单跨静定梁的内力图(1)

合集下载

结构力学课件-单跨静定梁的内力分析

结构力学课件-单跨静定梁的内力分析

FSK
ql 2
qx
cos
0
x
l
FNK
FAy sin
qx sin 0
FNK
ql 2
qx
sin
0
x
l
③作内力图
MK
ql 2
x
qx2 2
0
x
l
FSK
ql 2
qx
cos
0
x
l
ql sinFNKFra bibliotekql 2
qx
sin
0
x
l
2
ql 2 M图 8
ql cos 2
➢将斜梁与相应水平梁作比较:
q 'l
q 'l
2
2
q 'l tan 2
q 'l2
M图 8cos
FS图
q 'l tan
2
FN图
总结斜梁内力分析的特点:
➢截面内力的计算:截面法 ➢沿水平向布置的竖向荷载作用下,简支斜梁的支座反力和相应水平梁的
支座反力相同,弯矩图相同 ➢沿水平向布置的竖向荷载作用下,斜梁的剪力和轴力是相应水平梁剪力
13.805kN
M max 13.805kN.m
单选题 1分
静定结构在荷载作用下均会产生内力,而且内力大小与杆件截面尺 寸及截面材料均无关。
A 正确 B 错误
提交
四、 简支斜梁的计算 1、斜梁应用:楼梯、屋面斜梁、及具有斜杆的刚架结构中
简支斜梁
2、斜梁所受分布荷载
q q' A
沿水平方向均布荷 载q:活载(人群、 雪载)
Fy 0 FA 10 10 4 33.75 10 2 0 FA 36.25kN ()

梁的内力分析

梁的内力分析

FQ 3 为负剪力, M 3 为正弯矩。
在计算梁的剪力和弯矩时,可以通过下面的结论直接计算: (1)某截面上的剪力等于该截面左侧(或右侧)梁段上所 有横向外力的代数和。(左上右下剪力为正;反之则为负) 以该截面左侧杆段上的外力进行计算时,则向上的外力产生 正剪力,反之为负。以该截面右侧杆段的外力计算时,则 向下的外力产生正剪力,反之为负。 (2)某截面上的弯矩等于该截面左侧(或右侧)所有外力对该 截面之矩的代数和。(左顺右逆弯矩为正;反之则为负) 以左侧的外力进行计算时,则绕截面顺转的外力产生正弯矩, 反之为负。以右侧的外力计算时,绕截面逆转的外力产生 正弯矩,反之为负。
F
Q1
、 M 1 为正值,表示该截面上剪力和弯矩与所设方向一致,故为正剪力,正弯矩。
例 7- 1
(3)求 2-2 截面的内力。用截面法把梁从 2-2 截面处切成两段,取左段为研究对象,受 力如图 7-6c。图中剪力和弯矩都假设为正。由平衡方程得 ∑Fy=0,
FA - F Q 2 =0, F Q 2 = FA =2 kN
FQ1 FA 2kN M1 FA 2 2 2 4kN m

FQ2=FA-F=2-3=-1kN
M 2 FA 2 2 2 4kN m
(3)求3-3和4-4截面的剪力和弯矩,取右侧计算。
FQ 3 FB 1kN
M3 FB 4 m 1 4 2 2kN m
MA 0
MB ql ql 2 l 0 2 2 ql l q l ql 2 M C ( )2 2 2 2 2 8
当x =l 时
当x=l/2时,
时将三点用一光滑曲线连成一抛物线即得梁的弯矩图,见图7-9c。

