各地2018年中考数学试卷分类汇编 方案设计(含解析)

合集下载

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编目录【中考汇编】2018版中考数学真题汇编:1.1实数【中考汇编】2018版中考数学真题汇编:1.2整式及其运算【中考汇编】2018版中考数学真题汇编:1.3因式分解【中考汇编】2018版中考数学真题汇编:1.4分式【中考汇编】2018版中考数学真题汇编:1.5二次根式【中考汇编】2018版中考数学真题汇编:2.1一元一次方程【中考汇编】2018版中考数学真题汇编:2.2一元二次方程【中考汇编】2018版中考数学真题汇编:2.3二元一次方程组【中考汇编】2018版中考数学真题汇编:2.4不等式与不等式组【中考汇编】2018版中考数学真题汇编:3.1平面直角坐标系【中考汇编】2018版中考数学真题汇编:3.2一次函数【中考汇编】2018版中考数学真题汇编:3.3二次函数【中考汇编】2018版中考数学真题汇编:3.4反比例函数【中考汇编】2018版中考数学真题汇编:4.1图形的初步认识【中考汇编】2018版中考数学真题汇编:4.2三角形【中考汇编】2018版中考数学真题汇编:4.3全等三角形【中考汇编】2018版中考数学真题汇编:4.4等腰三角形【中考汇编】2018版中考数学真题汇编:4.5多边形【中考汇编】2018版中考数学真题汇编:4.6矩形、菱形、正方形【中考汇编】2018版中考数学真题汇编:5.1圆的有关概念与性质【中考汇编】2018版中考数学真题汇编:5.2圆的有关计算【中考汇编】2018版中考数学真题汇编:5.3与圆有关的位置关系【中考汇编】2018版中考数学真题汇编:6.1视图与投影【中考汇编】2018版中考数学真题汇编:6.2轴对称、平移、旋转【中考汇编】2018版中考数学真题汇编:6.3图形的相似【中考汇编】2018版中考数学真题汇编:6.4锐角三角函数【中考汇编】2018版中考数学真题汇编:7.1统计【中考汇编】2018版中考数学真题汇编:7.2概率【中考汇编】2018版中考数学真题汇编专题(1)规律探索问题【中考汇编】2018版中考数学真题汇编专题(2)开放探究问题【中考汇编】2018版中考数学真题汇编专题(3)方案设计问题【中考汇编】2018版中考数学真题汇编专题(4)图表信息问题【中考汇编】2018版中考数学真题汇编专题(5)阅读理解问题【中考汇编】2018版中考数学真题汇编专题(6)运动变化问题第一篇基础知识梳理第一章数与式§1.1实数A组2015年全国中考题组一、选择题1.(2015·浙江湖州,1,3分)-5的绝对值是()A.-5 B.5 C.-15 D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·浙江绍兴,1,4分)计算(-1)³3的结果是() A.-3 B.-2 C.2 D.3解析(-1)³3=-3,故选A.答案 A4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为() A.0.6³1013元B.60³1011元C.6³10元D.6³10元解析6万亿=60 000³100 000 000=6³104³108=6³1012,故选C.答案 C6.(2015·江苏南京,5,2分)估计5-12介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3C.26³23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 ()A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·浙江宁波,13,4分)实数8的立方根是________.解析∵23=8,∴8的立方根是2.答案 211.(2015·浙江湖州,11,4分)计算:23³⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·四川巴中,20,3分)定义:a 是不为1的有理数,我们把11-a称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4= -12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案 23 三、解答题13.(2015·浙江嘉兴,17(1),4分)计算:|-5|+4³2-1. 解 原式=5+2³12=5+1=6.14.(2015·浙江丽水,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·浙江温州,17(1),5分)计算:2 0150+12+2³⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·浙江衢州,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·浙江舟山,1,3分)-2的相反数是( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·云南,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·安徽,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2³(-12)=1,∴-2的倒数是-12. 答案 A4.(2013·浙江温州,1,4分)计算:(-2)³3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)³3=-2³3=-6.故选A. 答案 A5.(2014·浙江绍兴,1,4分)比较-3,1,-2的大小,正确的是 ( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·浙江丽水,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·浙江宁波,2,4分)宁波轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为 ( )A .253.7³108B .25.37³109C .2.537 ³1010D .2.537 ³1011解析 253.7亿=253.7³10=2.537 ³10,故选C. 答案 C8.(2014·浙江丽水,1,3分)在数23,1,-3,0中,最大的数是 ( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B. 答案 B9.★(2013·山东德州,1,3分)下列计算正确的是( )A.⎝ ⎛⎭⎪⎫13-2=9 B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·浙江台州,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·浙江宁波,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·湖南永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8³10-4.答案 8³10-13.(2014·河北,18,3分)若实数m ,n 满足||m -2+(n -2 014)2=0,则m -1+n 0=________.解析 ∵||m -2+(n -2 014)2=0,∴m -2=0,n -2 014=0,即m =2,n =2 014.∴m -1+n 0=2-1+2 0140=12+1=32.故答案为32. 答案 32 三、解答题14.(2014·浙江金华,17,6分)计算:8-4cos 45°+(12)-1+||-2.解8-4cos 45°+(12)-1+||-2=22-4³22+2+2=22-22+4=4.15.(2014·浙江丽水,17,6分)计算:(-3)2+||-4³2-1-(2-1)0. 解 原式=3+4³12-1=3+2-1=4.16.★(2013·山东滨州,20,7分)(计算时不能使用计算器) 计算:33-(3)2+(π+3)0-27+|3-2|. 解 原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A 组 2015年全国中考题组一、选择题1.(2015·浙江衢州,3,3分)下列运算正确的是 ( )A .a 3+a 3=2a 6B .(x 2)3=x 5C .2a 4÷a 3=2a 2D .x 3²x 2=x 5解析 A .a 3+a 3=2a 3;B.(x 2)3=x 6;C.2a 4÷a 3=2a ,故选D. 答案 D2.(2015·山东济宁,2,3分)化简-16(x -0.5)的结果是 ( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +8解析 计算-16(x -0.5)=-16x +8.所以D 项正确. 答案 D3.(2015·四川巴中,4,3分)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·浙江丽水,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·贵州遵义,5,3分)计算3x 3²2x 2的结果为 ( )A .5x 5B .6x 5C .6x 6D .6x 9解析 属于单项式乘单项式,结果为:6x 5,故B 项正确. 答案 B6.(2015·福建福州,6,3分)计算a·a-的结果为() A.-1 B.0 C.0 D.-a解析a·a-1=1,故A正确.答案 A二、填空题7.(2015·福建福州,12,4分)计算(x-1)(x+2)的结果是________.解析由多项式乘以多项式的法则可知:(x-1)(x+2)=x2+x-2.答案x2+x-28.(2015·山东青岛,9,3分)计算:3a3²a2-2a7÷a2=________.解析本题属于同底数幂的乘除,和合并同类项,3a3·a2-2a7÷a2=3a5-2a5=a5.答案a59.(2015·安徽安庆,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·浙江温州,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·湖北随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2.解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B组2014~2011年全国中考题组一、选择题1.(2014·贵州毕节,13,3分)若-2a m b 4与5a n +2b 2m+n可以合并成一项,则m n的值是 ( )A .2B .0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·浙江丽水,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·贵州遵义,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( ) A .6 B .4 C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·浙江宁波,2,3分)下列计算正确的是 ( )A .a 2+a 2=a 4B .2a -a =2C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a 2b 2,故本选项正确;D.(a 2)3=a 6,故本选项错误.故选C. 答案 C5.★(2013·湖南湘西,7,3分)下列运算正确的是( )A .a ²a =aB .(x -2)(x +3)=x -6C .(x -2)2=x 2-4D .2a +3a =5a解析 A 中,a 2·a 4=a 6,∴A 错误;B 中,(x -2)(x +3)=x 2+x -6,∴B 错误;C 中,(x -2)2=x 2-4x +4,∴C 错误;D 中,2a +3a =(2+3)a =5a ,∴D 正确.故选D. 答案 D 二、填空题6.(2013·浙江台州,11,5分)计算:x 5÷x 3=________. 解析 根据同底数幂除法法则,∴x 5÷x 3=x 5-3=x 2. 答案 x 27.(2013·浙江义乌,12,4分)计算:3a ·a 2+a 3=________. 解析 3a ·a 2+a 3=3a 3+a 3=4a 3. 答案 4a 38.(2013·福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3²(a -b )3的值是________.解析 法一 ∵a +b =2,a -b =5,∴原式=23³53=103=1 000. 法二 原式=[(a +b )(a -b )]3=103=1 000. 答案 1 000 三、解答题9.(2013·浙江衢州,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. 解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12). 整理得:8x 2=24, 解得x =±3.10.(2014·浙江湖州,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·浙江绍兴,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时, 原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·浙江金华,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解 (x +5)(x -1)+(x -2)2=x 2+4x -5+x 2-4x +4 =2x 2-1.当x =-2时, 原式=2³(-2)2-1=8-1=7.§1.3因式分解A组2015年全国中考题组一、选择题1.(2015·四川宜宾,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是() A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x -2)2,故D正确.答案 D2.(2015·山东临沂,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是 () A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·浙江温州,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)5.(2015·浙江杭州,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·山东济宁,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·湖北孝感,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·四川泸州,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·江苏宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·湖南岳阳,7,3分)下列因式分解正确的是 () A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·贵州毕节,4,3分)下列因式分解正确的是() A.2x2-2=2(x+1)(x-1)B.x+2x-1=(x-1)C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D错误.故选A.答案 A3.(2014·山东威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是() A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x -2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·浙江温州,5,4分)把a2-4a多项式分解因式,结果正确的是() A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·浙江金华,3,3分)下列各式能用完全平方公式进行分解因式的是() A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·浙江台州,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·浙江绍兴,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·浙江绍兴,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·四川南充,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·四川自贡,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·江苏泰州,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n +1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·贵州黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4 分 式A 组 2015年全国中考题组一、选择题1.(2015·浙江丽水,4,3分)分式-11-x 可变形为( )A .-1x -1B.11+xC .-11+xD.1x -1解析 由分式的性质可得:-11-x =1x -1. 答案 D2.(2015·山东济南,3,3分)化简m 2m -3-9m -3的结果是( )A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·山西,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b 的结果是 ( )A.aa -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·浙江绍兴,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1B.1x +1C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A5.(2015·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________. 解析1a -1+a1-a =1-a a -1=-1. 答案 -16.(2015·四川泸州,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________.解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1.答案 mm +17.(2015·山东青岛,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n+n 2n ·n n 2-1=n 2+2n +1n ·n n 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1. 答案n +1n -18.(2015·福建福州,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________. 解析 (a +b )2a 2+b 2-2aba 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1.答案 1 三、解答题9.(2015·山东烟台,19,5分)先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2²x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组1.