2016中考数学60个易错点_考点解析

合集下载

初中数学重难知识点分析汇总

初中数学重难知识点分析汇总

初中数学重难知识点分析汇总函数(一次函数、反比例函数、二次函数)函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。

特别是二次函数是中考的重点,也是中考的难点。

在填空、选择、解答题中均会出现,且知识点多,题型多变。

而且解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大,有一定难度。

如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。

整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。

中考一般以选择、填空形式出现,但却是解答题完整解答的基础。

运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。

应用题包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。

一般会出现两道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。

现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,因为这样更能让学生感受学习数学在自己生活中的运用,以激发其学习兴趣。

应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。

方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。

三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形)三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。

中考数学易错题系列之几何变换错综复杂的旋转平移与对称易错点解析

中考数学易错题系列之几何变换错综复杂的旋转平移与对称易错点解析

中考数学易错题系列之几何变换错综复杂的旋转平移与对称易错点解析几何变换是中考数学中的重要考点之一,其中旋转、平移和对称是较为常见的几何变换类型。

但由于错综复杂的变换方式,很多学生在解题时容易出现错误。

本文将通过解析中考中常见的几何变换易错点,帮助大家更好地理解和掌握这一知识点。

一、旋转错综复杂旋转是一种将图形绕着某一固定的点旋转一定角度后得到的新图形。

在中考中,常见的旋转易错点包括角度的计算和旋转中心的确定。

1. 角度的计算有时,题目中已给出旋转的角度,但学生在计算旋转角度时容易出现错误。

例如,题目给出旋转角度为60°,学生可能会直接以为是九十度,导致计算错误。

解决这个问题的关键是认真阅读题目,并将给出的角度正确运用到计算中。

2. 旋转中心的确定旋转中心是旋转变换中的关键概念。

在一些题目中,旋转中心可能没有明确给出,需要根据已知条件或者图形特点来确定。

如何准确确定旋转中心呢?一种常用的方法是找到图形中的对称性质。

例如,如果题目给出两个对称的点,并告知图形经过某一旋转后仍然相互对称,那么旋转中心必定位于对称轴上。

二、平移易错点解析平移是指将图形沿着某一直线方向移动一定距离,得到的新图形与原图形形状相同,大小相等,仅位置改变。

在中考中,平移的易错点主要集中在平移方向和平移距离的计算上。

1. 平移方向的确定对于平移题目,平移方向的确定是至关重要的。

在实际解题过程中,学生可能对平移方向的表示方式不熟悉,导致答案错误。

为了避免这种错误,学生可以通过画图等方式将平移方向明确表示出来,并进行准确计算。

2. 平移距离的计算平移距离的计算同样是平移题目中的易错点。

在计算平移距离时,学生可能会出现计算错误或者对单位换算不熟悉的情况。

为了避免这种错误,学生在解题时应当将平移距离的单位进行统一,并注意计算过程中的精度,避免舍入误差。

三、对称易错点解析对称是指图形经过某一中心或者某一直线变换后,得到的新图形与原图形完全相同。

2016中考数学重点难点:易错知识点梳理_考点解析

2016中考数学重点难点:易错知识点梳理_考点解析

2016中考数学重点难点:易错知识点梳理_考点解析初三学期的学习知识范围更广,课程的内容更加抽象,更加难以理解,尽快地掌握科学知识,迅速提高学习能力,由小编为您提供的2016中考数学重点难点,希望给您带来启发!●失分点集中在以下几个方面:考查简单二次根式的化简求值,函数中自变量取值范围,易出错。

考查点和圆、直线和圆的位置关系,易将其判定相混,或不审题误把圆直径当半径。

考查简单直角三角形的应用,失分点在于对括号中给出精确度忽略而错选。

视图时,考生由于缺乏空间想象力而易失分。

考查一元二次方程的实际应用,特别是均变速运动有关问题是难点。

以图表形式提供信息考查统计知识,由于信息量及阅读量大,线索多,要求小伙伴们冷静、细心审题,否则易失分。

考查几何变换中点的坐标及点或线段在变换中经过的路线,考生容易在三个方面失分,旋转中的旋转方向,坐标与线段转化过程中忽略点所在位置或者是弧长公式、扇形面积公式相混。

考查概率在实际问题中应用,用频率估分概率时考生容易出错。

策略:从往年的试卷可以看出,小伙伴们卷面上一般会出现大量“会而不对”、“对而不全”的现象。

小伙伴们应注意以下三个问题。

解题速度慢,导致后面的解答题没有时间做,连看题都没有时间了。

解题速度缓慢原因就是不熟练,基础知识不熟练,基本方法不熟练,这是平时训练不够所致,所以我们经常说回归课本,目的就是要让考生全面、系统地掌握课本中的基础知识和基本方法,吃透课本中的例题和习题。

运算错误多。

答卷的时候,经常会犯一些低级的错误,这是运算能力的问题,不能简单的说是粗心大意,这方面要加强运算能力的训练,避免基础性失分。

答题不规范。

一道题做完了,自己以为是对的,其实大打折扣,主要是因为答题不规范,丢三落四。

例如解应用题没有作答,求函数解析式没有写出定义域(自变量取值范围),乱用数学符号、乱造数学符号等。

因此小伙伴们在最后几天,要注意回归教材,认真通读课本,结合考试说明的能力要点,及时查漏补缺,把知识方法系统化,针对调考后训练中出现的错误,失分点,进一步总结错因,杜绝隐患。