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

图10
图11
图12
3.3.2
多跨静定梁的内力计算
由层次图可见,作用于基本部分上的荷载,并不 影响附属部分,而作用于附属部分上的荷载,会以支 座反力的形式影响基本部分,因此在多跨静定梁的内 力计算时,应先计算高层次的附属部分,后计算低层 次的附属部分,然后将附属部分的支座反力反向作用 于基本部分,计算其内力,最后将各单跨梁的内力图 联成一体,即为多跨静定梁的内力图。
例6 试作出如图13(a)所示的四跨静定梁的弯矩图和剪 力图。
解:(1) 绘制层次图,如图13(b)所示。
(2) 计算支座反力,先从高层次的附属部分开 始,逐层向下计算:
① EF段:由静力平衡条件得
∑ME=0: ∑Y=0: YF×4-10×2=0 YF=5kN YE=20+10-YF=25kN
解:(1)求支座反力 先假设反力方向如图所示,以 整梁为研究对象: ∑X=0: XA-P=0 XA=P=4kN ∑MB=0: YA*l-q*l*0.5*l=0 YA=0.5ql =0.5×3×4kN=6kN ∑Y=0: YA+YB=ql YB=ql-VA =(3×4-6) kN=6kN
即:
q′l′=ql q=q′l′/l=q′/cosα
下面以承受沿水平向分布的均布荷载的斜梁为例进 行内力分析,如图(b)所示。 根据平衡条件,可以求出支座反力为: XA=0, YA=YB=1/2ql
则距A支座距离为x的截面上的内力可由取隔离体求出。 如图(c)所示,荷载qx、YA,在梁轴方向(t方向)的分 力分别为qxsinα、YAsinα;在梁法线方向(n方向) 的分力分别为:qxcosα、YAcosα。则由平衡条件得: ∑T=0: YAsinα-qxsinα+NX=0 NX=(qx-1/2ql)sinα ∑N=0: YAcosα-qxcosα-QX=0 QX=(1/2ql-qx)cosα ∑MX=0: YAx-qx· x/2-MX=0 MX=1/2qx(1-x)

第三章 静定结构的内力计算

第三章 静定结构的内力计算

FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC

结构力学二3-静定结构的内力计算

结构力学二3-静定结构的内力计算

以例说明如下
例 绘制刚架的弯矩图。 解:
E 5kN
由刚架整体平衡条件 ∑X=0 得 HB=5kN← 此时不需再求竖向反力便可 绘出弯矩图。 有:
30
20 20 75 45
40
0
MA=0 , MEC=0 MCE=20kN· m(外) MCD=20kN· m(外) MB=0 MDB=30kN· m(外) MDC=40kN· m(外)
有突变
铰或 作用处 自由端 (无m)
m
Q图
M图
水平线

⊖㊀
Q=0 处 突变值为P 如变号 无变化
有极值 尖角指向同P 有极值 有突变 M=0 有尖角
斜直线


利用上述关系可迅速正确地绘制梁的内力图(简易法)
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控制 截面。如集中力和集中力偶作用点两侧的截面、均 布荷载起迄点等。用截面法求出这些截面的内力值, 按比例绘出相应的内力竖标,便定出了内力图的各 控制点。
说明:
(a)M图画在杆件受拉的一侧。 (b)Q、N的正负号规定同梁。Q、N图可画在杆的 任意一侧,但必须注明正负号。 (c)汇交于一点的各杆端截 面的内力用两个下标表示,例如: MAB表示AB杆A端的弯矩。 MAB
例 作图示刚架的内力图
RB↑
←HA
VA→
CB杆:
由∑ X=0 可得: M = CD RB=42kN↑ HA=48kN←, H (左) A=6×8=48kN← 由∑M144 VA=22kN↓ 48 A=0 可得: MEB=MEC=42×3 ↑ (2)逐杆绘M图 R=126kN = 126 · m (下) B 192 MDC=0 CD杆: M =42 × 6-20 × 3 由 ∑Y=0 可得: CB MCD=48kN·m(左) =192kN· m(下) VA=42-20=22kN↓

结构力学 第3章静 定梁、平面刚架受力分析

结构力学 第3章静 定梁、平面刚架受力分析
工程中,斜梁和 斜杆是常遇到的,如楼梯梁、刚架中的斜梁等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重、恒载),用 q’ 表示。
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力

