6有理数的乘法

合集下载

有理数的乘除及乘方运算

有理数的乘除及乘方运算

授课类型 C 有理数的乘除法 C 有理数的乘方 T 运用能力教学目标有理数的乘除及乘方运算教学内容1.有理数的乘除法(☆☆)1) 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0. 2) 有理数乘法的运算律(1)两个数相乘,交换因数的位置,积相等. ab=ba(乘法结合律)(2)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. abc=a(bc)(乘法结合律)(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. a(b+c)=ab+ac(乘法分配律) 3)有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.(2)几个数相乘,如果有一个因数为0,则积为0.在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.2.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数. a ÷b=a ·1b(b ≠0) 两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0. 5)倒数及有理数除法(1)乘积为1的两个数互为倒数.倒数是成对出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定是正数;0没有倒数;求一个非零有理数的倒数,只要把它的分子和分母颠倒位置即可(正整数可以看作分母为1的分数). 注意: ,a b 互为倒数,则1a b =;,a b 互为负倒数,则1a b =-.反之亦然. (2)有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例4】 计算:(1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦ <分析>(1)小题是化带分数为假分数后约分. (2)小题是遵循括号先运算的原则. <解> (1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=9101133959211⎛⎫-⨯⨯⨯⨯=- ⎪⎝⎭(2) ()()[]()()34582(6)12581228-⨯--⨯--⨯-=-⨯-+=⎡⎤⎣⎦<教学建议>紧扣有理数乘法法则步骤,先定符号,再求绝对值,有括号的先算括号里的数.【例5】 计算:(1)1571(8)16-⨯-; (2)()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ <分析> (1)小题需变形后使用分配律;(2)小题逆向应用分配律,较复杂的有理数混合运算,要注意解题方法的选取. <解> (1)()()15137187181616⎛⎫-⨯-=--⨯- ⎪⎝⎭ ()()()13718816155685687.5575.52⎛⎫=-⨯-+-⨯- ⎪⎝⎭=+=+=(2)()()9985124121616⎛⎫⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9--12---+-16 =()9985412121616⎛⎫⨯⎡⎤ ⎪⎣⎦⎝⎭---+-=- <教学建议> 教师可以提问学生,应该采用什么方法比较简便(即运用分配律解).【教学拓展】计算:(1)111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭<解> (1)11110352532133537621⎛⎫⎛⎫⎛⎫⎛⎫-÷÷-=-⨯⨯-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭=511011210356⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<教学建议> 教师可以提问学生分析式子的特点,可按法则2进行处理,转化为乘法.【例6】 已知:a 的相反数是213,b 的倒数是122-,求算式32a b a b +-的值.<分析> 利用相反数和倒数的概念求出a 、b ,然后求代数式的值. <解> 依题意2521,335a b =-=-=-, 则:52563335355452223535a b a b ⎛⎫-+⨯--- ⎪+⎝⎭==-⎛⎫-+--⨯- ⎪⎝⎭ =43131515⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=431543151313⎛⎫-⨯-=⎪⎝⎭练1.计算: (1)()()6416-÷- (2)()1751÷- <解> (1)()()()641664164-÷-=+÷= (2)()()1175117513÷-=-÷=-练2.计算:(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭;(2)()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭<解> (1)小题是小数结合相乘凑成整数.(2)小题是小数化成分数,互为倒数结合相乘为1.(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭ =()()()330.250.54700.2527055⎛⎫⎛⎫-⨯⨯⨯-=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=()313533530.57052510⎛⎫⎛⎫-⨯-=+⨯=⎪ ⎪⎝⎭⎝⎭(2)()113100110.033333323100322⎡⎤⎛⎫⎛⎫-⨯⨯-=-⨯-⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 练3. 计算: 1111122111;42612⎛⎫-⨯-+- ⎪⎝⎭<解> 直接顺向应用分配律;111112211142612⎛⎫-⨯-+- ⎪⎝⎭=()()()()937131212121242612⎛⎫⎛⎫-⨯+-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭=()2718(14)1310-++-+=-; 练4.计算: 735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦<解>原式=()735(36)(36)36(1)(36)1246⎛⎫⎛⎫-⨯-+⨯-+-⨯---⨯- ⎪ ⎪⎝⎭⎝⎭=21-27+30-36=-12练5.已知x 的负倒数是5,y 的相反数是-6,求算式2x yy x++的值. <解>由题意可知x =15-,y =6,所以2x y y x ++=12628512965-⨯+=-.做一做: 判断题:1.同号两数相乘,取原来的符号,并把绝对值相乘. ( ) 2.两数相乘,如果积为正数,则这两个因数都是正数. ( ) 3.两数相乘,如果积为负数,则这两个因数都是负数. ( ) 4.一个数除以-1,便得这个数的相反数.( ) 选择题:5.下面计算结果正确的是( ). (A)(-3×4)2=-144 (B)-(3×4)2=-144 (C)-3×(-4)2=-144 (D)3×(-4)2=1446.若)4(531-⋅=x ,则x =( ). (A)25- (B)25(C)52-(D)52解答题:7.判断下列乘积的符号,说明为什么? (1)(-1)×(-1)×(-1);(2));4()31()9.8(-⨯+⨯-(3)(-9)×(+10)×(-8)×(-7)×(-0.1);(4)(-4)×2×(-3)×(-5)×8.8.计算: (1));321(8.0-⨯(2));10()21(51-⨯+⨯-(3));311()211()21()32(-⨯-⨯-⨯+ (4)()113333⎛⎫⎛⎫-⨯÷-⨯ ⎪ ⎪⎝⎭⎝⎭(5))412()39()314(-⨯-÷-;(6))323()33.0()31()91(-÷⨯+÷-.有理数的乘方(1)定义:求几个相同因数积的运算,叫做乘方。

