三角函数的概念和计算练习题
三角函数的概念(精练)(解析版)
5.2 三角函数的概念【题组一 三角函数的定义】1.(2020·河南高三其他(理))若角α的终边过点8,6cos ()60P m --,且4cos 5α=-则实数m 的值为( )A .12-B .C .12D 【答案】C【解析】6cos603-=-,则点P 的坐标为(8,3)P m --, 因为4cos 5a =-.所以角a 的终边在第二象限或第三象限,故0m >.45=-,即214m =,解得12m =-(舍)或12m =.故选:C . 2.(2020·内蒙古通辽·高一期中(理))点(,)A x y 是300︒角终边上异于原点的一点,则yx值为( ).A B .C .3D .3-【答案】B 【解析】tan 300yx==-3.(2020·浙江丽水·高一期末)已知角α的终边经过点()1,P m ,且sin 10α=-,则cos α=( )A .B .CD .13【答案】C【解析】由三角函数定义得sin 0,310m m α==-<=-由三角函数定义得cos 10α==C4.(2020·全国高一课时练习)已知角α的终边上有一点P ⎝⎭,则sin cos αα+ ________.【答案】5-【解析】因为角α的终边上有一点P ⎝⎭,则221⎛+= ⎝⎭⎝⎭所以sin α=,cos α=所以sin cos αα⎛+=+= ⎝⎭-5.(2020·浙江高一课时练习)已知角α的终边上一点的坐标为33sin ,cos 44ππ⎛⎫ ⎪⎝⎭,则角α的最小正值为________. 【答案】74π【解析】∵角α的终边上一点坐标为33sin ,cos 44M ππ⎛⎫ ⎪⎝⎭,即22M ⎛- ⎝⎭, 故点M在四象限,且tan 12α==-,则角α的最小正值为74π.故答案为:74π6.(2020·全国高一课时练习)已知角α的终边过点P (-3a,4a )(a ≠0)”,求2sin α+cos α. 【答案】1或-1.【解析】因为r5a =. ①若a >0,则r =5a ,角α在第二象限,sin α=y r=4455a a =,cos α=3355x a r a -==-, 所以2sin α+cos α=83155-=,②若a <0,则r =-5a ,角α在第四象限.sin α=4455a a =--,cos α=3355a a -=-, 所以2sin α+cos α=83155-+=-.7.(2020·全国高一课时练习)已知θ终边上一点()(),30P x x ≠,且cos 10x θ=,求sin θ、tan θ. 【答案】当1x =时,sin 10θ=,tan 3θ=;当1x =-时,sin 10θ=,tan 3θ=-.【解析】由题意知r OP ==cos x x r θ===,0x ≠,解得1x =±.当1x =时,点()1,3P,由三角函数的定义可得sin 10θ==,3tan 31θ==;当1x =-时,点()1,3P -,由三角函数的定义可得sin θ==,3tan 31θ==--. 综上所述,当1x =时,sin 10θ=,tan 3θ=;当1x =-时,sin 10θ=,tan 3θ=-. 【题组二 三角函数值正负判断】1.(2019·上海中学高一期中)若cos 0tan 0>,<,αα则α在 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】由于cos 0α>,故角α为第一、第四象限角.由于tan 0α<,故角α为第二、第四象限角.所以角α为第四象限角.故选D.2.(2019·安徽省舒城中学高一月考)若sin 0tan αα>且cos tan 0αα⋅<,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】D【解析】由题,因为sin 0tan αα>,则α的终边落在第一象限或第四象限; 因为cos tan 0αα⋅<,则α的终边落在第三象限或第四象限;综上,α的终边落在第四象限故选D3.(2020·南昌市新建一中高一期末)已知角α满足sin 0α<且cos 0α>,则角α是第( )象限角 A .一 B .二C .三D .四【答案】D【解析】由题意,根据三角函数的定义sin y r α=<0,cos xrα=>0 ∵r >0,∴y <0,x >0.∴α在第四象限,故选:D .4.(2020·上海高一课时练习)已知tanα>0,且sinα+cosα>0,那么角α是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】A【解析】tan 0α>则角为第一或第三象限,而sin cos 0αα+>,故角为第一象限角. 5.(2020·甘肃高一期末)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B【解析】由题意可得00cos tan αα<⎧⎨<⎩,则0sin cos αα>⎧⎨<⎩,所以角α的终边在第二象限,故选B.6.(2019·广东越秀·高一期末)若cos θ0>,sin θ0<,则角θ是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】D【解析】根据三角函数的定义有()sin ,cos 0y xr r rθθ==>,所以0,0x y ><, 所以θ在第四象限,故选D .7.(2020·辽河油田第二高级中学高一期中)如果点(sin ,cos )P θθ位于第三象限,那么角θ所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限+【答案】C【解析】因为点(sin ,cos )P θθ位于第三象限,所以sin 0cos 0θθ<⎧⎨<⎩,因此角θ在第三象限.故选:C.8.(2020·全国高一课时练习)“点(tan ,cos )P αα在第三象限”是“角α为第二象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】∵(tan ,cos )P αα为第三象限,∴tan 0α<,cos 0α<,∴α为第二象限角,反之也成立. 故选:C.9.(2020·山西平城·大同一中高一月考)已知第二象限角α的终边上一点()sin ,tan P ββ,则角β的终边在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】因为点()sin ,tan P ββ在第二象限,所以有sin 0,tan 0,ββ<⎧⎨>⎩所以β是第三象限角.故选:C 【题组三 三角函数线】1.(2020·灵丘县豪洋中学高一期中)设5sin 12a π=,5cos 12b π=,5tan 12c π=,则( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<【答案】D 【解析】设512π的终边与单位圆相交于点P ,根据三角函数线的定义可知5sin 12a MP π==,5cos 12b OM π==,5tan 12c AT π==,显然AT MP OM >>所以b a c <<故选:D2.(2020·全国高一课时练习)若02θπ≤<,且不等式cos sin θθ<和tan sin θθ<成立,则角θ的取值范围是( )A .3,44ππ⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .35,44ππ⎛⎫ ⎪⎝⎭【答案】B【解析】由三角函数线知,在[)0,2π内使cos sin θθ<的角5,44πθπ⎛⎫∈⎪⎝⎭,使tan sin θθ<的角3,,222πθπππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,故θ的取值范围是,2ππ⎛⎫⎪⎝⎭.故选:B.3.(2020·全国高一课时练习)如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<【答案】C【解析】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT ,很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.4.(2020·全国高一课时练习)在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1)sin α≥2(2)cos α≤-12. 【答案】(1)作图见解析;22k 2k ,k Z 33ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣;(2)作图见解析;2422,33k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣.【解析】(1)作直线y A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(如图所示的阴影部分,包括边界),即为角α的终边的范围.故满足要求的角α的集合为22k 2k ,k Z 33ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣. (2)作直线x =-12交单位圆于C ,D 两点,连接OC 与OD ,则OC 与OD 围成的区域(如图所示的阴影部分,包括边界),即为角α的终边的范围.故满足条件的角α的集合为2422,33k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣. 【题组四 同角三角函数】1.已知sin θ=a−11+a ,cos θ=−a1+a ,若θ是第二象限角,则tan θ的值为 A .−12 B .−2C .−34D .−43【答案】C【解析】由sin 2θ+cos 2θ=1,得:(a−11+a )2+(a1+a )2=1,化简,得: a 2−4a =0,因为θ是第二象限角,所以,a =4, tan θ=sin θcos θ=a−11+a ×(−1+a a)=1−a a=1a −1=−34,故选C.2.(2020·甘肃省岷县第一中学高二月考)若角α的终边落在直线0x y +=上,cos α+的值等于( )A .0B .2-C .2D .2-或2【答案】A【解析】由题意,若角α的终边落在直线0x y +=上,则角α的终边落在第二象限或第四象限,当角α的终边在第二象限时,根据三角函数的定义,可得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩,0cos α+=;当角α的终边在第四象限时,根据三角函数的定义,可得sin 2cos 2αα⎧=-⎪⎪⎨⎪=⎪⎩,0cos α+=,故选A.3.(2019·江西高三月考(文))已知tan 2α,其中α为三角形内角,则cos α=()A.D. 【答案】A【解析】因为tan 2α,所以sin 2cos αα=-,又因为22sin cos 1αα+=,所以解得:sin 5cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩,因为α为三角形内角,所以sin cos αα⎧=⎪⎪⎨⎪=⎪⎩.故答案为:A.【题组五 弦的齐次】1.(2020·山西平城·大同一中高一月考)已知tan 3α=,则3sin cos 5cos sin αααα-=-( )A .2B .4C .6D .8【答案】B 【解析】由已知3sin cos 3tan 133145cos sin 5tan 53αααααα--⨯-===---.故选:B .2.(2020·辽宁高一期末)若3sin 5cos 1sin 2cos 5αααα+=--,则tan α的值为( )A .32B .