全等三角形的构造方法
构造全等三角形的四种技巧
![构造全等三角形的四种技巧](https://img.taocdn.com/s3/m/b9b0835fc4da50e2524de518964bcf84b8d52d79.png)
构造全等三角形的四种技巧在几何学中,全等三角形是一个非常重要的概念。
全等三角形是指两个或两个以上的三角形,它们的形状和大小完全相同。
理解并能够构造全等三角形,对于解决各种几何问题有着至关重要的作用。
以下是构造全等三角形的四种技巧:利用公理:全等三角形的公理是:如果两个三角形的三边对应相等,那么这两个三角形全等。
这个公理可以用来构造全等三角形。
确定你需要构造的全等三角形的所有边长,然后根据这些边长画出两个三角形。
这两个三角形的形状和大小将会完全相同。
利用角平分线:角平分线定理指出,一个角的平分线将对应的边分为两段,这两段与角的两边形成的两个小三角形是全等的。
通过这个定理,你可以通过一个角的平分线,构造出一个全等三角形。
利用中垂线:中垂线定理指出,一条中垂线将一个线段分为两段,这两段与线段的两端形成的两个小三角形是全等的。
这个定理可以用来构造全等三角形。
确定你需要构造的全等三角形的所有边长,然后通过中垂线将这些边分为两段。
这样,你就可以得到两个全等的三角形。
利用平行线:平行线定理指出,如果两条平行线被第三条直线所截,那么截得的对应线段成比例。
这个定理可以用来构造全等三角形。
确定你需要构造的全等三角形的所有边长,然后在两条平行线上画出对应的线段。
由于这些线段成比例,因此它们形成的两个小三角形是相似的。
如果这些相似三角形的对应边长度相等,那么它们就是全等的。
以上就是构造全等三角形的四种技巧。
理解和掌握这些技巧,对于解决各种几何问题有着重要的作用。
已知两个三角形全等,则它们对应边上的高也________;对应角平分线也________;对应边上的中线也________。
两个直角三角形全等,除了用定义外,还可以用以下________判定。
已知三角形ABC全等三角形DEF,且AB=18cm,BC=20cm,CA=15cm,则DE=________cm,DF=________cm,EF=________cm.做衣服需要依据身体部位的大小来选择布料,而教学则需要依据学生原有的知识基础来选择教学方法。
构造全等三角形的方法技巧
![构造全等三角形的方法技巧](https://img.taocdn.com/s3/m/fbb4b91feff9aef8941e0699.png)
方法1 角形
利用“角平分线”构造全等三ห้องสมุดไป่ตู้
【方法归纳】 因角平分线本身已经具备 全等的三个条件中的两个(角相等和公共 边相等),故在处理角平分线问题时,常 作以下辅助线构造全等三角形: (1)在角的两边截取两条相等的线段; (2)过角平分线上一点作角两边的垂线.
思1.如图,AB∥CD,BE平分 ∠ABC,CE平分∠BCD,点E在AD 上,求证:BC=AB+CD. 考
2.如图,已知∠AOB=90°,OM是 ∠AOB的平分线,三角尺的直角顶点 P在射线OM上滑动,两直角边分别与 OA,OB交于点C,D,求证:PC= PD.
方法2 利用“截长补短法”构造全等 三角形
【方法归纳】 截长补短法的具体做法 :在某一条线段上截取一条线段与特定 线段相等,或将某条线段延长,使之与 特定线段相等,再利用三角形全等的有 关性质加以说明.这种方法适用于证明 线段的和、差、倍、分等类的题目.
3.如图,在△ABC中,AD平分 ∠BAC,∠C=2∠B,试判断AB, AC,CD三者之间的数量关系,并 说明理由.(想一想,你会几种方法)
方法3 利用“倍长中线法”构造全 等三角形
【方法归纳】 将中点处的线段延长 一倍,然后利用SAS证三角形全等.
6.已知:如图,AD,AE分别是 △ABC和△ABD的中线,且BA= BD.求证:AE=AC.