(完整版)有理数的乘法知识点总结

(完整版)有理数的乘法知识点总结

(完整版)有理数的乘法知识点总结有理数的乘法知识点总结1. 有理数的定义有理数是可以表示为分数形式的数,分为正有理数、负有理数和 0。

2. 有理数的乘法有理数的乘法满足以下性质:- 正数与正数相乘,结果仍为正数。

- 负数与负数相乘,结果仍为正数。

- 正数与负数相乘,结果为负数。

- 任何数与 0 相乘,结果都为 0。

3. 有理数的乘法的计算方法3.1 有理数的乘法运算法则- 正数与正数相乘,直接相乘并保留正号。

- 负数与负数相乘,直接相乘并保留正号。

- 正数与负数相乘,直接相乘并改变结果的符号为负号。

3.2 有理数的乘法性质- 乘法交换律:a * b = b * a,对于任意有理数 a 和 b 成立。

- 乘法结合律:(a * b) * c = a * (b * c),对于任意有理数 a、b 和c 成立。

- 乘法分配律:a * (b + c) = (a * b) + (a * c),对于任意有理数 a、b 和 c 成立。

4. 带有变量的有理数的乘法带有变量的有理数的乘法遵循与实数乘法相同的规则,即乘法交换律、结合律和分配律。

需要注意的是,当变量的符号与数的符号不同时,结果为负数。

5. 实际应用有理数的乘法在日常生活中的应用非常广泛,例如:- 购物时计算打折后的价格。

- 解决家庭预算问题。

- 勾股定理中的边长关系。

6. 总结有理数的乘法遵循特定的规则,可以通过直接相乘并根据符号进行判断来计算结果。

了解有理数的乘法规则可以帮助我们更好地理解数学问题,并在实际应用中得到运用。

有理数的乘法法则

有理数的乘法法则

有理数的乘法法则1.正数相乘的法则:两个正数相乘,积仍为正数。

例如,2乘以3得到6,3乘以4得到122.负数相乘的法则:两个负数相乘,积仍为正数。

例如,-2乘以-3得到6,-3乘以-4得到123.正数与负数相乘的法则:一个正数与一个负数相乘,积为负数。

例如,2乘以-3得到-6,3乘以-4得到-124.乘以零的法则:任何有理数乘以零,积为零。

例如,2乘以0得到0,-5乘以0得到0。

1.数线法:可以使用数线图形的方式来证明有理数的乘法法则。

数线上的位置代表有理数,可以通过移动数线上的点来进行乘法操作,然后观察结果是否与法则相符。

2.示例法:可以通过一些具体的例子来证明有理数的乘法法则。

以两个正数相乘为例,可以选取一对正数,计算它们的乘积,然后观察结果是否为正数。

将这个例子推广到所有正数,可以得出结论。

3.代数法:可以通过代数运算来证明有理数的乘法法则。

以两个正数相乘为例,可以用代数变量表示这两个数,然后进行乘法运算。

根据正数的性质,可以得出结果为正数。

有理数的乘法法则是数学中的基本概念之一,它在实际生活中有很多应用。

例如,在货币交易中,我们常常需要计算商品价格与数量的乘积,有理数的乘法法则可以帮助我们准确计算总金额。

同时,在科学研究中,有理数的乘法法则也有广泛应用,例如在物理学中用来计算速度与时间的乘积,以及在化学中用来计算物质的质量与物质的量的乘积等等。

总之,有理数的乘法法则是数学中非常重要的一个概念,它不仅有理论意义,而且在实际生活中有很多应用。

通过深入理解和掌握有理数的乘法法则,我们可以更好地应用它解决实际问题。

六年级数学下册《有理数的乘除法》

六年级数学下册《有理数的乘除法》
分配律:a(b+c)=ab+ac。
例2.用两种方法计算:

