构造全等三角形的基本方法
构造全等三角形的四种技巧
构造全等三角形的四种技巧在几何学中,全等三角形是一个非常重要的概念。
全等三角形是指两个或两个以上的三角形,它们的形状和大小完全相同。
理解并能够构造全等三角形,对于解决各种几何问题有着至关重要的作用。
以下是构造全等三角形的四种技巧:利用公理:全等三角形的公理是:如果两个三角形的三边对应相等,那么这两个三角形全等。
这个公理可以用来构造全等三角形。
确定你需要构造的全等三角形的所有边长,然后根据这些边长画出两个三角形。
这两个三角形的形状和大小将会完全相同。
利用角平分线:角平分线定理指出,一个角的平分线将对应的边分为两段,这两段与角的两边形成的两个小三角形是全等的。
通过这个定理,你可以通过一个角的平分线,构造出一个全等三角形。
利用中垂线:中垂线定理指出,一条中垂线将一个线段分为两段,这两段与线段的两端形成的两个小三角形是全等的。
这个定理可以用来构造全等三角形。
确定你需要构造的全等三角形的所有边长,然后通过中垂线将这些边分为两段。
这样,你就可以得到两个全等的三角形。
利用平行线:平行线定理指出,如果两条平行线被第三条直线所截,那么截得的对应线段成比例。
这个定理可以用来构造全等三角形。
确定你需要构造的全等三角形的所有边长,然后在两条平行线上画出对应的线段。
由于这些线段成比例,因此它们形成的两个小三角形是相似的。
如果这些相似三角形的对应边长度相等,那么它们就是全等的。
以上就是构造全等三角形的四种技巧。
理解和掌握这些技巧,对于解决各种几何问题有着重要的作用。
已知两个三角形全等,则它们对应边上的高也________;对应角平分线也________;对应边上的中线也________。
两个直角三角形全等,除了用定义外,还可以用以下________判定。
已知三角形ABC全等三角形DEF,且AB=18cm,BC=20cm,CA=15cm,则DE=________cm,DF=________cm,EF=________cm.做衣服需要依据身体部位的大小来选择布料,而教学则需要依据学生原有的知识基础来选择教学方法。
构造全等三角形的方法技巧
方法1 角形
利用“角平分线”构造全等三ห้องสมุดไป่ตู้
【方法归纳】 因角平分线本身已经具备 全等的三个条件中的两个(角相等和公共 边相等),故在处理角平分线问题时,常 作以下辅助线构造全等三角形: (1)在角的两边截取两条相等的线段; (2)过角平分线上一点作角两边的垂线.
思1.如图,AB∥CD,BE平分 ∠ABC,CE平分∠BCD,点E在AD 上,求证:BC=AB+CD. 考
2.如图,已知∠AOB=90°,OM是 ∠AOB的平分线,三角尺的直角顶点 P在射线OM上滑动,两直角边分别与 OA,OB交于点C,D,求证:PC= PD.
方法2 利用“截长补短法”构造全等 三角形
【方法归纳】 截长补短法的具体做法 :在某一条线段上截取一条线段与特定 线段相等,或将某条线段延长,使之与 特定线段相等,再利用三角形全等的有 关性质加以说明.这种方法适用于证明 线段的和、差、倍、分等类的题目.
3.如图,在△ABC中,AD平分 ∠BAC,∠C=2∠B,试判断AB, AC,CD三者之间的数量关系,并 说明理由.(想一想,你会几种方法)
方法3 利用“倍长中线法”构造全 等三角形
【方法归纳】 将中点处的线段延长 一倍,然后利用SAS证三角形全等.
6.已知:如图,AD,AE分别是 △ABC和△ABD的中线,且BA= BD.求证:AE=AC.