(2014·浙江温州,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( )A .x ≠2B .x ≠-1C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·浙江杭州,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w=1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D.答案 D3.(2013·江苏南京,2,2分)计算a 3²⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A. 答案 A4.(2013·山东临沂,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是( )A.1a -1 B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2³a -1a +1 =1a -1,故选A.答案 A5.(2013·浙江杭州,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2 C.12<k <1D .0<k <12解析 甲图中阴影部分面积是:a 2-b 2,乙图中阴影部分的面积是a 2-ab ,∴k =a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =1+b a .∵a >b >0,∴0<b a <1.∴1<1+ba <2. 答案 B 二、填空题6.(2011·浙江嘉兴,11,4分)当x ________时,分式13-x有意义. 解析 要使分式13-x有意义,必须3-x ≠0,即x ≠3. 答案 ≠37.(2012·浙江杭州,12,4分)化简m 2-163m -12得________;当m =-1时,原式的值为________. 解析 m 2-163m -12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1.答案m +43 18.(2014·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________.解析 1a -1+a 1-a =1a -1-aa -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·山东东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎨⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝ ⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x+2y =3³(-1)+2³3+2³(-1)=1. 答案 110.(2014·浙江台州,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下: 输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·浙江宁波,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·四川宜宾,17,5分)化简:b a 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b . 解 原式=b(a +b )(a -b )÷⎝⎛⎭⎪⎫a +b a +b -a a +b =b (a +b )(a -b )²a +b b =1a -b. 13.(2013·江西,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ²x 2x (x -2)+1=x -22+1=x2. 当x =1时,原式=12.14.(2014·湖南娄底,21,8分)先化简x -4x 2-9÷⎝ ⎛⎭⎪⎫1-1x -3,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解 原式=x -4(x +3)(x -3)÷x -3-1x -3=x -4(x +3)(x -3)²x -3x -4=1x +3.解不等式2x -3<7,得x <5. 取x =0时,原式=13.(本题最后答案不唯一,x ≠±3,x ≠4即可)§1.5二次根式A组2015年全国中考题组一、选择题1.(2015·重庆,3,3分)化简12的结果是() A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·山东济宁,3,3分)要使二次根式x-2有意义,x必须满足() A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·江苏淮安,4,3分)下列式子为最简二次根式的是()A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·湖北孝感,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是() A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·贵州遵义,11,4分)27+3=________.解析原式=33+3=4 3.6.(2015·江苏南京,12,3分)计算5³153的结果是________. 解析5³153=5³5=5. 答案 57.(2015·江苏泰州,12,3分)计算:18-212等于________.解析 原式=32-2=2 2. 答案 2 2 三、解答题8.(2015·四川凉山州,19,5分)计算:-32+3³1tan 60°+|2-3|.解 -32+3³1tan 60°+|2-3|=-9+3³13+3-2=-5- 2.9. (2015·山西,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解 第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎝ ⎛⎭⎪⎫1+52-1-52=15³5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15³1³5=1.B 组 2014~2011年全国中考题组一、选择题1.(2013·上海,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22³5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·广东佛山,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·江苏泰州,2,3分)下列计算正确的是 ( )A .43-33=1 B.2+3= 5 C .212= 2D .3+22=5 2错误;212=2³22=2,∴C正确;3和22一个是有理数,一个是无理数,不能合并,∴D错误.综上所述,选C.答案 C4.(2013·山东临沂,5,3分)计算48-913的结果是 ()A.- 3 B. 3 C.-113 3 D.113 3解析48-913=43-33= 3.答案 B5.(2014·山东济宁,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab²ba=1,③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=ab.等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab=ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·浙江舟山,11,4分)二次根式x-3中,x的取值范围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案x≥37.(2014·福建福州,13,4分)计算:(2+1)(2-1)=________.解析由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1.答案 1解析 原式=3³2-(3)2-26-3+6=6-3- 26-3+6=-6. 答案 -69.(2012·浙江杭州,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值范围是________.解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·浙江温州,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·湖北孝感,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2. 解1x -y ÷⎝⎛⎭⎪⎫1y -1x =1x -y ²xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章方程(组)与不等式(组)§2.1一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·山东济宁,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为() A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为:2-(x+2)=3(x-1),故D正确.答案 D2.(2015·浙江杭州,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程() A.54-x=20%³108 B.54-x=20%(108+x)C.54+x=20%³162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·山东济南,5,3分)若代数式4x-5与2x-12的值相等,则x的值是()A.1 B.32 C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·四川自贡,5,3分)方程x2-1x+1=0的解是()A .1或-1B .-1C .0D .1解析 去分母得:x 2-1=0,即x 2=1,解得:x =1或x =-1,经检验x =-1是增根,分式方程的解为x =1. 答案 D5.(2015·湖南常德,6,3分)分式方程2x -2+3x2-x=1的解为 ( )A .1B .2C.13D .0解析 去分母得:2-3x =x -2,解得:x =1,经检验x =1是分式方程的解. 答案 A 二、填空题6.(2015·四川巴中,14,3分)分式方程3x +2=2x 的解x =________. 解析 去分母得:3x =2x +4,解得:x =4.经检验x =4是原分式方程的解. 答案 47. (2015·浙江绍兴,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm 高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56 cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm. 解析 第一种情况,甲比乙高0.5 cm ,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm 且甲的水位不变,时间为3320分钟; 第三种情况,乙达到5 cm 后,乙比甲高0.5 cm ,时间为17140分钟. 答案 35或3320或171408.(2015·湖北,13,3分)分式方程1x -5-10x 2-10x +25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·山东威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·广东深圳,22,7分)下表为深圳市居民每月用水收费标准(单位:元/m3).(1)某用户用水10(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22³2.3=50.6<71,∴x>22,∴22³2.3+(x-22)³(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·四川广安,19,4分)解方程:1-xx-2=x2x-4-1.解化为整式方程得:2-2x=x-2x+4,解得:x=-2.经检验x=-2是分式方程的解.12.(2015·广东深圳,18,8分)解方程:x2x-3+53x-2=4.解去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得:3x -2x +10x -15=24x -52x +24,即7x -20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·浙江湖州,22,8分)某工厂计划在规定时间内生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5³20³(1+20%)³2 400y +2 400³(10-2)=24 000. 解得y =480.经检验y =480是原方程的根,且符合题意. 答:原计划安排工人人数为480人.B 组 2014~2011年全国中考题组一、选择题1.(2014·海南,2,3分)方程x +2=1的解是 ( )A .3B .-3C .1D .-1解析 x +2=1,移项得:x =1-2,x =-1.故选D. 答案 D2.(2014·浙江台州,7,3分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是() A.1-2x=3 B.x-1-2x=3C.1+2x=3 D.x-1+2x=3解析两边同时乘以(x-1),得x-1-2x=3,故选B.答案 B3.(2014·山东枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是 () A.350元B.400元C.450元D.500元解析设这批服装的标价为x元,得0.6x-200200=20%,解得x=400,故选B.答案 B4.(2013·江苏宿迁,6,3分)方程2xx-1=1+1x-1的解是()A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·浙江宁波,14,4分)方程xx-2=12-x的根x=________.解析去分母,两边同乘以x-2,得x=-1,经检验x=-1是原方程的根,故答案为-1.答案-16.(2013·浙江丽水,12,4分)分式方程1x-2=0的解是________.解析去分母得1-2x=0,解得x=12.经检验,x=12是原方程的解.答案x=1 27.★(2013·黑龙江齐齐哈尔,16,3分)若关于x的分式方程xx-1=3a2x-2-2有非负数解,则a 的取值范围是________. 解析 去分母,得2x =3a -2(2x -2), 解得x =3a +46.∵有非负数解, ∴3a +4≥0,即a ≥-43. 又∵x -1≠0,即x ≠1, ∴3a +4≠6,解得a ≠23. ∴a ≥-43且a ≠23. 答案 a ≥-43且a ≠238.(2013·浙江舟山,15,4分)杭州到北京的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为________.解析 动车从杭州到北京以平均速度为x 千米/时行完全程所需时间为1 487x 小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x -1 487x +70=3.答案 1 487x -1 487x +70=3三、解答题9.(2014·浙江嘉兴,18,8分)解方程:1x -1-3x 2-1=0. 解 方程两边同乘x 2-1,得: x +1-3=0. ∴x =2.经检验,x =2是原方程的根.10.(2014·浙江宁波,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解(1)裁剪出的侧面个数为6x+4(19-x)=(2x+76)个,裁剪出的底面个数为5(19-x)=(-5x+95)个.(2)由题意,得2x+763=-5x+952,∴x=7.当x=7时,2x+763=30.∴能做30个盒子.§2.2一元二次方程A组2015年全国中考题组一、选择题1.(2015·浙江金华,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1²x2的值是() A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·四川巴中,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是() A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·山东济宁,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为() A.13 B.15 C.18 D.13或18解析解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13.答案 A4.(2015·四川攀枝花,5,3分)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<2解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值范围为34<m <2. 答案 D 二、填空题5.(2015·山东泰安,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·贵州遵义,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值范围是________. 解析 有题意得:Δ=9-4b >0,解得 b <94. 答案 b <947.(2015·四川泸州,15,3分)设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为________.解析 ∵x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,∴x 1+x 2=5,x 1x 2=-1,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=25+2=27.答案 278.(2015·四川宜宾,11,3分)关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值范围是________.解析 由题意得(-1)2-4³1³m <0解之即可. 答案 m >149.(2015·四川宜宾,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________.解析 先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)=7 600三、解答题10.(2015·山东青岛,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值范围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4³2³(-m)>0,∴m>-98,即m的取值范围是m>-98.11.(2015·四川巴中,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·安徽,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·浙江丽水,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是() A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·陕西,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为() A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a³(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·浙江嘉兴,2,3分)方程x(x-1)=0的解是() A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为() A.有两个相等的实数根B.没有实数根。