1 4

1 6

1 2


12.
思考:
可以使用哪两种方法?请你动手做一做。
解:
方法1: 14

1 6

1 2

12


3 12

2 12

6 12

12


1 12
12

1.
方法2:
探究2
计算下列各题,并比较它们的结果,你有 什么发现?
(1)5 (6);
(2)(6) 5;
(3)3(4)(5); (4)3(4)(5);
思考
请再举几个例子验证你的发现。
乘法运算律
两个数相乘,交换两个因数的位置,积不变。
乘法交换律:ab=ba。
三个数相乘,先把前两个数相乘,或先把 后两个数相乘,积不变。
例1.计算
(1)
3

5 6



9 5




1 4

(2)
5


6



4 5


1 4
.
解:(1) 3 5 9 1
6 5 4
3 5 9 1 654
9. 8
多个不是0的 数相乘,先做 哪一步,再做
1 4

1 6

1 2


12
1 12 1 12 1 12
4
6
2
3 2 6 1.

有理数的乘除法

有理数的乘除法

有理数的乘除法有理数是由整数和分数组成的数,可以进行乘除法运算。

有理数的乘除法规则相对简单,但需要理解清楚并应用正确的运算法则。

乘法运算有理数的乘法规则如下:1. 正数乘以正数,或者负数乘以负数,结果为正数。

例如:3 ×4 = 12(-2) × (-3) = 62. 正数乘以负数,或者负数乘以正数,结果为负数。

例如:2 × (-5) = -10(-3) × 6 = -183. 任何数乘以0,结果为0。

例如:5 × 0 = 0(-2) × 0 = 0除法运算有理数的除法规则如下:1. 正数除以正数,或者负数除以负数,结果为正数。

例如:8 ÷ 2 = 4(-6) ÷ (-3) = 22. 正数除以负数,或者负数除以正数,结果为负数。

例如:6 ÷ (-3) = -2(-15) ÷ 5 = -33. 0除以任何非零数的结果为0。

例如:0 ÷ 7 = 00 ÷ (-9) = 04. 非零数除以0是没有意义的,为无穷大。

例如:5 ÷ 0 = 无穷大(-3) ÷ 0 = 无穷大应用示例:1. 计算:12 × (-4) ÷ (-3) × 2根据乘法和除法的运算规则:12 × (-4) ÷ (-3) × 2 = -48 ÷ (-3) × 2 = 16 × 2 = 322. 计算:(-7) ÷ 3 × (-5) ÷ 2根据乘法和除法的运算规则:(-7) ÷ 3 × (-5) ÷ 2 = -2.333 × (-2.5) = 5.825总结有理数的乘除法运算较为简单,只要掌握了乘法和除法运算规则,就能够正确地进行计算。