构造全等三角形的六种常用方法课件
构造方法简介
01
02
03
04
尺规作图法
利用尺规作图工具,通过已知 条件构造全等三角形。
翻折法
将已知三角形沿某条直线翻折, 得到与原三角形全等的三角形。
平移法
将已知三角形沿某方向平移一 定距离,得到与原三角形全等
的三角形。
旋转法
将已知三角形绕某点旋转一定 角度,得到与原三角形全等的
三角形。
02 方法一:SSS全 等法
感谢观看
拓展延伸:其他构造方法及应用场景
构造中位线
利用三角形中位线性质构 造全等三角形,常用于证 明线段相等或倍长中线等 问题。
构造角平分线
利用角平分线性质构造全 等三角形,常用于证明角 相等或线段成比例等问题。
构造垂直平分线
利用垂直平分线性质构造 全等三角形,常用于证明 线段相等或点共圆等问题。
THANKS
判定条件
两个三角形中,两个角及这两个角的夹边分别相等,则这两个三角形全等。
构造步骤这两个角的夹边相等,最后根据ASA判定条件证明两个三角形全等。
示例
在△ABC和△ADE中,∠BAC=∠DAE,∠B=∠D,AB=AD。根据ASA全等法,可以判定△ABC≌△ADE。
应用场景分析
1 2 3
解决角度和边长问题 当题目中给出两个角和它们的夹边相等时,可以 利用ASA全等法证明两个三角形全等,从而解决 与角度和边长相关的问题。
构造全等三角形 在几何证明题中,有时需要构造全等三角形以证 明某些线段或角度相等。ASA全等法是构造全等 三角形的常用方法之一。
辅助线策略 当遇到复杂的几何问题时,可以通过作辅助线构 造全等三角形,将问题转化为已知的全等三角形 问题,从而简化解题过程。
全等三角形的构造技巧(2020版)
全等三角形的构造技巧一、利用角平分线,构造全等三角形【方法剖析】因为角平分线本身已经具备全等的三个条件中的两个(角相等和公共边相等),故在处理角平分线问题时,常作以下辅助线构造全等三角形:(1)在角的两边截取两条相等的线段;(2)过角平分线上一点作角两边的垂线;(3)延长角平分线的垂线.(一)在角两边截取相等线段例1.如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC =AB +CD.证明:在BC 上截取BF =AB ,连接EF.∵∠ABC 、∠BCD 的平分线交AD 于点E ,∴∠ABE =∠FBE ,∠BCE =∠DCE ,在△ABE 和△FBE 中,⎩⎪⎨⎪⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,∴△ABE ≌△FBE.∴∠BAE =∠BFE.∵AB ∥CD ,∴∠BAE +∠CDE =180°.∴∠BFE +∠CDE =180°.∵∠BFE +∠CFE =180°,∴∠CFE =∠CDE.在△FCE 和△DCE 中,⎩⎪⎨⎪⎧∠CFE =∠CDE ,∠FCE =∠DCE ,CE =CE ,∴△FCE ≌△DCE.∴CF =CD.∴BC =BF +CF =AB +CD.练习:1.如图,BC >AB,BD 平分∠ABC 且AD=DC,求证: ∠A+∠C=1800. 分析:在边BC 上截取AB=BE,连接DE,则△BAD ≌△BED,这样,AD 转移到了DE 的位置,∠A 与∠C 就建立了联系。
也可看成 △BAD 翻折到了△BED 的位置。
(二)利用角平分线的性质,过角平分线上一点作角两边的垂线例1.如图,∠AOB =90°,将三角尺的直角顶点落在∠AOB 的平分线上的任意一点P ,使三角尺的两条直角边与∠AOB 的两边分别相交于点E 、F ,试证PE =PF.图1 图2分析:如图1,因为OC 是角平分线,所以本题可以过P 点作PM ⊥OA 于M ,PN ⊥OB 于N ,不难发现只要证明△PME ≌△PNF ,即可得到PE =PF ,根据∠PME =∠PNF =90°、PM =PN(角平 B A M N E F O P BA E F O P G AB C E DA B C E F D 分线性质)、∠MPE =∠NPF 这三个条件,利用ASA 可以证明△PME ≌△PNF 。
构造全等三角形添加辅助线的方法
构造全等三角形添加辅助线的方法构造全等三角形是初中数学中的一个重要内容,理解并掌握构造全等三角形的方法对同学们建立良好的几何直观和提高几何证明能力等方面有很大帮助。
添加辅助线是构造全等三角形的重要方法之一。
本文列举了10条关于构造全等三角形添加辅助线的方法,并详细描述了每一种方法的步骤和原理。
一、通过中位线构造全等三角形步骤:1、作出一个三角形ABC和它的一条中位线AD;2、将角BAD和角ACD作为两个角,作一个新的三角形BAD,使它的对边和AC平行;3、证明三角形BAC和三角形BAD全等。
原理:两个平行线截一组平行于它们的直线形成的线段,具有相等的长度。
二、通过角平分线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE;2、将角EAB和角EAC作为两个角,分别连线得到三角形EAB和三角形EAC;3、证明三角形ABC和三角形EAB全等。
原理:在一个三角形中,一边上的角平分线将这条边分成两个相等的线段,同时将对角的两个角平分为两个相等的角。
三、通过三角形内角和不变构造全等三角形步骤:1、作出两个全等三角形ABC和DEF;2、在三角形ABC内部选取一个点M;3、以点M为中心,作一个半径等于EF的圆,在这个圆上分别找到两个点P、Q;4、连接点P、Q和点M,分别得到三角形AMP和BMQ;5、证明三角形AMP和三角形BMQ全等。
原理:三角形中角的和不变,即两个全等三角形中任意两个内角之和相等。
四、通过角平分线和垂线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE,垂直于BC;2、在AE上选取一点G,将角GAB和角GAC作为两个角,分别连线得到三角形GAB和三角形GAC;3、以点B为中心,作一个半径等于CG的圆,在这个圆上分别找到两个点M、N;4、连接MN和点B,分别得到三角形MBC和NBC;5、证明三角形GAB和三角形MBC全等。
原理:在一个三角形中,角平分线和垂线的交点将底边分成相等的线段,在垂线上的任意一点到底边的两个端点距离相等。
构造全等三角形的常用方法
构造全等三角形的方法
方法一翻折法
1、如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D.求证:∠2=∠1+∠C.