构造全等三角形的六种常用方法课件
![构造全等三角形的六种常用方法课件](https://img.taocdn.com/s3/m/fc883a7a82c4bb4cf7ec4afe04a1b0717fd5b321.png)
构造方法简介
01
02
03
04
尺规作图法
利用尺规作图工具,通过已知 条件构造全等三角形。
翻折法
将已知三角形沿某条直线翻折, 得到与原三角形全等的三角形。
平移法
将已知三角形沿某方向平移一 定距离,得到与原三角形全等
的三角形。
旋转法
将已知三角形绕某点旋转一定 角度,得到与原三角形全等的
三角形。
02 方法一:SSS全 等法
感谢观看
拓展延伸:其他构造方法及应用场景
构造中位线
利用三角形中位线性质构 造全等三角形,常用于证 明线段相等或倍长中线等 问题。
构造角平分线
利用角平分线性质构造全 等三角形,常用于证明角 相等或线段成比例等问题。
构造垂直平分线
利用垂直平分线性质构造 全等三角形,常用于证明 线段相等或点共圆等问题。
THANKS
判定条件
两个三角形中,两个角及这两个角的夹边分别相等,则这两个三角形全等。
构造步骤这两个角的夹边相等,最后根据ASA判定条件证明两个三角形全等。
示例
在△ABC和△ADE中,∠BAC=∠DAE,∠B=∠D,AB=AD。根据ASA全等法,可以判定△ABC≌△ADE。
应用场景分析
1 2 3
解决角度和边长问题 当题目中给出两个角和它们的夹边相等时,可以 利用ASA全等法证明两个三角形全等,从而解决 与角度和边长相关的问题。
构造全等三角形 在几何证明题中,有时需要构造全等三角形以证 明某些线段或角度相等。ASA全等法是构造全等 三角形的常用方法之一。
辅助线策略 当遇到复杂的几何问题时,可以通过作辅助线构 造全等三角形,将问题转化为已知的全等三角形 问题,从而简化解题过程。
全等三角形的构造技巧(2020版)
![全等三角形的构造技巧(2020版)](https://img.taocdn.com/s3/m/55164e5bbed5b9f3f90f1c62.png)
全等三角形的构造技巧一、利用角平分线,构造全等三角形【方法剖析】因为角平分线本身已经具备全等的三个条件中的两个(角相等和公共边相等),故在处理角平分线问题时,常作以下辅助线构造全等三角形:(1)在角的两边截取两条相等的线段;(2)过角平分线上一点作角两边的垂线;(3)延长角平分线的垂线.(一)在角两边截取相等线段例1.如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC =AB +CD.证明:在BC 上截取BF =AB ,连接EF.∵∠ABC 、∠BCD 的平分线交AD 于点E ,∴∠ABE =∠FBE ,∠BCE =∠DCE ,在△ABE 和△FBE 中,⎩⎪⎨⎪⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,∴△ABE ≌△FBE.∴∠BAE =∠BFE.∵AB ∥CD ,∴∠BAE +∠CDE =180°.∴∠BFE +∠CDE =180°.∵∠BFE +∠CFE =180°,∴∠CFE =∠CDE.在△FCE 和△DCE 中,⎩⎪⎨⎪⎧∠CFE =∠CDE ,∠FCE =∠DCE ,CE =CE ,∴△FCE ≌△DCE.∴CF =CD.∴BC =BF +CF =AB +CD.练习:1.如图,BC >AB,BD 平分∠ABC 且AD=DC,求证: ∠A+∠C=1800. 分析:在边BC 上截取AB=BE,连接DE,则△BAD ≌△BED,这样,AD 转移到了DE 的位置,∠A 与∠C 就建立了联系。
也可看成 △BAD 翻折到了△BED 的位置。
(二)利用角平分线的性质,过角平分线上一点作角两边的垂线例1.如图,∠AOB =90°,将三角尺的直角顶点落在∠AOB 的平分线上的任意一点P ,使三角尺的两条直角边与∠AOB 的两边分别相交于点E 、F ,试证PE =PF.图1 图2分析:如图1,因为OC 是角平分线,所以本题可以过P 点作PM ⊥OA 于M ,PN ⊥OB 于N ,不难发现只要证明△PME ≌△PNF ,即可得到PE =PF ,根据∠PME =∠PNF =90°、PM =PN(角平 B A M N E F O P BA E F O P G AB C E DA B C E F D 分线性质)、∠MPE =∠NPF 这三个条件,利用ASA 可以证明△PME ≌△PNF 。
构造全等三角形添加辅助线的方法
![构造全等三角形添加辅助线的方法](https://img.taocdn.com/s3/m/0289e4b570fe910ef12d2af90242a8956aecaa48.png)
构造全等三角形添加辅助线的方法构造全等三角形是初中数学中的一个重要内容,理解并掌握构造全等三角形的方法对同学们建立良好的几何直观和提高几何证明能力等方面有很大帮助。
添加辅助线是构造全等三角形的重要方法之一。
本文列举了10条关于构造全等三角形添加辅助线的方法,并详细描述了每一种方法的步骤和原理。
一、通过中位线构造全等三角形步骤:1、作出一个三角形ABC和它的一条中位线AD;2、将角BAD和角ACD作为两个角,作一个新的三角形BAD,使它的对边和AC平行;3、证明三角形BAC和三角形BAD全等。
原理:两个平行线截一组平行于它们的直线形成的线段,具有相等的长度。
二、通过角平分线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE;2、将角EAB和角EAC作为两个角,分别连线得到三角形EAB和三角形EAC;3、证明三角形ABC和三角形EAB全等。
原理:在一个三角形中,一边上的角平分线将这条边分成两个相等的线段,同时将对角的两个角平分为两个相等的角。
三、通过三角形内角和不变构造全等三角形步骤:1、作出两个全等三角形ABC和DEF;2、在三角形ABC内部选取一个点M;3、以点M为中心,作一个半径等于EF的圆,在这个圆上分别找到两个点P、Q;4、连接点P、Q和点M,分别得到三角形AMP和BMQ;5、证明三角形AMP和三角形BMQ全等。
原理:三角形中角的和不变,即两个全等三角形中任意两个内角之和相等。
四、通过角平分线和垂线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE,垂直于BC;2、在AE上选取一点G,将角GAB和角GAC作为两个角,分别连线得到三角形GAB和三角形GAC;3、以点B为中心,作一个半径等于CG的圆,在这个圆上分别找到两个点M、N;4、连接MN和点B,分别得到三角形MBC和NBC;5、证明三角形GAB和三角形MBC全等。
原理:在一个三角形中,角平分线和垂线的交点将底边分成相等的线段,在垂线上的任意一点到底边的两个端点距离相等。
构造全等三角形的常用方法
![构造全等三角形的常用方法](https://img.taocdn.com/s3/m/1a1b6b4b5f0e7cd184253663.png)
构造全等三角形的方法
方法一翻折法
1、如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D.求证:∠2=∠1+∠C.