【土木建筑】第16章:静定结构的内力计算

【土木建筑】第16章:静定结构的内力计算
= M0x
单跨静定梁小结
要求: 1)理解内力、内力图的概念; 2)了解梁的主要受力、变形特点; 3)理解并掌握截面法计算内力的方法; 4)熟练掌握用叠加法做直杆段的弯矩图。
本节难点及重点: 1)内力正、负号的判断; 2)叠加法做弯矩图。
§16-2 多跨静定梁
多跨静定梁由相互在端部铰接、水平放置的若干直 杆件与大地一起构成的结构。
绕曲线杆端切线
q
XA A
B XB
C
E
D B
A
• 一、静定刚架支座反力的计算:平衡方 程
二、绘制内力图:用截面法求解刚架任意 指定截面的内力,应用与梁相同的内力符 号正负规定原则即相同的绘制规律与绘图 方法作内力图(M图、Q图、N图)
40kN
(+) (-)
40kN
q=20kN/m
B
C
P=40kN D
例16-2-2 分析图示多跨静定梁可分解成单跨梁分 别计算的条件,并作梁的FQ、M图。
分析:(1)图示梁的荷载以及约束的方向,是竖 向平行力系。一个平面平行力系只能列两个独立的 平衡方程,解两个未知数。 (2)杆CE有两个与大地相连的竖向支座链杆, 当仅在竖向荷载作用下时,可维持这个平行力系的 平衡。所以,杆CE在仅有竖向荷载的作用下,可 视为与杆AB同等的基本部分。
2)求C截面的内力 切开过C点的横截面,将梁分成两部分。取左侧
部分考虑,其暴露的截面上按规定的内力的正方向 将内力示出,建立静力平衡方程。
说明:计算内力要点: 1)所取的隔离体(包括结构的整体、截面法截取 的局部),其隔离体周围的所有约束必须全部切断 并代以约束力、内力。 2)对未知外力(如支座反力),可先假定其方向, 由计算后所得结果的正负判断所求力的实际方向, 并要求在计算结果后的圆括号内用箭线表示实际方 向。 3)计算截面的内力时,截面两侧的隔离体可任取 其一,一般按其上外力最简原则选择。截面内力均 按规定的正方向画出。

《结构力学》第三章 单跨静定梁

《结构力学》第三章 单跨静定梁

l
l/2 l/2
MM
l
l
练习: 利用微分关系等作弯矩图
M
1 ql2 2
P 1 ql2
4
l
l/2 l/2
l
M
2M
MM
l
l
lM
M
l
练习: 利用微分关系等作弯矩图
1 ql2 2
P 1 ql2
4
q
1 ql2
l
l/2 l/2
2l
l
M
2M
M
MM
M
M
M
M MM
M
l
l
MM
练习: 利用微分关系,叠加法等作弯矩图
M图
Q图
例: 作内力图
铰支座有外 力偶,该截面弯矩 等于外力偶.
M图 Q图
无剪力杆的 弯矩为常数.
M图
自由端有外
力偶,弯矩等于外
Q图 力偶
练习: 利用上述关系作弯矩图,剪力图
练习: 利用上述关系作弯矩图,剪力图
5.叠加法作弯矩图
注意:
是竖标相加,不是 图形的简单拼合.
练习:
1 ql2 16
种结构型式?
简支梁(两个并列) 多跨静定梁
连续梁
例.对图示静定梁,欲使AB跨的最大正弯矩与支座B截
面的负弯矩的绝对值相等,确定铰D的位置.
q
A
D
B
C
x
l
l
RD
q
q(l x)2 / 8
RD
B
解: RD q(l x) / 2()
M B qx2 / 2 q(l x)x / 2 q(l x)2 / 8 qx2 / 2 q(l x)x / 2

静定梁ppt课件

静定梁ppt课件
2m
60kN.m
2m
2m
55 30
20 30 5 m/2 m
m/2
15kN 2m
30 M 图 (kN.m)
18
8kN
4kN/m
16kN.m
A
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
G
BC
D
E
F
1m 1m
2m
RA=17kN
2m
1m 1m
RB=7kN
17 + 9
H
16
Q图(kN) x

7
7
26
28
7
30
23
Q图
因为在集中力作用处,剪力图发生突变,如将正剪力画在基线上侧,突 变的方向即集中力的指向。当支座反力求出以后,可直接根据荷载和支座 反力的指向作静定梁的剪力图。
按这种作剪力图的方法若最后不能回到基线零点,说明计算过程中有 错误,因此这种方法能自动检验计算结果的正确性。
17
10kN/m ↓↓↓↓↓↓↓
ΔM=m
Q
N
m
Px
M
Py
Q+ΔQ
N+ΔN M+ ΔM
增量关系说明了内力图的突变特征
3) 积分关系:由微分关系可得
QB=QA-∫qydx
MB=MA+∫Qdx
右端剪力等于左端剪力减去
该段qy的合力; 右端弯矩等于左端弯矩加上
该段剪力图的面积。
Q图 M图
内力图形状特征
无荷载区段 均布荷载区段 集中力作用处
q
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
MB
MA
l
MB
MA
ql2/8
20
§3-2多跨静定梁(statically determinate multi-span beam)

弯曲内力—单跨静定梁的内力图(材料力学课件)

弯曲内力—单跨静定梁的内力图(材料力学课件)

