这种小西瓜每降价0.1元/千克, 每天可多售出40千克,另外每天的房租等 固定成本共24元,该商户要想每天盈利200 元,应该将每千克的小西瓜的售价降低多 少元?
xm
如图,设路宽为x米, 20m 横向路面为 32x 米2 , 纵向路面面积为 20x 米2 。
32m
xm
耕地矩形的长(横向)为(32-x) 米 , 耕地矩形的宽(纵向)为 (20-x) 米 。 相等关系是:耕地长×耕地宽=540米2 即 32 x20 x 540.
2 x 化简得: 52x 100 0, x1 50, x2 2
40米
22米
4、如图,在宽为20m,长为32m的矩形耕地 上,修筑同样宽的三条道路,(两条纵向, 一条横向,横向与纵向相互垂直),把耕地 分成大小相等的六块试验地,要使试验地面 积为570m² ,问道路的宽为多少?
例3、求截去的正方形的边长
• 用一块长28cm、宽 20cm的长方形纸片, 要在它的四角截去四个相等的小正方形, 折成一个无盖的长方体盒子,使它的底面 积为180cm2,为了有效地利用材料,求截 去的小正方形的边长是多少cm?
x
700--x 3
新方案
700-x+2x x
原方案
x+2x
2 3
• 课堂练习:列方程解下列应用题 • 1、学生会准备举办一次摄影展览,在每张长和宽 分别为18厘米和12厘米的长方形相片周围镶嵌上 一圈等宽的彩纸。经试验,彩纸面积为相片面积 的2/3时较美观,求镶上彩纸条的宽。(精确到 0.1厘米) • 2、在宽20米,长32米的矩形地面上修筑同样宽 的四条互相垂直的“井”字形道路(如图),余 下的部分做绿地,要使绿地面积为448平方 米, 路宽为多少?
解方程得: x1 9, x2 4 ∵池底的边长不能为负数,∴取x=4 答:池底的边长是4m.
练习、建造成一个长方体形的水池,原计划水 池深3米,水池周围为1400米,经过研讨,修 改原方案,要把长与宽两边都增加原方案中的 宽的2倍,于是新方案的水池容积为270万米3, 求原来方案的水池的长与宽各是多少米?
,
所列的方程是不是 32 20 (32x 20x) 540 ?
注意:这两个面积的重叠部分是 x2 米2 图中的道路面积不是 32x 20x 米2,
解法二: 我们利用“图形经过移动,它的面 积大小不会改变”的道理,把纵、横两 条路移动一下,使列方程容易些(目的 是求出路面的宽,至于实际施工,仍可 按原图的位置修路)
5、 在长方形钢片Leabharlann Baidu冲去一个
X
X
30cm
长方形,制成一个四周宽相等的 长方形框。已知长方形钢片的长 为30cm,宽为20cm,要使制成的 2 长方形框的面积为400cm ,求这 个长方形框的框边宽。
解:设长方形框的边宽为xcm,依题意,得 30×20–(30–2x)(20–2x)=400 整理得 x2– 25+100=0 得 x1=20, x2=5 当=20时,20-2x= -20(舍去);当x=5时,20-2x=10
a
aX10% 第二次 a(1+10%)X10% 第三次
a+aX10%= a(1+10%)
a(1+10%)+ a(1+10%) X10% = a(1+10%)2
例1:平阳按“九五”国民经济发展规划要求,2003年 的社会总产值要比2001年增长21%,求平均每年增长的 百分率.(提示:基数为2001年的社会总产值,可视为 a)
• 某地因1人患了甲型H1N1流感没有 及时隔离治疗,经过两天的传染后 共有9人患了甲型H1N1流感,每天 平均一个人传染了几人?如果按照 这个传染速度,再经过5天的传染 后,这个地区一共将会有多少人患 甲型H1N1流感?
• 二、增长率问题:
课前热身1:二中小明学习非常认真,学习成绩直线上升, 第一次月考数学成绩是a分,第二次月考增长了10%, 第三次月考又增长了10%,问他第三次数学成绩是多少?
答:平均每年增长的百分率为10% .
练习1:某药品经两次降价,零售价降为原来 的一半.已知两次降价的百分率一样,求每次 降价的百分率.(精确到0.1%) 解:设原价为1个单位, 每次降价的百分率为 x. 根据题意,得 1 x 2 1
解这个方程,得
2
2 但x 1 >1不合题意,舍去 2 2 x 1 29.3%. 答:每次降价的百分率为29.3%. 2
求截去的正方形的边长
• 分析 • 设截去的正方形的边长为xcm之后,关键在于列 出底面(图中阴影部分)长和宽的代数式.结合 图示和原有长方形的长和宽,不难得出这一代数 式.