方法二补形法
2、如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF.求证:∠ADC=∠BDF.
方法三旋转法
3、如图,在正方形ABCD中,E为BC边上一点,F为CD边上一点,BE+DF=EF,求∠EAF.
方法四倍长中线法
4、如图,在△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=6,AC=2,求AD的取值范围.
方法五截长补短法
5、如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD 上的点,且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系并证明.
方法六作垂线法
6、如图,∠AOB=90°,OM平分∠AOB,直角三角板的顶点P在射线OM上移动,两直角边分别与OA,OB相交于点C、D,问PC与PD相等吗?试说明理由.
方法七作平行线法
7、如图,△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ平分∠ABC 交AC于点Q.求证:AB+BP=BQ+AQ.。
人教版八年级数学上小专题(三) 构造全等三角形的方法技巧
![人教版八年级数学上小专题(三) 构造全等三角形的方法技巧](https://img.taocdn.com/s3/m/3ce792bda0116c175f0e4868.png)
初中数学试卷小专题(三) 构造全等三角形的方法技巧方法一:利用补形构造全等三角形1.已知:如图,在△ABC 中,∠BCA=90°,AC=BC ,AE 平分∠BAC ,BE ⊥AE ,求证:BE=21AD.方法二:利用“截长补短”法构造全等三角形2.如图,在△ABC 中,AD 平分∠BAC,∠C=2∠B,试判断AB ,AC ,CD 三者之间的数量关系,并说明理由.(想一想,你会几种方法)3.如图,在△ABC 中,∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,BD ,CE 交于点O,试判断BE,CD,BC 的数量关系,并加以证明.4.如图,AD ∥BC,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD,BC,AB 之间有何关系?并说明理由.5.(德州中考)问题背景:如图1:在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是;(2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=21∠BAD ,上述结论是否仍然成立,并说明理由.方法三:利用“倍长中线法”构造全等三角形6.已知,△ABC 中,AB=4 cm,BC=6 cm,BD 是AC 边上的中线,求BD 的取值范围.7.已知:如图,AD,AE 分别是△ABC 和△ABD 的中线,且BA=BD.求证:AE=21AC.8.如图,AB=AE,AB ⊥AE ,AD=AC ,AD ⊥AC,点M 为BC 的中点,求证:DE=2AM.参考答案1.图略,延长AC 、BE 交于点F ,∵∠ACB=90°,BE ⊥AE,∴∠CAD+∠CDA=90°,∠EDB+∠EBD=90°.∵∠CDA=∠EDB,∴∠CAD=∠EBD ,即∠CAD=∠CBF.在△ADC 和△BFC 中,∠CAD=∠CBF,AC=BC,∠ACD=∠BCF,∴△ADC ≌△BFC.∴AD=BF.在△AEF 和△AEB 中,∠FAE=∠BAE,AE=AE,∠AEF=∠AEB,∴△AEF ≌△AEB.∴BE=EF,即BE=21BF.∴BE=21AD. 2.AB=AC+CD.理由如下:方法1:在AB 上截取AE=AC,连接DE.易证△AED ≌△ACD(SAS),∴ED=CD,∠AED=∠C.∵∠AED=∠B+∠EDB,∴∠C=∠AED=∠B+∠EDB.又∵∠C=2∠B,∴∠B=∠EDB.∴BE=DE.∴AB=AE+BE=AC+DE=AC+CD.方法2:延长AC 到点F,使CF=CD,连接DF.∵CF=CD,∴∠CDF=∠F.∵∠ACB=∠CDF+∠F ,∴∠ACB=2∠F.又∵∠ACB=2∠B,∴∠B=∠F.∴△ABD ≌△AFD(AAS).∴AB=AF.∴AB=AF=AC+CF=AC+CD.3.证明:在BC 上截取BF=BE,连接OF.∵BD 平分∠ABC,∴∠EBO=∠FBO.∴△EBO ≌△FBO.∴∠EOB=∠FOB.∵∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,∴∠BOC=180°-∠OBC-∠OCB=180°-21∠ABC-21∠ACB=180°-21(180°-∠A)=120°.