弹塑性力学部分习题
弹塑性力学习题解答
第一、二章作业一、选择题:1.弹性力学的研究对象是 B 。
A.刚体;B.可变形固体;C.一维构件; D.连续介质;2.弹性力学的研究对象是 C几何尺寸和形状。
A.受到…限制的物体; B.可能受到…限制的物体;C.不受…限制的物体; D.只能是…受限制的任何连续介质;3.判断一个张量的阶数是根据该张量的C确定的。
A.下标的数量; B.哑标的数量; C.自由标的数量; D.字母的数量。
4.展开一个张量时,对于自由下标操作的原则是按其变程C。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
5.展开一个张量时,对于哑脚标操作的原则是按其变程B。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
6.在弹性力学中,对于固体材料(即研究对象)物性组成的均匀性以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是 A。
A.连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.从一点应力状态的概念上讲,当我们谈及应力,必须表明的是D。
A.该应力的大小和指向,是正应力还是剪应力;B.该应力是哪一点处的正应力和剪应力,还是全应力;C.该应力是哪一点处的应力D.该应力是哪一点处哪一微截面上的应力,是正应力还是剪应力。
8.表征受力物体内一点处的应力状态一般需要__B_应力分量,其中独立的应力分量有_C__。
A. 18个; B. 9个; C. 6个; D. 2个。
9.一点应力状态的主应力作用截面上,剪应力的大小必定等于___D_________。
A.主应力值; B.极大值; C.极小值; D.零。
10.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小_____D_______。
A.一般不等于零; B.等于极大值; C.等于极小值; D.必定等于零。
11.平衡微分方程是 C 间的关系。
A .体力分量和面力分量;B .应力分量和面力分量;C .体力分量和应力分量;D .体力分量、面力分量和应力分量;12.静力边界条件是 B 间的关系。
弹塑性力学部分习题及答案
1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2
弹塑性力学习题集_很全有答案_
ε x = a 0 + a1 ( x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 ( x 2 + y 2 ) + x 4 + y 4 , γ xy = c 0 + c1 xy ( x 2 + y 2 + c 2 ), ε z = γ zx = γ yz = 0.
试求式中各系数之间应满足的关系式。 2—38* 试求对应于零应变状态( ε ij = 0 )的位移分量。
(2) J 3 = I 3 + (4) J 2 = (6)
1 2 3 I1 I 2 + I1 ; 3 27
1 S ij S ij ; 2
∂J 2 = S ij . ∂σ ij
1 S ik S km S mi 。 3 2—22* 试证在坐标变换时, I 1 为一个不变量。要求:(a) 以普通展开式证明; (b) 用 张量计算证明。 5 3 8 2—23 已知下列应力状态: σ ij = 3 0 3 MPa ,试求八面体单元的正应力 σ 8 与剪 8 3 11
题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变
《弹塑性力学》习题-26页精品文档
已知桁架各杆 EA 相同,材料的弹性关系
为 = E 。 A y l
P
C
x
D
B
l
28.09.2019
21
题2-3 左图示梁受荷载
q
作用,试利用虚位移原 M
理 或最小势能原理导出
EI
x
梁的平衡微分方程和力 y
l
的边界条件。
q
题2-4 利用最小余能
原理求左图示梁的弯
EI
x
矩。
l y
28.09.2019
题2-1 图示结构各杆等 截面杆,截面面积为A, 结点C承受荷载P作用, 材料应力—应变关系分
别为(1) =E ,(2) =E 1/2 。试计算结构
的应变能U 和应变余能 Uc。
A
ly
B
P
Cx
C’
l
28.09.2019
20
题2-2 分别利用虚位移原理、最小势能原
理和最小余能原理求解图示桁架的内力。
弹塑性力学部分习题
第一部分 静力法内容
28.09.2019
1
题 1-1 将下面各式展开
(1). 1 2 ij (ui,juj,i) (i,j1,2,3) (2). U01 2ij ij (i,j1,2,3)
(3). F i n iG u i,j u j,i i j e
x
y
其中 V 是势函数,则应力分量亦可用应
力函数表示为
x y 22V,y x 22V,xy x2 y
28.09.2019
11
题1-13 试分析下列应力函数能解决什么 问题?设无体力作用。
34Fcxy3xcy23q2y2
ox
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学习题
y2 b3
3 ) 4b
2 gy(
y3 b3
3y 10b
b )。 80 y
例题3
已知
(a) Φ Ay2 (a2 x2 ) BxyC(x2 y2 ); (b) Φ Ax4 Bx 3 yCx2 y2 Dxy2 Ey4 ,
试问它们能否作为平面问题的应力函数?
