第二章课堂练习 材料力学

合集下载

《材料力学》第2章轴向拉(压)变形习题解答

《材料力学》第2章轴向拉(压)变形习题解答

其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊

材料力学第二章的习题答案

材料力学第二章的习题答案

材料力学第二章的习题答案材料力学第二章的习题答案材料力学是一门研究物质的力学性质和变形行为的学科,其内容涉及广泛且深奥。

在学习材料力学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对理论知识的理解,提高解决实际问题的能力。

本文将为大家提供材料力学第二章的习题答案,希望能对大家的学习有所帮助。

第一题:一个长为L、截面为A的均匀杆件,其杨氏模量为E,受到拉力F。

求杆件的伸长量。

解答:根据胡克定律,应力与应变成正比。

应力σ等于拉力F除以截面积A,应变ε等于伸长量ΔL除以杆件的原始长度L。

根据胡克定律的表达式σ=Eε,我们可以得到伸长量的计算公式:ΔL = FL / (AE)其中,ΔL为伸长量,F为拉力,L为杆件的原始长度,A为截面积,E为杨氏模量。

第二题:一个长为L、截面为A的均匀杆件,其杨氏模量为E,受到弯矩M。

求杆件的弯曲角度。

解答:根据弯曲理论,弯矩M等于杆件截面上的应力σ乘以截面的转动惯量I。

弯曲角度θ等于弯矩M乘以杆件的长度L除以杨氏模量E乘以截面的转动惯量I。

因此,弯曲角度的计算公式为:θ = ML / (EI)其中,θ为弯曲角度,M为弯矩,L为杆件的长度,E为杨氏模量,I为截面的转动惯量。

第三题:一个长为L、截面为A的均匀杆件,其杨氏模量为E,受到剪力V。

求杆件的剪切变形。

解答:根据剪切变形的定义,剪切变形γ等于剪力V乘以杆件的长度L除以杨氏模量E乘以截面的剪切模量G。

因此,剪切变形的计算公式为:γ = VL / (EG)其中,γ为剪切变形,V为剪力,L为杆件的长度,E为杨氏模量,G为截面的剪切模量。

通过解答以上三个习题,我们可以看到材料力学第二章主要涉及杆件的拉伸、弯曲和剪切变形问题。

通过掌握这些基本的计算公式,我们能够准确地计算杆件在不同受力情况下的变形量。

这对于工程实践中的结构设计和材料选用具有重要的指导意义。

除了以上习题,材料力学第二章还包括其他一些重要的内容,如应力、应变、弹性模量、截面形状对杆件变形的影响等。

材料力学习题第二章答案

材料力学习题第二章答案

材料力学习题第二章答案材料力学习题第二章答案材料力学是工程力学的重要分支,主要研究物质在外力作用下的变形和破坏规律。

在学习材料力学的过程中,习题是不可或缺的一部分。

通过解答习题,可以巩固理论知识,提高问题解决能力。

本文将针对材料力学习题第二章进行解答,并探讨其中的一些重要概念和原理。

第一题:一根长为L,截面积为A的均匀杆件,两端分别受到大小相等、方向相反的拉力F。

求该杆件的伸长量。

解答:根据胡克定律,杆件的伸长量与拉力成正比。

设伸长量为ΔL,则有ΔL = FL/EA,其中E为杨氏模量。

根据题意,两个拉力的大小相等,方向相反,因此合力为零。

根据牛顿第三定律,合力为零时,杆件处于力的平衡状态,即ΔL = 0。

因此,该杆件的伸长量为零。

第二题:一根长为L,截面积为A的均匀杆件,受到大小为F的拉力,使其产生弹性变形。

求该杆件的应变能。

解答:应变能是指物体在外力作用下所储存的能量。

对于弹性杆件,应变能可以通过应力-应变关系来计算。

设杆件的应变为ε,则有ε = σ/E,其中σ为杆件的应力。

应变能的计算公式为U = (1/2)σεV,其中V为杆件的体积。

将应力-应变关系代入,可得U = (1/2)σ^2V/E。

根据题意,杆件受到大小为F的拉力,应力为F/A,体积为AL,因此应变能为U = (1/2)(F^2/A^2)(AL)/E。

第三题:一根长为L,截面积为A的均匀杆件,受到大小为F的拉力,使其产生塑性变形。

求该杆件的塑性应变。

解答:塑性变形是指杆件在超过弹性极限后,无法恢复原状的变形。

对于塑性材料,应力-应变关系是非线性的。