在实际问题中,有理数的乘除法运算经常会出现,因此对于这些运算规则的掌握非常重要。

有理数的乘法运算

有理数的乘法运算

有理数的乘法运算有理数是指可以写成分数形式的数,包括整数、分数和小数。

在数学中,有理数的乘法运算是一种基本运算。

本文将介绍有理数乘法的规则和运算性质。

一、有理数乘法的规则有理数乘法的规则可以总结为以下几个方面:1. 正数和正数相乘,结果为正数。

例如,2乘以3等于6。

2. 负数和负数相乘,结果也为正数。

例如,-2乘以-3等于6。

3. 正数和负数相乘,结果为负数。

例如,2乘以-3等于-6。

4. 任何数与0相乘,结果都为0。

例如,5乘以0等于0。

二、有理数乘法的运算性质有理数的乘法满足以下几个运算性质:1. 乘法的交换律:对于任意两个有理数a和b,a乘以b等于b乘以a。

例如,对于有理数2和3,2乘以3等于3乘以2。

2. 乘法的结合律:对于任意三个有理数a、b和c,(a乘以b)乘以c 等于a乘以(b乘以c)。

例如,对于有理数2、3和4,(2乘以3)乘以4等于2乘以(3乘以4)。

3. 乘法的分配律:对于任意三个有理数a、b和c,a乘以(b加上c)等于(a乘以b)加上(a乘以c)。

例如,对于有理数2、3和4,2乘以(3加上4)等于(2乘以3)加上(2乘以4)。

三、乘法运算实例下面通过一些实例来说明有理数乘法的运算:1. 2乘以3等于6,符合正数相乘结果为正数的规则。

2. -2乘以-3等于6,符合负数相乘结果为正数的规则。

3. 2乘以-3等于-6,符合正数和负数相乘结果为负数的规则。

4. 任何数与0相乘,结果都为0,例如5乘以0等于0。

综上所述,有理数的乘法运算遵循一定的规则和性质。

了解并掌握这些规则和性质,可以帮助我们更好地进行有理数的乘法运算,解决相关的数学问题。

参考文献:无。

七年级数学有理数的乘除和乘方

七年级数学有理数的乘除和乘方

____ 2 3 1
22 22 ____ 2 2 2
3.怀化市2006年的国民生产总值约为亿元,预计2007年比上一年增长, 用科学计数法表示2007年怀化市的国民生产总值. ____
4.某省有67440000人,按要求分别取这个数的近似数,并指出近似数的有效数字. (1)精确到十万位; (2)精确到百万位; (3)精确到千万位.
有理数除法法则: 1、两数相除,同号得正,异号得负,并把绝对值相除。零与任何不等 于0的数相除都得零。 2、除以一个数等于乘以这个数的倒数(0不能作除数) 倒数与倒数的性质: 1除以一个不为0的数得这个数的倒数(0没有倒数)。 倒数的性质有:(1)互为倒数两数的积为1; (2)有理数a(a≠0)的倒数为
用科学记数法写出下列各数:
10000, 800000, 56000000, 7400000
下列用科学记数法表示的、 由四舍五入法得到的近似数, 各精确到哪一位?各有几个 有效数字? 4 ① 3.79×10 ;
2 ②5.040×10 ;
用四舍五入法,按括号内 要求取近似值。
(2) -7.56×104 (保留2个有效数字);
64,

64,

3
64
1 1 1 1
10 11 12
13
(5) 3 (2)
3
4
(1) 2 (2) 4
10 3
计算
(0.25)
2003
(4)
2004
(1)
2007
1 1 2 2 1 2 1 3 3 1 2 3 3 4 4 4 2 1 2 3 4 2 5 5 5 5
1 a;

有理数的乘法教案【6篇】

有理数的乘法教案【6篇】

有理数的乘法教案【6篇】有理数的乘法教案篇1目标:1、学问与技能使同学理解有理数乘法的意义,把握有理数的乘法法则,能娴熟地进行有理数的乘法运算。

2、过程与方法经受探究有理数乘法法则的过程,理解有理数乘法法则,进展观看、探究、合情推理等力量,会进行有理数和乘法运算。

重点、难点:1、重点:有理数乘法法则。

2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

过程:一、创设情景,导入新1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?乘法是加法的特别运算,例如5+5+5=5×3,那么请思索:(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

3、在一条由西向东的笔直的公路上,取一点O,以向东的路程为正,则向西的路程为负,假如小玫从点O动身,以5千米的向西行走,那么经过3小时,她走了多远?二、合作沟通,解读探究1、学校学过的乘法的意义是什么?乘法的安排律:a×(b+c)=a×b+a×c假如两个数的和为0,那么这两个数互为相反数。

2、由前面的问题3,依据学校学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)3、同学活动:计算3×(-5)+3×5,留意运用简便运算通过计算表明3×(-5)与3×5互为相反数,从而有 3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把肯定值3与5相乘。

类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0由此看出(-5)×(-3)得正数,并且把肯定值5与3相乘。

4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?鼓舞同学自己归纳,并用自己的语舞衫歌扇,并与同伴沟通。

第6讲:有理数的乘法(教案)

第6讲:有理数的乘法(教案)