解:
Fs
M
o
FN
σ xτ xy
y dy
h/2
h/2
x
图l 3-5
y
(l h, 1)
解: 本题是较典型的例题,已经给出了应
力函数 Φ ,可按下列步骤求解。
1. 将Φ 代入相容方程,显然是满足的。 2. 将 Φ 代入式(2-24),求出应力分量。
σx 2B 6Cy 6Dxy,
σ y 0, xy ( A 3Dy 2 )。
0
3F 8Eb2
h;
(v)x0, yh 0,
得
v0
F 2Eb
h.
代入u,v,得到位移分量的解答
u
F
2Eb
(x
3x2 4b
)
3F 8Eb2
(h
y)2,
v F (h y)(1 3x )。
2Eb
2b
在顶点x=y=0,(v Nhomakorabeax y0
Fh . 2Eb
例题5
约束作用于板边平行于板面沿厚度不变基本方程平衡微分方程几何方程相同物理方程不同一个方向的尺寸面力体力约束其它两个方向的尺都平行于横截面沿寸横截面的形状长度不变和尺寸沿长度不变58楔形体受重力及液体压力设有楔形体左面垂直顶角为下端无限长受重力及齐顶液体压力
弹塑性力学习题
代入A,得
I1 b 62g3b 42G.
(g)
在次要边界(小边界)x=0上,列出三 个积分的边界条件:
b/2
b/2 (σx )x0dy0,
得F0 ;
b/2
b/2 (σx )x0ydy0,
得E0 ;
b/2
b/2 ( xy )x0dy0,
得 I 8b02gb42G.
(h)
由式(g),(h)解出
试问它们能否作为平面问题的应力函数?
解:
作为应力函数,必须首先满足相容方程
,
4Φ0.
将 Φ 代入,
(a) 其中A= 0,才可能成为应力函数;
(b)必须满足 3(A+E)+C=0,才可能成为应力 函数。
例题4
图中所示的矩形截面柱体,在顶部受有集中 力F和力矩 M Fb 的作用,试用应力函数
2
ΦAx3Bx2,
主要边界 yh/2 上应精确满足式(2-
15),
(σy)yh/20,
( xy)yh/20,
满 足 ; 得A3Dh20. (a)
4
在次要边界x=0上,只给出了面力的主矢 量和主矩,应用圣维南原理,用三个积分的 边界条件代替。注意x=0是负x面,图3-5中表
示了负x面上的σx 和xy 的正方向,由此得:
v2F Eb(y3 2xb y)f2(x).
将u,v代入几何方程的第三式,
v x
u y
xy
0。
两边分离变量,并全都等于 常数,即
dd f2x (x)dd f1(yy)43 E F b2y,
从上式分别积分,求出
f2(x)xv0,
f1(y)83 EF b2 y2yu0。 代入u,v, 得
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学习题集 很全有答案
图中有虚线所示的剪应力τ ′ 时,能否应用平面应力圆求解。
题 2—26 图
2—27* 试求:如(a) 图所示,ABC 微截面与 x、y、z 轴等倾斜,但τ xy ≠ 0, τ yz ≠ 0, τ zx ≠ 0, 试问该截面是否为八面体截面?如图(b) 所示,八面体各截面上的τ 8 指向是否垂直棱边?