设杆件的塑性应变为εp,则有εp = σp/E,其中σp为杆件的塑性应力。

根据题意,杆件受到大小为F的拉力,应力为F/A。

塑性应力通常大于弹性极限,因此可以将塑性应力近似为弹性极限σy,其中σy 为屈服强度。

由此可得塑性应变为εp = σy/E。

通过以上习题的解答,我们可以看到材料力学中一些重要的概念和原理的应用。

《材料力学》第2章 轴向拉压变形 习题解

《材料力学》第2章 轴向拉压变形 习题解

第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。

(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。

(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。

试绘板件的轴力图,并计算板内的最大拉应力。

解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。

α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。

材料力学第五版第二章习题答案

材料力学第五版第二章习题答案
(a)
F F
m m
m m
F
(b)
FN
x m m
FN F
F
(c)
FN
(a)
F
m
m
F
(b)
F
FN
m
FN
x m m
m
FN F
F
(c)
若用平行于杆轴线的坐标表示横截面的位置,用 垂直于杆轴线的坐标表示横截面上轴力的数值, 所绘出的图线可以表明轴力与截面位置的关系, 称为轴力图。
F F F
讨论: ( 1) 0
90 (2) 45 45
0
max 0 (横截面) 0 (纵截面) max 0 / 2 min 0 / 2
0 0
(横截面) (纵截面)
90
观察现象:
等直杆相邻两条横向线在杆受拉(压)后仍 为直线,仍相互平行,且仍垂直于杆的轴线。 F
a a' b' b c c' d' d
F
平面假设
原为平面的横截面在杆变形后仍为平面, 对于拉(压)杆且仍相互平行,仍垂直于轴线。
推论:
1、等直拉(压)杆受力时没有发生剪切变形, 因而横截面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线 段的伸长(缩短)变形是均匀的。 亦即横截面上各点处的正应力 都相等。
FN,max FN2 50kN

补充 例题1
l
F
F
q=F/l
F 2l l 3 F
解: 1、求支反力
1 FR 1 F F F 2 F'=2ql F 3 F 2 q
FR

材料力学练习册答案

材料力学练习册答案

第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b 由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。

在考虑杆本身自重时,11-和22-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑x F ,得kN la F N 08.04/21==γ22-截面,取右段如)(b 由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。

试作轴力图并求杆的总伸长及杆下端横截面上的正应力。

GPa E 200=钢。

解:轴力图如图。

杆的总伸长:m EA l F l N 59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。

试求荷载P 及在P 作用下杆内的最大正应力。

(GPa E 80=铜,GPa E 200=钢)。

解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP 解得: kN P 7.16=杆内的最大正应力:4/4/4/4/)(a )(b )(c 2N1N )(a kNkN图NF cm cmcmMPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。