第6讲:有理数的乘法(教案)在小学,我们已经学习过整数、小数的乘法,上学期又学习了分数的乘法,这些乘法中遇到的数都是正数。

现在我们又学习了负数,负数也可以进行乘法运算。

那么遇到因数是负数的情况,应该如何进行运算呢?我们通过下面的例题来共同学习一下有负数的乘法运算。

一、有理数的乘法有理数的乘法遵守下面的运算法则:同号得正,异号得负,然后把绝对值相乘。

下面我们来解释一下这个运算法则的含义。

(1)同号得正,异号得负,是指乘积的符号由因数的符号确定,如果两个因数的符号相同,则乘积是一个正数;如果两个因数的符号不同,则乘积就是一个负数。

例如:1553()5(3﹢)﹢=⨯+=⨯+ 15)53()5()3(+=⨯+=-⨯- 15)53()5()3(-=⨯-=-⨯+(2)然后把绝对值相乘,是指乘积的大小是由两个因数的绝对值相乘得到的。

另外,我们知道有理数中还有一个比较特殊的数,就是0,记住了,任何数与零相乘,都得零。

所以,我们将有理数的乘法法则用一句话总结为:同号得正,异号得负,然后把绝对值相乘。

任何数与零相乘,都得零。

练习:计算(注意书写格式)(1))3(5-⨯; (2)21)4(⨯-;(3))9()7(-⨯-; (4))6.0(5.0-⨯;(5))43(52-⨯; (6))25(0-⨯;二、有理数的连乘有理数也可以进行连乘运算,试完成下面的题目,你发现乘积的符号有怎样的规律?(1)543)2(⨯⨯⨯-; (2)54)3()2(⨯⨯-⨯-;(3)5)4()3()2(⨯-⨯-⨯-; (4))5()4()3()2(-⨯-⨯-⨯-;(5)0)5()4()3()2(⨯-⨯-⨯-⨯-通过计算,我们可以发现(1)(3)两题的结果都是负数,(2)(4)两题的结果都是负数。

对比可以发现(1)(3)题中的负因数个数都是奇数,(2)(4)题中的负因数个数都是偶数。

由此可见,在有理数的连乘运算中,乘积的符号是由题目中负因数的个数决定的,当负因数的个数为奇数时,乘积的符号为负号;当负因数的个数为偶数时,乘积的符号为正号。

《有理数乘法》说课稿(精选6篇)精选全文

《有理数乘法》说课稿(精选6篇)精选全文

可编辑修改精选全文完整版《有理数乘法》说课稿《有理数乘法》说课稿(精选6篇)作为一名无私奉献的老师,编写说课稿是必不可少的,说课稿可以帮助我们提高教学效果。

我们该怎么去写说课稿呢?下面是小编为大家收集的《有理数乘法》说课稿,欢迎阅读,希望大家能够喜欢。

《有理数乘法》说课稿篇1各位评委、老师:大家上午好,我今天说课的内容是新人教版七年级《数学》上册第一章第四节《有理数的乘法》第一课时。

我将从教材和学情分析、教学目标、教学重点和难点、教学方法与学法指导、教学程序设计等几个方面进行说明。

一、教材和学情分析本课时的主要内容是有理数的乘法运算,教材首先利用数轴通过蜗牛运动的例子引入有理数乘法法则,目的在于使学生对有理数的乘法法则的合理性有所认识和了解,然后通过例子说明如何运用法则进行计算。

学生通过小学阶段的学习,已经熟悉和掌握了正数及0的乘法运算,上初中后,学习有理数的乘法之前,又相继学习了有理数的加法、减法。

有理数的乘法运算与小学学过的乘法运算不同之处是多了符号法则,确定符号之后就化归成了小学的乘法运算。

学习有理数的乘法是进一步学习有理数的除法、乘方及有理数的混合运算的基础。

二、教学目标本课时的教学目标确定如下:1、知识与技能目标:理解有理数的乘法和倒数的意义,掌握有理数乘法法则,能熟练运用有理数乘法法则进行乘法运算。

2、过程与方法目标:通过对实际问题的观察、分析、操作以及归纳概括等活动,经历对有理数乘法法则的探索过程,培养学生的分析概括能力.3、情感态度与价值观:激发学生学习兴趣,培养学生数形结合、化归和分类讨论思想及合作交流、勇于探索的精神.三、教学重点和难点1、教学重点:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

2、教学难点:有理数乘法中的符号法则、认识和了解有理数乘法法则规定的合理性。

四、教学方法手段和学法指导要实现上述教学目标、突出重点、突破难点,传统的教学方式和学习方式已难以实现的。

有理数的乘法教案人教版有理数的乘法教案优秀6篇

有理数的乘法教案人教版有理数的乘法教案优秀6篇

【有理数的乘法教案人教版】有理数的乘法教案优秀6篇初中数学《有理数的乘法》教学设计篇一掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________初中数学《有理数的乘法》教学设计篇二1、知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。