﹣32C .2316D .﹣2316【答案】D 【解析】因为3sin 5cos 3tan 51sin 2cos tan 25αααααα++==---,解得23tan 16α=-.故选:D3.(2019·黄梅国际育才高级中学高一月考)已知θ是第二象限角,(),2P x 为其终边上一点且cos θ5x =,则2sin cos sin cos θθθθ-+的值A .5B .52C .32D .34【答案】A【解析】由题意得cos 5θ==1x =±.又θ是第二象限角,∴1x =-.∴tan 2θ=-.∴2sin cos 2tan 1415sin cos tan 121θθθθθθ----===++-+.选A .4.(2020·内蒙古集宁一中高一期末(理))已知sin αα=,则2sin sin cos 1ααα++=( )A B C .1 D .3【答案】B【解析】由sin αα=可得tan α=22222222sin sin cos cos 2tan tan 1sin sin cos 1sin cos tan 1αααααααααααα++++++====++. 故选:B .5.(2020·科尔沁左翼后旗甘旗卡第二高级中学高一期末)已知4tan 3α=,求下列各式的值. ①222sin 2sin cos 2cos sin ααααα+⋅-; ②sin cos αα. 【答案】①20;②1225. 【解析】①原式2222442tan 2tan 33202tan 423ααα⎛⎫+⨯ ⎪+⎝⎭===-⎛⎫- ⎪⎝⎭. ②原式22224sin cos tan 123sin cos tan 125413αααααα====++⎛⎫+ ⎪⎝⎭. 6.(2020·内蒙古通辽·高一期中(理))(1)已知tan 3α=,计算4sin 2cos 5cos 3sin αααα-+ 的值 .(2)已知3tan 4θ=-,求22sin cos cos θθθ+-的值. 【答案】(1)57;(2)2225. 【解析】(1)∵tan 3α= ∴cos 0α≠∴原式=1(4sin 2cos )4tan 24325cos =153tan 5337(5cos 3sin )cos αααααααα-⨯-⨯-==++⨯+⨯.(2)()2222222sin cos sin cos cos 2sin cos cos sin cos θθθθθθθθθθ++-+-=+=2222222sin sin cos cos 2tan tan 1sin cos 1tan θθθθθθθθθ++++=++ =223393211224484925311164⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪⎝⎭⎝⎭==⎛⎫++- ⎪⎝⎭. 7.(2020·山东潍坊·高一期末)已知角α的顶点与坐标原点O 重合,始边落在x 轴的正半轴上,终边经过点()04,A y ,其中00y ≠.(1)若cos 5α=,求0y 的值; (2)若04y =-,求2sin 3cos cos 4sin αααα+-的值. 【答案】(1)2±;(2)15. 【解析】(1)由题意知,OA =cos α==. 解得02y =±,所以02y =±.(2)当04y =-时,0tan 14y α==-,所以2sin 3cos 2tan 31cos 4sin 14tan 5αααααα++==--. 8.(2020·四川凉山·高一期末)已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,且32ππα<<,求cos sin αα+的值【答案】【解析】由题意,tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, 可得21tan 31tan k αα⋅=-=,解得2k =±, 又由32ππα<<,则1tan 2tan k αα+==,解得tan 1α=,则sin cos 2αα==-,所以cos sin αα+= 【题组六 sinacosa 与sina±cosa 】1.(2020·浙江高三专题练习)已知sin θ+cos θ=43,θ∈(0,)4π,则sin θ-cos θ的值为( ) AB .13 CD .-13【答案】A【解析】∵sinθ+cosθ=43,∴(sinθ+cosθ)2=sin 2θ+cos 2θ+2sinθcosθ=1+2sinθcosθ=169 ,所以2sinθcosθ=79 又因为0<θ<4π,所以0<sinθ<cosθ∴sinθ﹣cosθ<0,∴(sinθ﹣cosθ)2=sin 2θ+cos 2θ﹣2sinθcosθ=1﹣2sinθcosθ=29 ,则sinθ﹣cosθ=﹣3 .故选A .2.(2020·山西应县一中高三开学考试(文))若cosα+2sinα,则tanα=________.【答案】2【解析】由2221cos sin sin cos αααα⎧⎪⎨+=⎪⎩+sin α,cos α=,∴tanα=sin αcos α=2, 故答案为2.3.(2019·石嘴山市第三中学高一期中)已知sinθ−cosθ=15(1)求sinθcosθ的值;(2)当0<θ<π时,求tanθ的值.【答案】(1) sinαcosα=1225 (2) tanθ=43【解析】(1)(sin θ−cos θ)2=1−2sin θcos θ =(15)2=125⇒sin αcos α=1225.(2)∵0<θ<π且sin αcos α>0,∴0<θ<π2.由{sinθ−cosθ=15sinθcosθ=1225 ⇒{sinθ=45cosθ=35 得tanθ=sin θcos θ=43.。
数学课程三角函数公式练习题及答案
数学课程三角函数公式练习题及答案在学习数学的过程中,三角函数是一个非常重要的概念。
它们是研究三角形及各种周期现象的数学工具。
熟练掌握三角函数公式可以帮助我们解决很多实际问题。
本文将为大家提供一些三角函数公式的练习题及答案,以帮助大家巩固对这一知识点的掌握。
练习题一:正弦函数的基本关系式1. 已知角A的正弦值sin(A)=0.6,求角A的度数。
2. 已知角B的度数为45°,求sin(B)的值。
3. 已知角C的正弦值为√3/2,求角C的度数。
答案一:1. 根据正弦函数的定义,sin(A)=对边/斜边,可得对边=0.6×斜边。
由此可知,三角形中的角A的度数为arcsin(0.6)。
2. 对于一个45°的角度,根据特殊角的性质得知,sin(B)=cos(B)=1/√2。
3. 根据正弦函数的定义,sin(C)=√3/2,可得角C的度数为arcsin(√3/2)。
练习题二:余弦函数的基本关系式1. 已知角D的余弦值cos(D)=0.8,求角D的度数。
2. 已知角E的度数为60°,求cos(E)的值。
3. 已知角F的余弦值为1/2,求角F的度数。
答案二:1. 根据余弦函数的定义,cos(D)=邻边/斜边,可得邻边=0.8×斜边。
由此可知,三角形中的角D的度数为arccos(0.8)。
2. 对于一个60°的角度,根据特殊角的性质得知,cos(E)=1/2。
3. 根据余弦函数的定义,cos(F)=1/2,可得角F的度数为arccos(1/2)。
练习题三:正切函数的基本关系式1. 已知角G的正切值tan(G)=1.5,求角G的度数。
2. 已知角H的度数为30°,求tan(H)的值。
3. 已知角I的正切值为√3,求角I的度数。
答案三:1. 根据正切函数的定义,tan(G)=对边/邻边,可得对边=1.5×邻边。
由此可知,三角形中的角G的度数为arctan(1.5)。
三角函数的概念及习题
三角函数的概念及习题角的概念的推广(基础班)知识点:1 正角:按逆时针方向旋转形成的角叫做正角,负角:按顺时针方向旋转的角叫负角象限角:第一象限{a|k·360o<a<a<="" 第二象限{a|+k·360o="">第三象限{a|180o +k·360o <a<="">+k·2π<a<="" p="">例1、下列角中终边与330°相同的角是()A.30° B.-30° C.630° D.-630°例2、-1120°角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限例3、把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是()A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°例4、终边在第二象限的角的集合可以表示为:()A.{α∣90°<α<180°}B.{α∣90°+k·180°<α<180°+k·180°,k∈Z}C.{α∣-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}例5、已知角是第二象限角,求:(1)角是第几象限的角;(2)角终边的位置。
三角函数的概念(原卷版)
5.2.1 三角函数的概念【知识点梳理】 知识点一:三角函数定义设α是一个任意角,它的终边与半径是r 的圆交于点(,)P x y ,则22r x y +,那么: (1)y r 做α的正弦,记做sin α,即sin y r α=; (2) x r 叫做α的余弦,记做cos α,即cos x rα=; (3)y x叫做α的正切,记做tan α,即tan (0)yx x α=≠.知识点诠释:(1)三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离22r x y +,那么22sin x y α=+22cos x y α=+,tan yxα=. (2)三角函数符号是一个整体,离开α的sin 、cos 、tan 等是没有意义的,它们表示的是一个比值,而不是sin 、cos 、tan 与α的积.知识点二:三角函数在各象限的符号 三角函数在各象限的符号:在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦. 知识点诠释:口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正.知识点三:诱导公式一由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一: sin(2)sin k απα+= cos(2)cos k απα+=tan(2)tan k απα+=,其中k Z ∈注意:利用诱导公式一,可以把求任意角的三角函数值,转化为求02π~(或0360︒︒~)范围内角的三角函数值.知识点四、特殊角的三角函数值 0° 30°45°60°90°120°135°150°180°270°6π 4π 3π 2π 23π 34π 56π π32π sin α 0 12 22 3213222 12 0 1-cos α132 2212 012- 22- 32- 1- 0tan α0 331 33-1- 33- 0【题型归纳目录】 题型一:三角函数的定义 题型二:判断三角函数值的符号 题型三:确定角所在象限 题型四:诱导公式(一)的应用 题型五:圆上的动点与旋转点 【典型例题】题型一:三角函数的定义例1.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))设α是第二象限角,(),8P x 为其终边上的一点,且4sin 5α,则x =( ) A .3- B .4-C .6-D .10-例2.(2022·北京市西城外国语学校高三阶段练习)角α的终边上有一点(2,2)P -,则sin α=( ) A .22B .22-C .2D .1例3.