2016中考数学知识点大纲:圆和圆的关系公式定理_考点解析

2016中考数学知识点大纲:圆和圆的关系公式定理_考点解析

2016中考数学知识点大纲:圆和圆的关系公式定理_考点解析
2016中考数学复习黄金方案,打好基础提高能力初三复习时间紧、任务重,在短短的时间内,如何提高复习的效率和质量,是每位初三学生所关心的。

下文为2016中考数学知识点大纲。

圆和圆位置关系
①无公共点,一圆在另一圆之外叫外离,在之内叫内含。

②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

③有两个公共点的叫相交。

两圆圆心之间的距离叫做圆心距。

设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P 内切P=R-r;相交R-r 。

为大家推荐的2016中考数学知识点大纲的内容,还满意吗?相信大家都会仔细阅读,加油哦!。

2016中考数学四边形要点整理:菱形的定义、性质及判定_考点解析

2016中考数学四边形要点整理:菱形的定义、性质及判定_考点解析

2016中考数学四边形要点整理:菱形的定义、性质及判定_考点解析
知识的学习需要的不仅是大量的做题,更重要的是知识点的累积。

查字典数学网为大家准备了2016中考数学四边形要点整理,欢迎阅读与选择!
菱形的定义、性质及判定.
1·定义:有一组邻边相等的平行四边形叫做菱形.
(1)菱形的四条边都相等;。

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形.
(4)菱形的面积等于两条对角线长的积的一半:
2.s菱=争6(n、6分别为对角线长).
3.判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形;
(3)对角线互相垂直的平行四边形是菱形.
4.对称性:菱形是轴对称图形也是中心对称图形.
希望这篇2016中考数学四边形要点整理,可以帮助更好的迎接即将到来的考试!。

2016中考数学试题及答案解析

2016中考数学试题及答案解析

2016中考数学试题及答案解析2016年中考数学已经结束,本文将对本次考试试题出现的知识点进行解析,帮助考生对数学考点更加清晰明确。

2016年中考数学试题及答案解析一、单项选择题1.斐波那契数列(第n项满足公式 Fn=Fn-1+Fn-2)中,第25项的值为(A. 1250B. 1280C. 1290D. 1300答案:D,解析:F1=1,F2=1,F3=2,那么F25=F24+F23=750+550=1300。

2.若复数z=(6-3i)*(2+i),z的共轭复数为(A. 8-3iB. 8+3iC. 6-iD. 6+i答案: B. 8+3i,解析:z的共轭复数即为z的根号共轭复数,即(6-3i)(2+i)的根号共轭复数为(6+3i)(2-i),得到结果8+3i。

3.下列函数中的值正确的连续12点的解析式是(A. y=x^2-3x+7B. y=3x^2+2x-1C. y=(x-2)^2-5x+7D. y=x^2+7答案: C,解析:根据函数y=(x-2)^2-5x+7,它的x取值为0,1,2,3,4,5,6,7,8,9,10,11,且y均为正数,因此其值正确。

二、解答题4.一家公司把罐装蜂蜜装入木箱,每个木箱里装有六个罐装蜂蜜,每罐蜂蜜重1.5Kg,请计算出20个木箱装蜂蜜重量是多少答案:20*6*1.5kg=180kg。

解析:每个木箱里装6个罐装蜂蜜,每个蜂蜜罐重1.5Kg,20个木箱装蜂蜜重量计算为:20*6*1.5kg=180kg。

5.若△ABC的面积为40,AB=4,BC=6,则BC角度数是(答案:60°. 解析:△ABC的面积为40,AB=4,BC=6,则AB:BC=2:3,可利用海伦公式求出其BC角α,即:α=arccos(2/3)=60°。

2016中考数学考前知识点:近似数和有效数字_考点解析

2016中考数学考前知识点:近似数和有效数字_考点解析

2016中考数学考前知识点:近似数和有效数字_考点解析
为了能更好更全面的做好复习和迎考准备,确保将所涉及的2016中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了2016中考数学考前知识点:近似数和有效数字。

