初中数学竞赛专题选讲_一元二次方程的根(含答案)

合集下载

201X中考数学专题训练 一元二次方程的根(含解析)

201X中考数学专题训练 一元二次方程的根(含解析)

一元二次方程的根一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.2.一元二次方程x2﹣1=0的根是()A. 1B. ﹣1 C. D. ±13.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是()A. 4B. 0或2 C. 1 D. -14.方程的解是( )A. B. C. , D. ,5.关于x的一元二次方程的一个根为2,则的值是()A. B. C. D.6.一元二次方程ax2+x+c=0,若4a-2b+c=0,则它的一个根是()A. -2B.C. -4D. 27.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A. 1B. 2C. ﹣1 D. ﹣28.若α,β是方程x2+2x﹣xx=0的两个实数根,则α2+3α+β的值为()A. xxB. 2003C. ﹣xxD. 40109.已知一个直角三角形的两条直角边的长恰好是方程x2-7x+12=0的两根,则这个三角形的斜边长是()A. B. 7 C. 5 D. 1210.若一元二次方程有一个根为,则下列等式成立的是()A. B. C. D.11.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0有一个根为0,则m的值()A. 0B. 1或2 C. 1 D. 212.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A. 若x2=4,则x=2B. 若x2+2x+k=0有一根为2,则k=﹣8C. 方程x(2x﹣1)=2x﹣1的解为x=1D. 若分式的值为零,则x=1,213.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A. 1B. 0C. ﹣1 D. 2二、填空题14.若x=2是关于x的方程的一个根,则a 的值为________.15.若方程x2+mx+1=0的一个根是2,则m=________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________ .17.若x=﹣2是关于x的方程x2﹣2ax+8=0的一个根,则a=________.18.方程=﹣x的根是________.19.已知关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则xx﹣a﹣b的值是________.20.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是________三、计算题21.先化简,再求值,其中m是方程x2+3x﹣1=0的根.22.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.请你按照上述解题思想解方程(x2+x)2﹣4(x2+x)﹣12=0.23.先化简,再求值:÷(a﹣1+ ),其中a是方程x2﹣x=6的根.24.已知m是方程x2﹣x﹣1=0的一个根,求m(m+1)2﹣m2(m+3)+4的值.四、解答题25.已知关于x的一元二次方程x2﹣6x+k=0的一根为2,求方程的另一根及k的值.26.已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m﹣1)的值.27.如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x , BE=y,请你写出y与x之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?问题②:在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°,如果存在,求出AD的长度;如果不存在,请说明理由.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?五、综合题28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴正半轴上的点,且S△AOE= ,求经过D、E两点的直线解析式及经过点D的反比例函数的解析式,并判断△AOE与△AOD是否相似.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.29.关于x的一元二次方程x2﹣6x+p2﹣2p+5=0的一个根为2.(1)求p值.(2)求方程的另一根.答案解析部分一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.【答案】B【考点】一元二次方程的解【解析】【分析】由题意把x=0代入一元二次方程(a-1)x2+x+a2-1=0即可得到关于a的方程,求得a的值,再结合二次项系数不为0即可求得结果。

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

最全最新初中数学竞赛专题讲解一元二次方程的求解

最全最新初中数学竞赛专题讲解一元二次方程的求解

初中数学竞赛专题讲解一元二次方程的求解方程是一种重要的数学模型,也是重要的数学思想之一。

有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。

解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。

1.形如方程的解的讨论:⑴若=0,①当=0时,方程有无数个解;②当≠0时,方程无解; ⑵若≠0,方程的解为=。

2.关于一元二次方程()0a ≠根的讨论,一般需应用到根的判别式、根与系数的关系等相关知识。

⑴若,则它有一个实数根1x =;若,则它有一个实数根1x =-。

⑵运用数形结合思想将方程()0a ≠根的讨论与二次函数()0a ≠的图象结合起来考虑是常用方法。

几个基本模型(1)设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12,m x x n <<的充要条件是202b m n a b af a ⎧<-<⎪⎪⎨⎛⎫⎪-≤ ⎪⎪⎝⎭⎩,()()00af m af n >⎧⎪⎨>⎪⎩(2)一般地设m n p <<,设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12,m x n x p <<>的充要条件是()()()000af m af n af p >⎧⎪<⎨⎪>⎩(3)一般地设m n p q <≤<设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12m x n p x q <<≤<<的充要条件是()()()()0000af m af n af p af q >⎧⎪<⎪⎨<⎪⎪>⎩(4)一般地设m n ≤设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12x m n x ≤≤≤的充要条件是()()00af m af n ≤⎧⎪⎨≤⎪⎩3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。

中考数学专项练习一元二次方程的根(含解析)

中考数学专项练习一元二次方程的根(含解析)

中考数学专项练习一元二次方程的根(含解析)【一】单项选择题1.假设方程x2-c=0的一个根为-3,那么方程的另一个根为〔〕A.3B.-3C.9D.-2.方程4x2﹣kx+6=0的一个根是2,那么k的值和方程的另一个根分别是〔〕A.5,B.11,C.11,﹣D.5,﹣3.1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,那么m的值是〔〕A.1B.-1C.0D.无法确定4.以下一元二次方程有两个相等实数根的是〔〕A.B.C.D.5.x=-1是关于x的方程2x2+ax-a2=0的一个根,那么a为〔〕A.1B.2C.3D.-2或16.关于x的方程x2+m2x﹣2=0的一个根是1,那么m的值是〔〕A.1B.2C.±1D.±27.假设方程x2-5x=0的一个根是a,那么a2-5a+2的值为〔〕A.-2B.0C.2D.48.一元二次方程的两根是,那么这个方程可以是()A.B.C.D.9.假设n〔〕是关于x的方程的根,那么m+n的值为A.1B.2C.-1D.-210.关于的方程的一个根为,那么的值为〔〕A.B.C.D.11.x=1是一元二次方程x2-2mx+1=0的一个解,那么m的值是〔〕A.1B.0C.0或1D.0或-112.假设x=2是关于一元二次方程﹣x2++a2=0的一个根,那么a的值是〔〕A.1或4B.1或﹣4C.﹣1或﹣4D.﹣1或413.关于x的一元二次方程〔m﹣1〕x2+6x+m2﹣1=0有一个根是0,那么m取值为〔〕A.1B.﹣1C.±1D.014.假设x=3是关于x的方程x2﹣bx﹣3a=0的一个根,那么a+b的值为〔〕A.3B.-3C.9D.-915.一元二次方程ax2+x+c=0,假设4a-2b+c=0,那么它的一个根是〔〕A.-2B.C.-4D.216.以下方程中解为x=0的是〔〕A.2x+3=2x+1 B.5x=3x C.+4=5 x D.x+1=017.假设c〔c≠0〕为关于x的一元二次方程x2+bx+c=0的根,那么c+ b的值为〔〕A.1B.﹣1C.2D.﹣218. =2是关于的方程的一个解,那么2a-1的值是〔〕A.3B.4C.5D.6【二】填空题19.x=1是方程x2+mx+3=0的一个实数根,那么m的值是________.20.假设a是关于方程x2﹣2019x+1=0的一个根,那么a+ =________.21.假设一元二次方程ax2﹣bx﹣2019=0有一根为x=﹣1,那么a+b=__ ______.22.一元二次方程x2+px﹣2=0的一个根为2,那么p的值________【三】计算题23.解方程x2+6x+1=0.24.解方程:2x2+3x﹣5=0.25.解方程组:.26.x=1是一元二次方程〔a﹣2〕x2+〔a2﹣3〕x﹣a+1=0的一个根,求a的值.27.关于x的一元二次方程x2﹣〔k+1〕x﹣6=0的一个根为2,求k的值及另一个根.28.解方程:x2﹣2〔x+4〕=0.【四】解答题29.一元二次方程〔m﹣1〕x2+7mx+m2+3m﹣4=0有一个根为零,求m 的值.30.关于x的方程x2﹣〔k+1〕x﹣6=0的一个根是2,求k的值和方程的另一根.31.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为〝友好方程〞.如果关于x的一元二次方程x2﹣4x+5m=mx+ 5与x2+x+m﹣1=0互为〝友好方程〞,求m的值.【五】综合题32.:x2+3x+1=0.求:〔1〕x+ ;〔2〕x2+ .33.关于x的一元二次方程x2+2〔k﹣1〕x+k2﹣1=0有两个不相等的实数根.〔1〕求实数k的取值范围;〔2〕0可能是方程的一个根吗?假设是,请求出它的另一个根;假设不是,请说明理由.34.如图,抛物线y=x2+x﹣2与x轴交于A,B两点,与y轴交于点C、〔1〕求点A,点B和点C的坐标;〔2〕在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;〔3〕假设点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.【一】单项选择题1.假设方程x2-c=0的一个根为-3,那么方程的另一个根为〔〕A.3B.-3C.9D.-【考点】一元二次方程的解【解析】【分析】根据一元二次方程的解的定义,将x=-3代入方程x2-c=0,求得c的值;然后利用直接开平方法求得方程的另一根.【解答】∵方程x2-c=0的一个根为-3,∴x=-3满足方程x2-c=0,∴〔-3)2-c=0,解得,c=9;∴x2=9,∴x=±3,解得,x1=3,x2=-3;故方程的另一根是3;应选A、2.方程4x2﹣kx+6=0的一个根是2,那么k的值和方程的另一个根分别是〔〕A.5,B.11,C.11,﹣D.5,﹣【考点】一元二次方程的解【解析】【解答】解:把x=2代入方程4x2﹣kx+6=0,得4×22﹣2k+6 =0,解得k=11,再把k=11代入原方程,得4x2﹣11x+6=0,解得x=2或,那么k=11,另一个根是x=.应选B、【分析】根据一元二次方程的解的定义,把x=2代入方程得到k的值,再计算另外一个根,即可求解.3.1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,那么m的值是〔〕A.1B.-1C.0D.无法确定【考点】一元二次方程的解【解析】【分析】由题意把x=1代入方程(m-1)x2+x+1=0即可得到关于m的方程,解出即可。