(2022·河南·高三阶段练习(文))已知角α的终边经过点()()4,30P m m m -≠,则2sin cos αα+的值为( ) A .35 B .25C .1或25-D .25或25-变式1.(2022·山西大附中高三阶段练习(文))已知角x 的终边上一点的坐标为55sin ,cos 66ππ⎛⎫⎪⎝⎭,则角x 的最小正值为( ) A .56πB .53π C .6π D .3π变式2.(2022·江西·崇仁县第二中学高三阶段练习(文))已知点2π(cos ,1)3P 是角α终边上一点,则cos α=( )A 5B .5C 25D .3变式3.(2022·全国·高三专题练习)已知角α的终边经过点()3,4P -,则sin cos 11tan ααα--+的值为( )A .65-B .1C .2D .3变式4.(2022·全国·高三专题练习)已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12B .1C .2D .52变式5.(2022·全国·高一课时练习)已知顶点在原点,始边与x 轴非负半轴重合的角α的终边上有一点()3,P m ,且()2sin 0m α=≠,求m 的值,并求cos α与tan α的值.变式6.(2022·全国·高一课时练习)已知角α的终边在函数()102y x x =->的图像上,求sin α,cos α的值.【方法技巧与总结】利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:方法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.方法二:在α的终边上任选一点(,)P x y ,P 到原点的距离为r (0r >).则sin y rα=,cos xr α=.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. (3)若终边在直线上时,因为角的终边是射线,应分两种情况处理. 题型二:判断三角函数值的符号例4.(2022·全国·高一课时练习)已知α为第二象限角,则( ) A .sin 0α< B .tan 0α> C .cos 0α< D .sin cos 0αα>例5.(2022·湖北·高一阶段练习)下列各式的符号为正的是( ) A .cos3 B .5ππsin cos 36⎛⎫- ⎪⎝⎭C .sin2cos2-D .7πtan8例6.(2022·甘肃·静宁县第一中学高一阶段练习(文))sin 4tan7⋅的值( ) A .大于0 B .小于0 C .等于0 D .不大于0变式7.(2022·江西省万载中学高一期中)设02πα≤<,如果sin 0α<且cos20α<,则α的取值范围是( ) A .π<α<3π2B .3π2<α<2π C .π4<α<34π D .5π4<α<7π4【方法技巧与总结】三角函数值在各象限内的符号也可以用下面的口诀记忆:“一全正二正弦,三正切四余弦”,意为:第一象限各个三角函数均为正;第二象限只有正弦为正,其余两个为负;第三象限正切为正,其余两个为负;第四象限余弦为正,其余两个为负.题型三:确定角所在象限例7.(2022·全国·高一课时练习)点()cos2018,sin 2018P ︒︒所在的象限是( ) A .一B .二C .三D .四例8.(2022·福建·莆田二中高三阶段练习)设α角属于第二象限,且cos cos22αα=-,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限例9.(2022·陕西汉中·高一期中)若cos tan 0αα<,且sin cos 0αα<,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角变式8.(2022·全国·高三专题练习)若sin 0θ<且tan 0θ<,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限变式9.(2022·江苏·无锡市教育科学研究院高一期末)已知角α的顶点为坐标原点,始边为x 轴的非负半轴,若点(sin ,tan )P αα在第四象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限变式10.(2022·辽宁·高一期末)坐标平面内点P 的坐标为()sin5,cos5,则点P 位于第( )象限. A .一 B .二 C .三 D .四【方法技巧与总结】 确定角所在象限的步骤(1)判断该角的某些三角函数值的符号;(2)根据角的 三角函数值的符号,确定角所在象限. 题型四:诱导公式(一)的应用例10.(2022·天津市红桥区教师发展中心高一期末)17sin 4π=____________.例11.(2022·广西·桂林十八中高一开学考试)13sin 3π=_________.例12.(2022·湖南·高一课时练习) 17tan()3π-=______.变式11.(2022·云南民族大学附属中学模拟预测(理))()cos 300-︒=______.变式12.(2022·湖南·()3tan330sin 60︒+︒+-︒.【方法技巧与总结】利用诱导公式一化简或求值的步骤(1)将已知角化为·360k α︒+(k 为整数,0360α︒≤<︒)或2k πβ+(k 为整数,02βπ≤<)的形式.(2)将原三角函数值化为角α的同名三角函数值.(3)借助特殊角的三角函数值或任意角的三角函数的定义达到化简求值的目的. 题型五:圆上的动点与旋转点例13.(2022·湖南益阳·高一期末)在直角坐标系xOy 中,一个质点在半径为2的圆O 上,以圆O 与x 正半轴的交点0P 为起点,沿逆时针方向匀速运动到P 点,每5s 转一圈,则2s 后0P P 的长为( ) A .42sin 5πB .42cos 5πC .24sin 5π D .24cos5π例14.(2022·全国·高一专题练习)点P 从()1,0出发,沿单位圆按逆时针方向运动263π弧长到达Q 点,则Q 的坐标为( ) A .13,22B .312⎛⎫- ⎪ ⎪⎝⎭C .13,2⎛- ⎝⎭D .321⎛⎫ ⎪ ⎪⎝⎭例15.(2022·江西师大附中高一期末)在平面直角坐标系xOy 中,若点P 从()2,0出发,沿圆心在原点,半径为2的圆按逆时针方向运动43π弧长到达点Q ,则点Q 的坐标是( ) A .(3- B .(1,3--C .(3D .(1,3-变式13.(2022·江西·模拟预测(文))已知单位圆上第一象限一点P 沿圆周逆时针旋转3π到点Q ,若点Q 的横坐标为12-,则点P 的横坐标为( )A.13B.12C2D3变式14.(2022·全国·高三专题练习)如图所示,滚珠P,Q同时从点(2,0)A出发沿圆形轨道匀速运动,滚珠P按逆时针方向每秒钟转π3弧度,滚珠Q按顺时针方向每秒钟转6π弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.(1)求滚珠P,Q第一次相遇时所用的时间及相遇点的坐标;(2)求从出发到第二次相遇滚珠P,Q各自滚动的路程.【方法技巧与总结】利用三角函数的定义求解【同步练习】一、单选题1.(2022·全国·高三专题练习)已知角α的终边与单位圆交于点132P⎛-⎝⎭,则sinα的值为()A.3B.12-C3D.122.(2022·江西赣州·高一期末)在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正n边形等分成n个等腰三角形(如图所示),当n越大,等腰三角形的面积之和越近似等于圆的面积.运用割圆术的思想,可得到sin9︒的近似值为(π取近似值3.14)()A .0.039B .0.157C .0.314D .0.0793.(2022·四川省平昌中学高一阶段练习)如图,角α的终边与单位圆O 的交点34(,)55A -,则4cos 2sin 5cos 3sin αααα-=+( )A .203B .23C .45D .203-4.(2022·全国·高三专题练习)已知角α的终边与单位圆交于点1,3P m ⎛⎫- ⎪⎝⎭,则sin α=( )A .223B .13C .22D .13±5.(2022·江西上饶·高一阶段练习)赵爽是我国古代数学家、天文学家,约公元222年,赵爽在注解《周髀算经》一书时介绍了“勾股圆方图”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的大正方形.如图所示的是一张弦图,已知大正方形的面积为100,小正方形的面积为20,若直角三角形较小的锐角为α,则sin αcos α的值为( )A .15B .25C 5D 256.(2022·北京市第五中学高一期末)在直角坐标系xOy 中,已知43sin ,cos 55αα=-=,那么角α的终边与单位圆O 坐标为( ) A .34,55⎛⎫- ⎪⎝⎭B .43,55⎛⎫- ⎪⎝⎭C .34,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭7.(2022·江西·景德镇一中高一期中)已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角8.(2022·四川省内江市第六中学高一阶段练习(理))在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P 与原点O 之间距离为r ,比值rx叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值xy叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=-;乙:5csc 3β=;丙:3tan 4β=-;丁:4cot 3β=.如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙C .丙D .丁二、多选题9.(2022·江苏·南京市第一中学高一阶段练习)已知α是第一象限角,则下列结论中正确的是( ) A .sin20α>B .cos20α>C .cos02α> D .tan02α>10.(2022·全国·高一单元测试)下列结论正确的是( ) A .76π-是第三象限角 B .若圆心角为3π的扇形的弧长为π,则该扇形的面积为32πC .若角α的终边上有一点()3,4P -,则3cos 5α=-D .若角α为锐角,则角2α为钝角11.(2022·辽宁朝阳·高一阶段练习)已知角θ的终边经过点(2,3)--,且θ与α的终边关于x 轴对称,则( ) A .21sin 7θ=-B .α为钝角C .27cos α= D .点(tan θ,tan α)在第四象限12.(2022·全国·高一)以原点为圆心的单位圆上一点P 从()1,0出发,沿逆时针方向运动133π弧长到达点Q ,则点Q 的坐标不可能的是( )A .312⎛⎫- ⎪ ⎪⎝⎭B .312⎫⎪⎪⎝⎭C .132⎛ ⎝⎭D .13,2⎛ ⎝⎭三、填空题13.(2022·上海理工大学附属中学高一期中)角α的终边上有一点()()3,40P a a a ->,则sin α的值为______;14.(2022·全国·高一课时练习)已知角α的终边在射线3(0)y x x =≥上,则角α的正弦值为______,余弦值为______.15.(2022·全国·高一课时练习)已知角α的终边上有一点()3,P m -,且2sin 4α=,则m 的值为______.16.(2022·全国·高一课时练习)若角θ是第四象限角,则sin cos tan sin cos tan y θθθθθθ=++=______. 17.(2022·江苏盐城·高一期末)已知角α为第一象限角,其终边上一点(),P x y 满足()()222ln 2ln x y x y -=+,则2cos α-sin α=________.四、解答题18.(2022·江苏·高一专题练习)已知角α的终边经过点()()4,30P a a a -≠,求2sin cos αα+的值.19.(2022·江苏·高一专题练习)已知α角的终边经过点()3,P m ,且满足2sin 4m α=. (1)若α为第二象限角,求sin α值; (2)求cos tan αα+的值.20.(2022·全国·高一课时练习)已知11sin sin αα=-,且lg cos α有意义. (1)试判断角α是第几象限角;(2)若角α的终边上有一点3,5M m⎛⎫⎪⎝⎭,且1OM=(O为坐标原点),求实数m的值及sinα的值.21.(2022·全国·高一课前预习)计算下列各式的值:(1)tan405sin450cos750︒-︒+︒;(2)t 15s25ann3i4ππ⎛⎫-⎝+⎪⎭.。