接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

以上就是查字典数学网为大家整理的2016中考数学考前知识点:近似数和有效数字,怎么样,大家还满意吗?希望对大家有所帮助,同时也祝大家学习进步,考试顺利!。

辽宁省沈阳市2016年中考数学试卷参考答案与试题解析

辽宁省沈阳市2016年中考数学试卷参考答案与试题解析

2016年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题1.下列各数是无理数的是()A.0B.﹣1C. D.【考点】无理数.【解析】根据无理数是无限不循环小数,可得答案.【解答】解:0,﹣1,是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A. B. C. D.【考点】简单组合体的三视图.【解析】画出从上往下看的图形即可.【解答】解:这个几何体的俯视图为.故选A.【点评】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54〓107B.54〓105C.5.4〓106D.5.4〓107【考点】科学记数法—表示较大的数.【解析】科学记数法的表示形式为a〓10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5400000用科学记数法表示为5.4〓106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a〓10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P 作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.﹣3C. D.﹣【考点】反比例函数系数k的几何意义.【解析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.再由函数图象所在的象限确定k的值即可.【解答】解:∵点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,∴矩形OAPB的面积S=|k|=3,解得k=〒3.又∵反比例函数的图象在第一象限,∴k=3.故选A.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件【考点】随机事件.【解析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y2【考点】整式的混合运算.【专题】存在型.【解析】先计算出各个选项中式子的正确结果,即可得到哪个选项是正确的,本题得以解决.【解答】解:∵x4+x4=2x4,故选项A错误;∵x3•x2=x5,故选项B错误;∵(x2y)3=x6y3,故选项C正确;∵(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故选项D错误;故选C.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.7.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是7【考点】众数;中位数.【解析】根据众数和中位数的定义求解.【解答】解:数据:3,4,6,7,8,8的众数为8,中为数为6.5.故选B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数定义.8.一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6B.x1=﹣2,x2=6C.x1=﹣2,x2=﹣6D.x1=2,x2=6【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【解析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:x2﹣4x﹣12=0,分解因式得:(x+2)(x﹣6)=0,解得:x1=﹣2,x2=6,故选B【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.9.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. B.4C.8D.4【考点】解直角三角形.【解析】根据cosB=及特殊角的三角函数值解题即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cosB=,即cos30°=,∴BC=8〓=4;故选:D.【点评】本题考查了三角函数的定义及特殊角的三角函数值,是基础知识,需要熟练掌握.10.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3D.y的最小值是﹣4【考点】二次函数图象上点的坐标特征;二次函数的最值.【解析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【解答】解:y=x2+2x﹣3=(x+3)(x﹣1),则该抛物线与x轴的两交点横坐标分别是﹣3、1.又y=x2+2x﹣3=(x+1)2﹣4,∴该抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.A、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;C、y的最小值是﹣4,故本选项错误;D、y的最小值是﹣4,故本选项正确.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了“数形结合”的数学思想.二、填空题11.分解因式:2x2﹣4x+2= 2(x﹣1)2 .【考点】提公因式法与公式法的综合运用.【解析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a〒b)2=a2〒2ab+b2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.12.若一个多边形的内角和是540°,则这个多边形是五边形.【考点】多边形内角与外角.【解析】根据多边形的内角和公式求出边数即可.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:五.【点评】本题考查了多边形的内角和定理,熟记公式是解题的关键.13.化简:(1﹣)•(m+1)= m .【考点】分式的混合运算.【专题】计算题;分式.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•(m+1)=m,故答案为:m【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.三个连续整数中,n是最大的一个,这三个数的和为3n﹣3 .【考点】列代数式.【专题】应用题.【解析】先利用连续整数的关系用n表示出最小的数和中间的整数,然后把三个数相加即可.【解答】解:这三个数的和为n﹣2+n﹣1+n=3n﹣3.故答案为3n﹣3.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是表示出最小整数.15.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B 两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发\frac{3}{2} h时,两车相距350km.【考点】一次函数的应用.【解析】根据图象,可得A与C的距离等于B与C的距离,根据行驶路程与时间的关系,可得相应的速度,根据甲、乙的路程,可得方程,根据解方程,可得答案.【解答】解:由题意,得AC=BC=240km,甲的速度240〔4=60km/h,乙的速度240〔30=80km/h.