28-2x 20cm 28cm 20-2x
求截去的正方形边长
• 解:设截去的正方形的边长为xcm,根据题意,得
(28-2x)(20-2x)=180 x2-24x+95=0 解这个方程,得:x1=5,x2=19 经检验:x2=19不合题意,舍去. 所以截去的正方形边长为5cm.
• 五、球赛问题:(握手、签合同、打电话、 送礼) • 要组织一场篮球联赛,赛制为单循环形式 (每两个队只赛一场)。计划安排15场比 赛,应邀请多少个球队参加比赛? • 参加一次聚会的每两个人都握了一次手, 所有人共握手36次,有多少人参加聚会?
• 六、数字问题: • 1.一个两位数,十位数字与个位数字之和 为5,把这个数的十位数字与个位数字对调 后,所得的新两位数与原两位数乘积为736, 求原两位数。
答:这个长方形框的框边宽为5cm
列一元二次方程解应题
6、放铅笔的V形槽如图,每往上一层可以多 放一支铅笔.现有190支铅笔,则要放几层 ?
解:要放x层,则每一 层放(1+x) 支铅笔. 得 x (1+x) =190×2 2 X+ X -380=0 解得X1=19,
X2= - 20(不合题意)
答:要放19层.
20 32
• 3、小明把一张边长为10厘米的正方形硬纸 板的四周各剪去一个同样大小的正方形, 再折合成一个无盖的长方体盒子。如果要 求长方体的底面面积为81平方厘米,那么 剪去的正方形边长为多少?
4、学校课外生物(小组的试验园地是一块长35米、 宽20米的矩形,为便于管理,现要在中间开辟一横两纵 三条等宽的小路(如图),要使种植面积为600平方米, 求小道的宽。(精确到0.1米)
2 2 x1 1 , x2 1 2 2
练习 2: 某药品两次升价,零售价升为原来的 1.2 倍,已知两次升价的百分率一样,求每次升价的 百分率(精确到0.1%) 解,设原价为 a 元,每次升价的百分率为 , 根据题意,得 2
x
a(1 x) 1.2a
解这个方程,得
30 x 1 5 由于升价的百分率不可能是负数, 所以 x 1 30 不合题意,舍去
• 2、有一个两位数,它的个位上的数字与十 位上的数字之和是6,如果把它的个位数字 与十位数字调换位置,所得的两位数乘以 原来的两位数所得的积等于1008,求调换 位置后得到的两位数。
分析:设每年增长率为x,2001年的总产值为a,则
2001年 2002年
a
a(1+x)
2003年
a(1+x) 2
a
增长21%
a+21%a
a(1+x) 2 =a+21%a
解:设每年增长率为x,2001年的总产值为a,则 a(1+x) 2 =a+21%a a (1+x) 2 =1.21 a (1+x) 2 =1.21 1+x =1.1 x =0.1
三、面积问题:
常见的图形有下列几种:
例1、用22cm长的铁丝,折成一个面积 为30cm2的矩形。求这个矩形的长与宽.
22 解:设这个矩形的长为xcm,则宽为 x(cm). 2 22 根据题意,得 x( x ) 30
整理后,得x2-11x+30=0
2
解这个方程,得x1=5,x2=6 22 由x1=5得 x 6 (与题设不符,舍去) 2 22 由x2=6,得 x5 2 答:这个矩形的长是6cm,宽是5cm。
例2、在宽为20米、长为32米的矩形地面上, 修筑同样宽的两条互相垂直的道路,余下部 分作为耕地,要使耕地面积为540米2,道路 的宽应为多少?
20m
32m
分析:此题的相等关系是 矩形面积减去道路面积等 于540米2。 解法一、
x米
20m 32m
如图,设道路的宽为x米, 2 则横向的路面面积为 32x 米 纵向的路面面积为 20x 米2 。
列一元二次方程解应题
补充练习: (98年北京市崇文区中考题)如图,有一面 积是150平方米的长方形鸡场,鸡场的一边靠墙 (墙长18米),墙对面有一个2米宽的门,另三边 (门除外)用竹篱笆围成,篱笆总长33米.求鸡 场的长和宽各多少米?
18米
2米
• 四、利润问题:总利润=单件利润*销量 • 1、爱家超市将进货单价为40元的商品, 按50元销售时,能卖出500个,已知该商 品每涨1元钱就少卖10个。为了赚8000 元的利润,应涨多少元钱?
例4:建造一个池底为正方形,深度为2.5m
的长方体无盖蓄水池,建造池壁的单价是 120元/m2,建造池底的单价是240元/m2,总 造价是8640元,求池底的边长. 分析:池底的造价+池壁的造价=总造价 解:设池底的边长是xm. 2 根据题意得: 240x 120 2.5x 4 8640
• 一、传播问题: • 有一人患了流感,经过两轮传染 后共有121人患了流感,每轮传 染中平均一个人传染了几个人?