泉州五中初二下奥数讲座(6) ——一元二次方程的整数根提高+答案

泉州五中初二下奥数讲座(6) ——一元二次方程的整数根提高+答案

泉州五中初二下奥数讲座(6)——一元二次方程的整数根提高班 号 姓名 供稿人:李锦扬例题与求解【例1】 已知关于x 的方程032)1280()8)(4(2=+----x k x k k 的解都是整数,求整数k 的值.(绍兴市竞赛试题)解题思路:用因式分解法可得到根的表达式,因方程类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定k 的值才能全面而准确.【例2】 关于y x ,的方程29222=++y xy x 的整数解),(y x 的组数为( ) A .2组 B .3组 C .4组 D .无穷多组 解题思路:把29222=++y xy x 看作关于x 的二次方程,由x 为整数得出关于x 的二次方程的根的判别式是完全平方数,从而确定y 的取值范围,进而求出x 的值.【例3】 试确定一切有理数r ,使得关于x 的方程01)2(2=-+++r x r rx 有根且只有整数根.(全国初中数学联赛试题) 解题思路:因方程的类型未确定,故应分类讨论. 当0≠r 时,由根与系数的关系得到关于r 的两个不等式,消去r ,先求出两个整数根.【例4】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数之和的平方,恰好等于这个四位数.(全国初中数学联赛试题)解题思路:设前后两个两位数分别为y x ,,99109910≤≤≤≤y x ,,则y x y x +=+100)(2, 即0)()50(222=-+-+y y x y x ,于是将问题转化为求一元二次方程有理根、整数根的问题. 【例5】 已知a 是正整数,且使得关于x 的一元二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根,求a 的值.(“祖冲之杯”竞赛试题) 解题思路:本题有两种解法. 由于a 的次数较低,可考虑“反客为主”,以a 为元,以x 为已知数整理成一个关于a 的一元一次方程来解答;或考虑因方程根为整数,故其判别式为平方式.能力训练B 级1.已知a 、b 为实数,设2006b a -=,如果关于x 的一元二次方程20x ax b ++=的根都是整数,则该方程的根共有( )组. A .4 B .6 C .8 D .102.已知关于x 的方程2(6)0x a x a +-+=的两根都是整数,则_________=a . 3.若关于x 的方程054)15117()9)(6(2=+----x k x k k 的解都是整数,则符合条件的整数k 的值有_________个.4.使方程071222=-++a ax x a 的两根都是整数的所有正数a 的和是______________.(上海市竞赛题)5.已知方程015132)83(2222=+-+--a a x a a x a (其中a 为非零实数)至少有一个整数根,那么_________=a .(全国初中数学联赛试题)6.设方程03)6(2=-+++m x m x 有两个不同的奇数根,则整数m 的值为________(《学习报》公开赛试题)7.设关于x 的二次方程4)462()86(2222=+--++-k x k k x k k 的两根都是整数,求满足条件的所有实数k 的值.(全国初中数学联赛试题)8.当x 为何有理数时,22392-+x x 恰为两个连续的正偶数的乘积?(山东省竞赛题)9.是否存在质数q p ,使得关于x 的一元二次方程02=+-p qx px 有有理数根?(全国初中数学竞赛试题)10.已知关于y x ,的方程组⎩⎨⎧++-==-++bcx a k y a k y kx )(0)(2只有一组解且为整数解,其中c b a k ,,,均为整数且0>a ,c b a ,,满足12-=--bc a a ,.2=+c b(1)求a 的值; (2)求k 的值及它对的y x ,的值.参考答案【例1】 .已知关于x 的方程2(4)(8)(8012)320k k x k x ----+=的解都是整数,求整数k 的值. 【解答】解:当4k =时,原方程为32320x -+=,所以1x =,符合题意; 当8k =时,原方程为16320x +=,所以2x =-,符合题意;当4k ≠且8k ≠时,原方程化为[(4)8][(8)4]0k x k x ----=,解得184x k =-,248x k=-.k Q 为整数,且1x ,2x 均为整数根,41k ∴-=±,2±,4,8±,得3k =,5,2,6,0,4-,12 或81k -=±,2±,4-,得7k =,9,6,10,12.综上所述,当k 的值为4,6,8,12时,原方程的根都为整数.【例2】 .关于x ,y 的方程22229x xy y ++=的整数解(,)x y 的组数为( ) A .2组 B .3组 C .4组 D .无穷多组 【解答】解:可将原方程视为关于x 的二次方程,将其变形为22(229)0x yx y ++-=. 由于该方程有整数根,则判别式△0…,且是完全平方数.由△2224(229)71160y y y =--=-+…, 解得211616.57y ≈….于是显然,只有16y =时,△4=是完全平方数,符合要求. 当4y =时,原方程为2430x x ++=,此时11x =-,23x =-; 当4y =-时,原方程为2430x x -+=,此时31x =,43x =.所以,原方程的整数解为312431241133444 4.x x x x y y y y ==-=-=⎧⎧⎧⎧⎨⎨⎨⎨=-===-⎩⎩⎩⎩ 故选:C .【例3】 试确定一切有理数r ,使得关于x 的方程2(2)10rx r x r +++-=有根且只有整数根.【解答】解:(1)若0r =,12x =,原方程无整数根;(2)当0r ≠时,122r x x r ++=-,121r x x r-=;消去r 得:121242()17x x x x -++=, 即12(21)(21)7x x --=, 717(1)(7)=⨯=-⨯-Q , ∴①12211217x x -=⎧⎨-=⎩,解得1214x x =⎧⎨=⎩,114r r -∴⨯=,解得13r =-; ②12217211x x -=⎧⎨-=⎩,解得1241x x =⎧⎨=⎩;同理得:13r =-,③12211217x x -=-⎧⎨-=-⎩,解得1203x x =⎧⎨=-⎩,1r =,④12217211x x -=-⎧⎨-=-⎩,解得1230x x =-⎧⎨=⎩,1r =.∴使得关于x 的方程2(2)10rx r x r +++-=有根且只有整数根的r 值是13-或1.【例4】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数. 【解答】解:设前后两个二位数分别为x ,y ,2()100x y x y ∴+=+. 222(50)()0x y x y y +-+-=.22244(50)4()4(250099)0b ac y y y y -=---=-…,解得252599y …,当2525y …时,原方程有解.50x y ∴==-250099y ∴-必为完全平方数,Q 完全平方数的末位数字只可能为0;1;4;5;6;9. ∵x 的数位是2位,y 是2位.25y ∴=30x ∴=或20,∴所求的四位数为3025或2025. 【例5】 已知a 是正整数,且使得关于x 的一元二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根,求a 的值.【分析】反客为主:首先将原方程变形为2(2)2(6)x a x +=+,进而分析2x +,以及a 的取值,得出所有的可能结果.【解答】解:将原方程变形为2(2)2(6)x a x +=+.显然20x +≠,于是22(6)(2)x a x +=+由于a 是正整数,所以1a …,即22(6)1(2)x x ++…所以2280x x +-…, (4)(2)0x x +-…, 所以42(2)x x -≠-剟.当4x =-,3-,1-,0,1,2时,得a 的值为1,6,10,3,149,1 1a ∴=,3,6,10说明从解题过程中知,当1a =时,有两个整数根4-,2; 当3a =,6,10时,方程只有一个整数根.综上所述,当1a =,3,6,10时,关于x 的一元二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根.法二:()221=481=48n a n a -∆+=设,则代入方程得:()()()22221454250n x n x n -+-+-= ()()12101210=0n x n n x n +++⋅-+-⎡⎤⎡⎤⎣⎦⎣⎦12210821082,21111n n x x n n n n +-=-=--=-=-+++--能力训练1.已知a 、b 为实数,设2006b a -=,如果关于x 的一元二次方程20x ax b ++=的根都是整数,则该方程的根共有( )组. A .4 B .6 C .8 D .10 【解答】解:由韦达定理得12x x a +=-,12x x b =,则12122006x x x x ++=. 所以,12(1)(1)20079223x x ++==⨯9(223)36693(669)12007(1)(2007)=-⨯-=⨯=-⨯-=⨯=-⨯-. 易知方程有6组解. 故选:B .2.已知关于x 的方程2(6)0x a x a +-+=的两根都是整数,求a 的值. 【解答】解:设两个根为12x x …, 由韦达定理得12126x x a x x a +=-⎧⎨=⎩,从上面两式中消去a 得 12126x x x x ++=, 12(1)(1)7x x ∴++=, ∴121711x x +=⎧⎨+=⎩或121117x x +=-⎧⎨+=-⎩,∴1260x x =⎧⎨=⎩或1228x x =-⎧⎨=-⎩,120a x x ∴==或16.3.若关于x 的方程2(6)(9)(11715)540k k x k x ----+=的解都是整数,则符合条件的整数时k 的值有 5 个. 【解答】解:①当60k -=,即6k =时,则原方程为(117156)540x --⨯+=,解得2x =; ②当90k -=,即9k =时,则原方程为(117159)540x --⨯+=,解得3x =-; ③当60k -≠、90k -≠时,即6k ≠且9k ≠时,196x k =-,269x k=-; ①当61k -=±,3±,9±时,x 是整数,此时7k =、5、3、15、3-;③当91k -=±、2±、3±、6±时,x 是整数,此时10k =、8、11、7、12、15、3. 综合①②知,3k =、15、6、7、9时,原方程的解为整数. 故答案为:5.4.设方程222170a x ax a ++-=的两根都是整数,求所有正数a .【解答】解:Q 方程有根,2224(17)0a a a ∴-⨯-…,243280a a -+…,21283a …,121x x a ∴+=-;12217x x a=-,Q 两根之和与两根之积均为整数,∴211a=,4,9.又1a -Q 为整数,∴11a=,2,3,1a ∴=,12,13.5. 1,3,5 提示:a x 321-=,ax 512-=.6.设方程2(6)(3)0x m x m +++-=有两个不同的奇数根,则整数m 的取值为 2-或6- . 【解答】解:设两根为1x 、2x . 12(6)x x m +=-+Q ,123x x m =-g , 12129x x x x ∴++=-g , 12(1)(1)8x x ∴++=-.1x Q 、2x 为奇数,11x ∴+、21x +为偶数, 112x ∴+=,214x +=-或112x +=-,214x +=,11x ∴=,25x =-或13x =-,23x =, 12(6)4x x m ∴+=-+=-或0,2m ∴=-或6-,故答案为:2-或6-.7.设关于x 的二次方程2222(68)(264)4k k x k k x k -++--+=的两根都是整数.求满足条件的所有实数k 的值. 【解答】解:2222(68)(264)4k k x k k x k -++--+=,2222(68)(264)40k k x k k x k -++--+-=, 22(4)(2)(264)(2)(2)0k k x k k x k k --+--+-+=, [(4)(2)][(2)(2)]0k x k k x k -+--++=. (4)(2)0k k --≠Q1214x k ∴=---, 2412x k =---; 1124(1)1k x x ∴-=-≠-+①2242(1)1k x x -=-≠-+②由①②消去k ,得121320x x x ++=g . 12(3)2x x ∴+=-.由于1x ,2x 都是整数.∴12231x x =-⎧⎨+=⎩,12132x x =⎧⎨+=-⎩,12231x x =⎧⎨+=-⎩,即1222x x =-⎧⎨=-⎩,1215x x =⎧⎨=-⎩,1224x x =⎧⎨=-⎩6k ∴=,3,103. 经检验,6k =,3,103满足题意. 8.当x 为何有理数时,代数式29232x x +-的值恰为两个连续正偶数的乘积? 【解答】解:设两个偶数为2n ,22(0)n n +>,则292322(22)x x n n +-=+,即292322(22)0x x n n +--+=.x 为有理数,则方程的△为完全平方数,△2222349[22(22))]36(441)565[6(21)]565n n n n n =+⨯⨯++=+++=++, 设△2m =(不妨设0)m …,22[6(21)](126)(126)56556511135m n m n m n -+=++--==⨯=⨯, 当126565m n ++=时,1261m n --=解得283m =,23n =; 当126113m n ++=时,有1265m n --=解得59m =,4n =;当23n =时,292324648x x +-=⨯,17x =-或1309x =;当4n =时,29232810x x +-=⨯,2x =或419x =-.9.是否存在质数p .q ,使得关于x 的一元二次方程2px qx p O -+=有有理数根? 【解答】解:设方程有有理数根,则判别式为平方数.令△2224q p n =-=, 规定其中n 是一个非负整数.则2()()4q n q n p -+=.(5分) 由于1q n q n -+剟,且q n -与q n +同奇偶,故同为偶数,因此,有如下几种可能情形:222q n q n p -=⎧⎨+=⎩、24q n q n p -=⎧⎨+=⎩、4q n p q n p -=⎧⎨+=⎩、22q n p q n p -=⎧⎨+=⎩、24.q n p q n ⎧-=⎨+=⎩ 消去n ,解得22251,2,,2,2222p p p q p q q q p q =+=+===+.(10分) 对于第1,3种情形,2p =,从而5q =;对于第2,5种情形,2p =,从而4q =(不合题意,舍去); 对于第4种情形,q 是合数(不合题意,舍去).又当2p =,5q =时,方程为22520x x -+=,它的根为121,22x x ==,它们都是有理数.综上所述,存在满足题设的质数.(15分)10. 已知关于y x ,的方程组⎩⎨⎧++-==-++bc x a k y a k y kx )(0)(2只有一组解且为整数解,其中c b a k ,,,均为整数且0>a ,c b a ,,满足12-=--bc a a ,.2=+c b(1)求a 的值; (2)求k 的值及它对的y x ,的值.解:(1)2,12=++-=c b a a bc ,则c b ,是一元二次方程01222=+-+-a a t t 的两根, 故0)(4)1(4422≥--=+--=∆a a a a , 即0)1(≤-a a , 又 ∵ 0≥a 且a 为整数, 则1≥a ,∴1===c b a .(2)由条件得0)1(2=++-k x k kx ,又 ∵原方程只有一组解,当0=k 时,1,0==y x , ∴⎩⎨⎧==10y x 符合条件,此时0=k ; 当0≠k 时,01234)1(222=++-=-+=∆k k k k ,解得1,(3121=-=k k 舍),∴12=k , 即0122=+-x x , ∴1,1-==y x ,∴⎩⎨⎧-==11y x ,符合条件,此时k =1。