三角函数练习题目初三
三角函数练习题目初三1.已知直角三角形中一条直角边的长度为3cm,另一条直角边的长度为4cm。
求其两条直角边上的正弦、余弦和正切值。
解析:已知直角边 a = 3cm、直角边 b = 4cm。
根据三角函数的定义可知:正弦(sin) = 直角边a / 斜边c余弦(cos) = 直角边b / 斜边c正切(tan) = 直角边a / 直角边b其中,斜边c可以通过勾股定理求得:斜边c = √(a² + b²) = √(3² + 4²) = √(9 + 16) = √25 = 5代入计算得:正弦(sin) = 3 / 5 = 0.6余弦(cos) = 4 / 5 = 0.8正切(tan) = 3 / 4 = 0.75所以,该直角三角形的正弦值为0.6,余弦值为0.8,正切值为0.75。
2.已知角度θ的正弦值为0.5,求角度θ的余弦值和正切值。
解析:已知正弦(sin) = 0.5,要求余弦(cos)和正切(tan)。
根据正弦函数的定义可得:正弦(sin) = 直角边a / 斜边c已知正弦(sin) = 0.5,令直角边a = 0.5,斜边c = 1。
根据勾股定理可得:直角边b = √(c² - a²) = √(1² - 0.5²) = √(1 - 0.25) = √0.75 ≈ 0.866所以,余弦(cos) = 直角边b / 斜边c = 0.866 / 1 = 0.866正切(tan) = 直角边a / 直角边b = 0.5 / 0.866 ≈ 0.577所以,角度θ的余弦值为0.866,正切值为0.577。
3.已知角度α的正切值为2,求角度α的正弦值和余弦值。
解析:已知正切(tan) = 2,要求正弦(sin)和余弦(cos)。
根据正切函数的定义可得:正切(tan) = 直角边a / 直角边b已知正切(tan) = 2,令直角边a = 2,直角边b = 1。
三角函数基础练习题
三角函数基础练习题三角函数的概念三角函数是数学中的一种函数,用来描述三角形中各边和角之间的关系。
在三角函数中,最基本的三个函数是正弦函数、余弦函数和正切函数。
设角α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y),P与原点的距离为r=√(x^2+y^2)>0,则sinα=y/r,cosα=x/r,tanα=y/x。
在各象限中,三角函数的符号不同。
在第一象限中,正弦和余割是正的,余弦和正割是正的,正切和余切是正的。
在第二象限中,正弦和余割是正的,余弦和正割是负的,正切和余切是负的。
在第三象限中,正弦和余割是负的,余弦和正割是负的,正切和余切是正的。
在第四象限中,正弦和余割是负的,余弦和正割是正的,正切和余切是负的。
重要结论:1.当0<x<π/2时,XXX<x<tanx。
2.若ocosx,若π/2<x<π,则sinx<cosx。
3.同角三角函数的基本关系式:sin^2α+cos^2α=1,sinα/cosα=tanα,tanα/cotα=1.4.诱导公式:把±α的三角函数化为α的三角函数,概括为“奇变偶不变,符号看象限”。
课前预:1.将18°、-120°、735°、22°30'、57°18'、-1200°24'转换为弧度制。
2.将7π/5、5π/2、3π/10、5、1.4转换为度数制。
3.特殊角的度数与弧度数对应表。
终边落在坐标轴上的角的集合是{2kπ|k∈Z}。
已知半径为1的扇形面积为kπ,则扇形的中心角为2k。
弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长为4.弓形的弦长为2cm,则弓形的面积为2sin(1/3)cm^2.8、在半径为2的圆中,60度的圆周角所对的弧长是多少?11、弧度制下,度的弧度数为多少?14、下列各角中,终边在第四象限的是哪一个?17、若sinθ=−1/2,tanθ>0,则cosθ等于多少?22、已知扇形的周长为10cm,圆心角为3rad,则该扇形的面积为多少?23、如果α与120°角终边相同,α是第几象限角?24、已知α的终边经过点(3a−9,a+2),且sinα>0,cosα≤0,则a的取值范围是什么?25、sin(−π/6)的值等于多少?26、下列角中终边与330°相同的角是哪一个?函数y=|sinx|+|cosx|+|tanx|的值域是什么?1.删除第一段,因为没有明确的内容和题目。
三角函数关系练习题计算与证明
三角函数关系练习题计算与证明三角函数是数学中的重要概念,它们在几何学、物理学和工程学等领域中都有广泛的应用。
本文将通过一些实例来练习三角函数的相关计算和证明。
一、例题一:计算题1. 计算 $\sin(\frac{\pi}{3})$解析:根据三角函数的定义,$\sin(\frac{\pi}{3}) =\frac{\sqrt{3}}{2}$2. 计算 $\cos(\frac{\pi}{6})$解析:根据三角函数的定义,$\cos(\frac{\pi}{6}) =\frac{\sqrt{3}}{2}$3. 计算 $\tan(\frac{\pi}{4})$解析:根据三角函数的定义,$\tan(\frac{\pi}{4}) = 1$二、例题二:证明题证明:$\sin^2(x) + \cos^2(x) = 1$证明:根据三角函数的定义,$\sin(x) = \frac{y}{r}$,$\cos(x) =\frac{x}{r}$,其中$r$为半径,$x$和$y$分别为直角三角形中的邻边和对边。
将$\sin(x)$和$\cos(x)$代入上述等式,得到:$\sin^2(x) + \cos^2(x) = (\frac{y}{r})^2 + (\frac{x}{r})^2$根据直角三角形中勾股定理可得,$x^2 + y^2 = r^2$,将其代入上述等式,得到:$\sin^2(x) + \cos^2(x) = \frac{y^2}{r^2} + \frac{x^2}{r^2} = \frac{x^2 + y^2}{r^2} = \frac{r^2}{r^2} = 1$所以,$\sin^2(x) + \cos^2(x) = 1$成立。
三、例题三:求解三角方程解方程 $\sin(x) = \frac{\sqrt{2}}{2}$解析:根据三角函数的定义,可以得出 $\sin(x) =\frac{\sqrt{2}}{2}$ 的解为 $x = \frac{\pi}{4} + 2k\pi$ 和 $x =\frac{3\pi}{4} + 2k\pi$,其中 $k$ 是任意整数。
三角函数练习题100题(Word版,含解析)
三角函数习题100题练兵(1-20题为三角函数的基本概念及基本公式,包括同角三角函数关系,诱导公式等,21-40题三角函数的图象与性质,41-55题为三角恒等变形,56-70为三角函数基本关系及角度制与弧度制等,包括象限角弧长与扇形面积公式等,71-90题为三角函数的综合应用,91-100为高考真题。
其中1-55为选择题,56-70为填空题,71-100为解答题。
)1.函数且的图象恒过点,且点在角的终边上,则A. B. C. D.【解答】解:函数且的图象恒过定点,角的终边经过点,,,.故选B2.已知角的终边上有一点,则A. B. C. D.【解答】解:角的终边上有一点,,则.故选C.3.若,且,则角的终边位于A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:,则角的终边位于一二象限,由,角的终边位于二四象限,角的终边位于第二象限.故选择.4.已知是第二象限角,为其终边上一点且,则的值A. B. C. D.【解答】解:是第二象限角,为其终边上一点且,,解得,,.故选A.5.已知角的终边过点,且,则的值为A. B. C. D.【解答】解:由题意,角的终边过点,可得,,,所以,解得,故选A.6.若点在角的终边上,则A. B. C. D.【解析】解:点在角的终边上,,则,,.故选B.7.在平面直角坐标系中,,点位于第一象限,且与轴的正半轴的夹角为,则向量的坐标是A. B. C. D.【解答】解:设,则,,故故选C.8.的大小关系为A. B. C. D.【解答】解:,,,,.故选C.9.已知角的终边上有一点,则的值为A. B. C. D.【解答】解:根据三角函数的定义可知,根据诱导公式和同角三角函数关系式可知,故选A.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角的终边过点,,且,则A. B. C. D.【解答】解:因为角的终边过点,所以是第一象限角,所以,,因为,,所以为第一象限角,,所以,所以,故选:.11.若角的终边经过点,则A. B. C. D.【解答】解:由题意,,,因为的正负不确定,则正负不确定.故选C.12.下列结论中错误的是A.B.若是第二象限角,则为第一象限或第三象限角C.若角的终边过点,则D.若扇形的周长为,半径为,则其圆心角的大小为弧度【解答】解:.,故A正确;B.因为为第二象限角,,所以,当为偶数时,为第一象限的角,当为奇数时,为第三象限角,故B正确;C.当时,,此时,故C错误;D.若扇形的周长为,半径为,则弧长为,其圆心角的大小为弧度,故正确.故选C.13.我国古代数学家赵爽利用弦图巧妙地证明了勾股定理,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形如图如果内部小正方形的内切圆面积为,外部大正方形的外接圆半径为,直角三角形中较大的锐角为,那么A. B. C. D.【解答】解:因为内部小正方形的内切圆面积为,所以内部小正方形的内切圆的半径为,所以内部小正方形的边长为,外部大正方形的外接圆半径为,所以大正方形的边长为,设大直角三角形中长直角边为,斜边为,则,则,所以,所以大直角三角形中短直角边为,所以,,则.故选D.14.己知是第四象限角,化简为A. B. C. D.【解答】解:是第四象限角,故,又,,则.故选B.15.函数的最小正周期为A. B. C. D.【解答】解:,所以的最小正周期.故选C.16.函数的值域是A. B. C. D.【解答】解:,令,,则,,由二次函数的性质可得函数在上单调递减,在上单调递增,当时取的最小值,其最小值为,当时取得最大值,其最大值为.故函数的值域为.故选B.17.已知,,且,,则A. B. C. D.【解答】解:由题可知,,,所以,所以,又,所以,所以,当时,.因为,所以,不符合题意,当时,同理可得,故选:.18.已知,则的值为A. B. C. D.【解答】解:因为,所以,所以,所以,所以.故选A.19.在中,角、、的对边分别是、、,若,则的最小值为A. B. C. D.【解答】解:,由正弦定理化简得:,整理得:,,;则.当且仅当时等号成立,可得的最小值为.故选:.20.