方法二补形法
2、如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF.求证:∠ADC=∠BDF.
方法三旋转法
3、如图,在正方形ABCD中,E为BC边上一点,F为CD边上一点,BE+DF=EF,求∠EAF.
方法四倍长中线法
4、如图,在△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=6,AC=2,求AD的取值范围.
方法五截长补短法
5、如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD 上的点,且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系并证明.
方法六作垂线法
6、如图,∠AOB=90°,OM平分∠AOB,直角三角板的顶点P在射线OM上移动,两直角边分别与OA,OB相交于点C、D,问PC与PD相等吗?试说明理由.
方法七作平行线法
7、如图,△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ平分∠ABC 交AC于点Q.求证:AB+BP=BQ+AQ.。
初中数学——构造全等三角形的五种常用方法
所以∠1=∠2. ∠1=∠2,
在△ACD 和△CBG 中,AC=CB, ∠ACD=∠CBG=90°,
所以△ACD≌△CBG(ASA). 所以∠ADC=∠G,CD=BG. 因为点 D 为 BC 的中点,所以 CD=BD.所以 BD=BG. 因为∠DBG=90°,∠DBF=45°,
所以∠GBF=∠DBG-∠DBF=90°-45°=45°.
解:如图,过点B作BG⊥BC交CF的延长线于点G. 因为∠ACB=90°,所以∠2+∠ACF=90°. 因为CE⊥AD, 所以∠AEC=90°. 所以∠1+∠ACF=180°-∠AEC=180°-90°=90°. 因为CE⊥AD,所以∠AEC=90°. 所以∠1+∠ACF=180°-∠AEC=180°-90°=90°.
在△AEH 和△AEF 中,AE=AE, EH=EF,
所以△AEH≌△AEF(SSS).
所以∠EAH=∠EAF.
所以∠EAF=12∠HAF=45°.
返回
方 法 4 倍长中线法
4.如图,在△ABC中,D为BC的中点.若AB=5, AC=3,求AD长度的取值范围. 解:如图,延长AD至点E,使DE= AD,连接BE. 因为D为BC的中点,所以CD=BD.
第四章 三角形
构造全等三角形的五种常用方法
方 法 1 翻折法
1.如图,在△ABC中,BE是∠ABC的平分线, AD⊥BE,垂足为D.试说明:∠2=∠1+∠C.
解:如图,延长AD交BC于点F(相当于将AB边向下翻 折,与BC边重合,A点落在F点处,折痕为BE). 因为BE平分∠ABC, 所以∠ABE=∠CBE. 因为BD⊥AD, 所以∠ADB=∠FDB=90°.
所以∠D=∠ABH=90°. AB=AD,
在△ABH 和△ADF 中,∠ABH=∠D=90°, BH=DF,
典中点全等三角形专训4 构造全等三角形的五种常用方法
典中点全等三角形专训4 构造全等三角形的五种常用方法
◐名师点金◑
在进行几何题的证明或计算时,需要在图形中添加一些辅助线辅助线能使题目中的条件比较集中,能比较多易找到一些量之间的关系,使教学问题较轻松地解决。
常见的辅助线作法:翻折法、构造法、旋转法、倍长中线法和截长(补短法,其目的都是构造全等三角形。
分法1:翻折法
1.如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D求证:∠2=∠1+∠C
方法2:构造法
2.如图,在Rt△ABC中,∠ACB=90°,AC=BC,∠ABC=45°,点D为BC的中点,CE⊥AD于点E,其延长线交
AB于点F,连结DF。
求证:∠ADC=∠BDF
方法3:旋转法
3.如图,在正方形ABCD中,E为BC边上一点,F为CD边上一点,BE+DF=EF,求∠EAF的度数。
方法4:倍长中线法
4.如图,在△ABC中,D为BC的中点。
(1)求证:AB+AC>2AD
(2)若AB=5,AC=3,求AD的取值范围
方法5:截长(补短)法
5.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°探究图中线段BE,EF,FD之间的数量关系并证明。
构造三角形全等的几种方法
专题构造三角形全等的几种方法
类型一:利用“倍长中线法”构造全等三角形
1、已知在△A B C中,A B=4cm,A C=6cm.求第三边上中线A D的取值范围.
2、如图.AB=AE,AB⊥AE,AD=AC.AD⊥AC,点M为BC的中点,求证:DE=2AM.
类型二、利用“截长补短法”构造全等三角形3、如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.4、已知:如图,在△ABC中.∠BCA=90°,AC=BC,AE平分∠BAC,BE⊥AE.求证:BE=AD.
5、如图,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,求证:EF=BE+DF.
类型三:利用角平分构造全等三角形
6、如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB>AC,求证:AB﹣AC>PB﹣PC.