第2章材料力学练习题及答案xt

第2章材料力学练习题及答案xt

第2章 材料力学2-1 什么是内力?什么是截面法?如何用截面法求内力?解:内力是系统内的相互作用力。

抵抗受外力作用而变形的能力。

求解内力的普遍方法是截面法,即假想截开、任意留取、平衡求力。

为了显示杆件轴向拉压时的内力,以截面m-m 将一杆件切为左、右两段,如图2-3(a )所示。

在分离的截面上,有使杆件产生轴向变形的内力分量,即轴力N F 。

以杆件左段为研究对象,列平衡方程∑=0x F ,即得轴力F =N F 。

轴力N F 的作用线与杆件的轴线重合,方向如图2-3(b )和图2-3(c )所示。

由于截面m-m 左右两侧的轴力互为作用力和反作用力,因而它们大小相等、方向相反。

为使截面m-m 左右两侧的轴力具有相同的正负号,必须规定轴力的正负。

轴力的正负由杆件的变形确定。

当轴力的方向与截面的外法线方向一致时,杆件受拉伸长,其轴力为正;反之,当轴力的方向与截面的外法线方向相反时,杆件受压缩短,其轴力为负。

通常未知轴力按正向假设,由计算结果确定实际指向,如图2-4所示。

图2-3 轴力分析 图2-4 轴力的方向 由此可知,杆件轴力的确定方法完全与静力分析的方法相同,而且在建立平衡方程时无需考虑杆件变形的形式。

2-2 写出拉压胡克定律的表达式,解释每个代号的含义,并说明其适用范围。

解: EAL F L N =∆ 此式称为胡克定律。

比例常数E 称为材料的弹性模量,是材料固有的力学性质,与泊松比μ同为表征材料的弹性常数。

对同一种材料,E 为常数。

弹性模量具有应力的单位,常用GPa 表示;分母EA 称为杆件的抗拉压刚度,是衡量材料抵抗弹性变形能力的一个指标。

将式(2-3)、式(2-5)代入式(2-1),得胡克定律的另一表达式为εσE = 由此,胡克定律又可简述为若应力未超过某一极限值,则应力与应变呈正比。

当应力值超过比例极限P R 后,低碳钢ε-σ曲线已不是直线,胡克定律不再适用。

此时,若将外力卸去,试件的变形也随之全部消失,这种变形即为弹性变形,e R 称为弹性极限2-3 塑性材料和脆性材料的力学性能有哪些主要区别?解:构件在实际工作中所能承受的应力都是有限度的,因此,把构件材料失效时的应力称为极限应力,用u σ表示。

《材料力学》第二章课后习题及参考答案

《材料力学》第二章课后习题及参考答案
简答题2答案
在材料力学中,应力和应变是描述材料受力状态的基本物理量。应力表示单位面积上的 力,而应变则表示材料的变形程度。
简答题3答案
弹性力学和塑性力学是材料力学的重要分支。弹性力学主要研究材料在弹性范围内的应 力、应变和位移,而塑性力学则研究材料在塑性变形阶段的力学行为。
选择题答案
80%
选择题1答案
选择题3解析
这道题考察了学生对材料力学中 弯曲应力的理解,学生需要理解 弯曲应力的概念和计算方法,并 能够根据实际情况进行选择和应 用。
计算题解析
01
计算题1解析
这道题主要考察了学生对材料力学中拉压杆的计算能力,学生需要掌握
拉压杆的应力、应变计算方法,并能够根据实际情况进行选择和应用。
02
计算题2解析
计算题2答案
根据题意,先求出梁的剪力和弯矩,然后根据剪力和弯矩的关系 求出梁的位移分布,最后根据位移和应力的关系求出应力分布。
03
习题解析Biblioteka 简答题解析简答题1解析这道题考查了学生对材料力学 基本概念的理解,需要明确应 力和应变的概念及关系,并能 够解释在材料力学中如何应用 。
简答题2解析
这道题主要考察了学生对材料 力学中弹性模量的理解,以及 如何利用弹性模量进行相关计 算。学生需要理解弹性模量的 物理意义,掌握其计算方法。
C. 材料力学的任务之一是研究材 料的各种力学性能,包括强度、 刚度和稳定性等。
100%
选择题2答案
D. 在材料力学中,应力和应变是 描述材料受力状态的基本物理量 。
80%
选择题3答案
B. 材料力学主要研究材料的力学 性能和内部结构的关系,包括弹 性、塑性和韧性等。
计算题答案