若的内角满足,则的值为.A. B. C. D.【解答】解:因为为的内角,且,所以为锐角,所以.所以,所以,即.所以.故选A.21.已知函数给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上的所有点向左平移个单位长度,可得到函数的图象.其中所有正确结论的序号是A.①B.①③C.②③D.①②③【解答】解:因为,①由周期公式可得,的最小正周期,故①正确;②,不是的最大值,故②错误;③根据函数图象的平移法则可得,函数的图象上的所有点向左平移个单位长度,可得到函数的图象,故③正确.故选:.22.将函数的图象先向右平移个单位长度,再将该图象上各点的横坐标缩短到原来的一半纵坐标不变,然后将所得图象上各点的纵坐标伸长到原来的倍横坐标不变,得函数的图象,则解析式是A. B.C. D.【解答】解:由题意函数的图象上各点向右平移个单位长度,得到新函数解析式为,再把所得函数的图象上各点横坐标缩短为原来的一半,得到新函数解析式为,再把所得函数的图象上各点纵坐标伸长为原来的倍,得到新函数解析式为.故选A.23.如图函数的图象与轴交于点,在轴右侧距轴最近的最高点,则不等式的解集是A.,B.,C.,D.,【解答】解:由在轴右边到轴最近的最高点坐标为,可得.再根据的图象与轴交于点,可得,结合,.由五点法作图可得,求得,不等式,即,,,求得,,故选:.24.函数的图像的一条对称轴是A. B. C. D.【解答】解:令,解得,函数图象的对称轴方程为,时,得为函数图象的一条对称轴.故选C25.已知函数,若相邻两个极值点的距离为,且当时,取得最小值,将的图象向左平移个单位,得到一个偶函数图象,则满足题意的的最小正值为A. B. C. D.【解答】解:函数,所以,,相邻两个极值点的横坐标之差为,所以,所以,又,所以,当时,取得最小值,所以,,而,所以,所以,将的图象向左平移个单位得为偶函数,所以,,即.所以的最小正值为.故选A.26.函数的定义域为A. B.C. D.【解答】解:根据对数的真数大于零,得,可知:当时,,故函数的定义域为.故选A.27.设函数若是偶函数,则A. B. C. D.【解答】解:,因为为偶函数,所以当时,则,,所以,,又,所以.故选B.28.函数的部分图像如图所示,则A. B. C. D.【解答】解:由题意,因为,所以,,由时,可得,所以,结合选项可得函数解析式为.故选A.29.已知函数,给出下列命题:①,都有成立;②存在常数恒有成立;③的最大值为;④在上是增函数.以上命题中正确的为A.①②③④B.②③C.①②③D.①②④【解答】解:对于①,,,①正确;对于②,,由,即存在常数恒有成立,②正确;对于③,,令,,则设,,令,得,可知函数在上单调递减,在上单调递增,在上单调递减,且,,则的最大值为,③错误;对于④,当时,,所以在上为增函数,④正确.综上知,正确的命题序号是①②④.故选:.30.已知,,直线和是函数图象的两条相邻的对称轴,则A. B. C. D.【解答】解:由题意得最小正周期,,即,直线是图象的对称轴,,又,,故选A.31.已知函数向左平移半个周期得的图象,若在上的值域为,则的取值范围是A. B. C. D.【解答】解:函数向左平移半个周期得的图象,由,可得,由于在上的值域为,即函数的最小值为,最大值为,则,得.综上,的取值范围是.故选D.32.若,则实数的取值范围是A. B. C. D.解:,,,.,,.33.如图,过点的直线与函数的图象交于,两点,则等于A. B. C. D.【解答】解:过点的直线与函数的图象交于,两点,根据三角函数的对称性得出;,,,,.是的中点,,.故选B.34.已知函数,若函数恰有个零点,,,,且,为实数,则的取值范围为A. B. C. D.解:画出函数的图象,如图:结合图象可知要使函数有个零点,则,因为,所以,所以,因为,所以,且,可设,其中,所以,所以,所以的取值范围是.故选A.35.函数的部分图象如图所示,现将此图象向左平移个单位长度得到函数的图象,则函数的解析式为A. B. C. D.【解答】解:根据函数的部分图象,则:,,所以:,解得:,当时,,即:解得:,,因为,当时,,故:,现将函数图象上的所有点向左平移个单位长度得到:函数的图象.故选C.36.已知曲线:,:,则下面结论正确的是A.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【解答】解:把上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数图象,再把得到的曲线向左平移个单位长度,得到函数的图象,即曲线,故选D.37.设,则函数的取值范围是A. B. C. D.【解答】解:,因为,所以,所以故选A.38.人的心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为标准值设某人的血压满足函数式,其中为血压单位:,为时间单位:,则下列说法正确的是A.收缩压和舒张压均高于相应的标准值B.收缩压和舒张压均低于相应的标准值C.收缩压高于标准值、舒张压低于标准值D.收缩压低于标准值、舒张压高于标准值【解答】解:某人的血压满足函数式,其中为血压单位:,为时间单位:则此人收缩压;舒张压,所以此人的收缩压高于标准值、舒张压低于标准值.故选C.39.设函数,下述四个结论:①的图象的一条对称轴方程为;②是奇函数;③将的图象向左平移个单位长度可得到函数的图象;④在区间上单调递增.其中所有正确结论的编号是A.①②B.②③C.①③D.②③④【解答】解:由题意.对①,的对称轴为,即,故是的对称轴故①正确;对②,,故为偶函数,故②错误;对③,将的图象向左平移个单位长度得到故③正确;对④,当时,,因为是的减区间,故④错误.综上可得①③正确.故选C.40.如图,某港口一天时到时的水深变化曲线近似满足函数,据此可知,这段时间水深单位:的最大值为A. B. C. D.【解答】解:由图象知.因为,所以,解得,所以这段时间水深的最大值是.故选C.41.若,且,则等于A. B. C. D.【解答】解:,,则,又,,则.故选:.42.若,则A. B. C. D.【解答】解:,且,,,两边同时平方得,解得或舍去,,故选B.43.,,则的值为.A. B. C. D.【解答】解:,,,,.故选:.44.若,均为锐角,,,则A. B. C.或 D.【解答】解:为锐角,,,且,,且,,,.45.在中,已知,那么的内角,之间的关系是A. B. C. D.关系不确定【解答】解:由正弦定理,即,所以,即,所以,则,所以.故选B.46.设,,则A. B. C. D.【解答】解:根据二倍角公式可得,解得,由,可得,所以,故选A.47.设,,且,则下列结论中正确的是A. B. C. D.【解答】解:,因为,所以.故选A.48.已知是锐角,若,则A. B. C. D.【解答】解:已知是锐角,,若,,则.故选A.49.化简的值等于A. B. C. D.【解答】解:,,.故选A.50.已知,,则的值为A. B. C. D.【解答】解:,,由得..故选B.51.已知函数,若函数在上单调递减,则实数的取值范围是A. B. C. D.【解答】解:函数,由函数在上单调递减,且,得解得,又,,实数的取值范围是.故选A.52.函数的最大值为A. B. C. D.【解答】解:函数,其中,函数的最大值为,故选C.53.计算:等于A. B. C. D.【解答】解:,,.故选A.54.在中,角,,的对边分别为,,,已知,,则的值为A. B. C. D.【解答】解:,,即,即,,由正弦定理可得,又,所以由余弦定理可得,故选D.55.函数取最大值时,A. B. C. D.【解答】解:,其中由确定.由与得.若,则,,,此时.所以,最大值时,,,.故选.56.已知点在第一象限,且在区间内,那么的取值范围是___________.【解答】解:由题意可知,,,借助于三角函数线可得角的取值范围为.故答案为.57.已知角的终边经过点,则实数的值是【解答】解:设,由于正切函数周期为,则,又终边经过点,所以,解得,故答案为.58.在平面直角坐标系中,角的顶点是,始边是轴的非负半轴,,若点是角终边上的一点,则的值是____.【解答】解:因为点是角终边上的一点,所以,由,,则在第一象限,又,所以.故答案为.59.已知,,则____________.【解答】解:,,,,.故答案为.60.已知角的终边与单位圆交于点,则的值为__________.【解答】解:由题意可得,则.故答案为.61.若扇形的圆心角为,半径为,则扇形的面积为__________.【解答】解:因为,所以扇形面积公式.故答案为.62.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.【解答】解:由于,若,,则.63.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,为圆孔及轮廓圆弧所在圆的圆心,是圆弧与直线的切点,是圆弧与直线的切点,四边形为矩形,,垂足为,,到直线和的距离均为,圆孔半径为,则图中阴影部分的面积为___________.【解答】解:设上面的大圆弧的半径为,连接,过作交于,交于,交于,过作于,记扇形的面积为,由题中的长度关系易知,同理,又,可得为等腰直角三角形,可得,,,,,解得,,故答案为.64.已知相互啮合的两个齿轮,大轮有齿,小轮有齿.当小轮转动两周时,大轮转动的角度为______________写正数值:如果小轮的转速为转分,大轮的半径为,则大轮周上一点每秒转过的弧长为______________.【解答】解:因为大轮有齿,小轮有齿,当小轮转动两周时,大轮转动的角为,如果小轮的转速为转分,则每秒的转速为转秒,由于大轮的半径为,那么大轮周上一点每转过的弧长是.故答案为.65.终边在直线上的所有角的集合是____________.【解答】解:由终边相同的角的定义,终边落在射线的角的集合为,终边落在射线的角的集合为:,终边落在直线的角的集合为:.故答案为.66.已知直四棱柱的棱长均为,以为球心,为半径的球面与侧面的交线长为________.【解答】解:如图:取的中点为,的中点为,的中点为,因为,直四棱柱的棱长均为,所以为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为.67.用弧度制表示终边落在如图所示阴影部分内的角的集合是_________________________.【解答】解:由题意,得与终边相同的角可表示为,与终边相同的角可表示为,故角的集合是,故答案为.68.给出下列命题:第二象限角大于第一象限角三角形的内角是第一象限角或第二象限角不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关若,则与的终边相同若,则是第二或第三象限的角.其中正确的命题是填序号【解答】解:①是第二象限角,是第一象限角,但,①错误;②三角形内角有的直角,但它不是象限角,不属于任何象限,②错误;③角的度量是角所在扇形中它所对的弧长与相应半径的比值,与扇形半径无关,③正确④与的正弦值相等,但它们终边关于轴对称,④错误;⑤余弦值小于零,的终边在第二或第三象限或非正半轴上,⑤错误.故答案为③69.已知扇形的圆心角为,周长为,则扇形的面积为______ .解:设扇形的半径为,圆心角为,弧长,此扇形的周长为,,解得:,则扇形的面积为.故答案为.70.地球的北纬线中国段被誉为中国最美风景走廊,东起舟山东经,西至普兰东经,“英雄城市”武汉东经也在其中,假设地球是一个半径为的标准球体,某旅行者从武汉出发,以离普兰不远的冷布岗日峰东经为目的地,沿纬度线前行,则该行程的路程为__________用含的代数式表示【解答】解:地球半径为,所以北纬的纬度圈半径为,因为武汉和冷布岗日峰的经度分别为东经和东经,相差,即,所以两地在北纬的纬线长是.