专题培优-一元二次方程的整数根(含答案)

专题培优-一元二次方程的整数根(含答案)

一元二次方程的整数根1.使一元二次方程x2+3x+m=0有整数根的非负整数m的个数为( ).A. 0B. 1C. 2D. 32.满足(n2-n-1)n+2=1的整数n有________个.3.已知关于x的方程(a-1)x2+2x-a-1=0的根都是整数,那么符合条件的整数a有________个.4.方程x2+px+q=0的两个根都是正整数,并且p+q=1992,则方程较大根与较小根的比等于________.5.已知k为整数,且关于x的方程(k2-1)x2-3(3k-1)x+18=0有两个不相同的正整数根,则k=________.6.关于x的一元二方程4x2+4mx+m2+m-10=0(m为正整数)有整数根,则满足条件的m值的个数为________个.7.已知关于x的方程((m2−1)x2−3(3m−1)x+18=0有两个正整数根(m是整数).△ABC的三边a,b,c满足c=2√3,m2+a2m−8a=0,m2+b2m−8b=0.求:(1)m的值;(2)△ABC的面积.8.当k为何整数时,方程(k2-1)x2-6(3k-1)x+72=0有两个不相等的正整数根?9.当n为何整数时,关于x的一元二次方程x2-3nx+2n2-6=0的两根都为整数?10.求这样的正整数a,使得方程ax2+2(2a-1)x+4a-7=0至少有一个整数解.11.设关于x的一元二次方程(k2-6k+8)x2+(2k2-6k-4)x+k2=4的两根都是整数,求满足条件的所有实数k的值.12.已知m,n为正整数,关于x的方程x2-mnx+(m+n)=0有正整数解,求m,n的值.13.k为何值时,关于x的方程x2-4mx+4x+3m2-2m+4k=0的根是有理数?14.已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.15.已知一元二次方程x2+ax+b=0,①有两个连续的整数根,一元二次方程x2+bx+a=0,②有整数根,求a,b的值.答案1.C2.43.54.9975.26.47.解:(1)∵关于x 的方程(m 2-1)x 2-3(3m -1)x +18=0有两个正整数根(m 是整数).∵a =m 2-1,b =-9m +3,c =18,∴b 2-4ac =(9m -3)2-72(m 2-1)=9(m -3)2≥0,设x 1,x 2是此方程的两个根,∴x 1•x 2=c a =18m 2−1,∴18m 2−1也是正整数,即m 2-1=1或2或3或6或9或18, 又m 为正整数,∴m =2;(2)把m =2代入两等式,化简得a 2-4a +2=0,b 2-4b +2=0当a =b 时,a =b =2±√当a ≠b 时,a 、b 是方程x 2-4x +2=0的两根,而△>0,由韦达定理得a +b =4>0,ab =2>0,则a >0、b >0.①a ≠b ,c =2√3时,由于a 2+b 2=(a +b )2-2ab =16-4=12=c2 故△ABC 为直角三角形,且∠C =90°,S △ABC =12ab =1.②a =b =2-√2,c =2√3时,因2(2−√2)<2√3,故不能构成三角形,不合题意,舍去. ③a =b =2+√2,c =2√3时,因2(2+√>2√3,故能构成三角形.S △ABC =12×(2√)×√=√综上,△ABC 的面积为1或√. 8.解:∵k 2-1≠0∴k ≠±1∵△=36(k -3)2>0∴km ≠3用求根公式可得:x 1=6k−1,x 2=12k+1∵x 1,x 2是正整数∴k -1=1,2,3,6,k +1=1,2,3,4,6,12,解得k =2.这时x 1=6,x 2=4. 9.解:原方程变形得(x −2n)(x −n)=6,∵x ,n 均为整数,∴原方程化为{x −2n =±2,x −n =±3或{x −2n =±3,x −n =±2或{x −2n =±6,x −n =±1或{x −2n =±1,x −n =±6,解得n =-1或1或-5或5.10.解:原方程变形为(x +2)2a =2x +7(x ≠−2),解得a =2x +7(x +2)2.∵a ≥1,∴2x +7(x +2)2⩾1,∴-3≤x ≤1,∴x 可取值为-3,-1,0,1,分别代入a =2x +7(x +2)2中,解得a =1或a =5或a =74或a =1.又∵a 是正整数,∴当a =1或a =5时,方程至少有一个整数解. 11.解:原方程可化为[(k −4)x +(k −2)][(k −2)x +(k +2)]=0,∵k 2−6k +8=(k −4)(k −2)≠0,∴x 1=−k−2k−4=−1−2k−4,x 2=−k +2k−2=−1−4k−2, ∴k −4=−2x 1+1,k −2=−4x 2+1(x 1≠−1,x 2≠−1),消去k ,得x 1x 2+3x 1+2=0. ∴x 1(x 2+3)=−2.由于x 1,x 2都是整数,∴{x 1=−2,x 2+3=1或{x 1=1,x 2+3=−2或{x 1=2,x 2+3=−1.或{x 1=−2,x 2=−2或{x 1=1,x 2=−5或{x 1=2,x 2=−4. ∴k =6或3或103.经检验均满足题意.12.解:设方程x 2−mnx +(m +n )=0的两根分别为:x 1,x 2,∵m ,n 为正整数,∴x 1+x 2=mn >0,x 1⋅x 2=m +n >0,∴这两个根x 1,x 2均为正数,又∵(x 1−1)(x 2−1)+(m −1)(n −1)=x 1x 2−(x 1+x 2)+1−[mn −(m +n )+1]=(m +n )−mn +1+[mn −(m +n )+1]=2, 其中(x 1−1)(x 2−1),m −1,n −1均非负,而为两个非负整数和的情况仅有0+2;1+1;2+0.∵(x 1−1)(x 2−1)=x 1x 2−(x 1+x 2)+1=m +n −mn +1,(m −1)(n −1)=mn −(m +n )+1,∴{m +n −mn +1=0mn −(m +n)+1=2或{m +n −mn +1=1mn −(m +n )+1=1或{m +n −mn +1=2mn −(m +n)+1=0,解得:{m =2n =3或{m =3n =2或{m =2n =2或{m =1n =5或{m =5n =1.13.解:根据题意得:△=(-4m +4)2-4×(3m 2-2m +4k )=4(m 2-6m +4-4k ),∵方程的解为有理数,∴4(m 2-6m +4-4k )是一个完全平方数,即4-4k =9,解得:k =-54. 14.解:设方程x 2+ax +b =0的两个根为α,β,∵方程有整数根,设其中 α,β为整数,且α≤β,则方程x 2+cx +a =0的两根为α+1,β+1,∴α+β=-a ,(α+1)(β+1)=a ,两式相加,得 αβ+2α+2β+1=0,即 (α+2)(β+2)=3,∴{α+2=1β+2=3或{α+2=−3β+2=−1.解得{α=−1β=1或{α=−5β=−3.又 ∵a =-(α+β)=-[(-1)+1]=0,b =αβ=-1×1=-1,c =-[(α+1)+(β+1)]=-[(-1+1)+(1+1)]=-2, 或a =-(α+β)=-[(-5)+(-3)]=8,b =αβ=(-5)×(-3)=15,c =-[(α+1)+(β+1)]=-[(-5+1)+(-3+1)]=6, ∴a =0,b =-1,c =-2;或者a =8,b =15,c =6,∴a +b +c =0+(-1)+(-2)=-3或a +b +c =8+15+6=29,故a +b +c =-3,或29.15.解:设方程①的两个根式n ,n +1,则{n +(n +1)=−a n(n +1)=b∴a =-(2n +1),b =n (n +1),则方程②可变为x 2+n (n +1)x -(2n +1)=0③,∵方程③有整数根,视n 为主元,∴n 2x +n (x -2)+x 2-1=0④有整数解,∴设△=(x -2)2-4x (x 2-1)=x 2+4-4x 3=p 2(p 为正整数),∴x 2(1-4x )=(p +2)(p -2)⑤.∵p +2>p -2,∴{p +2=x 2p −2=1−4x ⑥,{p +2=x p −2=(1−4x)x ⑦,{p +2=1−4x p −2=x2⑧,{p +2=(1−4x)x p −2=x ⑨, 由⑥得:x 2+4x -1=0,解得:x 1=-5,x 2=1,把x 1=-5代入③得:n =-3或n =85(不合题意,舍去),当n =-3时,a =5,b =6, 把x 2=1代入③得:n 1=0,n 2=1,当n =0时,a =-1,b =0,当n =1时,a =-3,b =2, 对⑦,⑧,⑨继续讨论.综上所述,{a =−1b =0或{a =−3b =2或{a =5b =6.。