7、如图,△AOB中,OA=OB,∠AOB=90゜,BD平分∠ABO交OA于D,AE⊥BD于E.
求证:BD=2AE.
类型四:通过作平行线构造全等三角形
8、如图,△ABC中,AB=AC,在AB上取一点E,在AC的延长线上取一点F,使CF=BE,连接EF,交BC于点D.求证:DE=DF.
9、△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC 交BC于P,BQ平分∠ABC交AC于Q,求证:
AB+BP=BQ+AQ.。
小专题(三) 构造全等三角形的常用方法
AB=FB, ∠ABE=∠FBE, BE=BE,
∴△ABE≌△FBE(SAS). ∴∠A=∠BFE.
∵AB∥CD, ∴∠A+∠D=180°. ∴∠BFE+∠D=180°. ∵∠BFE+∠CFE=180°, ∴∠CFE=∠D. 在△FCE和△DCE中,
方法2 利用“截长补短法”构造全等三角形
截长补短法的具体做法:在某一条线段上截取一条线 段与特定线段相等,或将某条线段延长,使之与特定线段 相等,再利用三角形全等的有关性质加以说明.这种方法 适用于证明线段的和、差、倍、分等题目.
2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点 E在AD上,求证:BC=AB+CD.
∠CFE=∠D, ∠FCE=∠DCE, CE=CE,
∴△FCE≌△DCE(AAS). ∴CF=CD. ∴BC=BF+CF=AB+CD.
3.(德州中考)问题背景: 如图1,在四边形ABCD中,AB=AD,∠BAD=120°, ∠B=∠ADC=90°.点E,F分别是BC,CD上的点,且 ∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系. (1)小王同学探究此问题的方法是:延长FD到点G,使 DG=BE,连接AG.先证明△ABE≌△ADG,再证明 △AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF;
(2) 如图 2,若在四边形 ABCD 中,AB=AD, ∠B+∠D=180°.E,F 分别是 BC,CD 上的点,
且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由. 解:EF=BE+DF仍然成立. 理由:延长FD到G,使DG=BE,连接AG, ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°, ∴∠B=∠ADG. 在△ABE和△ADG中,
构造三角形全等的方法
构造三角形全等的方法一、引言三角形是平面几何中最基本的图形之一,构造全等三角形是几何学中的重要问题。
全等三角形指的是具有相同边长和角度的三角形,它们的形状完全相同。
本文将介绍几种构造全等三角形的方法,帮助读者更好地理解和应用这些方法。
二、SSS法SSS法是构造全等三角形中最常用的方法之一,它基于三角形边长相等的性质。
具体步骤如下:1. 给定一个三角形ABC和一条边长相等的线段DE。
2. 以点D为圆心,DE的长度为半径,画一个圆。
3. 以点A为圆心,以AB的长度为半径,画一个圆。
该圆与第一步中的圆交于点F。
4. 连接BF和AF,得到三角形ABF。
5. 证明AF=DE,BF=DE,AB=DE,即可得到三角形ABF与三角形ABC全等。
三、SAS法SAS法也是构造全等三角形常用的方法之一,它基于三角形两边和夹角相等的性质。
具体步骤如下:1. 给定一个三角形ABC和一个角度a。
2. 在角ABC的一侧,以BC为边,以角a的度数为顶角,画一条射线。
3. 在射线上取一点D,使得BD=AB。
4. 连接AD,得到三角形ABD。
5. 证明AD=AC,BD=AB,角BAD=角BAC,即可得到三角形ABD与三角形ABC全等。
四、ASA法ASA法是构造全等三角形的另一种常用方法,它基于三角形两角和夹边相等的性质。
具体步骤如下:1. 给定一个三角形ABC和两个角度a和b。
2. 在角ABC的一边,以角a的度数为顶角,画一条射线。
3. 在射线上取一点D,使得角BDA的度数为角BAC的度数。
4. 连接BD,得到三角形ABD。
5. 证明角BAD=角BAC,角BDA=角BCA,AD=AC,即可得到三角形ABD与三角形ABC全等。
五、AAS法AAS法也是构造全等三角形的一种方法,它基于三角形两角和一边相等的性质。
具体步骤如下:1. 给定一个三角形ABC和两个角度a和b。
2. 在角ABC的一边,以角a的度数为顶角,画一条射线。
3. 在射线上取一点D,使得角BDA的度数为角BAC的度数。
构造全等三角形的方法(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。
全等三角形的构造方法全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。
判断三角形全等公理有SAS、ASA、AAS、SSS和HL,如果能够直接证明三角形的全等的,直接根据相应的公理就可以证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。
一些较难的一些证明问题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。
构造方法有:1.截长补短法。
2.平行线法(或平移法):若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线。
3.旋转法:对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。
4.倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。
5.翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形。