故答案为.71.如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.求的值;若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.【参考答案】解:因为锐角的终边与单位圆交于点,且点的纵坐标是,所以由任意角的三角函数的定义可知.从而.,.因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而.于是.因为为锐角,为钝角,所以,从而.72.如图,有一块扇形草地,已知半径为,,现要在其中圈出一块矩形场地作为儿童乐园使用,其中点、在弧上,且线段平行于线段若点为弧的一个三等分点,求矩形的面积;当在何处时,矩形的面积最大?最大值为多少?【参考答案】解:如图,作于点,交线段于点,连接、,,,,,,设,则,,,,,,即时,,此时在弧的四等分点处.73.如图,圆的半径为,,为圆上的两个定点,且,为优弧的中点,设,在右侧为优弧不含端点上的两个不同的动点,且,记,四边形的面积为.求关于的函数关系;求的最大值及此时的大小.解:如下图所示:圆的半径为,,为圆上的两个定点,且,,到的距离,若,则,到的距离,故令则,,的图象是开口朝上,且以直线为对称的抛物线,故当,即时,取最大值.74.如图,在中,,,为,,所对的边,于,且.求证:;若,求的值.【参考答案】证明:,,,,,在直角三角形中,,在直角三角形中,,则,即,,,由此即得证.解:,,,则,由知,,故的值为.75.已知角的终边经过点.求的值;求的值.【参考答案】解:Ⅰ因为角终边经过点,设,,则,所以,,..Ⅱ.76.已知向量,.当时,求的值;若,且,求的值.【参考答案】解:首先,.当时,.由知,.因为,得,所以.所以.77.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于、两点,已知、的横坐标分别为求的值;求的值.【参考答案】解:由已知得,,,因为为锐角,故,从而,同理可得,因此,,所以,,又,,,得.78.已知化简若是第二象限角,且,求的值.【参考答案】解:.是第二象限角,且,,是第二象限角,.79.如图,某市拟在长为的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定.求,的值和,两点间的距离;应如何设计,才能使折线段最长?【参考答案】解:因为图象的最高点为,所以,由图象知的最小正周期,又,所以,所以,所以,,故,两点间的距离为,综上,的值为,的值为,,两点间的距离为;在中,设,因为,故,由正弦定理得,所以,.设折线段的长度为,则,所以的最大值是,此时的值为.故当时,折线段最长.80.已知函数.Ⅰ求的最小正周期;Ⅱ求在区间上的最大值和最小值.【参考答案】解:Ⅰ,所以的最小正周期为.Ⅱ因为,所以.于是,当,即时,取得最大值;当,即时,取得最小值.81.已知函数求函数的最小正周期;若函数对任意,有,求函数在上的值域.【参考答案】解:,的最小正周期;函数对任意,有,,当时,则,则,即,解得.综上所述,函数在上的值域为:.82.已知向量,.当时,求的值;设函数,且,求的最大值以及对应的的值.【参考答案】解:因为,所以,因为否则与矛盾,所以,所以;,因为,所以,所以当,即时,函数的最大值为.83.已知函数.求的值;从①;②这两个条件中任选一个,作为题目的已知条件,求函数在上的最小值,并直接写出函数的一个周期.【参考答案】解:Ⅰ由函数,则;Ⅱ选择条件①,则的一个周期为;由;,因为,所以;所以,所以;当,即时,在取得最小值为.选择条件②,则的一个周期为;由;因为,所以;所以当,即时,在取得最小值为.,,84.已知函数.求函数的最小正周期和单调递增区间;若存在满足,求实数的取值范围.【参考答案】解:,函数的最小正周期.由,得,的单调递增区间为.当时,可得:,令.所以若存在,满足,则实数的取值范围为.85.已知函数.求函数的单调减区间;将函数的图象向左平移个单位,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,求在上的值域.【参考答案】解:函数,当,解得:,因此,函数的单调减区间为;将函数的图象向左平移个单位,得的图象,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,,,故的值域为.86.函数的部分图象如图所示.求的解析式;设,求函数在上的最大值,并确定此时的值.【参考答案】解:由图知,,则,,,,,,,,的解析式为;由可知:,,,,当即时,.87.已知函数的一系列对应值如下表:根据表格提供的数据求函数的一个解析式.根据的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.【参考答案】解:设的最小正周期为,则,由,得.又由解得令,即,解得,.函数的最小正周期为,且,.令.,,的图像如图.在上有两个不同的解时,,方程在时恰有两个不同的解,则,即实数的取值范围是.88.已知函数的部分图象如图所示.求函数的解析式;求函数在区间上的最大值和最小值.【参考答案】解:由题意可知,,,得,解得.,即,,,所以,故;当时,,得;当时,即有时,函数取得最小值;当时,即有时,函数取得最大值.故,;89.已知函数.求的值;当时,不等式恒成立,求实数的取值范围.【参考答案】解:Ⅰ,.Ⅱ,..由不等式恒成立,得,解得.实数的取值范围为.90.设函数,.已知,函数是偶函数,求的值;求函数的值域.【参考答案】解:由,得,为偶函数,,,或,,,,,函数的值域为:.高考真题91.(2016山东)设.求的单调递增区间;把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,再把得到的图象向左平移个单位,得到函数的图象,求的值.【参考答案】解:由,由,得,所以的单调递增区间是.由知,把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,得到的图象,再把得到的图象向左平移个单位,得到的图象,即.所以.92.(2020安徽)在平面四边形中,,,,.求;若,求.解:,,,.由正弦定理得:,即,,,,.,,,.93.(2105重庆)已知函数求的最小正周期和最大值;讨论在上的单调性.【参考答案】解:.所以的最小正周期,当时,最大值为.当时,有,从而时,即时,单调递增,时,即时,单调递减,综上所述,单调增区间为,单调减区间为94.(2020上海)已知.求的值求的值.【解答】解:原式原式.95.(2017山东)设函数,其中,已知.Ⅰ求;Ⅱ将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.解:Ⅰ函数,又,,,解得,又,Ⅱ由Ⅰ知,,,将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,得到函数的图象;再将得到的图象向左平移个单位,得到的图象,函数当时,,,当时,取得最小值是.96(2019上海)已知等差数列的公差,数列满足,集合.若,求集合;若,求使得集合恰好有两个元素;若集合恰好有三个元素:,是不超过的正整数,求的所有可能的值.【参考答案】解:等差数列的公差,数列满足,集合.当,集合,数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.①当时,,数列为常数列,仅有个元素,显然不符合条件;②当时,,,数列的周期为,中有个元素,显然不符合条件;③当时,,集合,情况满足,符合题意.④当时,,,,,或者,,当时,集合,符合条件.⑤当时,,,,,或者,,因为,取,,集合满足题意.⑥当时,,,所以,,或者,,,取,,,满足题意.⑦当时,,,所以,,或者,,,故取,,,,当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,,,,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,不是整数,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有或者,,或者,此时,均不是整数,不符合题意.综上,,,,.97.(2017全国)已知集合是满足下列性质的函数的全体:存在非零常数,对任意,有成立.函数是否属于集合?说明理由;设函数,且的图象与的图象有公共点,证明:;若函数,求实数的取值范围.【参考答案】解:对于非零常数,,.因为对任意,不能恒成立,所以;因为函数且的图象与函数的图象有公共点,所以方程组:有解,消去得,显然不是方程的解,所以存在非零常数,使.于是对于有故;当时,,显然.当时,因为,所以存在非零常数,对任意,有成立,即.因为,且,所以,,。
sin练习题
一、三角函数基本概念1. 求sin60°的值2. 求cos45°的值3. 求tan30°的值4. 求sin(π/3)的值5. 求cos(π/4)的值6. 求tan(π/6)的值7. 求sin(π/2)的值8. 求cos(π/3)的值9. 求tan(π/4)的值10. 求sin(π)的值二、三角函数性质1. 若sinα = 1/2,求α的值2. 若cosβ = √3/2,求β的值3. 若tanγ = 1,求γ的值4. 若sinα = √2/2,求α的值5. 若cosβ = √3/2,求β的值6. 若tanγ = 1,求γ的值7. 若sinα = √2/2,求α的值8. 若cosβ = √2/2,求β的值9. 若tanγ = √3/3,求γ的值10. 若sinα = √3/2,求α的值三、三角函数的诱导公式2. 求cos(π β)的值3. 求tan(π γ)的值4. 求sin(π + α)的值5. 求cos(π + β)的值6. 求tan(π + γ)的值7. 求sin(2π α)的值8. 求cos(2π β)的值9. 求tan(2π γ)的值10. 求sin(3π α)的值四、三角函数的倍角公式1. 求sin2α的值2. 求cos2β的值3. 求tan2γ的值4. 求sin2(π/4)的值5. 求cos2(π/3)的值6. 求tan2(π/6)的值7. 求sin2(π/2)的值8. 求cos2(π/3)的值9. 求tan2(π/4)的值10. 求sin2(π)的值五、三角函数的半角公式1. 求sin(α/2)的值2. 求cos(β/2)的值4. 求sin(π/4/2)的值5. 求cos(π/3/2)的值6. 求tan(π/6/2)的值7. 求sin(π/2/2)的值8. 求cos(π/3/2)的值9. 求tan(π/4/2)的值10. 求sin(π/2/2)的值六、三角函数的化简1. 化简sin(α + β)2. 化简cos(α β)3. 化简tan(α/β)4. 化简sin(α/2 + β/2)5. 化简cos(α/2 β/2)6. 化简tan(α/2 β/2)7. 化简sin(α + β)/cos(α β)8. 化简cos(α + β)/sin(α β)9. 化简tan(α + β)/tan(α β)10. 化简sin(α/2 + β/2)/cos(α/2 β/2)七、三角函数的图像和性质1. 画出y = sinx的图像2. 画出y = cosx的图像3. 画出y = tanx的图像4. 画出y = sin(2x)的图像5. 画出y = cos(2x)的图像6. 画出y = tan(2x)的图像7. 求y = sinx在x = π/2时的值8. 求y = cosx在x = π时的值9. 求y = tanx在x = π/4时的值10. 求y = sin(π/4)的值八、三角函数的应用1. 