中考数学专题训练一元二次方程的根(含解析)

中考数学专题训练一元二次方程的根(含解析)

一元二次方程的根一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.2.一元二次方程x2﹣1=0的根是()A. 1B. ﹣1 C. D. ±13.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是()A. 4B. 0或2 C. 1 D. -14.方程的解是( )A. B. C. , D. ,5.关于x的一元二次方程的一个根为2,则的值是()A. B. C.D.6.一元二次方程ax2+x+c=0,若4a-2b+c=0,则它的一个根是()A. -2B.C. -4D. 27.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A. 1B. 2C. ﹣1 D. ﹣28.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A. 2005B. 2003C. ﹣2005 D. 40109.已知一个直角三角形的两条直角边的长恰好是方程x2-7x+12=0的两根,则这个三角形的斜边长是()A. B. 7 C. 5D. 1210.若一元二次方程有一个根为,则下列等式成立的是()A. B. C.D.11.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0有一个根为0,则m的值()A. 0B. 1或2 C. 1 D. 212.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A. 若x2=4,则x=2B. 若x2+2x+k=0有一根为2,则k=﹣8C. 方程x(2x﹣1)=2x﹣1的解为x=1D. 若分式的值为零,则x=1,213.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A. 1B. 0C. ﹣1 D. 2二、填空题14.若x=2是关于x的方程的一个根,则a 的值为________.15.若方程x2+mx+1=0的一个根是2,则m=________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________ .17.若x=﹣2是关于x的方程x2﹣2ax+8=0的一个根,则a=________.18.方程=﹣x的根是________.19.已知关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是________.20.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是________三、计算题21.先化简,再求值,其中m是方程x2+3x﹣1=0的根.22.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.请你按照上述解题思想解方程(x2+x)2﹣4(x2+x)﹣12=0.23.先化简,再求值:÷(a﹣1+ ),其中a是方程x2﹣x=6的根.24.已知m是方程x2﹣x﹣1=0的一个根,求m(m+1)2﹣m2(m+3)+4的值.四、解答题25.已知关于x的一元二次方程x2﹣6x+k=0的一根为2,求方程的另一根及k的值.26.已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m﹣1)的值.27.如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F 与点B重合为止).(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x , BE=y,请你写出y与x之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?问题②:在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°,如果存在,求出AD的长度;如果不存在,请说明理由.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?五、综合题28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴正半轴上的点,且S△AOE= ,求经过D、E两点的直线解析式及经过点D的反比例函数的解析式,并判断△AOE与△AOD是否相似.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.29.关于x的一元二次方程x2﹣6x+p2﹣2p+5=0的一个根为2.(1)求p值.(2)求方程的另一根.答案解析部分一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.【答案】B【考点】一元二次方程的解【解析】【分析】由题意把x=0代入一元二次方程(a-1)x2+x+a2-1=0即可得到关于a的方程,求得a的值,再结合二次项系数不为0即可求得结果。

初中数学竞赛辅导讲义:第5讲-一元二次方程的整数整数解(含习题解答)

初中数学竞赛辅导讲义:第5讲-一元二次方程的整数整数解(含习题解答)

第五讲 一元二次方程的整数整数解在数学课外活动中,在各类数学竞赛中,一元二次方程的整数解问题一直是个热点,它将古老的整数理论与传统的一元二次方程知识相结合,涉及面广,解法灵活,综合性强,备受关注,解含参数的一元二次方程的整数解问题的基本策略有:从求根入手,求出根的有理表达式,利用整除求解;从判别式手,运用判别式求出参数或解的取值范围,或引入参数(设△=2k ),通过穷举,逼近求解;从韦达定理入手,从根与系数的关系式中消去参数,得到关于两根的不定方程,借助因数分解、因式分解求解;从变更主元入人,当方程中参数次数较低时,可考虑以参数为主元求解.注:一元二次方程的整数根问题,既涉及方程的解法、判别式、韦达定理等与方程相关的知识,又与整除、奇数、偶数、质数、合数等整数知识密切相关.【例题求解】【例1】若关于x 的方程054)15117()9)(6(2=+----x k x k k 的解都是整数,则符合条件的整数是的值有 个.思路点拨 用因式分解法可得到根的简单表达式,因方程的类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定是的值才能全面而准确.注:系数含参数的方程问题,在没有指明是二次方程时,要注意有可能是一次方程,根据问题的题设条件,看是否要分类讨论.【例2】 已知a 、b 为质数且是方程0132=+-c x x 的根,那么ba ab +的值是( ) A .22127 B .22125 C .22123 D .22121 思路点拨 由韦达定理a 、b 的关系式,结合整数性质求出a 、b 、c 的值.【例3】 试确定一切有理数r ,使得关于x 的方程01)2(2=-+++r x r rx 有根且只有整数根.思路点拨 由于方程的类型未确定,所以应分类讨论.当0≠r 时,由根与系数关系得到关于r 的两个等式,消去r ,利用因式(数)分解先求出方程两整数根.【例4】 当m 为整数时,关于x 的方程01)12()12(2=++--x m x m 是否有有理根?如果有,求出m 的值;如果没有,请说明理由.思路点拨 整系数方程有有理根的条件是为完全平方数.设△=22224)12(544)12(4)12(n m m m m m =+-=+-=--+(n 为整数)解不定方程,讨论m 的存在性.注:一元二次方程02=++c bx ax (a ≠0)而言,方程的根为整数必为有理数,而△=ac b 42-为完全平方数是方程的根为有理数的充要条件.【例5】 若关于x 的方程0)13()3(22=-+--a x a ax 至少有一个整数根,求非负整数a 的值. 思路点拨 因根的表示式复杂,从韦达定理得出的a 的两个关系式中消去a 也较困难,又因a 的次数低于x 的次数,故可将原方程变形为关于a 的一次方程.学历训练1.已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数a 有 .2.已知方程019992=+-m x x 有两个质数解,则m = .3.给出四个命题:①整系数方程02=++c bx ax (a ≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程02=++c bx ax (a ≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程02=++c bx ax (a ≠0)的根只能是无理数;④若a 、b 、c 均为奇数,则方程02=++c bx ax 没有有理数根,其中真命题是 .4.已知关于x 的一元二次方程0)12(22=+-+a x a x (a 为整数)的两个实数根是1x 、2x ,则21x x -= .5.设rn 为整数,且4<m<40,方程08144)32(222=+-+--m m x m x 有两个整数根,求m 的值及方程的根.(山西省竞赛题)6.已知方程015132)83(222=+-+--a a x a a ax (a ≠0)至少有一个整数根,求a 的值.7.求使关于x 的方程01)1(2=-+++k x k kx 的根都是整数的k 值.8.当n 为正整数时,关于x 的方程0763*******=-+-+-n n x nx x 的两根均为质数,试解此方程.9.设关于x 的二次方程4)462()86(2222=+--++-k x k k x k k 的两根都是整数,试求满足条件的所有实数k 的值.10.试求所有这样的正整数a ,使得方程0)3(4)12(22=-+-+a x a ax 至少有一个整数解.11.已知p 为质数,使二次方程015222=--+-p p px x 的两根都是整数,求出p 的所有可能值.12.已知方程02=++c bx x 及02=++b cx x 分别各有两个整数根1x 、2x 及1x '、2x ',且1x 2x >0,1x '2x ' >0. (1)求证:1x <0,2x <0,1x '<0,2x '< 0; (2)求证:11+≤≤-b c b ;(3)求b 、c 所有可能的值.13.如果直角三角形的两条直角边都是整数,且是方程0122=+--m x mx 的根(m 为整数),这样的直角三角形是否存在?若存在,求出满足条件的所有三角形的三边长;若不存在,请说明理由.参考答案。