下面举例说明几种常见的构造方法,供同学们参考.1.截长补短法(通常用来证明线段和差相等)“截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分与另一较短的线段相等.例1.如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.例2 已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF交BC于点D.求证:DE=DF.(2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF的中点.求证:BE=CF.例3(北京市数学竞赛试题,天津市数学竞赛试题)如图所示,ABC是边长为1的NMAAMN正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.1.如图已知:正方形ABCD 中,∠BAC 的平分线交BC 于E ,求证:AB+BE=AC .2.(06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOEC BA4321FDOE CB A3.已知:如图,ABCD是正方形,∠FAD=∠FAE. 求证:BE+DF=AE.如图,四边形ABPC中,,,,求证:.FEDCBA2.平行线法(或平移法)若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线.例△ABC中,∠BAC=60°,∠C=440°AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.说明:⑴本题也可以在AB截取AD=AQ,连OD,构造全等三角形,即“截长补短法".⑵本题利用“平行法”解法也较多,举例如下:①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO来解决.②如图(3),过O作DE∥BC交AB于D,交AC于E,则△ADO≌△AQO,△ABO≌△AEO来解决.③如图(4),过P作PD∥BQ交AB的延长线于D,则△APD≌△APC 来解决.④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP来解决.(本题作平行线的方法还很多,感兴趣的同学自己研究)3.旋转法对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形例.已知:如图(6),P为△ABC内一点,且PA=3,PB=4,PC=5,求∠APB的度数.分析:直接求∠APB的度数,不易求,由PA=3,PB=4,PC=5,联想到构造直角三角形.4.倍长中线法题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。
全等三角形专题:构造全等三角形方法总结
专题:构造全等三角形利用三角形的中线来构造全等三角形(倍长中线法)倍长中线法:即把中线延长一倍,来构造全等三角形。
1、如图1,在^ ABC中,AD是中线,BE交AD于点F,且AE= EF.试说明线段AC与BF相等的理由.简析因为AD是中线,于是可延长AD到G使DG= AD连结BG贝在^ ACDFH A GBD中, AD= GD / ADC- / GDB CD= BD 所以△ ACD^A GBD(SAS,所以AC= GB / CAD=/ G 而AE= EF,所以/ CAD=/ AFE 又/ AFE = / BFG 所以/ BFG=/ G 所以BF= BG 所以AC= BF.说明要说明线段或角相等,通常的思路是说明它们所在的两个三角形全等,而遇到中线时又通常通过延长中线来构造全等三角形.利用三角形的角平分线来构造全等三角形法一:如图,在△ ABC中,AD平分/ BAC。
在AB上截取AE=AC,连结DE。
(能够利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。
)ED-CD, /AED=ZC, /ADE^/ADC法二:如图,在△ ABC中,AD平分/ BAC。
延长AC到F,使AF=AB,连结DF。
(能够利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。
_____ )BD=FD , ZB=ZF. ZADB^ZADFo法三:在^ ABC中,AD平分/ BAC。
作DM丄AB于M,DN丄AC于N。
(能够利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形)DM-DN , AM-AN, NADJVf=NAND口A,,-(还能够用“角平分线上的点到角的两边距离相等”来证DM=DN )2、已知:如图,在四边形A+ / C=180 °AD=DE (全等三角形的对应边相等)•/ AD=CD (已知),AD=DE (已证).DE=DC (等量代换)•••/ 4=Z C (等边对等角)••• / 3+ / 4 = 180°(平角定义),DF=DC (全等三角形的对应边相等)•/ AD=CD (已知),DF=DC (已证).DF=AD (等量代换)4=Z F (等边对等角)•/ / F=Z C (已证)/ A = Z 3 (已证).•./ A+ / C= 180° (等量代换)•••/ 4= ZC (等量代换)•/ / 3+ / 4= 180° (平角定义)法三:作DM丄BC于M , DN丄BA交BA的延长线于•/ BD是/ ABC的角平分线(已知)•••/仁/2 (角平分线定义)•/ DN 丄BA , DM 丄BC (已知)•••/ N= / DMB=90)(垂直的定义)在^ NBD和^ MBD中•// N= / DMB (已证)/ 1 = / 2 (已证)BD=BD (公共边).△ NBD ” MBD (A.A.S ).ND=MD (全等三角形的对应边相等)•/ DN 丄BA , DM 丄BC (已知).△ NAD 和^ MCD 是Rt△在Rt△NAD 和Rt△MCD 中ND=MD (已证)AD=CD (已知).Rt△NAD 幻Rt△MCD (H.L)./ 4= / C (全等三角形的对应角相等)••• / 3+ / 4 = 180° (平角定义),法一:证明:在BC上截取BE,使•/BD是/ ABC的角平分线(已知)仁/2 (角平分线定义)在^ ABD和^ EBD中BE=AB,连结DE。