∴∠EOB=∠DOC=60°.∴∠BOF=60°,∠FOC=∠DOC=60°.∵CE 平分∠DCB,∴∠DCO=∠FCO.∴△DCO ≌△FCO.∴CD=CF.∴BC=BF+CF=BE+CD.4.AB=AD+BC.理由:作EF ⊥AB 于F,连接BE.∵AE 平分∠BAD,DC ⊥AD,EF ⊥AB,∴EF=DE.∵DE=CE,∴EC=EF.∴Rt △BFE ≌Rt △BCE(HL).∴BF=BC.同理可证:AF=AD.∴AD+BC=AF+BF=AB,即AB=AD+BC.5.(1)EF=BE+DF(2)EF=BE+DF 仍然成立.证明:图略,延长FD 到G ,使DG=BE ,连接AG ,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG.在△ABE 和△ADG 中,DG=BE,∠B=∠ADG,AB=AD,∴△ABE ≌△ADG(SAS).∴AE=AG ,∠BAE=∠DAG.∵∠EAF=21∠BAD ,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF.∴∠EAF=∠GAF.在△AEF 和△GAF 中,AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF ≌△GAF(SAS).∴EF=FG.∵FG=DG+DF=BE+DF ,∴EF=BE+DF.6.图略,延长BD 至E,使DE=BD.连接CE.∵BD 是AC 边上的中线,∴AD=CD.∵∠BDA=∠CDE,∴△BDA ≌△EDC(SAS).∴CE=AB.在△CBE 中,BC-CE<BE<BC+CE,∴2 cm<2BD<10 cm.∴1 cm<BD<5 cm.7.证明:延长AE 至F,使EF=AE ,连接DF.∵AE 是△ABD 的中线,∴BE=DE.∵∠AEB=∠FED,∴△ABE ≌△FDE.∴∠B=∠BDF,AB=DF.∵BA=BD,∴∠BAD=∠BDA,BD=DF.∵∠ADF=∠BDA+∠BDF ,∠ADC=∠BAD+∠B ,∴∠ADF=∠ADC.∵AD 是△ABC 的中线,∴BD=CD.∴DF=CD.∴△ADF ≌△ADC(SAS).∴AC=AF=2AE,即AE=21AC. 8.延长AM 至N ,使MN=AM ,连接BN ,易证△AMC ≌△NMB(SAS),∴AC=BN,∠C=∠NBM ,∠ABN=∠ABC+∠C=180°-∠BAC=∠EAD.再证△ABN ≌△EAD(SAS).∴DE=NA.又AM=MN ,∴DE=2AM.。
小专题(三) 构造全等三角形的常用方法
![小专题(三) 构造全等三角形的常用方法](https://img.taocdn.com/s3/m/b24c200a7e21af45b307a868.png)
AB=FB, ∠ABE=∠FBE, BE=BE,
∴△ABE≌△FBE(SAS). ∴∠A=∠BFE.
∵AB∥CD, ∴∠A+∠D=180°. ∴∠BFE+∠D=180°. ∵∠BFE+∠CFE=180°, ∴∠CFE=∠D. 在△FCE和△DCE中,
方法2 利用“截长补短法”构造全等三角形
截长补短法的具体做法:在某一条线段上截取一条线 段与特定线段相等,或将某条线段延长,使之与特定线段 相等,再利用三角形全等的有关性质加以说明.这种方法 适用于证明线段的和、差、倍、分等题目.
2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点 E在AD上,求证:BC=AB+CD.
∠CFE=∠D, ∠FCE=∠DCE, CE=CE,
∴△FCE≌△DCE(AAS). ∴CF=CD. ∴BC=BF+CF=AB+CD.
3.(德州中考)问题背景: 如图1,在四边形ABCD中,AB=AD,∠BAD=120°, ∠B=∠ADC=90°.点E,F分别是BC,CD上的点,且 ∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系. (1)小王同学探究此问题的方法是:延长FD到点G,使 DG=BE,连接AG.先证明△ABE≌△ADG,再证明 △AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF;
(2) 如图 2,若在四边形 ABCD 中,AB=AD, ∠B+∠D=180°.E,F 分别是 BC,CD 上的点,
且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由. 解:EF=BE+DF仍然成立. 理由:延长FD到G,使DG=BE,连接AG, ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°, ∴∠B=∠ADG. 在△ABE和△ADG中,
构造全等三角形的方法(优选.)