2—21*
证明等式:
J3
=
1 3
S ik
S km S mi
。
2—22* 试证在坐标变换时, I1 为一个不变量。要求:(a) 以普通展开式证明; (b) 用
张量计算证明。
5 3 8 2—23 已知下列应力状态: σ ij = 3 0 3 MPa ,试求八面体单元的正应力 σ 8 与剪
8 3 11
应力τ 8 。 2—24* 一点的主应力为: σ1 = 75a, σ 2 = 50a, σ 3 = −50a ,试求八面体面上的全应力
题 2—27 图
2—28 设一物体的各点发生如下的位移:
u = a0 + a1x + a2 y + a3 z v = b0 + b1x + b2 y + b3 z w = c0 + c1x + c2 y + c3 z 式中 a0 L, a1 L, a2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
ε x = a0 + a1 (x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 (x 2 + y 2 ) + x 4 + y 4 , γ xy = c0 + c1 xy(x 2 + y 2 + c2 ), ε z = γ zx = γ yz = 0.
弹塑性力学习题集_很全有答案_
σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案
解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
弹塑性力学习题集(有图)
弹塑性⼒学习题集(有图)·弹塑性⼒学习题集$殷绥域李同林编!…中国地质⼤学·⼒学教研室⼆○○三年九⽉⽬录—弹塑性⼒学习题 (1)第⼆章应⼒理论.应变理论 (1)第三章弹性变形.塑性变形.本构⽅程 (6)第四章弹塑性⼒学基础理论的建⽴及基本解法 (8)第五章平⾯问题的直⾓坐标解答 (9)第六章平⾯问题的极坐标解答 (11)第七章柱体的扭转 (13)(第⼋章弹性⼒学问题⼀般解.空间轴对称问题 (14)第九章* 加载曲⾯.材料稳定性假设.塑性势能理论 (15)第⼗章弹性⼒学变分法及近似解法 (16)第⼗⼀章* 塑性⼒学极限分析定理与塑性分析 (18)第⼗⼆章* 平⾯应变问题的滑移线场理论解 (19)附录⼀张量概念及其基本运算.下标记号法.求和约定 (21)习题参考答案及解题提⽰ (22){前⾔弹塑性⼒学是⼀门理论性较强的技术基础课程,它与许多⼯程技术问题都有着⼗分密切地联系。
应⽤这门课程的知识,能较真实地反映出物体受载时其内部的应⼒和应变的分布规律,能为⼯程结构和构件的设计提供可靠的理论依据,因⽽受到⼯程类各专业的重视。
《弹塑性⼒学习题集》是专为《弹塑性⼒学》(中国地质⼤学李同林、殷绥域编,研究⽣教学⽤书。
)教材的教学使⽤⽽编写的配套教材。
本习题集紧扣教材内容,选编了170余道习题。
作者期望通过不同类型习题的训练能有助于读者理解和掌握弹塑性⼒学的基本概念、基础理论和基本技能,并培养和提⾼其分析问题和解决问题的能⼒。
鉴于弹塑性⼒学课程理论性强、内容抽象、解题困难等特点,本书对所编习题均给出了参考答案,并对难度较⼤的习题给出了解题提⽰或解答。
…编者2003年9⽉%弹塑性⼒学习题第⼆章应⼒理论·应变理论~2—1 试⽤材料⼒学公式计算:直径为1cm 的圆杆,在轴向拉⼒P = 10KN 的作⽤下杆横截⾯上的正应⼒σ及与横截⾯夹⾓?=30α的斜截⾯上的总应⼒αP 、正应⼒ασ和剪应⼒ατ,并按弹塑性⼒学应⼒符号规则说明其不同点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5-5 线弹性力学的几个简单
问题的求解
2021/1/9
7
第六章 弹性力学平面问题的直 坐标系解答