材料力学作业习题

材料力学作业习题

第二章 轴向拉伸与压缩1、试求图示各杆1-1与2-2横截面上的轴力,并做轴力图。

(1) (2)2、图示拉杆承受轴向拉力F =10kN,杆的横截面面积A =100mm 2。

如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力与切应力,并用图表示其方向。

3、一木桩受力如图所示。

柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。

4、(1)试证明受轴向拉伸(压缩)等于直径方向的线应变d ε。

(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0、0025mm 。

如材料的弹性摸量E =210GPa,泊松比ν=0、3,试求轴向拉力F 。

(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0、3。

当其受轴向拉伸时, 已知纵向线应变ε=0、001,试求其变形后的壁厚δ。

5、图示A 与B 两点之间原有水平方向的一根直径d =1mm 的钢丝,在钢丝的中点C 加一竖直荷载F 。

已知钢丝产生的线应变为ε=0、0035,其材料的弹性模量E =210GPa,钢丝的自重不计。

试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。

6、简易起重设备的计算简图如图所示、一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。

试问在提起重量为P=15kN的重物时,斜杆AB就是否满足强成,钢的许用应力]度条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。

已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。

材料力学答案第二章

材料力学答案第二章

第二章 拉伸、压缩与剪切第二章答案2.1 求图示各杆指定截面的轴力,并作轴力图。

40kN 50kN 25kN(a )44F RF N440kN 3F N325kN 2F N220kN11F N1解:F R =5kN F N 4=F R =5 kNF N 3=F R +40=45 kNF N 2=-25+20=-5 kNF N 1=20kN45kN 5kN20kN5kN(b)110kN6kNF N1=10 kNF N2=10-10=0F N3=6 kN1—1截面:2—2截面:3—3截面:10kNF N11110kN10kN22F N26kN33F N32.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)6π=θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。

解:320101MPa0.10.2P A σ⨯===⨯2303cos 14σσα==⨯=3013sin600.433MPa 222στ==⨯=max 1MPaσσ==max 0.5MPa2στ==F2.3 图示一正方形截面的阶梯形混凝土柱。

设重力加速度g = 9.8m/s 2, 混凝土的密度为33m /kg 1004.2⨯=ρ,F = 100kN ,许用应力[]MPa 2=σ。

试根据强度条件选择截面宽度a和b 。

ba解:24,aρ⋅3422.0410ρ=⨯⨯11[]aσσ=0.228ma ≥==22342424431001021040.2282104a b b ρρ=⋅+⋅=⨯⨯+⨯⨯⨯+⨯⨯⨯2[],bσσ≥0.398m 398mmb ≥==2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。

BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。

为使杆系使用的材料最省,试求夹角θ的值。

F F N Fθθsin ,0sin ,022F F F F F N N Y ==-=∑F F F F F N N N Xθθcos ,0cos ,0112==-=∑1A =2A A 2A 1解:[])sin cos cos sin 1(cos 1221θθθθσθ+=+=+=Fl l A l A V V V [])cot 2(tan θθσ+=Fl)cot tan cos sin cos sin cos sin 1(22θθθθθθθθ+=+=θθθθθ22sin 1)(,cos 1)(tan ,0-='='=ctg d d 由V 0sin 2cos 1)2(tan 22=-=+θθθθθctg d d 0cos 2sin ,0cos sin cos 2sin 222222=θ-θ=θθθ-θ44.54,2tan ,2tan 2===θθθ2.5 图示桁架ABC ,在节点C 承受集中载荷F 作用。

材料力学第二章轴向拉伸与压缩习题答案

材料力学第二章轴向拉伸与压缩习题答案
3-10图示凸缘联轴节传递的力偶矩为 ,凸缘之间用四个对称分布在 圆周上的螺栓联接,螺栓的内径 ,螺栓材料的许用切应力 。试校核螺栓的剪切强度。
解:
设每个螺栓承受的剪力为 ,则由
可得
螺栓的切应力
MPa MPa
∴螺栓满足剪切强度条件。
3-11图示矩形截面木拉杆的接头。已知轴向拉力 ,截面的宽度 ,木材顺纹的许用挤压应力 ,顺纹的许用切应力 。试求接头处所需的尺寸l和a。
解:
1.求支反力,作剪力图和弯矩图。