2、过程与方法通过对问题的探索,培养观察、分析和概括的能力。

3、情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心。

重点:熟练运用运算律进行计算。

难点:灵活运用运算律。

(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。

有理数的乘法教案最新10篇

有理数的乘法教案最新10篇

有理数的乘法教案最新10篇初中数学《有理数的乘法》教学设计篇一教学目的:(一)知识点目标:有理数的乘法运算律。

(二)能力训练目标:1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

2、能运用乘法运算律简化计算。

(三)情感与价值观要求:1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

2、在讨论的过程中,使学生感受集体的力量,培养团队意识。

教学重点:乘法运算律的运用。

教学难点:乘法运算律的运用。

教学方法:探究交流相结合。

创设问题情境,引入新课[活动1]问题1:有理数的加法具有交换律和结合律,在以前学过的范围内乘法交换律、结合律,以及乘法对加法的分配律都是成立的,那么在有理数的范围内,乘法的这些运算律成立吗?问题2:计算下列各题:(1)(-7)某8;(2)8某(-7);(5)[3某(-4)]某(-5);(6)3某[(-4)某(-5)];[师生]由学生自主探索,教师可参与到学生的讨论中。

像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。

我们可以通过问题2来检验。

(略)[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?[生]例如:5某[3十(-7)]和5某3十5某(-7);(略)[师](-5)某(3-7)和(-5)某3-5某7的结果相等吗?(注意:(-5)某(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。

否则不能直接应用分配律,因为减法没有分配律。

)讲授新课:[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。

应得出:1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

3、一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。

[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。

3、用简便方法计算:[活动4]练习(教科书第42页)课时小结:这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

有理数的乘法

有理数的乘法

第二章有理数及其运算7. 有理数的乘法(一)(甘肃省白银市730900)【知识脉络】本章内容主要涉及有理数的运算,是初等数学的重要基础,在实际生活中的应用十分广泛。

本节有理数的乘法,从小处说,它既是有理数加法运算的延伸,也是学生后续学习有理数除法与乘方运算等有理数运算的基础。

从大处说,它是整个初中学段乃至更高学段最基本的运算之一,是今后学习实数运算、代数式的运算、解方程以及函数知识等等的基础。

【教学要求】课标中指出:“要让学生经历数学知识的形成和应用过程”。

在小学里正数与正数相乘、正数与0相乘的运算,经过多年的实践,已经深入学生骨髓,变得天经地义,因为他们可以毫不费劲的从生活实例中得到圆满解释。

引入负数后就不同了,特别地,“正数与负数相乘”、“负数与负数相乘”、“负数与0相乘”等运算,很难在现实生活中找到合理的解释。

如果不发掘其内涵,必然会导致知其然不知其所以然,数学知识链会出现缺口。

因此,法则的探索过程是本节的重要一环,不可忽视。

【学情分析】知识技能方面:在学习本节课之前,学生已经学习了有理数的加减法运算法则,对符号问题也有了一定的认识。

同时,初一的学生也具有一定的观察、归纳、猜想、验证能力。

因此,学生对本节课内容具有深厚的知识基础。

乘法的交换律、结合律、分配律在小学已经学习过,在有理数部分仍旧适用,其中的教学关键仍然是符号问题。

活动经验方面:七年级学生已经具备了初步探究问题的能力,但归纳概括能力不强,对于表象化的东西理解不深入。

乘法法则的提炼经历了将实际问题数学化的过程,需要学生一定的归纳概括能力。

【学习目标】1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;2、会进行有理数的乘法运算。

【教学重难点】教学重点:应用有理数的乘法法则正确的进行有理数乘法计算。

教学难点:有理数乘法运算中符号确定的理解。

【教学策略】对于认知的主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用诱思探究式教学法并采用多媒体等现代教学手段。

沪教版(上海)六年级第一学期第五讲有理数的乘除法 教师版

沪教版(上海)六年级第一学期第五讲有理数的乘除法 教师版

第五讲有理数乘除法一、有理数的乘法:1、有理数的乘法法则①两数相乘,同号为正,异号为负,并把绝对值相乘;②任何数与零相乘都得零。

2、有理数乘法法则的推广几个不为0的数相乘,积的符号由负因数的个数决定。

当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。

3、有理数的乘法运算律①乘法交换律:ab=ba②乘法结合律:(ab )c=a (bc )③乘法对加法的分配律:a (b+c)=ab+ac二、有理数的除法1、倒数的概念及求法①倒数的概念:乘积是1的两个数叫做互为倒数。