§6-1平面问题的分类 §6-2平面问题的基本方程和边界条件 §6-3平面问题的基本解法 §6-4多项式应力函数运用举例
2021/1/9
8
第七章弹性力学平面问题的极坐 标系解答
§7-1平面极坐标下的基本公式 §7-2轴对称问题
A
ly
B
P
Cx
C’
l
2021/1/9
33
题2-2 分别利用虚位移原理、最小势能原 理、虚应力原理和最小余能原理求解图示 桁架的内力。已知桁架各杆 EA 相同,材
料的弹性关系为 = E 。
A
y l
P
C
x
D
B
l
2021/1/9
34
题2-3 左图示梁受荷载
q
作用,试利用虚位移原 M
理 或最小势能原理导出
§7-3轴对称应力问题——曲梁 的纯弯曲
§7-4圆孔的孔边应力集中问题 §7-5曲梁的一般弯曲 §7-6楔形体在楔顶或楔面受力
2021/1/9
9
第八章 柱体的自由扭转问题
§8-1 位移法求解 §8-2 按应力函数求解 §8-3 薄膜比拟 §8-4 等截面杆扭转按应力函数举例 §8-5 薄壁杆的自由扭转
题1-3 利用指标符号推导位移法基本方程
G2ui G u j, ji Fbi 0 在V上
2021/1/9
16
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
z
y
l
Fbz g
x
x
2021/1/9
17
题1-5 等截面直杆(无体力作用),杆轴 方向为 z 轴,已知直杆的位移解为
o
试(1)列出求解的待定
y
系数的方程式,(2)写 q
出应力分量表达式。
x
2021/1/9
26
题1-15 设弹性力学平面问题的体积力为 零,且设
(1) P sin , (2) Pr sin ,
r
试(1)检验该函数是否可以作为应力 函数;(2)如果能作为应力函数,求 应力分量的表达式。
2021/1/9
2021/1/9
22
题1-11 设有一无限长的薄板,上下两端固 定,仅受竖向重力作用。求其位移解答。
设: u = 0、 v = v(y)
y
g
b
o
x
2021/1/9
23
题1-12 试证明,如果体力虽然不是常量, 但却是有势力,即
X V , Y V
x
y
其中 V 是势函数,则应力分量亦可用应
力函数表示为
x
v =B1x(x-l)+B2x2(x-l) 。
l
y
2021/1/9
36
题2-6 设有一无限长的薄板,上下两端固
定,仅受竖向重力作用。利用Ritz 法求
其位移解答。
y
g
b
o
x
设位移的近似解为 u=0, v = B1 y(y-b), 求其位移解答。
2021/1/9
37
谢谢
q
xq y
2021/1/9
29
题1-18 图示一半径为a 的
圆盘(材料为E1,1), 外 套以a r b 的圆环(材 料为E2, 2),在 r= b 处 作用外压q,设体积力为零,
试写出该问题解的表达式 以及确定表达式中待定系 数的条件
2021/1/9
q
a b
30
题1-19 图示半无限平面薄板不计体力。已
知在边界上有平行边界的面力q 作用。应
力函数取为 (r, )= r2(Asin2 + B )/2
试(1)列出求解待定系数 A、B 的方程
式,(2)写出应力分量表达式。
q
y
r o
x
2021/1/9
31
题1-20 图示无体力的楔形体,顶端受集 中力偶作用,应力函数取为
(r, )= Acos2 + Bsin2 + C
§11-3 应力、应变偏量的不变量和等效应力 e 等效应变 e、罗德(Lode)参数
§11-4 屈服条件 §11-5 理想弹塑性厚壁筒受内压力 §11-6 弹塑性应力应变关系增量理论
2021/1/9
13
弹塑性力学部分习题
第一部分 静力法内容
2021/1/9
14
题 1-1 将下面各式展开
1 (1). ij 2 (ui, j u j,i )
(i, j 1,2 ,3 )
(2).