![构造全等三角形的方法(优选.)](https://img.taocdn.com/s3/m/87a0c915fe4733687f21aa1c.png)
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。
全等三角形的构造方法全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。
判断三角形全等公理有SAS、ASA、AAS、SSS和HL,如果能够直接证明三角形的全等的,直接根据相应的公理就可以证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。
一些较难的一些证明问题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。
构造方法有:1.截长补短法。
2.平行线法(或平移法):若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线。
3.旋转法:对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。
4.倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。
5.翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形。
下面举例说明几种常见的构造方法,供同学们参考.1.截长补短法(通常用来证明线段和差相等)“截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分与另一较短的线段相等.例1.如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.例2 已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF交BC于点D.求证:DE=DF.(2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF的中点.求证:BE=CF.例3(北京市数学竞赛试题,天津市数学竞赛试题)如图所示,ABC是边长为1的NMAAMN正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.1.如图已知:正方形ABCD 中,∠BAC 的平分线交BC 于E ,求证:AB+BE=AC .2.(06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOEC BA4321FDOE CB A3.已知:如图,ABCD是正方形,∠FAD=∠FAE. 求证:BE+DF=AE.如图,四边形ABPC中,,,,求证:.FEDCBA2.平行线法(或平移法)若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线.例△ABC中,∠BAC=60°,∠C=440°AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.说明:⑴本题也可以在AB截取AD=AQ,连OD,构造全等三角形,即“截长补短法".⑵本题利用“平行法”解法也较多,举例如下:①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO来解决.②如图(3),过O作DE∥BC交AB于D,交AC于E,则△ADO≌△AQO,△ABO≌△AEO来解决.③如图(4),过P作PD∥BQ交AB的延长线于D,则△APD≌△APC 来解决.④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP来解决.(本题作平行线的方法还很多,感兴趣的同学自己研究)3.旋转法对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形例.已知:如图(6),P为△ABC内一点,且PA=3,PB=4,PC=5,求∠APB的度数.分析:直接求∠APB的度数,不易求,由PA=3,PB=4,PC=5,联想到构造直角三角形.4.倍长中线法题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。
全等三角形专题:构造全等三角形方法总结
![全等三角形专题:构造全等三角形方法总结](https://img.taocdn.com/s3/m/ef00cc1308a1284ac95043ae.png)
专题:构造全等三角形利用三角形的中线来构造全等三角形(倍长中线法)倍长中线法:即把中线延长一倍,来构造全等三角形。
1、如图1,在^ ABC中,AD是中线,BE交AD于点F,且AE= EF.试说明线段AC与BF相等的理由.简析因为AD是中线,于是可延长AD到G使DG= AD连结BG贝在^ ACDFH A GBD中, AD= GD / ADC- / GDB CD= BD 所以△ ACD^A GBD(SAS,所以AC= GB / CAD=/ G 而AE= EF,所以/ CAD=/ AFE 又/ AFE = / BFG 所以/ BFG=/ G 所以BF= BG 所以AC= BF.说明要说明线段或角相等,通常的思路是说明它们所在的两个三角形全等,而遇到中线时又通常通过延长中线来构造全等三角形.利用三角形的角平分线来构造全等三角形法一:如图,在△ ABC中,AD平分/ BAC。
在AB上截取AE=AC,连结DE。
(能够利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。
)ED-CD, /AED=ZC, /ADE^/ADC法二:如图,在△ ABC中,AD平分/ BAC。
延长AC到F,使AF=AB,连结DF。
(能够利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。
_____ )BD=FD , ZB=ZF. ZADB^ZADFo法三:在^ ABC中,AD平分/ BAC。
作DM丄AB于M,DN丄AC于N。