2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类  线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线(一)一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线2. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32D【答案】B【思路分析】1.由∠ACB =90°,∠A =30°,BC 的长度,可求得AB 的长度,2.利用直角三角形斜边D的中线等于斜边第一半,求得CD 的长度;3.利用中位线定理,即可求得EF 的长.【解题过程】解:在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,,∴AB =4,CD =12AB ,∴CD =12×4=2,∵E ,F 分别为AC ,AD 的中点,∴EF =12CD =12×2=1,故选B.【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理3. (2018四川省达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) . A .32 B .2 C .52D .3第8题图 【答案】C ,【解析】∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线, ∴MN =12DE =52. 故选C.【知识点】三角形的中位线4. (2018浙江杭州, 10,3分)如图,在△ABC 中,点D 在AB 边上,DE//BC ,与边AC 交于点E ,连接BE ,记△ADE ,△BCE 的面积分别为S 1,S 2,( )A. 若2AD>AB ,则3S 1>2S 2B. 若2AD>AB ,则3S 1<2S 2C. 若2AD<AB ,则3S 1>2S 2D. 若2AD<AB ,则3S 1<2S 2【答案】D【思路分析】首先考虑极点位置,当2AD=AB 即AD=BD 时S 1,S 2的关系,然后再考虑AD>BD 时S 1,S 2的变化情况。