九年级数学尖子生培优竞赛专题辅导第二讲一元二次方程根的判别式(含答案)

九年级数学尖子生培优竞赛专题辅导第二讲一元二次方程根的判别式(含答案)

第二讲一元二次方程根的判别式趣通引路】话说小精灵拜数学高手为师,苦练了十八般数学技艺.一日师傅韦达对小精灵逍:“师傅给你一件随身法宝——“△”,岀去闯荡一下吧!”“小精灵拜别师傅韦达,来到''方程堡”,守门将喝道:“来者何人?”小精灵拱手答道:''晚辈小精灵奉师傅之命前来方程经见识见识守门将道:“先要破我一方程方能进堡!“说时迟,那时快,只见守门将挥手将许多数字、字母和符号排成2x24-2n^7y2-10.Y-18.y+19=0,并且问道:“你能说出实数x、y 的值吗?”小精灵取出法宝灵机一动,将上式中的y看成已知数,把它整理成关于x的一元二次方程2 + (2$—10比+(7尸一18〉,+⑼=0.好哇!因为x是实数,上而的方程必有实数根,所以上0,即(2y-10)2 -4x2(7y2-18y+19)>0,可得(>—1)2<0, 一下子便得到了)=1,再将1代人原方程就可得x=2.小精灵这里用的法宝“△”是什么呢?它就是一元二次方程根的判别式.一元二次方程卅+加+。

=0 (“丸),当A>0时,有两个不相等的实数根;当』=0时,有两个相等的实数根:当AV0时,没有实数根,反过来也成立.知识延伸】例1已知关于x的二次方程0+肿+©=0与"+必卄92=0,求证:当刃力=2(0+化)时,这两个方程中至少有一个方程有实根.证明设这两个方程的判别式为■,则厶|+4=斤+局一4如+砂.:°/刀“2 = 2(</1+§2),.*.A1+A2= P I + Pt ~2p\pi =(J)1 —/?2)2>0.AAi>0与A2>0中至少有一个成立,即两个方程中必有一个方程有实根.点评:两个方程中至少有一个方程有实根,可转化为证明A.+A2>0:本题还可用反证法来证明,即假设WO且A2<0,则A14-A2<O,但A1+A2=(/71~P2)2>O,两者矛盾,从而导出原题结论成立.例2求函数y=(4-x)+2jF +9的最小值.解析设"=2 yjx2 +9 —x,则“>0 且y=4+“..•.(“+劝2=4("+9),即3Q—2”x+36—“2=0.•:xWR,故以上方程有解.A=(2w)2-4x3x(36-w2fe0,即u>27.又“>0,:.U>3y/3.y = 4-X + 2W+9的最小值为4 + 3血(当x=^3时取得).好题妙解】佳题新题品味例【L知实数"[,“2 , “3,“4 满足("f + «22 )«42 ~ 加2 ("l + “3 )“4 + U2 + Ct3= ° '求证:“2'之】,“3解析把已知等式看成关于心的方程。

初中数学竞赛代数专题之二次方程韦达定理

初中数学竞赛代数专题之二次方程韦达定理

一元二次方程根与系数的关系(韦达定理)设1x 和2x 是一元次方程20(0)ax bx c a ++=≠的两个根,则有根与系数的关系(或称为韦达定理)⎪⎩⎪⎨⎧=-=+a c x x a b x x 2121(其中a b c 、、均为实数)一、专题知识利用根与系数的关系(韦达定理),可以不直接求方程20(0)ax bx c a ++=≠而知其根的正负性质:一元二次方程20(0)ax bx c a ++=≠在240b ac ∆=-≥的条件下:(1)0c a <时,方程的两根必然一正一负;(2)0b a -≥时,方程的正根不小于负根的绝对值;(3)0b a -<时,方程的正根小于负根的绝对值;(4)0c a >时,方程的两根同正或同负.二、例题分析例题1如是,a b 关于x 的方程的()()1x c x d ++= 两个根,求()()a c b c ++ 的值。

[解]由已知2()10x c d x cd +++-=,有()1a b c d ab cd +=-+⎧⎨=-⎩,则()()a c b c ++ 22()1()1ab a b x c cd c d c c =+++=--++=-例题2方程22320x x --=的实数根为αβ、,求αβαβ+的值。

[解]原方程22320x x ⇔--=(21)(2)0x x ⇔+-=,由于210x +>只有=2x ,x=2±,所以-4==-1+4αβαβ例题3如果正整数,a b 是关于x的方程229x 1056013a x b --+++的两个根,求,a b 的值。

[解]由已知,有2913a ab -+=,·1056a b b =++从而有213(13b +90a a --=),由于,a b是正整数,故13205522a +=213a =-又由·1056a b b =++10(+b-9ab a =),a-10b-=∙()(10)91而911917131(91)7(13)=⨯=⨯=-⨯-=-⨯-1011091a b -=⎧⎨-=⎩或1091101a b -=⎧⎨-=⎩或1071013a b -=⎧⎨-=⎩或1013107a b -=⎧⎨-=⎩,即11101a b =⎧⎨=⎩或10111a b =⎧⎨=⎩或1723a b =⎧⎨=⎩或2317a b =⎧⎨=⎩,经检验2317a b =⎧⎨=⎩满足方程,此时原方程为2403910x x -+=例题4已知实数,a b 满足条件:423240a a +-=,4230b b +-=,求代数式444a b -+的值。

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值.解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k ab cdb a dc ==++.∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1).例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k .由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________.6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是: ___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1,m>1) 15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。

一元二次方程竞赛试题(含答案)

一元二次方程竞赛试题(含答案)

凤凰一中2012年秋季数学竞赛辅导资料一元二次方程一、 填空题1、已知:βα,为方程0242=++x x 的两个实根,则=++50143βα 22、已知:x 是一元二次方程0132=-+x x 的实数根,那么代数式)252(6332--+÷--x x xx x 的值为: 313、已知:关于x 的一元二次方程0162=++-k x x 的两个实数根是21,x x ,且,242221=+x x 则k 的值是: 54、设实数s,t 分别满足:,01999,01991922=++=++t t s s 且0≠st ,则t s st 14++的值是: -55、若,0132=+-a a 则1383223+++-a a a a 的值是: 26、已知:实数x,y,z 满足9,52-+==+y xy z y x ,则=++z y x 32 87、已知:,014642222=+-+-++z y x z y x 求=--2012)(z y x 08、已知:关于x 的方程0122=++px x 的两个实数根,一个小于1,另一个大于1,则实数p 的取值范围是: 1-<p二、 选择题:9、已知:三个关于x 的一元二次方程,02=++c bx ax ,02=++a cx bx ,02=++b ax cx 恰有一个公共实数根,则abc ca b bc a 222++的值为( D ) A.0 B.1 C.2 D.310、已知实数x,y 满足:,3,3242424=+=-y y x x 则444y x+的值为( A ) A.7 B.2131+ C. 2137+ D. 511、已知:,21+=m ,21-=n 且8)763)(147(22=--+-n n a m m ,则a 的值等于( C )A.-5B.5C. -9D. 912、设,31,3122b b a a =+=+且b a ≠,则代数式2211b a +的值为( B ) A.4 B.7 C. 9 D. 1113、已知:m 是方程0120092=+-x x 的一个根,则代数式1112009200822+++-m m m 的值等于( D )A.2016B.2017C. 2018D. 201914、如果a,b 都是质数,且,013,01322=+-=+-m b b m a a 那么b a a b +的值为( C ) A.22123 B. 22123 或2 C. 22125 D. 22125 或215、已知:实数b a ≠,且满足,)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b ,则ba a ab b +的值为( B )A.23B. -23C. -2D. -1316、若1≠ab ,且有09200152=++a a 及0500192=++b b ,则b a 的值是( A ) A. 59 B. 95 C. 52001- D. 92001-三、解答题:17.已知:方程0120012003200222=-⨯-x x 的较大根是r,方程01200220012=+-x x 的较小根为s ,求s-t 的值。