2.按正应力强度条件选择工字钢型号
由 ≤ ,得到

查表选 14工字钢,其
, ,
3.切应力强度校核
满足切应力强度条件。
∴选择 14工字钢。
5-17图示木梁受移动载荷 作用。已知木材的许用正应力 ,许用切应力 , ,木梁的横截面为矩形截面,其高宽比 。试选择此梁的横截面尺寸。

可得 ≤ ①
D点受力如图(b)所示,由平衡条件可得:
CD杆受压,压力为 ,由压杆的强度条件

可得 ≤ ②
由①②可得结构的许用载荷为 。
3-8图示横担结构,小车可在梁AC上移动。已知小车上作用的载荷 ,斜杆AB为圆截面钢杆,钢的许用应力 。若载荷F通过小车对梁AC的作用可简化为一集中力,试确定斜杆AB的直径d。
截面上的剪力和弯矩为: ,
2.求1-1横截面上a、b两点的应力
5-10为了改善载荷分布,在主梁AB上安置辅助梁CD。若主梁和辅助梁的抗弯截面系数分别为 和 ,材料相同,试求a的合理长度。
解:
1.作主梁AB和辅助梁CD的弯矩图
2.求主梁和辅助梁中的最大正应力
主梁:
辅助梁:
3.求 的合理长度

材料力学作业

材料力学作业

第一章 绪论1、 试求图示结构m-m 与n-n 两截面上的内力,并指出AB 与BC 两杆的变形属于何类基本变形。

2、 拉伸试样上A,B 两点的距离l 称为标距。

受拉力作用后,用变形仪量出两点距离的增量为mm l 2105-⨯=∆。

若l 的原长为l =100mm,试求A 与B 两点间的平均应变m ε。

第二章 轴向拉伸与压缩与剪切一、选择题1、等直杆受力如图,其横截面面积A=1002mm ,则横截面mk上的正应力为( )。

(A)50MPa(压应力); (B)40MPa(压应力);(C)90MPa(压应力); (D)90MPa(拉应力)。

2、低碳钢拉伸经过冷作硬化后,以下四种指标中哪种得到提高( ):(A)强度极限; (B)比例极限;(C)断面收缩率; (D)伸长率(延伸率)。

3、图示等直杆,杆长为3a,材料的抗拉刚度为EA,受力如图。

杆中点横截面的铅垂位移为( )。

(A)0;(B)Pa/(EA);(C)2 Pa/(EA);(D)3 Pa/(EA)。

4、图示铆钉联接,铆钉的挤压应力bs σ就是( )。

(A)2P/(2d π); (B)P/2dt;(C)P/2bt; (D)4p/(2d π)。

5、铆钉受力如图,其压力的计算有( )(A)bs σ=p/(td);(B)bs σ=p/(dt/2);(C)bs σ=p/(πdt/2);(D)bs σ=p/(πdt/4)。

6、图示A 与B 的直径都为d,则两面三刀者中最大剪应力为( ) (A)4bp/(2d απ); (B)4(αb +)P/(2d απ); (C)4(a b +)P/(2b d π); (D)4αP/(2b d π)、 7、图示两木杆(I 与II)连接接头,承受轴向拉力作用,错误的就是( )、 (A)1-1截面偏心受拉; (B)2-2为受剪面; (C)3-3为挤压面;(D)4-4为挤压面。

二、填空题1、低碳钢的应力一应变曲线如图所示。

试在图中标出D点的弹性应变e ε、塑性应变p ε及材料的伸长率(延伸率)δ。

材料力学第二章习题

材料力学第二章习题

材料⼒学第⼆章习题材料⼒学第⼆章习题习题2.1试画出图⽰各杆的轴⼒图题2.1图2.2 图⽰中段开槽的杆件,两端受轴向载荷P 作⽤,试计算截⾯1 - 1和截⾯2 – 2上的正应⼒。