2018年中考数学真题分类汇编第一期专题21全等三角形试题含解析

2018年中考数学真题分类汇编第一期专题21全等三角形试题含解析

全等三角形一、选择题1.(2018•四川成都•3分)如图,已知,添加以下条件,不能判定的是()A. B.C. D.【答案】C【考点】三角形全等的判定【解析】【解答】解:A、∵∠A=∠D,∠ABC=∠DCB,BC=CB∴△ABC≌△DCB,因此A不符合题意;B、∵AB=DC,∠ABC=∠DCB,BC=CB∴△ABC≌△DCB,因此B不符合题意;C、∵∠ABC=∠DCB,AC=DB,BC=CB,不能判断△ABC≌△DCB,因此C符合题意;D、∵AB=DC,∠ABC=∠DCB,BC=CB∴△ABC≌△DCB,因此D不符合题意;故答案为:C【分析】根据全等三角形的判定定理及图中的隐含条件,对各选项逐一判断即可。

2 (2018年江苏省南京市•2分)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF ⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b ﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.3.(2018·山东临沂·3分)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2 D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.4 (2018·台湾·分)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.【点评】此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC 与△AED全等.5. (2018•广西桂林•3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为()A. 3B.C.D.【答案】C【解析】分析:连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可. 详解:连接BM,如图,由旋转的性质得:AM=AF.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠BAD=∠C=90°,∵ΔAEM与ΔADM关于AM所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE≌△AMB∴FE=BM.在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,∴BM=∴FE=.故选C.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.6.(2018四川省眉山市2分 ) 如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()。

2018年中考数学真题分类汇编(第二期)专题10平面直角坐标系与点的坐标试题(含解析)

2018年中考数学真题分类汇编(第二期)专题10平面直角坐标系与点的坐标试题(含解析)

平面直角坐标系与点的坐标一.选择题1.(2018•山东东营市•3分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(2018•山东聊城市•3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC 边上的A1处,则点C的对应点C1的坐标为()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.3. (2018•乌鲁木齐•4分)在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)【分析】根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.【解答】解:在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是(1,2),故选:A.【点评】本题考查坐标与图形变化﹣旋转,解答本题的关键是明确题意,利用旋转的知识解答.4.(2018•金华、丽水•3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10) C. (9,10) D. (10,10)【解析】【解答】解:因为点P在第一象限,点P到x轴的距离为:40-30=10,即纵坐标为10;点P到y轴的距离为,即横坐标为9,∴点P(9,10),故答案为:C。

2018年湖北省各市中考数学试题汇编及参考答案(word解析版13份)

2018年湖北省各市中考数学试题汇编及参考答案(word解析版13份)

2018年湖北省各市中考数学试题汇编(含参考答案与试题解析)目录1.湖北省武汉市中考数学试题及参考答案与试题解析 (2)2.湖北省黄冈市中考数学试题及参考答案与试题解析 (23)3.湖北省襄阳市中考数学试题及参考答案与试题解析 (42)4.湖北省咸宁市中考数学试题及参考答案与试题解析 (64)5.湖北省随州市中考数学试题及参考答案与试题解析 (87)6.湖北省恩施州中考数学试题及参考答案与试题解析 (114)7.湖北省孝感市中考数学试题及参考答案与试题解析 (135)8.湖北省荆州市中考数学试题及参考答案与试题解析 (159)9.湖北省十堰市中考数学试题及参考答案与试题解析 (180)10.湖北省宜昌市中考数学试题及参考答案与试题解析 (205)11.湖北省荆门市中考数学试题及参考答案与试题解析 (226)12.湖北省黄石市中考数学试题及参考答案与试题解析 (249)13.湖北省仙桃市、潜江市、天门市、江汉油田中考数学试题及参考答案与试题解析 (272)2018年湖北省武汉市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃2.若分式12x在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣23.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x24.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、405.计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+66.点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.569.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.201310.如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D.若⊙O的AB=4,则BC 的长是( )A .B .CD 二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果是12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 900014000成活数m3251336320363358073 12628成活的频率(精确到0.01) 0.813 0.891 0.915 0.905 0.897 0.902由此估计这种幼树在此条件下移植成活的概率约是 (精确到0.1) 13.计算22111m m m---的结果是 . 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是 .15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是23602y t t =-.在飞机着陆滑行中,最后4s 滑行的距离是 m .16.如图.在△ABC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是 .三、解答题(本大题共8小题,共72分)17.(本题8分)解方程组:10216x y x y +=⎧⎨+=⎩.18.(本题8分)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(本题8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求PECE的值.22.(本题10分)已知点A(a,m)在双曲线8yx=上且m<0,过点A作x轴的垂线,垂足为B(1) 如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C①若t=1,直接写出点C的坐标.②若双曲线8yx=经过点C,求t的值.(2) 如图2,将图1中的双曲线8yx=(x>0)沿y轴折叠得到双曲线8yx=-(x<0),将线段OA绕点O旋转,点A刚好落在双曲线8yx=-(x<0)上的点D(d,n)处,求m和n的数量关系.23.(本题10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=35,25ADAC=,直接写出tan∠CEB的值.24.(本题12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃【知识考点】有理数的加法.【思路分析】根据题意列出算式,再利用加法法则计算可得.【解答过程】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【总结归纳】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.若分式12x+在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【知识考点】分式有意义的条件.【思路分析】直接利用分式有意义的条件分析得出答案.【解答过程】解:∵代数式12x+在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【总结归纳】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x2【知识考点】合并同类项.【思路分析】根据合并同类项解答即可.【解答过程】解:3x2﹣x2=2x2,故选:B.【总结归纳】此题考查合并同类项,关键是根据合并同类项的法则解答.4.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40【知识考点】众数;中位数.【思路分析】根据众数和中位数的定义求解.【解答过程】解:这组数据的众数和中位数分别42,38.故选:B.【总结归纳】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6【知识考点】多项式乘多项式.【思路分析】根据多项式的乘法解答即可.【解答过程】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.【总结归纳】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.6.点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答过程】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【总结归纳】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【知识考点】由三视图判断几何体.【思路分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答过程】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.【总结归纳】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.56【知识考点】列表法与树状图法.【思路分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的。

2018年全国各地中考数学真题分类汇编(含答案 403页)

2018年全国各地中考数学真题分类汇编(含答案 403页)