设甲出发x小时甲乙相距350km,由题意,得60x+80(x﹣1)+350=240〓2,解得x=,答:甲车出发h时,两车相距350km,故答案为:.【点评】本题考查了一次函数的应用,利用题意找出等量关系是解题关键.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是\frac{25}{6}或\frac{50}{13} .【考点】三角形中位线定理.【解析】分两种情形讨论即可①∠MN′O′=90°,根据=计算即可②∠MON=90°,利用△DOE∽△EFM,得=计算即可.【解答】解:如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE=BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴=,∴=,∴DO′=.当∠MON=90°时,∵△DOE∽△EFM,∴=,∵EM==13,∴DO=,故答案为或.【点评】本题考查三角形中位线定理、矩形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.三、解答题17.计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【解析】直接利用零指数幂的性质以及绝对值的性质和特殊角的三角函数值、负整数指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:原式=1+3﹣﹣4+3,=2.【点评】此题主要考查了实数运算,正确掌握相关性质进而化简是解题关键.18.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是\frac{1}{3} ;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.【考点】列表法与树状图法;概率公式.【解析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【解答】解:(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种, ∴小明诵读《论语》的概率=, 故答案为:; (2)列表得: 小明 小亮 ABCA (A ,A ) (A ,B ) (A ,C ) B (B ,A ) (B ,B ) (B ,C ) C(C ,A ) (C ,B)(C ,C )由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种. 所以小明和小亮诵读两个不同材料的概率=.【点评】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.19.如图,△ABC ≌△ABD ,点E 在边AB 上,CE ∥BD ,连接DE .求证: (1)∠CEB=∠CBE ; (2)四边形BCED 是菱形.【考点】菱形的判定;全等三角形的性质. 【专题】证明题.【解析】(1)欲证明∠CEB=∠CBE ,只要证明∠CEB=∠ABD ,∠CBE=∠ABD 即可. (2)先证明四边形CEDB 是平行四边形,再根据BC=BD 即可判定. 【解答】证明;(1)∵△ABC ≌△ABD , ∴∠ABC=∠ABD , ∵CE ∥BD ,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包20 10%打篮球60 p%跳大绳n 40%踢毽球40 20%根据图表中提供的信息,解答下列问题:(1)m= 200 ,n= 80 ,p= 30 ;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.【考点】条形统计图;用样本估计总体.【解析】(1)利用20〔10%=200,即可得到m的值;用200〓40%即可得到n的值,用60〔200即可得到p的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,2000〓40%,即可解答.【解答】解:(1)m=20〔10%=200;n=200〓40%=80,60〔200=30%,p=30,故答案为:200,80,30;(2)如图,(3)2000〓40%=800(人),答:估计该校2000名学生中有800名学生最喜欢跳大绳.【点评】本题考查了条形统计图、扇形统计图、概率公式,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).【考点】切线的性质;弧长的计算.【解析】(1)连接OD,由切线的性质即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位线,根据三角形中位线的性质即可得出,根据平行线的性质即可得出∠CFD=∠ODF=90°,从而证出DF⊥AC;(2)由∠CDF=30°以及∠ODF=90°即可算出∠ODB=60°,再结合OB=OD可得出△OBD是等边三角形,根据弧长公式即可得出结论.【解答】(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.【点评】本题考查了切线的性质、弧长公式、平行线的性质、三角形中位线定理以及等边三角形的判断,解题的关键是:(1)求出∠CFD=∠ODF=90°;(2)找出△OBD是等边三角形.本题属于中档题,难度不大,解决该题型题目时,通过角的计算找出90°的角是关键.22.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【解析】(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据:“A,B两种型号的健身器材共50套、共支出20000元”列方程组求解可得;(2)设购买A型号健身器材m套,根据:A型器材总费用+B型器材总费用≤18000,列不等式求解可得.【解答】解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(3)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套.【点评】本题主要考查二元一次方程组与一元一次不等式的应用,审清题意得到相等关系或不等关系是解题的关键.23.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B 的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为\frac{\sqrt{17}}{2} ;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.【考点】四边形综合题.【解析】(1)由点A的坐标为(4,0),点B的坐标为(0,1),利用勾股定理即可求得AB 的长,然后由点C为边AB的中点,根据直角三角形斜边的中线等于斜边的一半,可求得线段OC的长;(2)由四边形OBDE是正方形,直角三角形斜边的中线等于斜边的一半,易得BD=OE,BC=OC,∠CBD=∠COE,即可证得:△CBD≌△COE;(3)①首先根据题意画出图形,然后过点C作CH⊥D1E1于点H,可求得△CD1E1的高与底,继而求得答案;②分别从1<a<2与a>2去分析求解即可求得答案.【解答】解:(1)∵点A的坐标为(4,0),点B的坐标为(0,1),∴OA=4,OB=1,∵∠AOB=90°,∴AB==,∵点C 为边AB 的中点,∴OC=AB=;故答案为:.(2)证明:∵∠AOB=90°,点C 是AB 的中点,∴OC=BC=AB , ∴∠CBO=∠COB ,∵四边形OBDE 是正方形, ∴BD=OE ,∠DBO=∠EOB=90°, ∴∠CBD=∠COE , 在△CBD 和△COE 中,,∴△CBD ≌△COE (SAS );(3)①解:过点C 作CH ⊥D 1E 1于点H , ∵C 是AB 边的中点,∴点C 的坐标为:(2,)∵点E 的坐标为(a ,0),1<a <2, ∴CH=2﹣a ,∴S=D 1E 1•CH=〓1〓(2﹣a )=﹣a+1;②当1<a <2时,S=﹣a+1=,解得:a=;当a >2时,同理:CH=a ﹣2,∴S=D 1E 1•CH=〓1〓(a ﹣2)=a ﹣1,∴S=a ﹣1=,解得:a=,综上可得:当S=时,a=或.