初中培优竞赛含详细解析 第10讲 一元二次方程

初中培优竞赛含详细解析 第10讲 一元二次方程

1. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、根式方程、二元一次方程、选择题)方程x2+y2+22=x+y+2的整数解有 ( )A. 1组 B . 3组 C . 6组 D . 无穷多组分析:由题意知χ+y≧0,方程化简得xy+2x+y=0,x+2y+2=4. 因为χy≦0,所以上式就分成2×2,1×4,两种情况,对应的整数解有3组.答案:B技巧:将方程化简,在进行因式分解,最后根据整数解来进行情况讨论.易错点:容易将题中一些隐含性的条件忽视,从而造成错解.2.(2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、等腰梯形计算、勾股定理、一元二次方程、选择题)如果某个等腰梯形的下底与对角线长都是10,梯形的上底与高相等,则上底的长是 ( ) A . 5 2 B .6 2 C .5 D .6+x)2+x2=100,整理得x2+4x−60=0.解得分析:设上底长为x,由勾股定理得(10−x2x1=6,x2=−10(舍去).答案:D .技巧:根据图形用勾股定理.易错点:注意方程两根的取舍.3. (2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、选择题)关于x的一元二次方程4x2+4mx+m2+m−10=0(m为正整数)有整数根时,m的值可以取 ( )A . 1个B . 2个C . 3个D . 4个分析:因为χ=−4m±16(10−m), 要使根为整数,则需对m=1,9,6,10.分别进行讨论.8.当m=1时,对应的χ为1、-2成立;当m=9时,对应的χ为4、由求根公式得χ=−m±10−m2-5成立;当=6时,对应的χ为-4、-2成立;当m=10时,对应的χ为-2.所以m的值有4个. 答案:D技巧:先用求根公式表示出根,再根据题目条件进行讨论.易错点:容易漏掉讨论情况.4.(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、填空题)二次多项式x2+2kx−3k2能被x-l整除,k=_______.分析:由题意知该二次多项式对应的关于χ的一元二次方程的根为1,将根代入得到关于k 的一元二次方程,求解即得.详解:方程x2+2kx−3k2=0的一根为1,所以有1+2k−3k2=0.解得:k=1;k=−13⋅技巧:像这种类型的题需要将多项式对应成方程来解.易错点:连续两次对应方程和解得时候要注意,容易出错.5. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、填空题)若关于x的一元二次方程x2+2kx+14−k=0有两个实根,则k的取值范_______分析:因为有两实根,所以只需保证Δ≥0.详解:由题意知Δ=4k2−4(14−k)=4k2+4k−1=(2k+1)2−2≥0.解得 |2k+1|≥2.由此得2k+1≥2或2k+1≤− 2.所以k≥2−12,k≤−2+12.技巧:利用根与系数的判别式来处理.易错点:在开根号、去绝对值时要注意.6. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、填空题)设x1,x2,x3,⋯,x2007为实数,且满足x1x2x3.⋯⋅x2007=x1−x2x3.⋯⋅x2007=x1x2−x3.⋯⋅x2007=⋯=x1x2x3.⋯⋅x2006−x2007=1,则x2000=_______.分析:易知x2000=1符合.因为x1x2x3.⋯.x2000−1x1x2x3.⋯⋅x2000=1,x1x2.x3⋯⋅x1999−1x1x2x3.⋯.x1999=1,解得x1x2x3....⋅x2000=1±52,x1x2′x3.⋯.x1999=1+52,所以x2000=1或x2000=−3±52⋅答案:1或−3±52⋅技巧:将每一个乘积看成一个整体,然后采用一元二次方程思想来解决.易错点:讨论时易遗漏某种情况.7.(4、5)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、解答题)设−a2−2a+1=0,b4−2b2−1=0且1−ab2≠0,求代数式(ab2+b2+1a)2006的值.分析:本题要先观察,发现a、b之间的次数差为2,而且所求为2006次方,所以本题不适合直接去解方程代入.观察发现,条件中的两个方程有相同之处.最后通过根与系数关系求解.详解:因为−a2−2a+1=0,所以(1a )2−2(1a)−1=0.又因为b4−2b2−1=0且1−ab2≠0,所以把1a ,b2看做是方程x2−2x−1=0的两根,由根与系数关系得1a+b2=2,1a⋅b2=−1.所以原式=[(1a+b2)+a1⋅b2]2006=[2+(−1)]2006=12006=1.技巧:通过观察,利用根与系数关系解题 .易错点:公式使用要注意根与系数关系的对应.8. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、应用题、解答题)某种产品按质量分为10个档次,生产最低档次的产品,每件获利润8元;每提高一个档次,每件产品利润增加2元.最低档次的产品每天可生产60件,提高一个档次将减少3件,如果使一天获利润858元,则应生产哪个档次的产品(最低档次为第1档次,档次依次随质量增加而提高)?分析:由题意知,如果设应生产第χ档次的产品,那么由每提升一个档次,减少3件所获的总利润来列方程.详解:设应生产第x档次的产品,由题意得[60−3(x−1)][8+2(x−1)]=858.整理得x2−18x+80=0.解得x1=8,x2=10.答:生产第8档次或第10档次的产品可获利润858元.技巧:找出售出的件数及此时对应的每件的利润.易错点:售出的件数与每件的利润不对应.9. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、一元二次方程、应用题、解答题)大数学家欧拉在《代数论》里有一个关于农妇卖鸡蛋的题目:两个农妇一共带了100个鸡蛋上市,两人所带蛋数不同,但卖得的钱数一样,于是,第一个农妇对第二个农妇说:“如果你的鸡蛋换给我,我可以卖得15个铜板.”第二农妇答道:“但是你的鸡蛋换给我,我只能卖203个铜板,”试问两个农妇各有多少鸡蛋?分析:由两个农妇的话,可求她们卖每个鸡蛋的单价,再根据卖的钱数一样来列方程.详解:设第一个农妇有x个鸡蛋,则第二个农妇有100 -x个鸡蛋,根据题意可列方程15x 100−x =20(100−x)3x,即x2+160x−8000=0,所以x=40或x=−200(舍去).答:第一个农妇有40个鸡蛋.第二个农妇有60个鸡蛋. 技巧:找等量列方程.易错点:计算要细致,避免出错.。