(能够利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形)DM-DN , AM-AN, NADJVf=NAND口A,,-(还能够用“角平分线上的点到角的两边距离相等”来证DM=DN )2、已知:如图,在四边形A+ / C=180 °AD=DE (全等三角形的对应边相等)•/ AD=CD (已知),AD=DE (已证).DE=DC (等量代换)•••/ 4=Z C (等边对等角)••• / 3+ / 4 = 180°(平角定义),DF=DC (全等三角形的对应边相等)•/ AD=CD (已知),DF=DC (已证).DF=AD (等量代换)4=Z F (等边对等角)•/ / F=Z C (已证)/ A = Z 3 (已证).•./ A+ / C= 180° (等量代换)•••/ 4= ZC (等量代换)•/ / 3+ / 4= 180° (平角定义)法三:作DM丄BC于M , DN丄BA交BA的延长线于•/ BD是/ ABC的角平分线(已知)•••/仁/2 (角平分线定义)•/ DN 丄BA , DM 丄BC (已知)•••/ N= / DMB=90)(垂直的定义)在^ NBD和^ MBD中•// N= / DMB (已证)/ 1 = / 2 (已证)BD=BD (公共边).△ NBD ” MBD (A.A.S ).ND=MD (全等三角形的对应边相等)•/ DN 丄BA , DM 丄BC (已知).△ NAD 和^ MCD 是Rt△在Rt△NAD 和Rt△MCD 中ND=MD (已证)AD=CD (已知).Rt△NAD 幻Rt△MCD (H.L)./ 4= / C (全等三角形的对应角相等)••• / 3+ / 4 = 180° (平角定义),法一:证明:在BC上截取BE,使•/BD是/ ABC的角平分线(已知)仁/2 (角平分线定义)在^ ABD和^ EBD中BE=AB,连结DE。
全等变换 构造全等三角形的常用方法 秦振
![全等变换 构造全等三角形的常用方法 秦振](https://img.taocdn.com/s3/m/29b99c0aa417866fb94a8e11.png)
全等变换———构造全等三角形的常用方法秦 振(山东省枣庄市第九中学,277100) 全等三角形是平面几何的重要内容之一.证明三角形全等涉及的知识面广、难度大、技巧性强.下面介绍利用几何的全等变换构造全等三角形的常用方法,供大家参考.1 构造中心对称全等三角形一个三角形绕其某一点旋转180°,得到的三角形与原三角形是一对中心对称全等三角形.它的特点是对应边平行且相等或在同一直线上.其构造方法是将基本图形不完整部分补充完整,或过端点作平行线,或延长线段为原来的2倍.图1例1 如图1,■A BC 中,A D 为BC 的中线,∠1=∠2,∠3=∠4.求证:EF <BE +CF .分析:可构造中心对称全等三角形,将欲证三线段放在一个基本图形内.证明:如图1,延长ED 至点N ,使ND =DE .联结NF 、NC .因为∠1=∠5,BD =CD ,ND =DE ,所以,■BDE■C DN .则EB =CN .因为∠1+∠2+∠3+∠4=180°,∠1=∠2,∠3=∠4,所以,∠2+∠3=90°.则EF =NF .因为FN <CF +CN ,故EF <BE +CF .说明:当两线相交,交点为某线段中点时,可构造中心对称全等三角形.2 构造轴对称全等三角形把一个三角形沿着某条直线翻折180°与另一个三角形重合,这两个三角形就叫做轴对称全等三角形.满足下列条件可考虑构造轴对称全等三角形:相等线段或相等角关于某直线对称;有公共角;有对顶角;有角平分线或垂直平分线.图2例2 如图2,等腰Rt ■A BC 中,∠A =90°,D 为其内部一点,且∠A BD =30°,BD =BA .求证:A D =C D .分析:由于等腰直角三角形可看成是一条对角线将正方形分割而得的一半,因此可以以BC 为对称轴作轴对称全等三角形.证明:作点A 关于BC 的对称点A ′,联结A ′B 、A ′C 、A ′D .则四边形A BA ′C 为正方形.所以,BD =BA =BA ′=A ′C .又∠A ′B D =90°-30°=60°,所以,■BA ′D 为等边三角形.所以,BD =A ′D .由对称性知∠CA ′D =∠A B D .又A B =A ′C ,所以,■A ′C D■BA D .292006年第10期故A D =C D .说明:在三角形问题中,利用对称变换作辅助线构造对称全等三角形,将已知条件和要证明的结论集中在一起,建立某种联系,是解决此类问题的一条有效途径.3 构造平移型全等三角形把一个三角形沿某方向平移,得到的三角形与原三角形为平移型全等三角形.其特点是对应边平行且相等(或在同一直线上),对应角是同位角.图3例3 如图3,在■A BC 中,D 、E 为BC 边上的两点,且BD =EC .求证:A B +A C >A D +A E .分析:要证明的结论比较复杂,可利用三角形中的不等关系,构造全等三角形如下:将■A EC 平移到■A ′B D ,如图3,则线段A B 、AC 、A D 、A E 就集中在四边形A ′BDA 里.只要证明A B +A ′D >A D +A ′B 即可.证明:如图3,作BA ′∥EA ,则∠DBA ′=∠CEA ,BA ′=EA .联结A ′D ,交A B 于点F .因为B D =EC ,所以,■A ′BD■A EC .则A ′D =A C .因为FA ′+FB >A ′B ,FA +F D >A D ,所以,FA ′+FB +FA +F D >A ′B +A D ,A ′D +AB >A ′B +A D ,即 A B +AC >AD +AE .说明:一般地,有对应边平行或有同位角时可构造平移型全等三角形.4 构造旋转型全等三角形把一个三角形绕着某点旋转,得到的三角形与原三角形为旋转型全等三角形.用旋转法构造全等三角形,可以把分散的条件集中起来,易于找到条件与结论之间的关系.旋转时要注意确定旋转中心、旋转方向及旋转角度的大小.图4例4 如图4,D 、E 、F 分别为正■A BC 的边A B 、BC 、AC 的中点,P 为EC 上任意一点,■DPM 为正三角形.求证:EP =FM .分析:由题意,可以把■DM F 看成是■DPE 绕点D 逆时针旋转得到的.P 点转到M 点,E 点转到F 点,然后找到两个三角形全等的条件,进而得到结论.证明:如图4,联结DE 、DF .因为D 、E 、F 分别为正■A BC 的边A B 、BC 、A C 的中点,所以,DF ∥BC ,且DF =12BC ,DE ∥AC ,且DE =12AC .所以四边形DEC F 为平行四边形,且∠E DF =∠C =60°.又∠PD M =60°,所以,∠M DF =∠P DE .因为BC =AC ,所以,DF =DE .而DP =DM ,所以,■DFM■DEP .故EP =FM .说明:旋转法构造全等三角形常用于等腰三角形、等边三角形及正方形等图形中.30中学教与学。