北师大版七年级数学下册 第四章 证明(构造)全等三角形常用方法与技巧(含答案)
第四章证明(构造)全等三角形常用方法与技巧一、截长补短法1.如图,在正方形ABCD中,E是AB上一点,点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?解:成立.理由如下:如图,延长AD至F,使DF=BE,连接CF.在正方形ABCD中,BC=DC,∠B=∠CDA=90°,所以∠CDF=∠B=90°.又因为BE=DF,所以△CBE≌△CDF(SAS).所以CE=CF,∠BCE=∠DCF.所以∠BCE+∠ECD=∠DCF+∠ECD.所以∠ECF=∠BCD=90°.因为∠GCE=45°,所以∠GCF=∠GCE=45°.又因为CE=CF,GC=GC,所以△ECG≌△FCG(SAS).所以GE=GF.所以GE=DF+GD=BE+GD.2.如图,在△ABC 中,BE 是∠ABC 的平分线,AD ⊥BE ,垂足为D.试说明:∠2=∠1+∠C.解:如图,过点B 作BG ⊥BC 交CF 的延长线于点G.因为∠ACB =90°,所以∠2+∠ACF =90°.因为CE ⊥AD ,所以∠AEC =90°.所以∠1+∠ACF =180°-∠AEC =180°-90°=90°.因为CE ⊥AD ,所以∠AEC =90°.所以∠1+∠ACF =180°-∠AEC =180°-90°=90°.在△ABD 和△F BD 中,⎩⎪⎨⎪⎧∠ABD =∠FBD ,BD =BD ,∠ADB =∠FDB =90°,所以△ABD ≌△FBD (ASA).所以∠2=∠DFB .又因为∠DFB =180°-∠AFC ,∠1+∠C =180°-∠AFC ,所以∠DFB =∠1+∠C .所以∠2=∠1+∠C .3.如图,在直角三角形ABC 中,∠ACB =90°,AC =BC ,∠ABC =45°,点D 为BC 的中点,CE ⊥AD 于点E ,其延长线交AB 于点F ,连接DF.试说明:∠ADC =∠BDF.解:如图,过点B 作BG ⊥BC 交CF 的延长线于点G.因为∠ACB =90°,所以∠2+∠ACF =90°.因为CE ⊥AD ,所以∠AEC =90°.所以∠1+∠ACF =180°-∠AEC =180°-90°=90°.因为CE ⊥AD ,所以∠AEC =90°.所以∠1+∠ACF =180°-∠AEC =180°-90°=90°.所以∠1=∠2.在△ACD 和△CBG 中,⎩⎪⎨⎪⎧∠1=∠2,AC =CB ,∠ACD =∠CBG =90°,所以△ACD ≌△CBG (ASA).所以∠ADC =∠G ,CD =BG .因为点D 为BC 的中点,所以CD =BD .所以BD =BG .所以∠GBF =∠DBG -∠DBF =90°-45°=45°.所以∠DBF =∠GBF .在△BDF 和△BGF 中,⎩⎪⎨⎪⎧BD =BG ,∠DBF =∠GBF ,BF =BF ,所以△BDF ≌△BGF (SAS).所以∠BDF =∠G .所以∠ADC =∠BDF .四、旋转法4. 如图,在正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE +DF =EF ,求∠EAF 的度数.解:如图,延长CB 到点H ,使得BH =DF ,连接AH.所以∠D =∠ABH =90°.在△ABH 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠ABH =∠D =90°,BH =DF ,所以△ABH ≌△ADF (SAS).所以AH =AF ,∠BAH =∠DAF .所以∠BAH +∠BAF =∠DAF +∠BAF .所以∠HAF =∠BAD =90°.因为BE +DF =EF ,所以BE +BH =EF ,即EH =EF .在△AEH 和△AEF 中,⎩⎪⎨⎪⎧AH =AF ,AE =AE ,EH =EF ,所以△AEH ≌△AEF (SSS).所以∠EAH =∠EAF .所以∠EAF=12∠HAF =45°.五、倍长中线法5. 如图,在△ABC 中,D 为BC 的中点.若AB =5,AC =3,求AD 长度的取值范围.解:如图,延长AD 至点E ,使DE =AD ,连接BE.因为D 为BC 的中点,所以CD =BD.又因为AD =ED ,∠ADC =∠EDB ,所以△ADC ≌△EDB(SAS).所以AC =EB.因为AB -EB<AE<AB +EB ,又因为AB =5,AC =3,所以2<2AD<8. 所以1<AD<4.综合练习1.如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,AE =EC ,DE =EF ,则下列结论中:①∠ADE =∠EFC ;②∠ADE +∠ECF +∠FEC =180°;③∠B +∠BCF =180°;④S △ABC =S 四边形DBCF ,正确的结论有( )A .4个B .3个C .2个D .1个2.如图,D ,E ,F 分别为AB ,AC ,BC 上的点,且DE ∥BC ,△ABC 沿线段DE 折叠,使点A 落在点F 处.若∠B=50°,则∠BDF =________.3.如图,已知边长为1的正方形ABCD ,AC ,BD 交于点O ,过点O 任作一条直线分别交AD ,BC 于点E ,F ,则阴影部分的面积是________.4.