八年级数学竞赛培优 一元二次方程的整数根 含解析

八年级数学竞赛培优  一元二次方程的整数根  含解析

一元二次方程的整数根【思维入门】1.使一元二次方程x 2+3x +m =0有整数根的非负整数m 的个数为 ( )A .0B .1C .2D .32.设n 是正整数,一元二次方程x 2-4x +n =0有整数根,则n =____.3.若关于x 的一元二次方程(k -1)x 2-2x +1=0有整数根,则负整数k 的值为____.4.已知关于x 的一元二次方程x 2+2x +2k -4=0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.5.已知关于x 的一元二次方程x 2-2x +a =0只有正整数根,试求非负整数a 的值.【思维拓展】6.已知k 为自然数,关于x 的一元二次方程x 2+x +10=k (k -1)有一个正整数根,求此正整数根及k .7.若一元二次方程ax 2+2(2a -1)x +4(a -3)=0至少有一个整数根,试求出有这样的正整数a 的值.【思维升华】8.方程x 2+xy +y 2=3(x +y )的整数解有 ( )A .3组B .4组C .5组D .6组9.已知正整数a ,b ,c 满足a +b 2-2c -2=0,3a 2-8b +c =0,则abc 的最大值为______.10.已知a 1,a 2,a 3,a 4,a 5是满足条件a 1+a 2+a 3+a 4+a 5=9的五个不同的整数,若b 是关于x 的方程()x -a 1()x -a 2()x -a 3()x -a 4()x -a 5=2 009的整数根,则b 的值为____.11. 方程x 2+ax +b =0的两根为x 1,x 2,若存在实数a ,b 使得x 31+x 32=x 21+x 22=x 1+x 2,则我们就称这样的两个根()x 1,x 2为一组“黄金根”,则这样的“黄金根”共有____组.参考公式:a 3+b 3=()a +b ⎣⎡⎦⎤()a +b 2-3ab 12.先阅读材料:若整数a 是整系数方程x 3+px 2+qx +r =0的解,则-r =a (a 2+pa +q ),说明a 是r 的因数.根据以上材料,可求得方程x 3+4x 2-3x -2=0的整数解为____.13.已知a ,b 为正整数,关于x 的方程x 2-2ax +b =0的两个实数根为x 1,x 2,关于y的方程y2+2ay+b=0的两个实数根为y1,y2,且满足x1·y1-x2·y2=2 008.求b的最小值.一元二次方程的整数根【思维入门】1.使一元二次方程x2+3x+m=0有整数根的非负整数m的个数为(C) A.0B.1C.2D.32.设n是正整数,一元二次方程x2-4x+n=0有整数根,则n=__3或4__.【解析】一元二次方程x2-4x+n=0有实数根⇔(-4)2-4n≥0,则n≤4.又∵n是正整数,∴n=4时,方程x2-4x+4=0,有整数根2;n=3时,方程x2-4x+3=0,有整数根1,3;n=2时,方程x2-4x+2=0,无整数根;n=1时,方程x2-4x+1=0,无整数根.所以n=3或4.3.若关于x的一元二次方程(k-1)x2-2x+1=0有整数根,则负整数k的值为__-2__.【解析】根据题意得k-1≠0且Δ=(-2)2-4(k-1)=4(2-k)≥0,解得k≤2且k≠1,x=1±2-kk-1.因为原方程有整数根,则2-k=4时,即k=-2时,x有整数根.4.已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.解:(1)Δ=b2-4ac=4-4(2k-4)=20-8k.∵方程有两个不等的实根,∴20-8k>0.∴k<5 2.(2)∵k为正整数,∴0<k<52,即k为1或2,∴x=-1±5-2k.∵方程的根为整数,∴5-2k为完全平方数.当k=1时,5-2k=3;当k=2时,5-2k=1.∴k=2.5.已知关于x的一元二次方程x2-2x+a=0只有正整数根,试求非负整数a的值.解:依题意知,关于x 的一元二次方程x 2-2x +a =0一定有实根,∴Δ≥0,即4-4a ≥0.解得a ≤1.∵a 是非负整数,∴a =1或a =0.当a =1时,关于x 的一元二次方程为x 2-2x +1=0,解这个方程得x 1=x 2=1.∵1是正整数,∴a =1符合题意;当a =0时,关于x 的一元二次方程为x 2-2x =0,解这个方程得x 2=2,x 1=0,∵0不是正整数,∴a =0不符合题意,故舍去.即所求的非负整数a =1.【思维拓展】6.已知k 为自然数,关于x 的一元二次方程x 2+x +10=k (k -1)有一个正整数根,求此正整数根及k .解:将原方程化为x 2+x +10-k (k -1)=0.∵Δ=1-4[10-k (k -1)]=(2k -1)2-40,∴设(2k -1)2-40=m 2(m >0),则(2k -1)2-m 2=40,∴(2k -1+m )·(2k -1-m )=40,∵2k -1+m 与2k -1-m 均为整数,而40=1×40=2×20=4×10=5×8,考虑到2k -1+m 与2k -1-m 奇偶性相同,且2k -1+m >2k -1-m ,故有⎩⎨⎧2k -1+m =20,2k -1-m =2,或⎩⎨⎧2k -1+m =10,2k -1-m =4,分别解得⎩⎨⎧k =6,m =9,或⎩⎨⎧k =4,m =3.分别代入原方程,得x =-1+92=4或x =-1+32=1,故当k =6时,正整数根为4,当k =4时,正整数根为1.7.若一元二次方程ax 2+2(2a -1)x +4(a -3)=0至少有一个整数根,试求出有这样的正整数a 的值.解:将原方程中的x 视作已知数,a 视作元,整理成一个关于a 的一元一次方程,即a (x +2)2=2(x +6).∵x +2≠0,∴a =2(x +6)(x +2)2.又∵a 为正整数,∴2(x +6)(x +2)2≥1,解得-4≤x ≤2.把x =-4,-3-1,0,1,2代入到a =2(x +6)(x +2)2中,得a =1,6,10,3,149,1.∴正整数a 的值为1,3,6,10.【思维升华】8.方程x 2+xy +y 2=3(x +y )的整数解有 ( D )A .3组B .4组C .5组D .6组【解析】 ∵x 2+xy +y 2=3(x +y ),∴(x -3)2+(y -3)2+(x +y )2=18.则符合条件的整数解为⎩⎨⎧x =3,y =0,⎩⎨⎧x =0,y =3,⎩⎨⎧x =-1,y =2,⎩⎨⎧x =2,y =2,⎩⎨⎧x =2,y =-1,⎩⎨⎧x =0,y =0.9.已知正整数a ,b ,c 满足a +b 2-2c -2=0,3a 2-8b +c =0,则abc 的最大值为__2__013__.【解析】 先消去c ,再配方算.6a 2+a +b 2-16b =2⇒6⎝ ⎛⎭⎪⎫a +1122+(b -8)2=66+124. 观察易知上式中a ≤3,故a =1,2,3,经试算,a =1,2时,b 均不是整数;当a =3时,b =5,11,于是有(a ,b ,c )=(3,5,13),(3,11,61),故abc max =3×11×61=2 013.10.已知a 1,a 2,a 3,a 4,a 5是满足条件a 1+a 2+a 3+a 4+a 5=9的五个不同的整数,若b是关于x 的方程()x -a 1()x -a 2()x -a 3()x -a 4()x -a 5=2 009的整数根,则b 的值为__10__.【解析】 因为(b -a 1)(b -a 2)(b -a 3)(b -a 4)(b -a 5)=2 009,且a 1,a 2,a 3,a 4,a 5是五个不同的整数,所以b -a 1,b -a 2,b -a 3,b -a 4,b -a 5也是五个不同的整数.又因为2 009=1×()-1×7×()-7×41,所以b -a 1+b -a 2+b -a 3+b -a 4+b -a 5=41.由a 1+a 2+a 3+a 4+a 5=9,可得b =10.11. 方程x 2+ax +b =0的两根为x 1,x 2,若存在实数a ,b 使得x 31+x 32=x 21+x 22=x 1+x 2,则我们就称这样的两个根()x 1,x 2为一组“黄金根”,则这样的“黄金根”共有__3__组.参考公式:a 3+b 3=()a +b ⎣⎡⎦⎤()a +b 2-3ab 【解析】 由根与系数的关系得x 1+x 2=-a ,x 1x 2=b .再由题中关系式得x 31+x 32=()x 1+x 2⎣⎡⎦⎤()x 1+x 22-3x 1x 2=()x 1+x 22-2x 1x 2=x 1+x 2,即-a ()a 2-3b =a 2-2b =-a .(1)若a =0,则b =0.(2)若a ≠0,则a 2-3b =1,a 2-2b +a =0,于是a +b =-1,()1+b 2-3b -1=0,b ()b -1=0.所以b =0或b =1,即有如下三组a ,b 的值满足条件⎩⎨⎧a =0,b =0,或⎩⎨⎧a =-1,b =0,或⎩⎨⎧a =-2,b =1,则与之对应的两根x 1,x 2为⎩⎨⎧x 1=0,x 2=0,或⎩⎨⎧x 1=0,x 2=1,或⎩⎨⎧x 1=1,x 2=1,共三组. 12.先阅读材料:若整数a 是整系数方程x 3+px 2+qx +r =0的解,则-r =a (a 2+pa +q ),说明a 是r 的因数.根据以上材料,可求得方程x 3+4x 2-3x -2=0的整数解为__x =1__.【解析】 x 3+4x 2-3x -2=0∵原方程可化为2=x (x 2+4x -3),∴2是x 的倍数,∵x 为正整数,∴x =1或2,当x =1时,x 2+4x -3=2;当x =2时,x 2+4x -3=9≠2舍去.∴x 3+4x 2-3x -2=0的整数解为x =1.13.已知a ,b 为正整数,关于x 的方程x 2-2ax +b =0的两个实数根为x 1,x 2,关于y 的方程y 2+2ay +b =0的两个实数根为y 1,y 2,且满足x 1·y 1-x 2·y 2=2 008.求b 的最小值.解:由韦达定理,得x 1+x 2=2a ,x 1·x 2=b ;y 1+y 2=-2a ,y 1·y 2=b . 即⎩⎨⎧y 1+y 2=-2a =-(x 1+x 2)=(-x 1)+(-x 2),y 1·y 2=b =(-x 1)·(-x 2), 解得⎩⎨⎧y 1=-x 1,y 2=-x 2,或⎩⎨⎧y 1=-x 2,y 2=-x 1.把y 1,y 2的值分别代入x 1·y 1-x 2·y 2=2 008得x 1·(-x 1)-x 2·(-x 2)=2 008或x 1·(-x 2)-x 2·(-x 1)=2 008(不成立).即x 22-x 21=2 008,(x 2+x 1)(x 2-x 1)=2 008因为x 1+x 2=2a >0,x 1·x 2=b >0,所以x 1>0,x 2>0.于是有2a ·4a 2-4b =2 008,即a ·a 2-b =502=1×502=2×251.因为a ,b 都是正整数,所以⎩⎨⎧a =1,a 2-b =5022,或⎩⎨⎧a =502,a 2-b =1,或⎩⎨⎧a =2,a 2-b =2512,或⎩⎨⎧a =251,a 2-b =4. 分别解得⎩⎨⎧a =1,b =1-5022,或⎩⎨⎧a =502,b =5022-1, 或⎩⎨⎧a =2,b =4-2512,或⎩⎨⎧a =251,b =2512-4. 经检验只有⎩⎨⎧a =502,b =5022-1,⎩⎨⎧a =251,b =2512-4符合题意.所以b 的最小值为b 最小值=2512-4=62 997.。

中考数学专题练习一元二次方程的根(含解析)

中考数学专题练习一元二次方程的根(含解析)