人教版八年级数学上小专题(三) 构造全等三角形的方法技巧
![人教版八年级数学上小专题(三) 构造全等三角形的方法技巧](https://img.taocdn.com/s3/m/994d22fc08a1284ac85043d3.png)
初中数学试卷灿若寒星整理制作小专题(三) 构造全等三角形的方法技巧方法一:利用补形构造全等三角形1AD.1.已知:如图,在△ABC中,∠BCA=90°,AC=BC,AE平分∠BAC,BE⊥AE,求证:BE=2方法二:利用“截长补短”法构造全等三角形2.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.(想一想,你会几种)方法3.如图,在△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD,CE交于点O,试判断BE,CD,BC的数量关系,并加以.证明.5.(德州中考)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是;(2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=21∠BAD ,上述结论是否仍然成立,并说明理由.方法三:利用“倍长中线法”构造全等三角形6.已知,△ABC 中,AB=4 cm,BC=6 cm,BD 是AC 边上的中线,求BD 的取值范围.7.已知:如图,AD,AE 分别是△ABC 和△ABD 的中线,且BA=BD.求证:AE=21AC.8.如图,AB=AE,AB ⊥AE ,AD=AC ,AD ⊥AC,点M 为BC 的中点,求证:DE=2AM.参考答案1.图略,延长AC 、BE 交于点F ,∵∠ACB=90°,BE ⊥AE,∴∠CAD+∠CDA=90°,∠EDB+∠EBD=90°.∵∠CDA=∠EDB,∴∠CAD=∠EBD ,即∠CAD=∠CBF.在△ADC 和△BFC 中,∠CAD=∠CBF,AC=BC,∠ACD=∠BCF,∴△ADC ≌△BFC.∴AD=BF.在△AEF 和△AEB 中,∠FAE=∠BAE,AE=AE,∠AEF=∠AEB,∴△AEF ≌△AEB.∴BE=EF,即BE=21BF.∴BE=21AD. 2.AB=AC+CD.理由如下:方法1:在AB 上截取AE=AC,连接DE.易证△AED ≌△ACD(SAS),∴ED=CD,∠AED=∠C.∵∠AED=∠B+∠EDB,∴∠C=∠AED=∠B+∠EDB.又∵∠C=2∠B,∴∠B=∠EDB.∴BE=DE.∴AB=AE+BE=AC+DE=AC+CD.方法2:延长AC 到点F,使CF=CD,连接DF.∵CF=CD,∴∠CDF=∠F.∵∠ACB=∠CDF+∠F ,∴∠ACB=2∠F.又∵∠ACB=2∠B,∴∠B=∠F.∴△ABD ≌△AFD(AAS).∴AB=AF.∴AB=AF=AC+CF=AC+CD.3.证明:在BC 上截取BF=BE,连接OF.∵BD 平分∠ABC,∴∠EBO=∠FBO.∴△EBO ≌△FBO.∴∠EOB=∠FOB.∵∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,∴∠BOC=180°-∠OBC-∠OCB=180°-21∠ABC-21∠ACB=180°-21(180°-∠A)=120°.∴∠EOB=∠DOC=60°.∴∠BOF=60°,∠FOC=∠DOC=60°.∵CE 平分∠DCB,∴∠DCO=∠FCO.∴△DCO ≌△FCO.∴CD=CF.∴BC=BF+CF=BE+CD.4.AB=AD+BC.理由:作EF ⊥AB 于F,连接BE.∵AE 平分∠BAD,DC ⊥AD,EF ⊥AB,∴EF=DE.∵DE=CE,∴EC=EF.∴Rt △BFE ≌Rt △BCE(HL).∴BF=BC.同理可证:AF=AD.∴AD+BC=AF+BF=AB,即AB=AD+BC.5.(1)EF=BE+DF(2)EF=BE+DF 仍然成立.证明:图略,延长FD 到G ,使DG=BE ,连接AG ,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG.在△ABE 和△ADG 中,DG=BE,∠B=∠ADG,AB=AD,∴△ABE ≌△ADG(SAS).∴AE=AG ,∠BAE=∠DAG.∵∠EAF=21∠BAD ,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF.∴∠EAF=∠GAF.在△AEF 和△GAF 中,AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF ≌△GAF(SAS).∴EF=FG.∵FG=DG+DF=BE+DF ,∴EF=BE+DF.6.图略,延长BD 至E,使DE=BD.连接CE.∵BD 是AC 边上的中线,∴AD=CD.∵∠BDA=∠CDE,∴△BDA ≌△EDC(SAS).∴CE=AB.在△CBE 中,BC-CE<BE<BC+CE,∴2 cm<2BD<10 cm.∴1 cm<BD<5 cm.7.证明:延长AE 至F,使EF=AE ,连接DF.∵AE 是△ABD 的中线,∴BE=DE.∵∠AEB=∠FED,∴△ABE ≌△FDE.∴∠B=∠BDF,AB=DF.∵BA=BD,∴∠BAD=∠BDA,BD=DF.∵∠ADF=∠BDA+∠BDF ,∠ADC=∠BAD+∠B ,∴∠ADF=∠ADC.∵AD 是△ABC 的中线,∴BD=CD.∴DF=CD.∴△ADF ≌△ADC(SAS).∴AC=AF=2AE,即AE=21AC. 8.延长AM 至N ,使MN=AM ,连接BN ,易证△AMC ≌△NMB(SAS),∴AC=BN,∠C=∠NBM ,∠ABN=∠ABC+∠C=180°-∠BAC=∠EAD.再证△ABN ≌△EAD(SAS).∴DE=NA.又AM=MN ,∴DE=2AM.。