【点评】此题属于四边形的综合题.考查了正方形的性质、直角三角形的性质、勾股定理、全等三角形的判定与性质以及三角形面积问题.注意掌握辅助线的作法,注意掌握分类讨论思想的应用是解此题的关键.24.在△ABC 中,AB=6,AC=BC=5,将△ABC 绕点A 按顺时针方向旋转,得到△ADE ,旋转角为α(0°<α<180°),点B 的对应点为点D ,点C 的对应点为点E ,连接BD ,BE . (1)如图,当α=60°时,延长BE 交AD 于点F . ①求证:△ABD 是等边三角形; ②求证:BF ⊥AD ,AF=DF ; ③请直接写出BE 的长;(2)在旋转过程中,过点D 作DG 垂直于直线AB ,垂足为点G ,连接CE ,当∠DAG=∠ACB ,且线段DG 与线段AE 无公共点时,请直接写出BE+CE 的值. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【考点】三角形综合题.【解析】(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC 得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.【解答】解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6〓=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.【点评】本题主要考查旋转的性质、等边三角形的判定与性质、中垂线的性质、三角形内角和定理等知识点,熟练掌握旋转的性质是解题的关键.25.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(10 、0 ),BK的长是8 ,CK的长是10 ;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP ⊥OM 于点P ,交EH 于点N ,连接ON ,点M 从点E 开始沿线段EH 向点H 运动,至与点N 重合时停止,△MOG 和△NOG 的面积分别表示为S 1和S 2,在点M 的运动过程中,S 1•S 2(即S 1与S 2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【考点】二次函数综合题.【解析】(1)①根据四边形OCKB 是矩形以及对称轴公式即可解决问题. ②在RT △BKF 中利用勾股定理即可解决问题.③设OA=AF=x ,在RT △ACF 中,AC=8﹣x ,AF=x ,CF=4,利用勾股定理即可解决问题.(2)不变.S 1•S 2=189.由△GHN ∽△MHG ,得=,得到GH 2=HN •HM ,求出GH 2,根据S 1•S 2=•OG •HN ••OG •HM 即可解决问题.【解答】解:(1)如图1中,①∵抛物线y=x 2﹣3x+m 的对称轴x=﹣=10,∴点B 坐标(10,0), ∵四边形OBKC 是矩形, ∴CK=OB=10,KB=OC=8, 故答案分别为10,0,8,10.②在RT △FBK 中,∵∠FKB=90°,BF=OB=10,BK=OC=8,∴FK==6,∴CF=CK ﹣FK=4, ∴点F 坐标(4,8). ③设OA=AF=x ,在RT △ACF 中,∵AC 2+CF 2=AF 2, ∴(8﹣x )2+42=x 2,∴x=5,∴点A 坐标(0,5),代入抛物线y=x 2﹣3x+m 得m=5,∴抛物线为y=x 2﹣3x+5.(2)不变.S 1•S 2=189.理由:如图2中,在RT △EDG 中,∵GE=EO=17,ED=8,∴DG===15,∴CG=CD ﹣DG=2,∴OG===2,∵CP ⊥OM ,MH ⊥OG , ∴∠NPN=∠NHG=90°,∵∠HNG+∠HGN=90°,∠PNM+∠PMN=90°,∠HNG=∠PNM , ∴∠HGN=∠NMP ,∵∠NMP=∠HMG ,∠GHN=∠GHM , ∴△GHN ∽△MHG ,∴=,∴GH 2=HN •HM ,∵GH=OH=,∴HN •HM=17,∵S 1•S 2=•OG •HN ••OG •HM=(•2)2•17=289.【点评】本题考查二次函数综合题、矩形的性质、翻折变换相似三角形的判定和性质、勾股定理等知识,解题的关键是证明△GHN∽△MHG求出HN•HM的值,属于中考压轴题.2016年辽宁省沈阳市中考数学试卷一、选择题1.下列各数是无理数的是()A.0B.﹣1C. D.2.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A. B. C. D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54〓107B.54〓105C.5.4〓106D.5.4〓1074.如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P 作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.﹣3C. D.﹣5.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件6.下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y27.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是78.一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6B.x1=﹣2,x2=6C.x1=﹣2,x2=﹣6D.x1=2,x2=69.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. B.4C.8D.410.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3D.y的最小值是﹣4二、填空题11.分解因式:2x2﹣4x+2= .12.若一个多边形的内角和是540°,则这个多边形是边形.13.化简:(1﹣)•(m+1)= .14.三个连续整数中,n是最大的一个,这三个数的和为.15.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B 两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.三、解答题17.计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.18.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包20 10%打篮球60 p%跳大绳n 40%踢毽球40 20%根据图表中提供的信息,解答下列问题:(1)m= ,n= ,p= ;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.21.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).22.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?23.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B 的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.24.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.25.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.。