零没有倒数,对于任意数a (a ≠0),它的倒数为a1 。

②倒数的求法:(1)对于一个整数,只需将这个整数放在分母位置,分子为1即得到其倒数(2)对于一个分数,交换分子、分母的位置,即可得到其倒数。

(3)对于一个带分数,先将其化为假分数,再交换分子、分母的位置。

2、有理数的除法法则:①除以一个数等于乘以这个数的倒数。

即ba b a 1⨯=÷(b ≠0)。

②两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数,都得零。

【例题1】【基础题】计算:)31(21-⨯-。

【分析】本题是两个负数相乘,根据乘法法则,先确定积的符号,再把绝对值相乘即可。

解:)31(21-⨯-=)3121(⨯+=61【延伸题】计算:(1))1(43)2(-⨯⨯⨯- (2))2(3)6()5(-⨯⨯-⨯-(3))2()2()2()2(-⨯-⨯-⨯- (4))2(0)6(2)1()3(-⨯⨯-⨯⨯-⨯-【分析】(1)(2)(3)题是三个以上非零有理数相乘,应该先确定符号,再计算绝对值,确定符号根据的是“符号法则”。

(4)是六个有理数相乘,其中有一个因数是0,积为0. 答案:(1)24 (2)-180 (3)16 (4)0【拓展题】计算:)120071)(200611()171)(611)(151)(411)(131)(211(-------- 【分析】先计算每一个括号内减法,可知符号关系是正、负、正、负…共2006个括号,所以负数为1003个,那么最后结果为负数,另一方面得到的差的积可以相互约分。

有理数的乘法教案

有理数的乘法教案

有理数的乘法教案有理数的乘法教案15篇有理数的乘法教案1教学目的:1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。

教学分析:重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

教学过程:一、知识导向:有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。

在学习中应掌握有理数的乘法法则。

二、新课:1、知识基础:其一:小学所学过的乘法运算方法;其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列式:即:小虫位于原来出发位置的东方6米处拓展:如果规定向东为正,向西为负情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列式:即:小虫位于原来出发位置的西方6米处发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6概括:把一个因数换成它的相反数,所得的积是原来的积的相反数3、设疑:如果我们把中的一个因数2换成它的相反数-2时,所得的积又会有什么变化?当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。

例:计算:(1)(2)三、巩固训练:P52.1、2、3四、知识小结:本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。

在运算中应强调注意如何正确得到积的结果。

五、家庭作业:P57.1、2,3六、每日预题:1、小学多学过哪些乘法的运算律?2、在对有理数的简便运算中,一般应考虑到哪些可能的情况? 有理数的乘法教案2一、学情分析:在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。