构造全等三角形的方法
![构造全等三角形的方法](https://img.taocdn.com/s3/m/d08089190622192e453610661ed9ad51f01d5484.png)
构造全等三角形的方法
构造全等三角形的方法有以下几种:
1. SSS(side-side-side)法:给定两个三角形ABC和DEF,若它们的对应边长分别满足AB=DE,BC=EF,CA=FD,则可以得到两个全等三角形。
2. SAS(side-angle-side)法:给定两个三角形ABC和DEF,若它们的两对边长比值相等且夹角相等,即满足AB/DE = BC/EF,∠BAC = ∠EDF,则可以得到两个全等三角形。
3. ASA(angle-side-angle)法:给定两个三角形ABC和DEF,若它们的两对夹角相等且一对边长相等,即满足∠BAC = ∠EDF,∠ABC = ∠DEF,AC = DF,则可以得到两个全等三角形。
4. AAS(angle-angle-side)法:给定两个三角形ABC和DEF,若它们的两对夹角相等且一对角度之和为180,即满足∠BAC = ∠EDF,∠ABC + ∠BCA = ∠DEF + ∠EFD = 180,AB/DE ≠BC/EF,则可以得到两个全等三角形。
5. HL(hypotenuse leg)法:该方法适用于直角三角形。
给定两个直角三角形ABC和DEF,若它们的斜边和一对对边分别相等,即满足AC = DF,BC = EF,则可以得到两个全等三角形。
需要注意的是,在构造全等三角形时,要保证条件足够充分,即满足对应的几个条件才能得到全等三角形。
构造全等三角形的方法
![构造全等三角形的方法](https://img.taocdn.com/s3/m/f8eef3323186bceb18e8bb15.png)
构造全等三角形的方法在证明两个三角形全等时,选择三角形全等的五种方法〔“SSS 〞,“SAS 〞,“ASA 〞,“AAS 〞,“HL 〞〕中,至少有一组相等的边,因此在应用时要养成先找边的习惯。
如果选择找到了一组对应边,再找第二组条件,假设找到第二组条件是对应边,那么再找这两边的夹角用“SAS 〞或再找第三组对应边用“SSS 〞;假设找到第二组条件是角,那么需找另一组角〔可能用“ASA 〞或“AAS 〞〕或夹这个角的另一组对应边用“SAS 〞;假设是判定两个直角三角形全等那么优先考虑“HL 〞 。
搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造适宜的全等三角形,把条件相对集中起来,再进展等量代换,就可以化难为易了.一、利用三角形的角平分线来构造全等三角形〔可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。
〕1、如图,在△ABC 中,AD 平分∠BAC 。
画一画。
法一:在AB 上截取AE=AC ,连结DE 。
法二:延长AC 到F ,使AF=AB ,连结DF 。
法三:作DM ⊥AB 于M ,DN ⊥AC 于N 。
D C B A D C B A D C B A2、如图,DC ∥AB ,∠BAD 和∠ADC 的平分线相交于E ,过E 的直线分别交DC 、AB 于C 、B 两点. 求证:AD =AB +DC.证明:在线段AD 上取AF =AB ,连接EF ,∵AE 是∠BAD 的角平分线,∴∠1=∠2,∵AF =AB AE =AE ,∴△ABE ≌△AFE ,∴∠B =∠AFE由CD ∥AB 又可得∠C +∠B =180°,∴∠AFE +∠C =180°,又∵∠DFE +∠AFE =180°,∴∠C =∠DFE ,∵DE 是∠ADC 的平分线,∴∠3=∠4,又∵DE =DE ,∴△CDE ≌△FDE ,∴DF =DC ,∵AD =DF +AF ,∴AD =AB +DC .3、:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD.求证:∠A+∠C=180°ADB C法一:证明:在BC上截取BE,使BE=AB,连结DE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的构造方法
全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。
判断三角形全等公理有SAS、ASA、AAS、SSS和HL,如果能够直接证明三角形的全等的,直接根据相应的公理就可以证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。
一些较难的一些证明问题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。
构造方法有:
1.截长补短法:
2.平行线法(或平移法):若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线。
3.旋转法:对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。
4.倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。
5.翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形。
下面举例说明几种常见的构造方法,供同学们参考.
1、如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD
2、如图,△ABC中,AB=AC,E是AB上任意一点,延长AC到F,连接EF交BC于M,且EM=FM试说明线段BE与CF相等的理由.
说明:这里通过辅助线将较散的结论相对集中,使求解的难度降低.
3、如图,在△ABC中,AD是中线,BE交AD于点F,且AE=EF.试说明线段AC与BF相等的理由.
G
C F
B
A
E D
A C
E
B
D
F
M
E
A
B
C
D。