3.(2018·山东泰安·3 分)如图,⊙M 的半径为 2,圆心 M 的坐标为(3,4) ,点 P 是⊙M 上的任意一点, PA⊥PB,且 PA、PB 与 x 轴分别交于 A、B 两点,若点 A、点 B 关于原点 O 对称,则 AB 的最小值为( )
A. 3
B.4
C.6
D.8
【分析】由 Rt△APB 中 AB=2OP 知要使 AB 取得最小值,则 PO 需取得最小值,连接 OM,交⊙M 于点 P′,当 点 P 位于 P′位置时,OP′取得最小值,据此求解可得. 【解答】解:∵PA⊥PB, ∴∠APB=90°, ∵AO=BO, ∴AB=2PO, 若要使 AB 取得最小值,则 PO 需取得最小值, 连接 OM,交⊙M 于点 P′,当点 P 位于 P′位置时,OP′取得最小值, 过点 M 作 MQ⊥x 轴于点 Q,
A.174 B.176 C.178 D.180 【分析】连接 CI,利用三角形内角和定理可求出∠BAC 的度数,由 I 点为△ABC 的内心,可得出∠CAI、∠ ACI、∠DCI 的度数,利用三角形内角和定理可得出∠AIC、∠CID 的度数,再由∠AID=∠AIC+∠CID 即可求 出∠AID 的度数. 【解答】解:连接 CI,如图所示. 在△ABC 中,∠B=44°,∠ACB=56°, ∴∠BAC=180°﹣∠B﹣∠ACB=80°. ∵I 点为△ABC 的内心, ∴∠CAI= ∠BAC=40°,∠ACI=∠DCI= ∠ACB=28°, ∴∠AIC=180°﹣∠CAI﹣∠ACI=112°, 又 ID⊥BC, ∴∠CID=90°﹣∠DCI=62°, ∴∠AID=∠AIC+∠CID=112°+62°=174°. 故选:A.
∵BM 是⊙O 的切线, ∴∠OBM=90°, ∵∠MBA=140°, ∴∠ABO=50°, ∵OA=OB, ∴∠ABO=∠BAO=50°, ∴∠AOB=80°, ∴∠ACB= ∠AOB=40°,

2018年广西各市中考数学试题汇编及参考答案(word解析版7份)

2018年广西各市中考数学试题汇编及参考答案(word解析版7份)

2018年广西各市中考数学试题汇编(含参考答案与试题解析)目录1.广西北部湾经济区四市同城(南宁市、北海市、钦州市、防城港市)中考数学试题及参考答案与试题解析 (2)2.广西桂林市中考数学试题及参考答案与试题解析 (21)3.广西玉林市中考数学试题及参考答案与试题解析 (25)4.广西贵港市中考数学试题及参考答案与试题解析 (65)5.广西贺州市中考数学试题及参考答案与试题解析 (87)6.广西柳州市中考数学试题及参考答案与试题解析 (105)7.广西梧州市中考数学试题及参考答案与试题解析 (124)2018年广西北部经济湾区四市同城中考数学试题及参考答案(南宁市、北海市、钦州市、防城港市)一、选择题(本大题共12小题,每小题3分,共36分) 1.﹣3的倒数是( )A .﹣3B .3C .13D .132.下列美丽的壮锦图案是中心对称图形的是( )A .B .C .D .3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为( ) A .81×103B .8.1×104C .8.1×105D .0.81×1054.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )A .7分B .8分C .9分D .10分5.下列运算正确的是( ) A .a (a+1)=a 2+1B .(a 2)3=a 5C .3a 2+a=4a 3D .a 5÷a 2=a 36.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°7.若m >n ,则下列不等式正确的是( ) A .m ﹣2<n ﹣2 B .44m n> C .6m <6n D .﹣8m >﹣8n 8.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) A .23 B .12 C .13D .149.将抛物线216212y x x =-+向左平移2个单位后,得到新抛物线的解析式为( ) A .()21852y x =-+ B .()21452y x =-+ C .()21832y x =-+ D .()21432y x =-+10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .πB .πC .2πD .2π-11.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( ) A .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100D .80(1+x 2)=10012.如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP=OF ,则cos ∠ADF 的值为( )A .1113 B .1315 C .1517 D .1719二、填空题(本大题共6小题,每小题3分,共18分)13x 的取值范围是 . 14.因式分解:2a 2﹣2= .15.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是 . 16.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB 是120m ,则乙楼的高CD 是 m (结果保留根号)17.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 .18.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数1k y x=(x >0)的图象经过点C ,反比例函数2k y x=(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .三、解答题(本大题共8小题,共66分)19.(6分)计算:11|4|+3tan602-⎛⎫-︒ ⎪⎝⎭.20.(6分)解分式方程:21133x xx x -=--. 21.(8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C (3,3).(1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2; (3)判断以O ,A 1,B 为顶点的三角形的形状.(无须说明理由)22.(8分)某市将开展以“走进中国数学史”为主题的知识凳赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(8分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.24.(10分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.25.(10分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E 作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若58EFAC,求BEOC的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.26.(10分)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的倒数是()A.﹣3 B.3 C.13-D.13【知识考点】倒数.【思路分析】根据倒数的定义可得﹣3的倒数是13 -.【解答过程】解:﹣3的倒数是13 -.故选:C.【总结归纳】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答过程】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.【总结归纳】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为()A.81×103B.8.1×104C.8.1×105D.0.81×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:81000用科学记数法表示为8.1×104,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分【知识考点】折线统计图;算术平均数.【思路分析】根据平均分的定义即可判断;【解答过程】解:该球员平均每节得分==8,故选:B.【总结归纳】本题考查折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的定义;5.下列运算正确的是()A.a(a+1)=a2+1 B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a3【知识考点】合并同类项;幂的乘方与积的乘方;同底数幂的除法;单项式乘多项式.【思路分析】根据单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方的运算法则,分别对每一项进行分析即可得出答案.【解答过程】解:A、a(a+1)=a2+a,故本选项错误;B、(a2)3=a6,故本选项错误;C、不是同类项不能合并,故本选项错误;D、a5÷a2=a3,故本选项正确.故选:D.【总结归纳】此题考查了单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方,熟练掌握运算法则是解题的关键.6.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()。

2018各省中考数学试卷(含答案解析) (2)

2018各省中考数学试卷(含答案解析) (2)

2018年广东省中考数学试卷(解析版)满分:120分版本:人教版广东卷(解析版)1.(2018·广东,1,3分)四个实数0,13, 3.14-,2中,最小的数是() A .0 B .13C . 3.14-D .2 答案:C ,解析:根据正数大于负数;两个负数比较大小,绝对值大的数反而小, 可得 3.14-<0<13<2;所以最小的数是 3.14-,故选C 。

2.(2018·广东,2,3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14 420 000人次,将14 420 000用科学记数法表示为()A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯答案:A ,解析:科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数;所以714 420 000 1.44210=⨯,故选A 。

3.(2018·广东,3,3分)如图,由5个相同的正方体组合而成的几何体,它的主视图是( )A B C D答案:B ,解析:三视图中的主视图是从正面看几何体所得的平面图形。