若sinθ = 0.8,求θ的值2. 若cosφ = 0.6,求φ的值3. 若tanψ = 0.5,求ψ的值4. 若sinα = 0.4,求α的值5. 若cosβ = 0.7,求β的值6. 若tanγ = 0.3,求γ的值7. 若sinx = 0.9,求x的值8. 若cosy = 0.5,求y的值9. 若tanz = 0.2,求z的值10. 若sinw = 0.6,求w的值九、三角恒等变换1. 将sin(α + β) + cos(α β)化简2. 将cos(α + β) sin(α β)化简3. 将tan(α + β) / tan(α β)化简4. 将sin(α/2 + β/2) / cos(α/2 β/2)化简5. 将sin(α + β) cos(α β)化简6. 将cos(α + β) sin(α β)化简7. 将tan(α + β) tan(α β)化简8. 将sin(α/2 + β/2) cos(α/2 β/2)化简9. 将sin(α + β) / cos(α β) + cos(α + β) / sin(α β)化简10. 将tan(α + β) / tan(α β) + tan(α β) / tan(α + β)化简十、三角方程1. 解方程sinx = 1/22. 解方程cosx = √3/23. 解方程tanx = 14. 解方程sin(2x) = √2/25. 解方程cos(2x) = 1/26. 解方程tan(2x) = 17. 解方程sin(π/4 + x) = √2/28. 解方程cos(π/3 x) = 1/29. 解方程tan(π/6 + x) = 110. 解方程sin(π/2 + x) = 1十一、三角方程(续)1. 解方程sin(3x) = √3/22. 解方程cos(4x) = 1/23. 解方程tan(5x) = 14. 解方程sin(2x + π) = 15. 解方程cos(3x π/2) = 06. 解方程tan(x + π/4) = 17. 解方程sin(2x π) = 08. 解方程cos(3x + π) = 1/29. 解方程tan(5x π/2) = 110. 解方程sin(4x + π/3) = √3/2十二、三角函数的积分1. 计算积分∫sin(x)dx2. 计算积分∫cos(x)dx3. 计算积分∫tan(x)dx4. 计算积分∫sin(2x)dx5. 计算积分∫cos(3x)dx6. 计算积分∫tan(4x)dx7. 计算积分∫sin(x)cos(x)dx8. 计算积分∫cos(x)sin(x)dx9. 计算积分∫tan(x)sec^2(x)dx10. 计算积分∫sec(x)tan(x)dx十三、三角函数的微分1. 计算微分d(sin(x))/dx2. 计算微分d(cos(x))/dx3. 计算微分d(tan(x))/dx4. 计算微分d(sin(2x))/dx5. 计算微分d(cos(3x))/dx6. 计算微分d(tan(4x))/dx7. 计算微分d(sin(x)cos(x))/dx8. 计算微分d(cos(x)sin(x))/dx9. 计算微分d(tan(x)sec^2(x))/dx10. 计算微分d(sec(x)tan(x))/dx十四、三角函数的级数展开1. 将sin(x)展开为泰勒级数的前三项2. 将cos(x)展开为泰勒级数的前三项3. 将tan(x)展开为泰勒级数的前三项4. 将sin(2x)展开为泰勒级数的前三项5. 将cos(3x)展开为泰勒级数的前三项6. 将tan(4x)展开为泰勒级数的前三项7. 将sin(x)cos(x)展开为泰勒级数的前三项8. 将cos(x)sin(x)展开为泰勒级数的前三项9. 将tan(x)sec^2(x)展开为泰勒级数的前三项10. 将sec(x)tan(x)展开为泰勒级数的前三项十五、复合三角函数1. 求解方程sin(2x + π/3) = 02. 求解方程cos(3x π/4) = 13. 求解方程tan(4x + π/6) = 14. 求解方程sin(x + π/2) = √2/25. 求解方程cos(x π/3) = √3/26. 求解方程tan(x + π/4) = 17. 求解方程sin(2x π/6) = 1/28. 求解方程cos(3x + π/2) = 09. 求解方程tan(4x π/3) = √3/310. 求解方程si n(x + π) = 1十六、三角不等式1. 证明sinx + cosx ≤ √22. 证明sinx cosx ≥ √23. 证明tanx + cotx = 14. 证明sinx cosx ≤ 1/25. 证明tanx cotx = 16. 证明sinx sinx + cosx cosx = 17. 证明tanx tanx + 1 = sec^2x8. 证明sinx sinx + tanx tanx = 1/cos^2x9. 证明sinx cosx + cosx sinx = sin(2x)10. 证明tanx sinx + cotx cosx = sinx十七、三角函数的极值1. 求函数f(x) = sinx + cosx在[0, 2π]上的最大值和最小值2. 求函数g(x) = tanx cosx在(π/2, π/2)上的最大值和最小值3. 求函数h(x) = sin(2x) + cos(2x)在[0, π]上的最大值和最小值4. 求函数k(x) = tan(3x) + sin(x)在(π/3, π/3)上的最大值和最小值5. 求函数m(x) = cos(4x) sin(4x)在[0, π/2]上的最大值和最小值6. 求函数n(x) = tan(5x) cos(5x)在(π/5, π/5)上的最大值和最小值7. 求函数p(x) = sin(6x) + cos(6x)在[0, π/3]上的最大值和最小值8. 求函数q(x) = tan(7x) sin(7x)在(π/7, π/7)上的最大值和最小值9. 求函数r(x) = cos(8x) + tan(8x)在[0, π/4]上的最大值和最小值10. 求函数s(x) = sin(9x) cos(9x)在[0, π/9]上的最大值和最小值十八、三角函数的周期性1. 证明sin(x)是周期函数,并求其周期2. 证明cos(x)是周期函数,并求其周期3. 证明tan(x)是周期函数,并求其周期4. 证明sin(2x)是周期函数,并求其周期5. 证明cos(3x)是周期函数,并求其周期6. 证明tan(4x)是周期函数,并求其周期7. 证明sin(5x)是周期函数,并求其周期8. 证明cos(6x)是周期函数,并求其周期9. 证明tan(7x)是周期函数,并求其周期10. 证明sin(8x)是周期函数,并求其周期答案一、三角函数基本概念1. sin60° = √3/22. cos45° = √2/23. tan30° = 1/√34. sin(π/3) = √3/25. cos(π/4) = √2/26. tan(π/6) = 1/√37. sin(π/2) = 18. cos(π/3) = 1/29. tan(π/4) = 110. sin(π) = 0二、三角函数性质1. α = π/62. β = π/63. γ = 3π/44. α = 5π/65. β = 5π/66. γ = 3π/47. α = 5π/68. β = 5π/69. γ = 3π/410. α = 7π/6三、三角函数的诱导公式1. sin(π α) = sinα2. cos(π β) = cosβ3. tan(π γ) = tanγ4. sin(π + α) = sinα5. cos(π + β) = cosβ6. tan(π + γ) = tanγ7. sin(2π α) = sinα8. cos(2π β) = cosβ9. tan(2π γ) = tanγ10. sin(3π α) = sinα四、三角函数的倍角公式1. sin2α = 2sinαcosα2. cos2β = cos^2β sin^2β3. tan2γ = 2tanγ / (1 tan^2γ)4. sin2(π/4) = √2/25. cos2(π/3) = 1/46. tan2(π/6) = 1/37. sin2(π/2) = 18. cos2(π/3) = 1/49. tan2(π/4) = 110. sin2(π) = 0五、三角函数的半角公式1. sin(α/2) = ±√[(1 cosα)/2]2. cos(β/2) = ±√[(1 + cosβ)/2]3. tan(γ/2) = sin(γ/2)/cos(γ/2) = ±√[(1 cosγ)/(1 + cosγ)]4. sin(π/4/2) = √2/45. cos(π/3/2) = √3/46. tan(π/6/2) = 1/√37. sin(π/2/2) = 1/√28. cos(π/3/2) = √3/49. tan(π/4/2) = 1/√310. sin(π/2/2) = 1/√2六、三角函数的化简1. sin(α + β) + cos(α β) = sinαcosβ + cosαsinβ + cosαcosβ + sinαsinβ2. cos(α + β) sin(α β) = cosαcosβ sinαsinβ cosαsinβ + sinαcosβ3. tan(α/β) = sin(α/β)/cos(α/β)4. sin(α/2 + β/2) / cos(α/2 β/2) = (sinα +cosβ)/(cosα sinβ)5. sin(α + β) cos(α β) = (sinαcosβ +cosαsinβ)(cosαcosβ sinαsinβ)6. cos(α + β) sin(α β) = (cosαcosβsinαsinβ)(sinαcosβ + cosαsinβ)7. tan(α + β) / tan(α β) = (sinαcosβ +cosαsinβ)/(sinαcosβ cosαsinβ)8. sin(α + β)/cos(α β) + cos(α + β)/sin(α β) = (sin。
数学试题三角函数的计算题
数学试题三角函数的计算题数学试题:三角函数的计算题三角函数是数学中常见且重要的概念之一,在计算题中经常会涉及到三角函数的计算。
本文将介绍几个常见的三角函数计算题,分别是求角度、求边长和简化表达式。
通过这些例题的讲解,读者将能够更好地理解三角函数的运算规则和应用方法。
1. 求角度例题1:已知sin(x) = 0.5,求角度x的值。
解析:根据sin函数的定义可知,当sin(x) = 0.5时,角度x的取值有两个解,一个是30°,另一个是150°。
因此,角度x的值可以表示为x = 30°或x = 150°。
例题2:已知cos(y) = 0.8,求角度y的值。
解析:同样地,根据cos函数的定义可知,当cos(y) = 0.8时,角度y的取值有两个解,一个是36.87°,另一个是-36.87°。
因此,角度y的值可以表示为y = 36.87°或y = -36.87°。
2. 求边长例题3:已知直角三角形的一个锐角为30°,斜边长为10,求直角边的长度。
解析:根据三角函数sin和cos的定义可知,sin(30°) = 1/2,cos(30°) = √3/2。
设直角边的长度为x,则有以下方程组:x*sin(30°) + x*cos(30°)= 10,x*(1/2) + x*(√3/2) = 10。
整理得√3/2x + 1/2x = 10,即(√3 + 1)/2x = 10。
解得x = 20/(√3 + 1) ≈ 5.86。
因此,直角边的长度约为5.86。
3. 简化表达式例题4:简化表达式sin(x) - cos(x)*tan(x)。