FA
FB
ql 2
()
(2)列剪力方程和弯矩方程
FS (x)
FA
qx
1 2
ql
qx
(0< x l)
M (x)
FA x
1 2
qx 2
1 2
qlx
1 2
qx 2
(0 x l)
(3) 绘制剪力图和弯矩图
两端支座处: 梁跨中:
ql FSmax 2
M max
ql 2 8
q
A C
x
FA
l
1 ql
2
1 ql 2 8
剪力为常数,FS图为
平直线;弯矩为一次
FaFS图FS图(b) (b) 函数,M图为斜直线。
l
Fa
M图
l (c)
M图 (c)
集中力F处,剪力图 发生突变,弯矩图
有尖角。
单跨静定梁的内力图
2.单一荷载下静定梁的内力图
A
解:(1)求支座约束力
FA
由梁的整体平衡条件可求得:
M l
e
()
FA
(2)列剪力方程和弯矩方程
单跨静定梁的内力图
1. 剪力方程和弯矩方程 为了形象地表示剪力和弯矩沿梁轴线变化的规律,以沿梁轴线的横坐标x表示梁横
截面的位置,以纵坐标表示相应横截面上的剪力或弯矩,按剪力方程和弯矩方程绘出 图形,这种图形分别称为剪力图和弯矩图,即梁的内力图。
剪力方程
FS FS (x)
正剪力画在x轴上方负 剪力画在x轴下方,并在
图中标明“ ”、x轴下方负 剪力画在x轴上方,并在
图中标明“ ”、“ ”。
单跨静定梁的内力图
2.单一荷载下静定梁的内力图

结构力学静定梁的内力分析

结构力学静定梁的内力分析

(d)
M M M FQdx m 0
M m
(e)
以上两式,为荷载与内力的增量 关系。式(e)忽略了一阶微量。
增量关系的几 何意义
在集中力作用点(集中力垂直 与杆轴或有垂直于杆轴的分量) 两侧截面,剪力有突变,突变 值即为该集中力或垂直于杆轴 的分量;弯矩相同。
在集中力偶作用截面两侧,弯矩 有突变,突变值即为该集中力偶; 剪力相同。
a
M
0
M1
1 2
qa 2
FAy a
M
用文字写 明受拉侧
取截面1右侧为隔离体 计算可得同样结果
3.直接法求指定 截面的内力
由例3-1-1内力计算结果 分析,指定截面的内力可 用该截面一侧的外力直接 表示,即:
轴力 (FN)
截面一侧所有外力在指定 截面法线方向投影的代数 和,以与截面外法线方向 相反为正。
剪力 (FQ)
截面一侧所有外力在指定 截面切线方向投影的代数 和,左上、右下为正。
弯矩(M)
截面一侧所有外力对 指定截面形心力矩的 代数和。
例3-1-2 用直接法,求例 3-1-1图(a)所示伸臂梁截 面2上的内力。
M
(a)

支座反力计算同例3-1-1。内力 可由右图所示受力图直接计算:
M
F A x F A y
3a 2
FP
4 5
a
(↓)
(箭头标出 实际方向)
MA 0
FBy
3a
M
q 3a
3a 2
FP
4 5
4a
0
(↑) FBy
1 M 3a
q 3a
3a 2
FP
4 4a 5
箭头标出实 际方向

单跨静定梁的内力图(1)PPT课件

单跨静定梁的内力图(1)PPT课件

.
3
单跨静定梁的内力图
❖ 2.剪力图和弯矩图
❖ 为了能直观地观察出梁各截面上的剪力 和弯矩随截面位置变化的规律,可仿照轴力 图的作法绘出剪力图和弯矩图。绘图时以平 行梁轴线的x为横坐标,表示各横截面的位置, 以FQ或M为纵坐标,表示相应横截面上的剪 力和弯矩,规定FQ轴向上为正,M轴向下为 正。
.
.
7
例4.8 试作图示简支梁在集中荷载
a 1 Fb 2
作用下的剪力图和弯矩图。
解:1. 求支座反力 FA=b/l FP FB=a/l FP
A x
C l
B
1 F2
2.用截面法计算x确定的截 面的内力
A FA
x
x
B FB
AC:
FQ(x)
= FA (0<
= X
FPb/l
< a)
M(X) = FAX= FPb/l x
FA
(0< X < l ) 0.5ql
x M(X)
FQ FQ(x)
3.作内力图
(剪力图)
剪力图:一条斜直线
B FB
x 0.5ql
x
弯矩图:二次抛物线
M
ql 2/8 (弯矩图)
.
6
写出梁的内力方程,作内力图。并指出最大内力值以及
q