从正面看有2行,第1行有3个,第2行有1个,故选B4.(2018·广东,4,3分)数据1、5、7、4、8的中位数是()A .4B .5C .6D .7答案:B ,解析:将一组数据按照从小到大(或从大到小)的顺序排列,若数据的个数是奇数,则处于中间位置的数为这组数据的中位数,若数据的个数是偶数,则处于中间位置的两个数的算术平均数为这组数据的中位数。

把这组数据重新排列为1、4、5、7、8,则中位数为5,故选B 。

5.(2018·广东,5,3分)下列所述图形中,是轴对称图形但不是..中心对称图形的是( ) A .圆 B .菱形 C .平行四边形 D .等腰三角形答案:D ,解析:圆和菱形都是轴对称图形,也是中心对称图形,所以A 、B 都不对;平行四边形是中心对称图形但不是轴对称图形,所以C 不对。

2018年中考数学真题分类汇编(第二期)专题38 方案设计试题(含解析)

2018年中考数学真题分类汇编(第二期)专题38 方案设计试题(含解析)

方案设计一.选择题1.2.二.填空题1.2.三.解答题1. (2018•福建A卷•10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.【点评】本题考查了二次函数的应用:解此类题的关键是通过几何性质确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.2.(2018•福建B卷•10分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.【解答】解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.【点评】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.3.(2018·湖南怀化·10分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x 棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【分析】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:(1)根据题意,得:y=90x+70(21﹣x)=20x+1470,所以函数解析式为:y=20x+1470;(2)∵购买B种树苗的数量少于A种树苗的数量,∴21﹣x<x,解得:x>10.5,又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.【点评】本题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.4.(2018年湖南省娄底市)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A.B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A.B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【分析】(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据购回的设备日处理能力不低于140吨列出不等式12x+15(10﹣x)≥140,求出解集,再根据x为正整数,得出x=1,2,3.进而求解即可;(2)分别求出各方案实际购买费用,比较即可求解.【解答】解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤3,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,∴采用(1)设计的第二种方案,使购买费用最少.【点评】本题考查了一次函数的应用,一元一次不等式的应用,分析题意,找到合适的不等关系是解决问题的关键.5.(2018湖南湘西州12.00分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【解答】解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x ≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点评】题主要考查了一次函数的应用及一元一次不等式的应用,解题的关键是根据一次函数x 值的增大而确定y值的增减情况.6.(2018•山东济宁市•7分)绿水青山就是金山银山”,为保护生态环境,A,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40 人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000 元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【解根据题意,得:,解答(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,得:,答:清理养鱼网箱的人均费用为2000 元,清理捕鱼网箱的人均费用为3000 元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18 或m=19,则分配清理人员方案有两种:方案一:18 人清理养鱼网箱,22 人清理捕鱼网箱;方案二:19 人清理养鱼网箱,21 人清理捕鱼网箱.7.(2018·湖北省恩施·10分)某学校为改善办学条件,计划采购A.B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A.B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.【解答】解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10.11.12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【点评】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.8.(2018•贵州铜仁•12分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∴a≤30,∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.。

2018年中考数学真题分类汇编(第二期)专题20三角形的边与角试题(含解析)

2018年中考数学真题分类汇编(第二期)专题20三角形的边与角试题(含解析)

三角形的边与角(命题的有关知识)一.选择题(2018•江苏宿迁•3分)如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D 的度数是()A. 24°B. 59°C. 60°D. 69°【答案】B【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.【详解】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=35°+24°=59°,又∵DE∥BC,∴∠D=∠DBC=59°,故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏苏州•3分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.4.(2018•山东聊城市•3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.6.(2018•山东聊城市•3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+β D.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.7. (2018•杭州•3分)如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.【答案】A【考点】三角形内角和定理,矩形的性质【解析】【解答】解:∵矩形ABCD∴∠PAB+∠PAD=90°即∠PAB=90°-∠PAB∵∠PAB=80°∴∠PAB+∠PBA=180°-80°=100°∴90°-∠PAB+∠PBA=100°即∠PBA-∠PAB=10°①同理可得:∠PDC-∠PCB=180°-50°-90°=40°②由②-①得:∠PDC-∠PCB-(∠PBA-∠PAB)=30°∴故答案为:A【分析】根据矩形的性质,可得出∠PAB=90°-∠PAB,再根据三角形内角和定理可得出∠PAB+∠PBA=100°,从而可得出∠PBA-∠PAB=10°①;同理可证得∠PDC-∠PCB=40°②,再将②-①,可得出答案。

各地2018年中考数学试卷分类汇编 操作探究(含解析)

各地2018年中考数学试卷分类汇编 操作探究(含解析)

操作探究一.选择题1.(2018•临安•3 分.)z 如图,正方形硬纸片ABCD的边长是4,点E.F分别是AB.BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.10【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系%@z#step~.co& 2. (2018•嘉兴•3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点一定在正方形的对角线上, 根据③的剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据③的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.故选A.【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键.3. (2018•广西南宁•3分)如图,矩形纸片ABCD,AB=4,BC=3,点P 在BC 边上,将△C DP 沿DP 折叠,点C 落在点E 处,PE.DE 分别交AB 于点O、F,且OP=OF,则co s∠ADF 的值为()A.1113B.1315C.1517D.1719【分析】根据折叠的性质可得出 DC=DE.CP=EP,由∠EOF=∠B OP、∠B=∠E.OP=OF 可得出△OE F≌△OBP(AAS),根据全等三角形的性质可得出OE=OB.EF=BP,设EF=x,则BP=x、DF=4 ﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在R t△DAF 中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出co s∠A DF 的值.【解答】解:根据折叠,可知:△D CP≌△DE P,∴DC=DE=4,CP=EP.在△O EF 和△O BP 中,EOF BOPB EOP OF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△O EF≌△OB P(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵B F=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=35,∴DF=4﹣x=175,∴co s∠AD F=ADDF=1517.故选:C.【点评】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理 结合 AF=1+x ,求出 AF 的长度是解题的关键.4.(2018•海南•3 分)如图 1,分别沿长方形纸片 ABCD 和正方形纸片 EFGH 的对角线 AC ,EG 剪开,拼成如图 2 所示的▱KLMN ,若中间空白部分四边形 OPQR 恰好是正方形,且▱KLMN 的面 积为 50,则正方形 EFGH 的面积为( )A .24B .25C .26D .27【分析】如图,设 PM=PL=NR=AR=a ,正方形 ORQP 的边长为 b ,构建方程即可解决问题; 【解答】解:如图,设 PM=PL=NR=AR=a ,正方形 ORQP 的边长为 b .由题意:a 2+b 2+(a+b )(a ﹣b )=50, ∴a 2=25,∴正方形 EFGH 的面积=a 2=25, 故选:B .【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用 参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题1. (2018•杭州•4 分)折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点 A 落在 DC 边上的点 F 处,折痕为 DE ,点 E 在 AB 边上;②把纸 片展开并铺平;③把△CDG 翻折,点 C 落在直线 AE 上的点 H 处,折痕为 DG ,点 G 在 BC 边上, 若 AB=AD+2,EH=1,则 AD= 。