有理数的乘法的公式

有理数的乘法的公式

有理数的乘法的公式有理数的乘法是数学中的一个基础概念,它在我们日常生活和各个领域中都有广泛的应用。

在学习有理数的乘法之前,我们先来了解一下有理数的概念。

有理数是指能够表示为两个整数的比值的数,包括正整数、负整数、零以及能表示为分数形式的数。

有理数可以用分数形式表示为a/b,其中a是整数,b是非零的整数。

例如,2、-3、1/2、-4/5都是有理数。

有理数的乘法可以使用下面的公式来计算:(a/b) × (c/d) =(a×c) / (b×d)。

这个公式告诉我们,有理数的乘法可以通过将分子相乘并将分母相乘得到。

下面我们通过几个具体的例子来展示这个公式的应用。

假设我们要计算2/3乘以4/5,按照公式,我们将2乘以4得到8作为新的分子,将3乘以5得到15作为新的分母,所以结果是8/15。

接下来,让我们看一个带有负数的例子。

计算-1/2乘以-3/4,按照公式,将-1乘以-3得到3作为新的分子,将2乘以4得到8作为新的分母,所以结果是3/8。

这个例子告诉我们,两个负数相乘的结果是正数。

有理数的乘法还有一些有趣的性质。

首先,任何数与零相乘都等于零。

例如,5乘以0等于0,-3/4乘以0等于0。

其次,任何数与1相乘都等于它本身。

例如,1/2乘以1等于1/2,-1乘以1等于-1。

最后,有理数的乘法满足交换律和结合律。

交换律指的是,两个有理数的乘积不受它们的顺序影响。

例如,2/3乘以4/5等于4/5乘以2/3。

结合律指的是,三个有理数相乘的结果不受它们的先后顺序影响。

例如,(2/3乘以4/5)乘以6/7等于2/3乘以(4/5乘以6/7)。

有理数的乘法在实际生活中有很多应用,比如计算购物时的折扣、解决分数的比较问题、衡量不同速度下的时间和距离关系等等。

通过掌握有理数的乘法,我们可以更好地理解和应用这些知识。

总结起来,有理数的乘法可以使用公式(a/b) × (c/d) = (a×c) / (b×d)来计算,其中a、b、c、d是整数。

2022年精品 《有理数的乘法》优秀教案

2022年精品 《有理数的乘法》优秀教案

第二章有理数及其运算7.有理数的乘法〔二〕一、学生起点分析:学生的知识技能根底:学生在小学已经学习过四那么运算的五条运算律,并初步体验到了运算律可以简化运算,具备了对非负有理数运用运算律进行简便运算的意识和技能。

在本章的第四节的第二课时又熟悉了有理数的加法交换律与加法的结合律,并经历了它们的探索活动过程,具有了探索学习有理数的乘法交换律、乘法结合律、乘法对加法的分配律的根本技能根底,尤其是上节课有理数的乘法法那么更是重要的知识根底。

学生的活动经验根底:学生在探究有理数加法的交换律、结合律的活动过程中,已经有了切身的体验,积累了经验,丰富了阅历,并体会到了运算律对有理数加法的简化作用,这不仅在探索方法上提供了经验根底,而且从情趣意识、求知欲望上也为本节可增添了兴趣根底。

另外上节课学生在有理数乘法法那么的训练过程中曾经出现的问题和解决修正的过程,也是本节课学习的有用经验。

二、学习任务分析:教科书在学生已掌握了有理数加法、减法、乘法运算的根底上,提出了本节课的具体学习任务:探索发现有理数长法的运算律,会运用运算律简化运算过程。

本节课的教学目标是:1、经历探索有理数的乘法运算律的过程,开展观察、归纳、猜测、验证等能力。

2、学会运用乘法运算律简化计算的方法,并会用文字语言和符号语言表述乘法运算律。

3、在合作学习过程中,开展合作能力和交流能力。

三、教学过程设计:本节课设计了六个环节:第一环节:探究猜测,引入新课;第二环节:文字表达,理解运算律;第三环节:符号表达,熟悉运算律;第四环节:体验运算律简化计算作用;第五环节:课堂小结;第六环节:布置作业。

第一环节:探究猜测,引入新课活动内容:〔1〕根据有理数乘法法那么,计算以下各题,并比拟它们的结果:⑴〔-7〕×8与8×〔-7〕;〔-5÷3〕×〔-9÷10〕与〔-9÷10〕×〔-5÷3〕⑵[〔-4〕×〔-6〕]×5与〔-4〕×[〔-6〕×5];[1÷2×〔-7÷3〕]×〔-4〕与1÷2×[〔-7÷3〕×〔-4〕];⑶〔-2〕×[〔-3〕+〔-3÷2〕]与〔-2〕×〔-3〕×〔-2〕×〔-3÷2〕;5×[〔-7〕+〔-4÷5〕]与5×〔-7〕+5×〔-4÷5〕;〔2〕通过计算积的比拟,猜测乘法运算律在有理数范围内是否适用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

(一)重点、难点分析
因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。

当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。

积的绝对值是各个因数的绝对值的积。

运用乘法交换律恰当的结合因数可以简化运算过程。

有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。

乘法法则给出了判定积的符号和积的绝对值的方法。

即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。

积的绝对值是这两个因数的绝对值的积。

(二)知识结构
1.有理数乘法法则,实际上是一种规定。

行程问题是为了了解这种规定的合理性。

2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6.如果因数是带分数,一般要将它化为假分数,以便于约分。

课堂练习
1.口答:
(1)6×(-9);(2)(-6)×(-9);(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6) 6×(-1);(7)(-6)×0;(8)0×(-6);
2.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
3.判断下列方程的解是正数还是负数或0:
(1)4x=-16;(2)-3x=18;(3)-9x=-36;(4)-5x=0.
4.填空(用“>”或“<”号连接):
(1)如果a<0,b<0,那么ab ________0;
(2)如果a<0,b<0,那么ab _______0;
(3)如果a>0时,那么a ____________2a;
(4)如果a<0时,那么a __________2a.。

相关文档
最新文档