它们所在的截面。
Ax l
B 1.用截面法计算x确定的截面
q MB
Ax
.
10
M
FB
CB
M(X) M
M(X)
FA
FQ(x)
FQ
FQ(x) x
BC: FQ(x) =(L-<FAX+F<B=30/2 l )
M/l

建筑力学与结构选型第4章 静定杆系结构内力分析

建筑力学与结构选型第4章 静定杆系结构内力分析
A
2 k N /m A D F Ax F Ay
6kN B C F By

2m
F
2m
y
C
0
2m
B
则 解得
FAy FBy 2 2 6
FAy 8kN
( ↑)
解得

F
x
0
FAx 0
6kN (2)用截面法求指定截面的内力 k N /m A C 求截面C的弯矩 2m 2m B 2m D
第 4章
静定杆系结构内力分析
4.1 杆件的基本变形与内力 4.2 单跨静定梁的内力计算与内力图 4.3 多跨静定梁的内力计算与内力图 4.4 静定平面刚架的内力计算与内力图
4.5 静定三铰拱
4.6 静定平面桁架
4.1 杆件的基本变形及内力
4.1.1 内力和截面法
内力是荷载在构件内部的传递方式。
F F F F F F
非圆截面等直杆(如巨型截面梁和箱形梁)的扭转较复杂,截 面将发生翘曲
4.2 单跨静定梁的内力计算与内力图
梁的特点: 荷载垂直于杆件轴线的横向荷载,变形以挠曲为主。 起横向连接作用,是间接传力构件。
简支梁的变形图
悬臂梁的变形图
4.2.1单跨静定梁的基本形式
简支梁
简支斜梁
悬臂梁
伸臂梁
4.2.2 梁式杆指定截面内力的计算
2 k N /m A F Ax F Ay
6kN B C F By
由 解得
M
C
0
FNC
MC
C FQC右
B 2kN
M C FBy 2 4kN m()
2kN/m B D A
求A左截面的剪力 MC

结构力学——3静定结构的内力分析

结构力学——3静定结构的内力分析
x=1.6m 3.K截面弯矩的计算
M图(kN·m) Mk
Mmax=32.4kn·N
qx2
MK=ME+QE x- 2 =26+8×1.6- 51
62
2
=32.4kN·m
返10回
§3—2 多跨静定梁
1.多跨静定梁的概念 若干根梁用铰相联,并用若干支座与基础
相联而组成的结构。
2.多跨静定梁的特点: (1)几何组成上: 可分为基本部分和附属部分。
(5)校核: 内力图作出后应进行校核。
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
以例说明如下
返22回
E
20
20
75
45
0
例 3—7 绘制刚架的弯矩图。 解:
由刚架整体平衡条件 ∑X=0
得 FBX=5kN(←) 5kN 此时不需再求竖向反力便可
绘出弯矩图。 有:
40 30
MA=0 , MEC=0 MCE=20kN·m(外)
MCD=20kN·m(外)
MB=0
MDB=30kN·m(外)

静定梁的内力—单跨静定梁的内力计算(建筑力学)

静定梁的内力—单跨静定梁的内力计算(建筑力学)

MO 0 : M FA x 0
B FB
F
lx
c
FQ FA
M FA x
与横截面相切的内力,称为剪力FQ , 常用单位为N或kN 。
作用在外力作用平面内(纵向对称平面
B
内)的内力偶,其力偶矩称为弯矩M,
FB 常用单位为
N m或 k N m 。
注:不论是左段还是右段隔离体计算出的内力应该是同 一截面上的内力,在大小、性质上应该是相同的结果。
MB 0
FA 4 4 2 21 0 FA 2kN
(2)计算各截面上的剪力
FQ1 FQ2 FQ3 = 2kN FQ4 2+6=4kN FQ4 2 2=4kN
4kN m 2kN/m
12 3
Aபைடு நூலகம்
B4 C
FA
2m
FB
2m
2m
(2)计算各截面上的弯矩
M1 2 2 4kN m(上部受拉) M2 2 2 4 0
M1
qa
a 2
Fa
0
M1
qa
a 2
Fa
4
2
2 2
5
2
18kN
m
(上部受拉)
应用举例
[例2] 如图所示简支梁,已知:F1=F2=30kN, 求1-1横截面上的剪力和弯矩。
F1 1
A
1
FA 1m 1m
2m
F2 B
2m FB
F1 1 M1
1 FA 1m 1m FQ1
M11
F2
1 FS1 2m
2m FB
(2) 代替 留下一部分(脱离体),并以内力代替弃去部分对保留部分的作用。
(3) 平衡 对脱离体建立静力平衡方程,求解未知力。 注意: 取出的梁段上保留作用于该段上的所有外力(包括荷载和支座反力),在截开的 截面上画出未知的剪力和弯矩时,剪力和弯矩均假设为正向。