2019中考数学专题练习-一元二次方程的根(含解析)一、单选题1.若方程x2-c=0的一个根为-3,则方程的另一个根为()A. 3B. -3C. 9D. -2.方程4x2﹣kx+6=0的一个根是2,那么k的值和方程的另一个根分别是()A. 5,B. 11,C. 11,﹣D.5,﹣3.已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A. 1B. -1C. 0D. 无法确定4.下列一元二次方程有两个相等实数根的是()A.B.C.D.5.已知x=-1是关于x的方程2x2+ax-a2=0的一个根,则a为()A. 1B. 2C. 3D. -2或16.已知关于x的方程x2+m2x﹣2=0的一个根是1,则m的值是()A. 1B. 2C. ±1D. ±27.若方程x2-5x=0的一个根是a,则a2-5a+2的值为()A. -2B. 0C. 2D. 48.已知一元二次方程的两根是,则这个方程可以是( )A.B.C.D.9.若n()是关于x的方程的根,则m+n的值为A. 1B. 2C. -1D. -210.关于的方程的一个根为,则的值为()A.B.C.D.11.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是()A. 1B. 0C. 0或1D. 0或-112.若x=2是关于一元二次方程﹣x2++a2=0的一个根,则a的值是()A. 1或4B. 1或﹣4C. ﹣1或﹣4D. ﹣1或413.关于x的一元二次方程(m﹣1)x2+6x+m2﹣1=0有一个根是0,则m取值为()A. 1B. ﹣1C. ±1D. 014.若x=3是关于x的方程x2﹣bx﹣3a=0的一个根,则a+b的值为()A. 3B. -3C. 9D. -915.一元二次方程ax2+x+c=0,若4a-2b+c=0,则它的一个根是()A. -2B.C. -4D. 216.下列方程中解为x=0的是()A. 2x+3=2x+1B. 5x=3xC.+4=5x D. x+1=017.若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()A. 1B. ﹣1C. 2D. ﹣218.已知=2是关于的方程的一个解,则2a-1的值是()A. 3B. 4C. 5D. 6二、填空题19.已知x=1是方程x2+mx+3=0的一个实数根,则m的值是________.20.若a是关于方程x2﹣2019x+1=0的一个根,则a+ =________.21.若一元二次方程ax2﹣bx﹣2019=0有一根为x=﹣1,则a+b=________.22.一元二次方程x2+px﹣2=0的一个根为2,则p的值________三、计算题23.解方程x2+6x+1=0.24.解方程:2x2+3x﹣5=0.25.解方程组:.26.已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值.27.已知关于x的一元二次方程x2﹣(k+1)x﹣6=0的一个根为2,求k的值及另一个根.28.解方程:x2﹣2(x+4)=0.四、解答题29.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.30.关于x的方程x2﹣(k+1)x﹣6=0的一个根是2,求k的值和方程的另一根.31.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”.如果关于x的一元二次方程x2﹣4x+5m=mx+5与x2+x+m﹣1=0互为“友好方程”,求m的值.五、综合题32.已知:x2+3x+1=0.求:(1)x+ ;(2)x2+ .33.已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.34.如图,抛物线y=x2+x﹣2与x轴交于A,B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.答案解析部分一、单选题1.若方程x2-c=0的一个根为-3,则方程的另一个根为()A. 3B. -3C. 9D. -【答案】A【考点】一元二次方程的解【解析】【分析】根据一元二次方程的解的定义,将x=-3代入方程x2-c=0,求得c的值;然后利用直接开平方法求得方程的另一根.【解答】∵方程x2-c=0的一个根为-3,∴x=-3满足方程x2-c=0,∴(-3)2-c=0,解得,c=9;∴x2=9,∴x=±3,解得,x1=3,x2=-3;故方程的另一根是3;故选A.2.方程4x2﹣kx+6=0的一个根是2,那么k的值和方程的另一个根分别是()A. 5,B. 11,C. 11,﹣D.5,﹣【答案】B【考点】一元二次方程的解【解析】【解答】解:把x=2代入方程4x2﹣kx+6=0,得4×22﹣2k+6=0,解得k=11,再把k=11代入原方程,得4x2﹣11x+6=0,解得x=2或,那么k=11,另一个根是x=.故选B.【分析】根据一元二次方程的解的定义,把x=2代入方程得到k的值,再计算另外一个根,即可求解.3.已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A. 1B. -1C. 0D. 无法确定【答案】B【考点】一元二次方程的解【解析】【分析】由题意把x=1代入方程(m-1)x2+x+1=0即可得到关于m的方程,解出即可。

2019中考数学专题训练一元二次方程的根(含解析)

2019中考数学专题训练一元二次方程的根(含解析)

一元二次方程的根一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1D.2.一元二次方程x2﹣1=0的根是()A. 1B. ﹣1C.D. ±13.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是()A. 4B. 0或2C. 1D. -14.方程的解是( )A. B. C., D. ,5.关于x的一元二次方程的一个根为2,则的值是()A.B.C.D.6.一元二次方程ax2+x+c=0,若4a-2b+c=0,则它的一个根是()A. -2B.C. -4D. 27.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A. 1B. 2C. ﹣1D. ﹣28.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A. 2005 B . 2003 C.﹣2005 D. 4 0109.已知一个直角三角形的两条直角边的长恰好是方程x2-7x+12=0的两根,则这个三角形的斜边长是()A.B. 7C. 5D. 1210.若一元二次方程有一个根为,则下列等式成立的是()A. B.C.D.11.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0有一个根为0,则m的值()A. 0B. 1或2C. 1D. 212.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A. 若x2=4,则x=2B. 若x2+2x+k=0有一根为2,则k=﹣8C. 方程x(2x﹣1)=2x﹣1的解为x=1 D. 若分式的值为零,则x=1,2。

初中数学竞赛:求根公式(附练习题及答案)

初中数学竞赛:求根公式(附练习题及答案)

初中数学竞赛:求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式aacb b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。

【例3】 解关于x 的方程02)1(2=+--a ax x a 。

思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。

【例4】设方程04122=---x x ,求满足该方程的所有根之和。

思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。

【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值。

思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。

注:一元二次方程常见的变形形式有:(1)把方程02=++c bx ax (0≠a )直接作零值多项式代换;(2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次;(3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x 。

专题:一元二次方程根的判别式(含答案)-

专题:一元二次方程根的判别式(含答案)-

一元二次方程根的判别式姓名◆课前预习1.一元二次方程ax2+bx+c=0(a≠0)的根的情况可用b2-4ac来判定,b2-4ac叫做________,通常用符号“△”为表示.(1)b2-4ac>0⇔方程_________;(2)b2-4ac=0⇔方程_________;(3)b2-4ac<0⇔方程_________.2.使用根的判别式之前应先把方程化为一元二次方程的________形式.◆互动课堂【例1】不解方程,判别下列方程根的情况:(1)x2-5x+3=0;(2)x2(3)3x2+2=4x(4)mx2+(m+n)x+n=0(m≠0,m≠n).【例2】若关于x的方程(m2-1)x2-2(m+2)x+1=0有实数根,求m的取值范围.【例3】已知关于x的一元二次方程x2-(2k+1))=0.求证:无论k取什么实数值,x+4(k-12这个方程总有实数根;【例4】已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取何值时,方程有两个实数根?(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.◆跟进课堂1.方程2x2+3x-4=0的根的判别式△=________.2.已知关于x的一元二次方程mx2-10x+5=0有实数根,则m的取值范围是______.3.如果方程x2-2x-m+3=0有两个相等的实数根,则m的值为_______,此时方程的根为________.4.若关于x的一元二次方程kx2+2x-1=0没有实数根,则k的取值范围是______.5.若关于x的一元二次方程mx2-2(3m-1)x+9m-1=0有两个实数根,则实数m的取值范围是_______.6.下列一元二次方程中,没有实数根的是().A.x2+2x-1=0 B.x2+2x+3=0C.x27.如果方程2x(kx-4)-x2-6=0有实数根,则k的最小整数是().A.-1 B.0 C.1 D.28.下列一元二次方程中,有实数根的方程是().A.x2-x+1=0 B.x2-2x+3=0 C.x2+x -1=0 D.x2+4=09.如果关于x的一元二次方程kx2-6x+9=0有两个不相等的实数根,那么k的取值范围是().A.k<1 B.k≠0 C.k<1且k≠0 D.k>110.关于x的方程x2+(3m-1)x+2m2-m=0的根的情况是().A.有两个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根◆课外作业1.在下列方程中,有实数根的是( )(A )x 2+3x+1=0 (B(C )x 2+2x+3=0 (D )1x x -=11x -2.关于x 的一元二次方程x 2+kx -1=0的根的情况是A 、有两个不相等的同号实数根B 、有两个不相等的异号实数根C 、有两个相等的实数根D 、没有实数根 3.关于x 的一元二次方程(a -1)x 2+x +a 2+3a-4=0有一个实数根是x =0.则a 的值为( ).A 、1或-4B 、1C 、-4D 、-1或44.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是 .5.若0是关于x 的方程(m -2)x 2+3x+m 2-2m -8=0的解,求实数m 的值,并讨论此方程解的情况.6.不解方程,试判定下列方程根的情况.(1)2+5x=3x 2 (2)x 2-((3 )x2-2kx+(2k-1)=0 (x为未知数)7.关于x的一元二次方程mx2-(3m-1)x+2m -1=0,其根的判别式的值为1,求m的值及该方程的解.8.已知a、b、c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b有两个相等的实数根,试判(x2-m)-断△ABC的形状.10.如果关于x的方程mx2-2(m+2)x+m+5=0没有实数根,试判断关于x的方程(m-•5)x2-2(m-1)x+m=0的根的情况.11.已知关于x的方程(n-1)x2+mx+1=0 ①有两个相等的实数根.(1)求证:关于y的方程m2y2-2my-m2-2n2+3=0 ②必有两个不相等的实数根;(2)如果方程①的一个根是-1,求方程②的2根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u 初中数学竞赛专题选讲一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值.解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k ab cdb a dc ==++.∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1).例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k .由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是_x=0__.② 3x 2+(2-3)x -2=0的一个整数根是_x=1__.③ x 2+(5+1)x+5=0的一个整数根是__x=-1_.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是_5/4__.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=_1__.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=__1_.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:_____9q=2p2______.6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是_一正一负___.7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( A ).(A)2 (B )1 ( C )0 (D )不能确定8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?a=1 b=-1/29. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( C )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是:____a 不等于 b _______.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.M=-1 b=212. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1, m>1)15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。

相关文档
最新文档