• 某种电脑病毒传播非常快,如果一 台电脑被感染,经过两轮感染后就 会有81台电脑被感染,求每轮感染 中平均一台电脑能感染几台?若病 毒得不到有效控制,三轮感染后, 被感染的电脑会不会超过700台?
再往下的计算、格式书写与解法1相同。
练习1:用一根长22厘米的铁丝,能否折 成一个面积是30厘米的矩形?能否折成一 个面积为32厘米的矩形?说明理由。 2:在一块长80米,宽60米的运动场外 围修筑了一条宽度相等的跑道,这条 跑道的面积是1500平方米,求这条跑 道的宽度。
3. 如图,在长为40米,宽为22米的矩 形地面上,修筑两条同样宽的互相垂直 的道路,余下的铺上草坪,要使草坪的 面积为760平方米,道路的宽应为多少?
5
30 x 1 9.5% 5
答:每次升价的百分率为9.5%.
练习 4. 市第四中学初三年级初一开学时就参 加课程改革试验,重视学生能力培养 .初一阶 段就有 48人在市级以上各项活动中得奖,之 后逐年增加,到三年级结束共有 183 人次在 市级以上得奖 .求这两年中得奖人次的平均年 增长率.
• 2、某商场销售一批名牌衬衫,平均每 天可售出20件,每件盈利40元,为了 扩大销售,经量减少库存,商场决定 适当的降低售价,经调查发现,如果 每件衬衫降价1元,商场平均每天可多 售出2件,若商场平均每天销售这种衬 衫的盈利要达到1200元,则每件衬衫 应降价多少元?
• 3、某商户以2元/千克的价格,购进一批小 西瓜,以3元/千克的价格出售,每天可售出 200千克,为了促销,该商户决定降价出售, 经调查发现,这种小西瓜每降价0.1元/千克, 每天可多售出40千克,另外每天的房租等 固定成本共24元,该商户要想每天盈利200 元,应该将每千克的小西瓜的售价降低多 少元?
xm
如图,设路宽为x米, 20m 横向路面为 32x 米2 , 纵向路面面积为 20x 米2 。
32m
xm
耕地矩形的长(横向)为(32-x) 米 , 耕地矩形的宽(纵向)为 (20-x) 米 。 相等关系是:耕地长×耕地宽=540米2 即 32 x20 x 540.
2 x 化简得: 52x 100 0, x1 50, x2 2
40米
22米
4、如图,在宽为20m,长为32m的矩形耕地 上,修筑同样宽的三条道路,(两条纵向, 一条横向,横向与纵向相互垂直),把耕地 分成大小相等的六块试验地,要使试验地面 积为570m² ,问道路的宽为多少?
例3、求截去的正方形的边长
• 用一块长28cm、宽 20cm的长方形纸片, 要在它的四角截去四个相等的小正方形, 折成一个无盖的长方体盒子,使它的底面 积为180cm2,为了有效地利用材料,求截 去的小正方形的边长是多少cm?
x
700--x 3
新方案
700-x+2x x
原方案
x+2x
2 3
• 课堂练习:列方程解下列应用题 • 1、学生会准备举办一次摄影展览,在每张长和宽 分别为18厘米和12厘米的长方形相片周围镶嵌上 一圈等宽的彩纸。经试验,彩纸面积为相片面积 的2/3时较美观,求镶上彩纸条的宽。(精确到 0.1厘米) • 2、在宽20米,长32米的矩形地面上修筑同样宽 的四条互相垂直的“井”字形道路(如图),余 下的部分做绿地,要使绿地面积为448平方 米, 路宽为多少?
解方程得: x1 9, x2 4 ∵池底的边长不能为负数,∴取x=4 答:池底的边长是4m.
练习、建造成一个长方体形的水池,原计划水 池深3米,水池周围为1400米,经过研讨,修 改原方案,要把长与宽两边都增加原方案中的 宽的2倍,于是新方案的水池容积为270万米3, 求原来方案的水池的长与宽各是多少米?
,
所列的方程是不是 32 20 (32x 20x) 540 ?
注意:这两个面积的重叠部分是 x2 米2 图中的道路面积不是 32x 20x 米2,
解法二: 我们利用“图形经过移动,它的面 积大小不会改变”的道理,把纵、横两 条路移动一下,使列方程容易些(目的 是求出路面的宽,至于实际施工,仍可 按原图的位置修路)
5、 在长方形钢片Leabharlann Baidu冲去一个
X
X
30cm
长方形,制成一个四周宽相等的 长方形框。已知长方形钢片的长 为30cm,宽为20cm,要使制成的 2 长方形框的面积为400cm ,求这 个长方形框的框边宽。
解:设长方形框的边宽为xcm,依题意,得 30×20–(30–2x)(20–2x)=400 整理得 x2– 25+100=0 得 x1=20, x2=5 当=20时,20-2x= -20(舍去);当x=5时,20-2x=10