静定单跨梁的内力概念

静定单跨梁的内力概念

静定单跨梁的内力概念静定单跨梁(又称静定桁梁)是一种常见的结构形式,由一根或多根梁组成,支承在两个固定支点上,且受到平行于梁轴方向的外力和力矩作用。

在力学中,我们可以通过对静定单跨梁的分析,来研究梁的内力分布情况。

梁的内力是指梁内部各部分由于受到外界力的作用而产生的内部力,包括弯矩、剪力和轴力三种。

首先,我们来看梁的弯矩。

弯矩是梁内部由于受到外界力矩作用而产生的一种内力。

在静定单跨梁中,由于梁受到外部力和力矩的作用,梁的两端将会发生弯曲。

在梁的截面上,由于上下两侧产生的应力不均匀,会形成一对相等且反向的内力,即弯矩。

在梁的上部,由于负弯矩的存在,上侧受到压应力,下侧受到拉应力。

而在梁的下部,由于正弯矩的存在,上侧受到拉应力,下侧受到压应力。

在静定单跨梁中,我们可以通过梁的受力平衡以及材料力学的基本公式来计算梁在不同截面上的弯矩分布情况。

接下来,我们来看梁的剪力。

剪力是梁内部由于受到外界平行于梁轴方向的力作用而产生的一种内力。

在静定单跨梁中,当梁受到外部力作用时,由于梁的上部和下部受力不一致,会形成一对相等且反向的内力,即剪力。

在梁的截面上,剪力主要通过梁材的剪切应力传递。

根据梁的受力平衡以及材料力学的基本公式,我们可以计算梁在不同截面上的剪力分布情况。

最后,我们来看梁的轴力。

轴力是指梁内部由于受到外界沿梁轴方向的力作用而产生的一种内力。

在静定单跨梁中,当梁受到外部力作用时,由于梁的上部和下部受力不一致,会形成一对相等且反向的内力,即轴力。

在梁的截面上,轴力主要通过梁材的拉应力和压应力传递。

根据梁的受力平衡以及材料力学的基本公式,我们可以计算梁在不同截面上的轴力分布情况。

总结起来,静定单跨梁的内力包括弯矩、剪力和轴力三种。

弯矩是由于梁的外部力矩作用而产生的一种内力;剪力是由于梁的外部力作用而产生的一种内力;轴力是由于梁的外部力作用而产生的一种内力。

通过对梁的受力平衡以及材料力学的基本公式的分析,我们可以计算出梁在不同截面上的内力分布情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. x 解: 求支座反力 l =a/l =b/l FA=b/l FP FB=a/l FP 1 F 2 A B 2.用截面法计算x确定的截 x FA x FB 面的内力 M(X) M(X) b/l AC: FQ(x) = FA = FPb/l (0< (0< X < a) FQ(x) FA FQ(x) FB M(X) = FAX= FPb/l x l FQ bFq/l (0< (0< X < a) x CB: FQ(x) = FA -FP = -FPa/l a/l (剪力图) (a< (a< X < l ) aFq/l x M(X) = FAX- FP(x-a)= = FPbx/l - FP(x-a) l M(弯矩图) (a< abFq /l l 3.作内力图 (a< X < l)
例4.9 试作图示外伸梁在弯矩作用 A 下的剪力图和弯矩图。
xM BΒιβλιοθήκη C D l/2 l/4 M小结
比较剪力图和弯矩图可以看出,在集中力作用 处,其左、右两侧横截面上的弯矩相同,而剪力发 生突变,突变量等于该集中力的大小。发生这种情 况的原因是由于把实际上分布在一个微段上的分力 抽象成了作用于一点的集中力所造成的,因此无法 说集中力作用处截面上的剪力是多少,只能说该截 面左侧或右侧截面上的剪力是多少。另外,在集中 力偶作用处,其左右两侧横截面上的剪力相同,而 弯矩发生突变,突变量等于该力偶的力偶矩值。其 原因类似于集中力作用处剪力发生突变。