如图,AD ,AE 分别是△ABC 的角平分线、高线,且∠B =50°,∠C =70°,则∠EAD =________.5.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =1(AB +AD ),若∠D =115°,则∠B =________.6.如图①,在Rt△ABC中,AB=AC,∠BAC=90°,过点A的直线l绕点A旋转,BD⊥l于D,CE⊥l于E.(1)试说明:DE=BD+CE.(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.7.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,角α与β之间的数量关系是____________,请说明理由;(2)如图②,点D在线段BC的延长线上移动时,角α与β之间的数量关系是____________,请说明理由;(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形并猜想角α与β之间的数量关系是________________.参考答案1.A2.80° 3.144.10° 点拨:由AD 平分∠BAC ,可得∠DAC =12∠BAC =12×(180°-50°-70°)=30°.由AE ⊥BC ,可得∠EAC =90°-∠C =20°,所以∠EAD =30°-20°=10°.5.65° 点拨:过C 作CF ⊥AD ,交AD 的延长线于F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎪⎨⎪⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS ).所以FC =EC ,AF =AE .因为AE =12(AB +AD ), 所以AF =12(AE +EB +AD ), 即AF =BE +AD .所以DF =BE .在△FDC 和△EBC 中,⎩⎪⎨⎪⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS ).所以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.6.解:(1)因为BD ⊥l ,CE ⊥l ,所以∠ADB =∠AEC =90°.又因为∠BAC=90°,所以∠BAD+∠CAE=90°.所以∠DBA=∠CAE.因为AB=AC,∠ADB=∠CEA=90°,所以△ABD≌△CAE(AAS).所以AD=CE,BD=AE.则AD+AE=BD+CE,即DE=BD+CE.(2)(1)中结论不成立.DE=BD-CE.同(1)说明△ABD≌△CAE,所以BD=AE,AD=CE.又因为AE-AD=DE,所以DE=BD-CE.7.解:(1)α+β=180°理由:因为∠DAE=∠BAC,所以∠DAE-∠CAD=∠BAC-∠CAD,即∠BAD=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.在△ABC中,∠BAC+∠ABC+∠ACB=180°,∠ABC=∠ACE,所以∠BAC+∠ACB+∠ACE=180°.因为∠ACB+∠ACE=∠DCE=β,所以α+β=180°.(2)α=β理由:因为∠DAE=∠BAC,所以∠BAD=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.因为∠ABC+∠BAC+∠ACB=180°,∠ACB+∠ACD=180°,所以α=β.(3)α=β.画图略.。
构造全等三角形种常用方法
构造全等三角形种常用方法在证明两个三角形全等时,选择三角形全等得五种方法(“SSS ”,“SA S”,“ASA ”,“AAS ”,“HL ”)中,至少有一组相等得边,因此在应用时要养成先找边得习惯。
如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边得夹角用“SAS ”或再找第三组对应边用“SSS ”;若找到一组角则需找另一组角(可能用“ASA ”或“AAS ”)或夹这个角得另一组对应边用“SAS”;若就就是判定两个直角三角形全等则优先考虑“HL ”。
上述可归纳为:搞清了全等三角形得证题思路后,还要注意一些较难得一些证明问题,只要构造合适得全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了、下面举例说明几种常见得构造方法,供同学们参考、1、截长补短法例1、如图(1)已知:正方形ABCD 中,∠BAC 得平分线交B C于E ,求证:A B+BE=AC 、 解法(一)(补短法或补全法)延长AB 至F使AF=AC ,由已知△AEF ≌△AEC,∴∠F =∠ACE=45º, ∴BF =B E,∴AB+BE =A B+BF=AF=AC 、 解法(二)(截长法或分割法)在A C上截取AG=AB,由已知 △ AB E≌△AGE,∴EG=B E, ∠A GE=∠ABE,∵∠ACE =45º, ∴CG =EG, ∴AB +BE =AG+CG=AC、 2、平行线法(或平移法)若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边得中线、例2、△ABC 中,∠BAC=60°,∠C =40°A P平分∠BAC 交B C于P,B Q平分∠ABC 交A C于Q, 求证:A B+B P=BQ+A Q、证明:如图(1),过O 作O D∥BC 交AB 于D,∴∠ADO =∠ABC=180°-60°-40°=80°,又∵∠AQ O=∠C +∠QBC=80°,∴∠ADO=∠AQO ,又∵∠DA O=∠QAO ,OA=AO, ∴△ADO ≌△AQO,∴OD=O Q,AD=AQ ,又∵OD ∥BP,∴∠PBO=∠DOB ,又∵∠PBO=∠D BO,∴∠DBO=∠D OB,∴BD=O D,∴AB +BP=AD+DB+B P=A Q+OQ+B O=AQ+BQ 、说明:⑴本题也可以在AB 截取AD=AQ ,连OD,构造全等三角形,即“截长补短法”、⑵本题利用“平行法”解法也较多,举例如下: ① 如图(2),过O 作OD ∥BC 交AC 于D, 则△ADO ≌△ABO 来解决、 ② 如图(3),过O 作D E∥BC 交AB 于D,交AC 于E,则△ADO≌△AQ O,△A BO ≌△AE O来解决、 ③ 如图(4),过P作P D∥B Q交A B得延长线于D,则△A PD ≌△APC 来解决、 ④ 如图(5),过P 作PD ∥BQ 交A C于D, 则△AB P≌△ADP 来解决、 (本题作平行线得方法还很多,感兴趣A B C P Q D OO A B C P Q D图(2) A B C PQ D E 图(3) O A B C P Q图(4)DOA BCP Q 图(5)D OD得同学自己研究)、 3、旋转法对题目中出现有一个公共端点得相等线段时,可试用旋转方法构造全等三角形。
七年级上册构造全等三角形的方法
七年级上册构造全等三角形的方法全等三角形是指具有相同形状和大小的三角形。
构造全等三角形是初中数学的重要内容之一。
对于七年级的学生来说,理解全等三角形的概念并掌握构造全等三角形的方法是至关重要的。
本文将详细介绍构造全等三角形的方法,帮助同学们更好地理解和掌握这一知识点。
一、全等三角形的概念在开始介绍构造全等三角形的方法之前,首先需要理解全等三角形的概念。
两个三角形如果它们的对应的三条边分别相等,那么这两个三角形就是全等三角形。
全等三角形在形状和大小上是完全一致的,只是位置或方向可能不同。
二、构造全等三角形的方法1. SSS(边边边)法则SSS法则表示如果两个三角形的三条边分别相等,那么这两个三角形就是全等的。
因此,我们可以利用这一法则来构造全等三角形。
具体步骤如下:1)首先,画出一个给定的三角形ABC;2)然后,根据题目要求,确定另一个三角形的三条边分别与已知三角形的三条边相等;3)最后,连接对应的顶点,得到全等的三角形。
例如,已知三角形ABC的三边长分别为5cm、6cm和7cm,要构造一个全等的三角形DEF,可以先画出与三角形ABC边长相同的三条线段,然后连接对应的顶点D、E、F,就可以得到全等的三角形DEF。
2. SAS(边角边)法则SAS法则表示如果两个三角形的两条边和夹角分别相等,那么这两个三角形就是全等的。
因此,我们也可以利用这一法则来构造全等三角形。
具体步骤如下:1)首先,画出一个给定的三角形ABC;2)然后,在已知角A处画一条射线,使得射线上的一点与已知边AB的长度相等;3)再确定射线上的一点到顶点B的连线与已知边BC的长度相等;4)最后,连接对应的顶点,得到全等的三角形。
例如,已知三角形ABC中,∠A=60°,AB=5cm,BC=7cm,要构造一个全等的三角形DEF,可以先在角D处画一条射线,在射线上找一点使得DE=5cm,再确定射线上的一点到顶点E的连线与已知边EF的长度相等,再画出DE与EF的连接线,这样就可以得到全等的三角形DEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造全等三角形的基本方法
第一种:倍长中线法(利用中点、中线构造)
例题1、如图,△ABC中,AD是中线,AB=4,AC=6,AD的范围是.2】
第二种:利用角平分线
角平分线常见的辅助线作法:
例题2、已知在△ABC中,∠B=2∠C,∠A的平分线AD交BC边于点D.求证:AC=AB+BD.
3】
【例1】
例题3、BE是角平分线,AD垂直BE于D,求证:∠2=∠1+∠C
第三种:截长补短法(通常用来证明线段和差相等)
“截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分与另一较短的线段相等.
例题5:如图(1)已知:正方形ABCD中,∠BAC的平分线交BC于E,
求证:AB+BE=AC.
例题6、AB//CD,BE,CE是角平分线,求证:BC=AB+CD
第四种:旋转
对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形
例3、如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=6,PB=2,PC=4,求∠BPC的度数.
例4、如图,正方形ABCD中,DE=3,BF=1,∠EAF=45°,则EF= .
例5、如图所示,两个边长都为2的正方形ABCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕O点旋转,那么它们重叠部分的面积为
第五种:平行线法
例7、如图,△ABC中,AB=AC。
E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。
求证:EF=FD。
练习7:(1)过D、E分别作DG⊥BC于G,EH⊥BC的延长线于H,用这种辅助线的方法是否可以证明出结论?
(2)若将条件BE=CE与结论DF与EF互换,其他条件不变,那么此题是否仍成立?
作业:
练习1、如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.练习2、
练习2、
练习3、
练习4、
练习5、已知:如图所示,ABC是正三角形,P为△ABC内一点,且PA=3,PB=4,PC=5,求∠APB的度数.
练习6、如图,已知梯形ABCD中,AD∥BC,∠B=90°,AD=3,BC=5,AB=1,把线段CD绕点D逆时针旋转90°到DE位置,连接AE,则△ADE的面积为.
练习7、已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF
(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;求CF,BC,CD三条线段之间的关系.。