已知:,mm b20=,mm b 100=,mm t 4=。

题2.2图2.3图⽰等直杆的横截⾯直径mm d 50=,轴向载荷。

( 1 ) 计算互相垂直的截⾯AB 和BC 上正应⼒和切应⼒;( 2 ) 计算杆内的最⼤正应⼒和最⼤切应⼒。

2.4图⽰为胶合⽽成的等截⾯轴向拉杆,杆的强度由胶缝控制,已知胶的许⽤切应⼒[]τ为许⽤正应⼒[]σ的1/2。

问α为何值时,胶缝处的切应⼒和许⽤应⼒[σ]=100MPa。

杆1横截⾯⾯积A1=300mm2,杆2横截⾯⾯积A2=200mm2,CE=0.5m, ED=1.5m。

试按杆1,杆2的强度确定许可载荷[F]。

2.8杆长,横截⾯积均相同的两杆,⼀为钢杆另⼀为灰铸铁杆。

欲组装成图⽰等边三⾓架。

已知杆长=0.5m,杆的横截⾯积A=400mm2,钢的许⽤应⼒【σ】=160MPa,灰铸铁的许⽤拉应⼒=30MPa,许⽤压应⼒=90MPa。

试问如何安装较为合理?求这时的最⼤许可载荷[F]。

2.9图⽰桁架,由圆截⾯杆1与杆2组成,并在节点A承受外⼒F=80kN作⽤。

杆1,杆2的直径分别为d1=30mm和d2=20mm,两杆的材料相同,屈服极限σs=320MPa,安全系数n s=2.0。

试校核桁架的强度。

2.9图2.10油缸盖与缸体采⽤6个螺栓连接如图所⽰。

D=350mm, 油压p=1MPa,若螺栓材料的许⽤应⼒【】=40MPa,试确定螺栓的内径。

2.10图2.11简易吊车如图所⽰。

杆AB为⽊杆,杆CB 钢杆。

⽊杆的横截⾯积A1=100cm2,许⽤应⼒钢杆横截⾯积A2=6cm2,许⽤应⼒。

试求许可吊重[F]。

2.11图2.12 板状拉伸试件如图,在测定式样应变时,每增加3kN的⼒,测得纵向线应变,横向线应变,试求试样材料的弹性模量E 和泊松⽐2.12图2.13 图⽰变截⾯直杆,已知:A1=8cm2,A2=4cm2,E=200GPa, 求杆的总伸长。

材料力学第二章习题选及其解答

材料力学第二章习题选及其解答

2-1. 试求图示各杆1-1、2-2、3-3截面的轴力, 并作轴力图。

解: (a)(1)求约束反力kNR R X 500203040 0==-++-=∑(2)求截面1-1的轴力kNN NR X 500011==+-=∑(3)求截面2-2的轴力kNN NR X 10040 022==++-=∑(4)求截面3-3的轴力(a) (b)kNN NR X 2003040 033-==+++-=∑(5)画轴力图(b)(1)求截面1-1的轴力01=N(2)求截面2-2的轴力 PN4022==(3)求截面3-3的轴力PN P P NX 304 033==-+=∑(4)画轴力图2-2. 作用图示零件上的拉力P=38kN ,试问零件内最大拉应力发生于哪个横截面上?并求其值。

解:(1)1-1截面MPa A P 86.6720)2250(3103811=⨯-⨯==σ(2)2-2截面MPa A P 33.63152021038322=⨯⨯⨯==σ(3)3-3截面MPa A P 24.45215)2250(1038333=⨯⨯-⨯==σ(4)最大拉应力MPa 86.671max ==σσ2-3. 在图示结构中,若钢拉杆BC 的横截面直径为10mm ,试求拉杆内的应力。

设由BC 联接的两部分均为刚体。

3 3解:(1)以刚体CAE 为研究对象∑=⨯-⨯+⨯=035.15.4 0'P N N mC E A (2)以刚体BDE 为研究对象075.05.1 0=⨯-⨯=∑B E DN N m(3)联立求解kNN N N N N C EE C B 6 '=∴==(4)拉杆内的应力MPa A N B 4.7610410623=⨯⨯⨯==πσ 2-4. 图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。