A 解: 求支座反力 1. B x =0.5ql FA=FB=0.5ql l 2.用截面法计算 用截面法计算x 2.用截面法计算x确定的 1 q 截面的内力 A B x 0.5ql FB ΣFy=0 FQ(x) = 0.5ql- qx FA M(X) ΣMC(F) =0 2 FA =0.5ql M(X) =0.5ql x- 0.5qx FQ FQ(x) (0< (0< X < l ) 0.5ql x 3.作内力图 (剪力图) 0.5ql 剪力图: 一条斜直线 x 弯矩图: 二次抛物线 M ql 2/8 (弯矩图)
四、单跨静定梁的内力图
列图示梁的内力方程,作内力图. A FP B 解:1.用截面法计算x确定的截 x l 面的内力 ΣFy=0 FQ = FP (剪力方程) FP M M=- ΣM =0 M=-(l - x) FP FQ (0< (0< X < l )(弯矩方程) FP FQ x 2.作内力图 2.作内力图 (剪力图) 剪力图: 剪力图: 常数的图线为平线 lFP 弯矩图: 的一次函数, 弯矩图:x的一次函数, x M 图线应为直线 (弯矩图) 纵标线、标值、正负号、图名和单位。 纵标线、标值、正负号、图名和单位。
例4.8 试作图示简支梁在均布荷载作用下的剪 1 q 力图和弯矩图。
写出梁的内力方程,作内力图。并指出最大内力值以及 q 它们所在的截面。 解 A x 1.用截面法计算 用截面法计算x B 1.用截面法计算x确定的截面 l 的内力 q ΣFy=0 FQ = q(l-x) MB (剪力方程) 剪力方程) B A x q ΣMC(F) =0 M=-0.5q(l - x)2 M=- FAy M (0< X < l ) (弯矩方程) (0< 弯矩方程) 2.作内力图 2.作内力图 FQ ql FQ x X的一次函数的 剪力图: 剪力图: 2 (剪力图) 0.5ql 图线为斜直线。 图线为斜直线。 x 弯矩图: x的二次函数,图 弯矩图: 的二次函数, M (弯矩图) 线应为抛物线。 线应为抛物线。
题4.17 对列平衡方程与用方程来画图难以理解。
单跨静定梁的内力图
2.剪力图和弯矩图 2.剪力图和弯矩图 为了能直观地观察出梁各截面上的剪力 和弯矩随截面位置变化的规律, 和弯矩随截面位置变化的规律,可仿照轴力 图的作法绘出剪力图和弯矩图。 图的作法绘出剪力图和弯矩图。绘图时以平 行梁轴线的x为横坐标,表示各横截面的位置, 行梁轴线的x为横坐标,表示各横截面的位置, 为纵坐标, 以FQ或M为纵坐标,表示相应横截面上的剪 力和弯矩,规定F 轴向上为正, 力和弯矩,规定FQ轴向上为正,M轴向下为 正。
单跨静定梁的内力图
第15讲 讲
授课日期 班 级
章节及 课 题 复习旧课 要 点 本讲教学 目的与要求
单跨静定梁的内力图
截面弯矩和剪力的求解
对单跨静定梁能用方程法画出弯矩 图和剪力图。
运用多媒体讲授。 教学设计 (方法、 教具、 手段、 内容) 教学重点 和 难 点 课外作业 课后记录 控制截面的选取,列方程与利用方程做图。
例4.8 试作图示简支梁在集中荷载 作用下的剪力图和弯矩图。 A
a1
Fb 2 C B
x 1. 解: 求支座反力 l =M/l =M/l FA=M/l FB=M/l x A B 2.用截面法计算x确定的截 x C FB FA 面的内力 M(X) M M(X) =M/l AB: FQ(x) =-FA = -M/l FQ(x) FA (0< (0< X < L) FQ(x) Mx/l M(X) = -FAX= -Mx l FQ x (0< (0< X < l) (剪力图) BC: FQ(x) =-FA+FB=0 =M/l (L< (L< X <3/2 l ) M M(X) = -FAX-FB(x-L)=-M = x (L< (L< X <3/2 l) M (弯矩图) CD: FQ(x) =0 M(X) = 0
相关文档
最新文档