中考数学易错题系列之代数运算解析式运算常见错误

中考数学易错题系列之代数运算解析式运算常见错误

中考数学易错题系列之代数运算解析式运算常见错误代数运算是中考数学中的一大重点考点,也是容易出错的部分。

在解析式运算中,同学们经常会犯一些常见的错误。

本文将针对这些常见错误进行分析和解决,帮助同学们在中考数学中避免这些错误。

一、符号的使用错误在解析式运算中,同学们常常会犯到符号的使用错误,如混淆加法和乘法的符号,或者忽略括号的作用。

这些错误会导致最终答案出错。

在解析式运算中,加法的符号是"+",乘法的符号是"×",并且乘法在运算优先级中大于加法。

因此,同学们在运算时要注意区分加法和乘法的符号,不要混淆使用。

同时,在运算中,使用括号可以改变运算的优先次序,从而避免错误。

同学们要养成使用括号的习惯,根据运算顺序正确地使用括号,确保运算的准确性。

二、未化简算式在解析式运算中,同学们有时候会在得到结果后未进行进一步的化简,从而导致答案出错。

化简算式是指将算式中的项合并简化,去除冗余部分。

同学们要在得到结果后,仔细检查算式中是否还有合并简化的余地,并及时进行化简。

这样可以避免答案冗杂,提高解答的准确性。

三、代数式求值错误在解析式运算中,同学们有时候会在代数式求值的过程中出错,导致最终结果错误。

代数式求值是指根据给定的数值,将代数式中的未知数替换为具体的数值,计算得出结果。

在进行代数式求值时,同学们要仔细阅读题目,正确把握数值的取值范围,准确替换未知数,并进行正确的计算。

只有在求值上下文下,代数式才能得到准确的结果。

四、未列清楚步骤在解析式运算中,同学们有时候会在列式子的过程中步骤不清晰,从而导致结果错误。

在进行解析式运算时,同学们要养成规范列式子的习惯,确保每一步都清晰可读。

可以使用等号对齐、竖式计算等方式,使得列式子过程清晰明了。

这样不仅可以减少错误的发生,还有助于提高解答的整体逻辑性和可读性。

五、对常见公式理解不深在解析式运算中,同学们应掌握一些常见的代数运算公式,如乘法分配律、加法结合律等。

中考数学易考易错点总结

中考数学易考易错点总结

中考数学易考易错点总结在中考数学中,有一些易考易错点经常出现在题目中,对于考生来说,熟悉这些易错点是非常重要的。

下面我将总结一些中考数学易考易错的点,供考生参考。

1.平方与平方根:经常出现的问题是求解平方根的情况。

很多考生容易混淆平方和平方根的概念,导致答案错误。

在解题时,要注意区分平方和平方根的关系,避免混淆。

2.百分数与分数的转化:在百分数和分数的转化中,容易出现小数点位置错误的问题。

考生在计算过程中,要注意小数点的位置,避免转化时出现错误。

3.相似与全等:在几何题中,容易出现相似和全等的概念不清晰,导致解法错误。

要理解相似和全等的定义,并能够正确应用到具体题目中。

4.图形的性质:在图形题中,容易出现对图形性质的理解错误。

比如,对于平行四边形的性质、圆的性质等,考生容易混淆或记错,从而导致答案错误。

5.勾股定理:勾股定理是数学中一个重要的定理,但是在应用时经常出现错误。

考生在应用勾股定理时,要注意判断是否为直角三角形,是否符合勾股定理的条件。

6.平行线与角:在平行线与角的关系中,常常会出现角的概念理解错误。

考生要理解对应角、同位角、内错角等概念,能够正确应用到具体题目中。

7.比例与相似:在比例与相似的题目中,经常会出现比例计算错误的问题。

考生在进行比例计算时,要注意比例的次序和对应关系,避免出现计算错误。

8.平均数与中位数:在统计题中,常常会涉及平均数与中位数的计算。

考生容易混淆平均数和中位数的概念,从而导致错误的计算结果。

9.代数式的展开与因式分解:在代数式的展开和因式分解中,常常会出现计算错误的情况。

考生要注意符号的运算法则和因式分解的方法,避免出现错误。

10.排列与组合:在排列与组合的题目中,经常会出现计算错误的问题。

考生在进行排列与组合的计算时,要注意分类计数和互补计数的方法,避免计算错误。

总之,中考数学易考易错点主要集中在基本概念的理解和运算的准确性上。

考生在备考时,要加强对基本概念的掌握和理解,注重计算的准确性,避免因为概念理解错误或运算错误而导致答案错误。

中考数学最易出错61个知识点

中考数学最易出错61个知识点

中考数学最易出错61个知识点中考数学是中学学生所要参加的一项重要考试,其中涉及的知识点众多,且易出错。

在这里,我将为你详细介绍中考数学中最常见的61个易出错知识点。

1.四则运算:在进行加减乘除的运算时,容易出错的地方主要有横式运算错误、进位或借位错误、计算优先级错误等。

2.小数和分数:容易忽略小数点位置,小数转化成百分数或分数时易出错。

3.百分数:容易忘记将百分数转换成小数或分数,计算百分数的加减乘除时易出错。

4.平方和立方:容易将平方和立方的运算法则记错,例如平方数的开平方计算等。

5.代数式的计算:在多项式的加减乘除时容易忽略项,忘记合并同类项等。

6.等式和方程:在等式的加减乘除时易出错,方程的解错等。

7.几何图形的计算:容易计算图形的周长、面积和体积时忽略单位,记错公式等。

8.几何相似:容易混淆正相似和全等,计算相似比时出错。

9.圆与圆相关的知识点:包括弦长、弧长、扇形面积等计算容易出错。

10.直角三角形:容易记错勾股定理和三角函数的计算。

11.等腰三角形和等边三角形:容易忘记等腰三角形的性质和计算等边三角形的周长和面积。

12.梯形和平行四边形:容易计算梯形和平行四边形的面积时忽略高,记错公式。

13.计算用纸:容易使用错单位,计算时纸上的步骤和结果容易出错。

14.逻辑推理和证明:在逻辑推理和证明问题时容易漏项,记错条件或结论。

15.统计与概率:在统计数据的收集和处理时易出错,概率计算容易忽略条件。

以上是中考数学中最常见的61个易出错知识点的简要介绍。

为了避免这些易出错的情况,建议同学们在备考过程中多做相关的练习题,掌握基本技巧和方法,加强解题能力。

此外,同学们还可以多与同学、老师交流,共同探讨和解决问题,提升自己的数学水平。

初中2016中考数学知识点:三角形全等的公式_考点解析

初中2016中考数学知识点:三角形全等的公式_考点解析

初中2016中考数学知识点:三角形全等的公式_考点解析
2016中考是九年义务教育的终端显示与成果展示,2016中考是一次选拔性考试,其竞争较为激烈。

为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在2016中考中取得理想的成绩,下文为大家准备了初中2016中考数学知识点。