2018全国各地100份中考数学试卷分类汇编第41--方案设计

2018全国各地100份中考数学试卷分类汇编第41--方案设计

2018年全国各地100份中考数学试卷分类汇编第41章 方案设计三 解答题1、 ( 2018重庆江津, 26,12分) 在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD 是矩形,分别以AB 、BC 、CD 、DA 边为直径向外作半圆,若整个广场的周长为628米,高矩形的边长AB=y 米,BC=x 米、(注:取π=3、14)(1)试用含x 的代数式表示y;(2)现计划在矩形ABCD 区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W 元,求W 关于x 的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由?③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64·82万元,但要求矩形的边BC 的长不超过AB 长的三分之二,且建设广场恰好用完所有资金,问:能还完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由·【答案】(1) 由题意得 πy+πx=6·28∵π=3、14 ∴3、14y+3、14x=628、∴x+y=200、则 y=200-x;(2) ①w=428xy+400π(2y )2+400π(2x )2 =428x(200-x)+400×3、14×4)200(2x -+400×3、14×42x =200x 2-40000x+12560000;②仅靠政府投入的1千万不能完成该工程的建设任务,其理由如下:由①知 w=200(x-100)2+1、056×107>107, 所以不能;③由题意得 x ≤32y, 即x ≤32 (200-x) 解之得 x ≤80 ∴0≤x ≤80、又根据题意得 w=200(x-100)2+1、056×107=107+6、482×105A BC D第26题整理得 (x-100)2=441 解之得 x 1=79, x 2=121 (不合题意舍去)∴只能取 x=79, 则y=200-79=121所以设计的方案是: AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆·2、 (2018重庆綦江,25,10分)为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1、5万元、今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水、(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)【答案】:25、 解:(1)设一台甲型设备的价格为x 万元,由题54%7523=⨯+x x ,解得x =12,∵ 12×75%=9 ,∴ 一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a 台,由题意有⎩⎨⎧≥-+≤-+1300)8(16020084)8(912a a a a ,解得:421≤≤a 由题意a 为正整数,∴a =1,2,3,4 ∴所有购买方案有四种,分别为方案一:甲型1台,乙型7台; 方案二:甲型2台,乙型6台方案三:甲型3台,乙型5台; 方案四:甲型4台,乙型4台(3)设二期工程10年用于治理污水的总费用为W 万元)8(105.1101)8(912a a a a w -⨯+⨯+-+=化简得: =w -2a +192,∵W 随a 的增大而减少 ∴当a =4时, W 最小(逐一验算也可)∴按方案四甲型购买4台,乙型购买4台的总费用最少、3、 (2018四川凉山州,24,9分)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。

2018年中考数学真题分类汇编第三期专题38方案设计试题含解析

2018年中考数学真题分类汇编第三期专题38方案设计试题含解析

方案设计解答题1. (2018·广西贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.2.(2018·广西贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.3.(2018·广西梧州·10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A.B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A.B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y 与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A型两人+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A.B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.【点评】本题考查一次函数的应用、分式方程的应用等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,属于中考常考题型.4.(2018·浙江省台州·12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P (单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t 之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8.8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.【解答】解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.【点评】本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.5(.2018·辽宁省盘锦市)鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?【解答】解:(1)y=100+10(60﹣x)=﹣10x+700.(2)设每星期利润为W元,W=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,∴x=50时,W最大值=4000,∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元.(3)①由题意:﹣10(x﹣50)2+4000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.②由题意:﹣10(x﹣50)2+4000≥3910,解得:47≤x≤53.∵y=100+10(60﹣x)=﹣10x+700.170≤y≤230,∴每星期至少要销售该款童装170件.6. (2018•莱芜•10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?【分析】(1)利用二元一次方程组解决问题;(2)用不等式组确定方案,利用一次函数找到费用最低值.【解答】解:(1)设甲型机器人每台价格是x万元,乙型机器人每台价格是y万元,根据题意得解这个方程组得:答:甲、乙两种型号的机器人每台价格分别是6万元、4万元(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得解这个不等式组得∵a为正整数∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台购买甲型机器人4台,乙型机器人4台设该公司的购买费用为w万元,则w=6a+4(8﹣a)=2a+32∵k=2>0∴w随a的增大而增大当a=2时,w最小,w最小=2×2+32=36(万元)∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.【点评】本题是一次函数综合题,考查列一次函数解析式、一次函数增减性、二元一次方程组和不等式组的应用.7.(2018·四川巴中·8分)学校需要添置教师办公桌椅A.B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.【解答】解:(1)设A型桌椅的单价为a元,B型桌椅的单价为b元,根据题意知,,解得,,即:A,B两型桌椅的单价分别为600元,800元;(2)根据题意知,y=600x+800(200﹣x)+200×10=﹣200x+162000(120≤x≤140),(3)由(2)知,y=﹣200x+162000(120≤x≤140),∴当x=140时,总费用最少,即:购买A型桌椅140套,购买B型桌椅60套,总费用最少,最少费用为134000元.。