设两根横梁皆为刚体。

解:(1)以整体为研究对象,易见A 处的水平约束反力为零; (2)以AB 为研究对象由平衡方程知0===A B B R Y X(3)以杆BD由平衡方程求得KNN N NY KNN N mC20010 01001101 021211==--===⨯-⨯=∑∑(4)杆内的应力为1MPa A N MPa A N 7.63204102012710410102322223111=⨯⨯⨯===⨯⨯⨯==πσπσ2-7. 某拉伸试验机的示意图如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D、BC
[5] 设一阶梯形杆的轴力沿杆轴是变化的,则在发生破坏 的截面上___。 A、外力一定最大,且面积一定最小 B、轴力一定最大,且面积一定最小 C、轴力不一定最大,但面积一定最小 D、轴力与面积之比一定最大
4
[6] 对于脆性材料,下列结论中哪些是正确的? (1)试件受拉过程中不出现屈服和颈缩现象.
A、(1). B、(1),(2). C、全对. D、全错
[3] 工程上通常把延伸率_______的材料称为脆性材料。 A、 5% B、 0.5% C、 5 D、 0.5
3
[4] 图示杆件受到大小相等的四个轴向力P的作用。其中 ____段的变形为零。
A、AB
B、AC
C、AD
杆,在相同的拉力作用下( )
A. 铝杆的应力和钢杆相同,而变形大于钢杆 B. 铝杆的应力和钢杆相同,而变形小于钢杆
C. 铝杆的应力和变形都大于钢杆
D
1 、使杆件产生轴向拉压变形的外力必须是一对沿杆件轴线的
集中力。 ( ) 2、 轴力越大,杆件越容易被拉断,因此轴力的大小可以用来
C、当试件工作段中的应力达到强度极限 b 的瞬时。试件的 横截面积为A. D、当试件开始断裂的瞬时,作用于试件的荷载为 Pb
2
[2] 下列结论中哪些是正确的? (1)低碳铜拉伸试件中应力达到屈服极限 S 时,试件 表面会出现滑移线。 (2)滑移线与试件轴线大致成45度倾角. (3)滑移线的出现与试件中的最大切应力有关.
(2)压缩强度极限比拉伸强度高出许多.
(3)抗冲击的性能好. (4)若构件中存在小孔(出现应力集中现象),对构件的
强度无明显影响。
A、(1),(2). C、(1),(2),(4) B、 (1),(2).(3)。 D、全对
5
[7]图示简单桁架,杆1和杆2的横截面面积均为A,许用应力均为
[ ] ,设 FN 1 、 FN 2 分别表示杆1和杆2的轴力,则在下列
第 二 章 轴 向 拉 伸 和 压 缩
Axial Tension and Compression
1
[1]设低碳钢拉伸试件工作段的初始横截面积为 A0 ,试件被拉
断后,断口的横截面积为A,试件断裂前所能承受的最大荷载 为 Pb ,则下列结论中____是正确的。
Pb A、材料的强度极限 b A0 P B、材料的强度极限 b b A
8
判断杆件的强度。 ( )
3 、内力是指物体受力后其内部产生的相互作用力。 ( ) 4 、δ、Ψ 值越大,说明材料的塑性越大。 ( ) 5、研究杆件的应力与变形时,力可按力线平移定理进行移动。 6、 杆件伸长后,横向会缩短,这是因为杆有横向应力存在。 7、线应变 ε的单位是长度。 ( ) 8、轴向拉伸时,横截面上正应力与纵向线应变成正比。 ( )
结论中,_____是错误的。 A、 载荷 P FN 1 cos FN 2 cos B、 FN 1 sin FN 2 sin C、 许可载荷 P [ ] A(cos cos ) D、 许用载荷 P [ ] A(cos cos )
6
[8] 下列结论中正确的是( ) A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力 [9] 长度和横截面面积均相同的两杆,一为钢杆,一为铝
相关文档
最新文档