三角形全等
全等的条件
1.两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”。

2.两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”。

3.两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”。

4.两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS"。

5.两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“直角边、斜边”或“HL”。

注意,证明三角形全等没有“SSA”或“边边角”的方法,即两边与其中一边的对角相等无法证明这两个三角形全等,但从意义上来说,直角三角形的“HL”证明等同“SSA”。

为大家推荐的初中2016中考数学知识点的内容,还满意吗?相信大家都会仔细阅读,加油哦!。

2016中考数学备考考点角的平分线定理_考点解析

2016中考数学备考考点角的平分线定理_考点解析

2016中考数学备考考点角的平分线定理_考点解析
科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好2016中考复习工作全面迎接2016中考,下文为各位考生准备了2016中考数学备考考点。

定理:到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
定理:在角的平分线上的点到这个角的两边的距离相等
这就是我们为大家准备的2016中考数学备考考点的内容,希望符合大家的实际需要。

2016年武汉市中考数学试题及答案解析版

2016年武汉市中考数学试题及答案解析版

一、选择题(共 10 小题,每小题 3 分,共 30 分)的值在()【解析】∵1<2<4,∴ 1 < <4 ,∴1 2 2 .< <2 1实数范围内有意义,则实数 x 的取值范围是() C .x ≠3D .x =3【考点】分式有意义的条件1【解析】要使)C . (2a ) =2a 42 222B .2a ·a =2a28 2 4【解析】A . a ·a 2=a 3,此选项错误;B .2a ·a =2a 2,此选项正确;C .(2a ) =4a2 2 4,此选项错误;D 6a 8÷3a 2=2a 此选项错误。

. ,6 B .摸出的是 3 个黑球D .摸出的是 2 个黑球、1 个白球【解析】∵袋子中有 4 个黑球,2 个白球,∴摸出的黑球个数不能大于 4 个,摸出白球的个数不能大于 2 个。

5.运用乘法公式计算(x +3) 的结果是( )22222【考点】完全平方公式)A.a=5,b=1B.a=-5,b=1【考点】关于原点对称的点的坐标.【答案】D7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()【考点】简单几何体的三视图.8.某车间20名工人日加工零件数如下表所示:6 57483)D.5、6、6,点P在以斜边AB为直径的半圆上,M为22)D.222【考点】轨迹,等腰直角三角形【答案】B121的轨迹为以F为圆心,1为半径的半圆弧,轨迹长为21.2角形,则满足条件的点C的个数是(A.5B.6)C.7D.8【答案】2【解析】原式=2132 1.6 314.如图,在□AB C D中,E为边C D上一点,将△A D E沿AE折叠至△A D′E处,A D′与CE 交于点F.若∠B=52°,∠DAE=20°,则∠FE D′的大小为_______.【考点】平行四边形的性质【答案】36°,15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为_________.【考点】一次函数图形与几何变换【答案】-4≤b≤-2b2代入y=-2x-b满足:-b 2,解得-4≤b≤-2x=3代入y=2x+b满足:6+b 2【考点】相似三角形,勾股定理【答案】24122【解析】解:去括号得5x+2=3x+6,移项合并得2x=4,【考点】全等三角形的判定和性质【答案】见解析的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:人数201818娱乐1614 12 10 8新闻体育动画6442新闻体育动画娱乐戏曲节目类型请你根据以上的信息,回答下列问题:【解析】(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人),∵“娱乐”类人数占被调查人数的百分比为:18100%36%,50420.(本题8分)已知反比例函数y .x4(2)如图,反比例函数(1≤x≤4)的图象记为曲线C,将C向左平移2个单位长度,y11x得曲线C,请在图中画出C,并直接写出C平移至C处所扫过的面积.2212【考点】反比例函数与一次函数的交点问题;考查了平移的性质,一元二次方程的根与系数 的关系。

2016年中考数学易错知识点汇总(二)

2016年中考数学易错知识点汇总(二)

2016 年中考数学易错知识点汇总(二)2016年中考数学易错知识点汇总(二)五、四边形易错点 1:平行四边形的性质和判断,怎样灵巧、适合地应用。

三角形的稳固性与四边形不稳固性。

易错点2:平行四边形注意与三角形面积求法的划分。

平行四边形与特别平行四边形之间的转变关系。

易错点 3:运用平行四边形是中心对称图形,过对称中心的直线把它分红面积相等的两部分。

对角线将四边形分红面积相等的四部分。

易错点 4:平行四边形中运用全等三角形和相像三角形的知识解题,突出转变思想的浸透。

易错点5:矩形、菱形、正方形的观点、性质、判断及它们之间的关系,主要考察边长、对角线长、面积等的计算。

矩形与正方形的折叠。

易错点 6:四边形中的翻折、平移、旋转、剪拼等着手操作性问题,掌握此中的不变与旋转一些性质。

易错点 7:梯形问题的主要做协助线的方法六、圆易错点1:对弧、弦、圆周角等观点理解不深刻,特别是弦所对的圆周角有两种状况要特别注意,两条弦之间的距离也要考虑两种状况。