2018年中考数学真题分类汇编第二期专题38方案设计试题含解析

2018年中考数学真题分类汇编第二期专题38方案设计试题含解析

方案设计一.选择题1.2.二.填空题1.2.三.解答题1. (2018•福建A卷•10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.【点评】本题考查了二次函数的应用:解此类题的关键是通过几何性质确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.2.(2018•福建B卷•10分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.【解答】解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.【点评】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.3.(2018·湖南怀化·10分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x 棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【分析】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:(1)根据题意,得:y=90x+70(21﹣x)=20x+1470,所以函数解析式为:y=20x+1470;(2)∵购买B种树苗的数量少于A种树苗的数量,∴21﹣x<x,解得:x>10.5,又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.【点评】本题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.4.(2018年湖南省娄底市)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A.B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A.B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【分析】(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据购回的设备日处理能力不低于140吨列出不等式12x+15(10﹣x)≥140,求出解集,再根据x为正整数,得出x=1,2,3.进而求解即可;(2)分别求出各方案实际购买费用,比较即可求解.【解答】解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤3,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,∴采用(1)设计的第二种方案,使购买费用最少.【点评】本题考查了一次函数的应用,一元一次不等式的应用,分析题意,找到合适的不等关系是解决问题的关键.5.(2018湖南湘西州12.00分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【解答】解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x ≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点评】题主要考查了一次函数的应用及一元一次不等式的应用,解题的关键是根据一次函数x 值的增大而确定y值的增减情况.6.(2018•山东济宁市•7分)绿水青山就是金山银山”,为保护生态环境,A,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40 人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000 元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【解答】解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y元,根据题意,得:,解得:,答:清理养鱼网箱的人均费用为2000 元,清理捕鱼网箱的人均费用为3000 元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18 或m=19,则分配清理人员方案有两种:方案一:18 人清理养鱼网箱,22 人清理捕鱼网箱;方案二:19 人清理养鱼网箱,21 人清理捕鱼网箱.7.(2018·湖北省恩施·10分)某学校为改善办学条件,计划采购A.B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A.B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.【解答】解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10.11.12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【点评】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.8.(2018•贵州铜仁•12分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∴a≤30,∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方案设计1. (2018•福建A 卷•10 分)如图,在足够大的空地上有一段长为a 米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园 ABCD,其中 A D≤MN,已知矩形菜园的一边靠墙,另三边一共用了 100 米木栏.(1)若a=20,所围成的矩形菜园的面积为450 平方米,求所利用旧墙AD 的长;(2)求矩形菜园ABCD 面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x 后与20 进行大小比较即可得到AD 的长;(2)设AD=xm,利用矩形面积得到S=12x(100﹣x),配方得到S=﹣12(x﹣50)2+1250,讨论:当a≥50 时,根据二次函数的性质得S 的最大值为1250;当0<a<50 时,则当0<x≤a时,根据二次函数的性质得S 的最大值为50a﹣12a2.【解答】解:(1)设 AB=xm,则 BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5 时,100﹣2x=90>20,不合题意舍去;当x=45 时,100﹣2x=10,答:AD 的长为10m;(2)设AD=xm,∴S=12x(100﹣x)=﹣12(x﹣50)2+1250,当a≥50 时,则x=50 时,S 的最大值为1250;当0<a<50 时,则当0<x≤a时,S 随x 的增大而增大,当x=a 时,S 的最大值为50a﹣12a2,综上所述,当a≥50时,S 的最大值为1250;当0<a<50 时,S 的最大值为50a﹣12a2.【点评】本题考查了二次函数的应用:解此类题的关键是通过几何性质确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x 的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x 的取值范围.2.(2018•福建 B 卷•10 分)空地上有一段长为 a 米的旧墙 MN ,某人利用旧墙和木栏围成一个矩 形菜园 ABCD ,已知木栏总长为 100 米.(1)已知 a=20,矩形菜园的一边靠墙,另三边一共用了 100 米木栏,且围成的矩形菜园面积为 450 平方米.如图 1,求所利用旧墙 AD 的长; (2)已知 0<α <50,且空地足够大,如图 2.请你合理利用旧墙及所给木栏设计一个方案,使 得所围成的矩形菜园 ABCD 的面积最大,并求面积的最大值.图1 图2【分析】(1)按题意设出 AD ,表示 AB 构成方程;(2)根据旧墙长度 a 和 AD 长度表示矩形菜园长和宽,注意分类讨论 s 与菜园边长之间的数量关 系.【解答】解:(1)设 AD=x 米,则 AB=1002x -米 依题意得,(100)4502x x -=解得 x 1=10,x 2=90∵a=20,且 x ≤a∴x=90 舍去∴利用旧墙 AD 的长为 10 米.(2)设 AD=x 米,矩形 ABCD 的面积为 S 平方米①如果按图一方案围成矩形菜园,依题意得:S=2(100)1(50)125022x x x -=--+,0<x <a ∵0<α <50∴x<a <50 时,S 随 x 的增大而增大当 x=a 时,S 最大=50a ﹣213a②如按图 2 方案围成矩形菜园,依题意得 S=22(1002)[(25)](25)244x a x a a x +-=---++,a ≤x<50+2a 当 a <25+4a <50 时,即 0<a <1003时, 则 x=25+4a 时, S 最大=(25+4a )2=21000020016a a ++ 当 25+4a ≤a,即100503a ≤时,S 随 x 的增大而减小∴x=a 时,S 最大=(1002)2a a a +-=21502a a - 综合①②,当 0<a <1003时, 21000020016a a ++﹣(21502a a -)=2(3100)016a -21000020016a a ++>21502a a -,此时,按图 2 方案围成矩形菜园面积最大,最大面积为21000020016a a ++平方米 当100503a ≤时,两种方案围成的矩形菜园面积最大值相等. ∴ 当 0 < a <1003 时 ,围成长 和宽均为 ( 25+4a )米的 矩形菜园 面积最 大,最 大面积 为 21000020016a a ++平方米; 当100503a ≤时,围成长为 a 米,宽为(50﹣2a )米的矩形菜园面积最大,最大面积为(21502a a -)平方米. 【点评】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类 讨论变量大小关系.3.(2018·湖南怀化·10 分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购 进 A ,B 两种树苗,共 21 棵,已知 A 种树苗每棵 90 元,B 种树苗每棵 70 元.设购买 A 种树苗 x棵,购买两种树苗所需费用为y 元.(1)求y 与x 的函数表达式,其中0≤x≤21;(2)若购买B 种树苗的数量少于A 种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【分析】(1)根据购买两种树苗所需费用=A 种树苗费用+B 种树苗费用,即可解答;(2)根据购买B 种树苗的数量少于A 种树苗的数量,列出不等式,确定x 的取值范围,再根据(1)得出的y 与x 之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:(1)根据题意,得:y=90x+70(21﹣x)=20x+1470,所以函数解析式为:y=20x+1470;(2)∵购买B 种树苗的数量少于A 种树苗的数量,∴21﹣x<x,解得:x>10.5,又∵y=20x+1470,且x 取整数,∴当x=11 时,y 有最小值=1690,∴使费用最省的方案是购买B 种树苗10 棵,A 种树苗11 棵,所需费用为1690 元.【点评】本题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.4.(2018 年湖南省娄底市)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A.B 两种型号的垃圾处理设备共10 台.已知每台A 型设备日处理能力为12 吨;每台B 型设备日处理能力为15 吨;购回的设备日处理能力不低于140 吨.(1)请你为该景区设计购买A.B 两种设备的方案;(2)已知每台A 型设备价格为3 万元,每台B 型设备价格为4.4 万元.厂家为了促销产品,规定货款不低于40 万元时,则按9 折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【分析】(1)设购买A 种设备x 台,则购买B 种设备(10﹣x)台,根据购回的设备日处理能力不低于140 吨列出不等式12x+15(10﹣x)≥140,求出解集,再根据x 为正整数,得出x=1,2,3.进而求解即可;(2)分别求出各方案实际购买费用,比较即可求解.【解答】解:(1)设购买A 种设备x 台,则购买B 种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤313,∵x为正整数,∴x=1,2,3.初中、高中、教案、习题、试卷∴该景区有三种设计方案:方案一:购买A 种设备1 台,B 种设备9 台;方案二:购买A 种设备2 台,B 种设备8 台;方案三:购买A 种设备3 台,B 种设备7 台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,∴采用(1)设计的第二种方案,使购买费用最少.【点评】本题考查了一次函数的应用,一元一次不等式的应用,分析题意,找到合适的不等关系是解决问题的关键.5.(2018 湖南湘西州12.00 分)某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400 元,B 型电脑每台的利润为 500 元.该商店计划再一次性购进两种型号的电脑共100 台,其中B 型电脑的进货量不超过A 型电脑的2 倍,设购进A 型电脑x 台,这100 台电脑的销售总利润为y 元.(1)求y 关于x 的函数关系式;(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A 型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A 型电脑 60 台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这 100 台电脑销售总利润最大的进货方案.【分析】(1)根据“总利润=A 型电脑每台利润×A电脑数量+B 型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A 型电脑的2 倍且电脑数量为整数”求得x 的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100 时,y 随x 的增大而减小,②a=100 时,y=50000,③当100<m<200 时,a﹣100>0,y 随x 的增大而增大,分别进行求解.【解答】解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000 中k=﹣100<0,。

相关文档
最新文档