U0
1 2
ij
ij
(i, j 1,2,3)
(3). Fi ni G ui,j u j,i ije
e 为体积应变
2021/1/9
15
题1-2 证明下面各式成立, (1). eijk ai aj = 0
(2).若 ij = ji , ij = - j i , 则 ij ij = 0
弹塑性力学部分习题
参考书目
1.徐芝纶, 弹性力学:上册.第三版,高等教育 出版社.1990年
2.陆明万.罗学富,弹性理论基础,清华大学出版 社. 1990年
3.杜庆华.余寿文.姚振汉,弹性理论,科学出版社. 1986年
4.王龙甫,弹性理论.第二版,科学出版社. 1984年 5.吴家龙,弹性力学:高等教育出版社.2001年
2021/1/9
19
O
题1-7 图示梯形截面墙体完 h h 全置于水中,设水的密度为, A
B
x
试写出墙体各边的边界条件。 C y D
题1-8 图示薄板两端受均匀拉力作用,试 确定边界上 A点和O点的应力值。
A q
ox
q
y
2021/1/9
20
题1-9 图示悬臂薄板,已知板内的应力分
量为 x=ax、y=a(2x+y-l-h)、xy=-ax, 其 中a为常数(设a 0)。其余应力分量为零。
2021/1/9
2
第一章 绪论
§1-1 弹塑性力学的任务和对象 §1-2 基本假设和基本规律 §1-3 弹性力学的研究方法 §1-4 弹性力学的发展梗概(略) §1-5 笛卡尔坐标系下的矢量、张
量基本知识
2021/1/9
3
第二章 应力分析
§2-1 内力和外力 §2-2 应力矢量和应力张量 §2-3 应力分量转换公式 §2-4 主应力和应力主方向、应力张量
M oy
试(1)列出求解待定系数 /2/2
A、B、C的方程式,(2)
写出应力分量表达式。
x
2021/1/9
32
第二部分 能量法内容
题2-1 图示结构各杆等 截面杆,截面面积为A, 结点C承受荷载P作用, 材料应力—应变关系分
别为(1) =E ,(2) =E 1/2 。试计算结构
的应变能U 和应变余能 Uc。
u kyz v kxz w k x, y
其中 k 为待定常数,(x‚y)为待定函数,
试写出应力分量的表达式和位移法方程。
2021/1/9
18
题1-6 半空间体在自重 g 和表面均布压力
q 作用下的位移解为 u = v = 0,
w
1 2G
qh
z
g
2
h2 z2
试求 x/z (应力比).
27
题1-16 圆环匀速()转动,圆盘密度为 ,且设 ur 表达式为
ur
C1r
C2 r
(1 2 ) 2r3
8E
b
ra
x
试由边界条件确定 C1
y
和 C2 。
2021/1/9
28
题1-17 图示无体力的矩形薄板,薄板内有 一个小圆孔(圆孔半径a 很小),且薄板受 纯剪切作用,试求孔边最大和最小应力。
求此薄板所受的体力、边界荷载和应变。
l
o
450
y
h
题1-9图 x
2021/1/9
21
题1-10 图示矩形薄板,厚度为单位1。 已知其位移分量表达式为
O l
y
u
g 2E
2 lx
(x2
y2
)
,
v g l x y
E
h h 式中 E、 为弹性模量和泊松系数。
x
试(1)求应力分量和体积力分量;
(2)确定各边界上的面力。
x
2
y 2
V , y
2
x2
V , xy
2
xy
2021/1/9
24
题1-13 试分析下列应力函数能解决什么 问题?设无体力作用。
3F 4c
xy
xy3 3c 2
q 2
y2
ox
2c
l
y
2021/1/9
25
题1-14 图示无限大楔形体受水平的常体 积力 q 作用,设应力函数为
ax3 bx 2 y cxy 2 ey 3
的不变量 §2-5 最大正应力和剪应力 §2-6 应力张量的分解
§2-7 平衡微分方程、力的边界条件
2021/1/9
4
第三章 应变分析
§3-1 位移和(工程)应变 §3-2 应变张量和转动张量 §3-3 应变张量和转动张量的坐标变换式 §3-4 主应变、主应变方向、应变张量
的三个不变量
§3-5 变形协调条件(相容条件)
2021/1/9
10
第九章 空间轴对称问题
本章讨论空间轴对称问题的基本方程和 一些轴对称问题的基本解。对于一般空间问 题的解法我们在第五章已有讨论,但一般空 间问题一般解(具体求解)通解讨论在杜庆 华等编著的“弹性理论”中有较多的论述。 我们不刻意从数学上论述一般空间问题一般 解的表达式,而对于空间轴对称问题作一些 讨论和举例。