易错点 2:对垂径定理的理解不够,不会正确增添协助线运用直角三角形进行解题。

易错点 3:对切线的定义及性质理解不深,不可以正确的利用切线的性质进行解题以及对切线的判断方法两种方法使用不娴熟。

易错点4:考察圆与圆的地点关系时,相切有内切和外切两种状况,包含订交也存在两圆圆心在公共弦同侧和异侧两种状况,学生很简单忽略此中的一种状况。

易错点 5:与圆相关的地点关系掌握好 d 与 R 和 R+r, R-r 之间的关系以及应用上述的方法求解。

易错点 6:圆周角定理是要点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角, 90 度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。

易错点 7:几个公式必定要切记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转变关系。

2016中考数学考点解析:圆锥的体积公式大全_考点解析

2016中考数学考点解析:圆锥的体积公式大全_考点解析

2016中考数学考点解析:圆锥的体积公式大全_考点解析
中考复习最忌心浮气躁,急于求成。

指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。

要扎扎实实地复习,一步一步地前进,下文为大家准备了2016中考数学考点解析。

一个圆锥所占空间的大小,叫做这个圆锥的体积。

圆锥的体积
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=r^2h),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
S是底面积,h是高,r是底面半径。

圆锥的公式要领基本上是离不开圆柱的相关知识。

为大家推荐的2016中考数学考点解析的内容,还满意吗?相信大家都会仔细阅读,加油哦!。

2016中考数学知识点之分式的约分_考点解析

2016中考数学知识点之分式的约分_考点解析

2016中考数学知识点之分式的约分_考点解析
多积累,可以增加自身涵养性和素质,以及思想境界,思维和逻辑能力。

鉴于此,小编为大家准备了这篇2016中考数学知识点,欢迎阅读!
1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。

◆约分时。

分子分母公因式的确定方法:
1)系数取分子、分母系数的最大公约数作为公因式的系数.
2)取各个公因式的最低次幂作为公因式的因式.
3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.
现在是不是感觉查字典数学网初中频道为大家准备的2016中考数学知识点很关键呢?欢迎大家阅读与选择!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016中考数学60个易错点_考点解析
数学作为认识世界的基础性学科,它可以在思想上支持不同学科的深入发展。

查字典数学网为大家推荐了2016中考数学60个易错点,请大家仔细阅读,希望你喜欢。

1数与式(9个)
易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。

以及绝对值与数的分类。

每年选择必考。

易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

填空题必考。

易错点4:求分式值为零时学生易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。

填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。

五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。

精确度,有效数字。

这个上海还没有考过,知道就好!
易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

2方程(组)与不等式(组)(8个)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带X公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

3函数(8个)
易错点1:各个待定系数表示的的意义。

易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。

易错点6:与坐标轴交点坐标一定要会求。

面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。

易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。

函数图象与图形结合学
会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

4三角形(11个)
易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。

易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。

最短距离的方法。

易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。

易错点4:全等形,全等三角形及其性质,三角形全等判定。

着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。

边边角两个三角形不一定全等
易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方
易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。

易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。

易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。

易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。

易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)
易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。

5四边形(7个)
易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。

三角形的稳定性与四边形不稳定性。

易错点2:平行四边形注意与三角形面积求法的区分。

平行四边形与特殊平行四边形之间的转化关系。

易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。

对角线将四边形分成面积相等的四部分。

易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。

易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。

矩形与正方形的折叠,
易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。

易错点7:梯形问题的主要做辅助线的方法
6圆(7个)
易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。

(选题最后一题考)
易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。

易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。

易错点4:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,学生很容易忽视其中的一种情况。

易错点5:与圆有关的位置关系把握好d与R和R+r,R-r之间的关系以及应用上述的方法求解。

易错点6:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角。

直角的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。

易错点7:几个公式一定要牢记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。

7对称图形(3个)
易错点1:轴对称、轴对称图形,及中心对称、中心对称图形概念和性质把握不准。

易错点2:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变。

易错点3:将轴对称与全等混淆,关于直线对称与关于轴对称混淆。

8统计与概率(8个)
易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。

易错点2:在从统计图获取信息时,一定要先判断统计图的准确性。

不规则的统计图往往使人产生错觉,得到不准确的信息。

易错点3:对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。

易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。

易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率。

易错点6:平均数、加权平均数、方差公式,扇形统计图的圆心角与频率之间的关系,频数、频率、总数之间的关系。

加权平均数的权可以是数据、比分、百分数还可以是概率(或频率)易错点7:求概率的方法:(1)简单事件(2)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值。

(3)复杂事件求概率的方法运用频率估算概率。

易错点8:判断是否公平的方法运用概率是否相等,关注频率与概率的整合。

小编为大家提供的2016中考数学60个易错点,大家仔细阅读了吗?最后祝同学们学习进步。

相关文档
最新文档