解析:根据三角函数的定义和性质,可以进行以下简化:sin(x) - cos(x)*tan(x) = sin(x) - cos(x)*(sin(x)/cos(x))。
三角函数的概念(基础知识+基本题型)(含解析)
5.2.1 三角函数的概念(基础知识+基本题型)知识点一 任意角的三角函数 1、单位圆的概念在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆叫单位圆. 2、任意角的三角函数的定义如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:y 叫做α的正弦,记作sin α,即sin y α=;②x 叫做α的余弦,记作cos α,即cos x α=; ③y x 叫做α的正切,记作tan α,即()tan 0yx xα=≠. 正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。
拓展:(1)任意角的三角函数的定义一般地,设角α的终边上任意一点的坐标为(,)x y ,它与原点的距离为r =,则sin ,cos ,tan (0)y x yx r r xααα===≠ (2)在任意角的三角函数的定义中,应该明确:α是一个任意角,其范围是使函数有意义的实数集. (3)三角函数值是比值,是一个实数,这个实数的大小和(,)P x y 所在中边上的位置无关,而由角α的终边位置决定.(4)要明确sin α是一个整体,不是sin 与α的乘积,它是“正弦函数”的一个记号,就如()f x 表示自变量为x 的函数一样,离开自变量的“sin α”“cos α”“tan α”等式没有意义的.知识点二 三角函数的定义域和函数值的符号1. 正弦函数、余弦函数、正切函数的定义域如下∶2.在各个象限内的符号,如图所示.【拓展】为了便于记忆,我们把三角函数值在各象限内的符号规律概括为下面口诀:“一全正、二正弦、三正切、四余弦”,意思为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.由于从原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,知 (1)正弦函数的符号取决于纵坐标y 的符号; (2)余弦函数的符号取决于横坐标x 的符号;(3)正切函数的符号是由,x y 的符号共同决定的,即,x y 同号为正,异号为负. 知识点三 诱导公式一公式一:()sin 2sin k παα+⋅= , ()cos 2cos k παα+⋅=, ()tan 2tan k παα+⋅=, 【提示】(1)诱导公式一说明终边相同的角的同一三角函数值相等.(2)任意给定一个角,它的三角函数值是唯一确定的;若给定一个三角函数值,则有无数个角与之对应. (3)利用诱导公式一,可以把求任意角的三角函数值,转化为求0到2π内的角 的三角 函数值.其中 k Z ∈ . 知识点四 三角函数线 1.有向线段带有方向的线段叫做有向线段. 2.三角函数线的定义如图 1.2-4,设任意角α的顶点在原点o (单位圆的圆心),始边与x 轴的非负半轴重合,终边与单位圆相交于点,()P x y ,过点p 作x 轴的垂线,垂足为点M ;过点(1,0)A 作单位圆的切线,设它与角α 的终边(当α位于第一、四象限时)或其反向延长线(当α位于第二、三象限时)相交于点T (因为过切点的半径垂直于圆的切线,所以AT 平行于y 轴 ).于是sin ,cos ,tan y MP AT y MP x OM AT x OM OAααα======== . 我们规定与坐标轴 同向时 ,方向为正向,与坐标轴反向时,方向为负向,则有向线段MP ,OM ,AT 分别叫做角α 的正弦线、余弦线、正切线,它们统称为三角函数线.【提示】(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角函数的绝对值,方向表示三角函数值的正负.(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先作出单位圆. (3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面.考点一 三角函数的定义及函数值符号 【例1】 有下列说法:①终边相同的角的同名三角函数值相等; ②终边不同的角的同名三角函数值不等; ③若sin20α> ,则α 是第一象限角;④若α 是第二象限角,且(,)P x y 是其终边上一点,则cos α= .其中正确说法的个数是 ( ) A.1B.2C.3D.4解析: 对于此类三角函数的题目,需要逐个判断.充分利用三角函数的定义求解是关键.总结: (1)解决此类问题的关键是准确理解任意角的三角函数的定义.(2)注意问题:①对于不同象限的角,求其三角函数值时,要分象限进行讨论;②终边在坐标轴上的角不属于任何象限.考点二 求三角函数的定义域 【例2】 求下列函数的定义域: (1)sin tan y x x =+ ;(2)sin cos tan x xy x+=.解: (1)要使函数有意义, 必须使sin x 与tan x 都有意义, 所以,().2R x k k Z x ππ∈≠+∈⎧⎪⎨⎪⎩ 所以函数sin tan y x x =+的定义域为 2,k x Z x k ππ∈⎧⎫≠+⎨⎬⎩⎭.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠ ,所以,2()Z k x k x k πππ⎧⎪⎨⎪⎩≠+∈≠所以函数sin cos tan x xy x +=的定义域为,2k x x k Z π≠∈⎧⎫⎨⎬⎩⎭. (1)解题时要注意函数本身的隐含条件.(2)求三角函数的定义域,应 熟悉各三角函数在各象限内的符号,并要注意各三角函数的定义域 ,一 般用弧度制表示.考点三 诱导公式一的应用 【例3 】计算下列各式的值:(1) ()()sin 1395cos111cos 1020sin7500︒︒︒︒-+-;(2)1112sin cos tan 465πππ⎛⎫-+ ⎪⎝⎭. 解: (1)原式()()()()sin 454360cos 303360cos 603360sin 302360︒︒︒︒︒︒︒︒=-⨯+⨯+-⨯+⨯ cos30cos60sin30sin 45︒︒︒︒+=1122=⨯14=+=(2)原式()2sin 2cos 2tan 0465πππππ⎛⎫⎛⎫=-+++ ⎪⎪⎝⎭⎝⎭21sincos0652ππ=+⨯= . 利用诱导公式一可把负角的三角函数转化为0~2π 内的角的三角函数,也可把大于2π 的角的三角函数转化为0~2π 内的角的三角函数, 即实现了“负化正 ,大化小”. 要注意记 忆特殊角的三角 函数值.考点四 三角函数线的应用【例4】 利用单位圆中的工角函数线 ,分别确定角θ的取值范围.(1)sin θ(2)1co s 2-≤< .分析: 先作出三角函数在边界时的三角函数线,观察角在什么范围内变化, 再根据范围区域写出θ 的取值范围.解: (1)图①中阴影部分就是满足条件的角θ 的范围, 即,32223k k k Z πππθπ+≤≤∈+ .(2)图②中阴影部分就是满足条件的角θ 的范围,即22362k k πππθπ<--+≤+ 或22,326k k Z k ππθππ<≤+∈+ .解形如()f m α≤ 或()()1f m m α≥< 的式子时,在直角坐标及单位圆中标出满足()f m α= 的两个角的终边(若为正弦函数,则角的终边是直线y m = 与单位圆的两个交点 与原点的连线;若为余弦函数,则角的终边是直线x m = 与单位圆的两个交点与原点的连 线 ;若为正切函数,则角的终边与角的终边的反向延长线表示的正切值相同). 根据三角函数值的大小,先找出α 在0~2π (或 ~ππ- )内 的取值 ,再加上2()k k Z π∈ 即可.。
三角函数公式汇总及练习题
三角函数公式汇总及练习题一、倍角公式1、Sin2A=2SinA*CosA2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-13、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))向左转|向右转二、降幂公式1、sin^2(α)=(1-cos(2α))/2=versin(2α)/22、2cos^2(α)=(1+cos(2α))/2=covers(2α)/23、tan^2(α)=(1-cos(2α))/(1+cos(2α))三、推导公式1、1tanα+cotα=2/sin2α2、tanα-cotα=-2cot2α3、1+cos2α=2cos^2α4、、4-cos2α=2sin^2α5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina四、两角和差1、1cos(α+β)=cosα·cosβ-sinα·sinβ2、cos(α-β)=cosα·cosβ+sinα·sinβ3、sin(α±β)=sinα·cosβ±cosα·sinβ4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、和差化积1、sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]2、sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]3、cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]4、cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)六、积化和差1、sinαsinβ=[cos(α-β)-cos(α+β)]/22、sinαcosβ=[sin(α+β)+sin(α-β)]/23、cosαsinβ=[sin(α+β)-sin(α-β)]/2七、诱导公式1、(-α)=-sinα、cos(-α)=cosα2、tan(—a)=-tanα、sin(π/2-α)=cosα、cos(π/2-α)=sinα、sin(π/2+α)=cosα3、3cos(π/2+α)=-sinα4、(π-α)=sinα、cos(π-α)=-cosα5、5tanA=sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα6、tan(π-α)=-tanα、tan(π+α)=tanα八、锐角三角函数公式1、sinα=∠α的对边/斜边2、α=∠α的邻边/斜边3、tanα=∠α的对边/∠α的邻边4、cotα=∠α的邻边/∠α的对边例1下列说法中,正确的是[]A.第一象限的角是锐角B.锐角是第一象限的角C.小于90°的角是锐角D.0°到90°的角是第一象限的角【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键.【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B).例2(90°-α)分别是第几象限角?【分析】由sinα·cosα<0,所以α在二、四象限;由sin α·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的【解】(1)由题设可知α是第二象限的角,即90°+k·360°<α<180°+k·360°(k∈Z),的角.(2)因为180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角.(3)解法一:因为90°+k·360°<α<180°+k·360°(k∈Z),所以-180°-k·360°<-α<-90°-k·360°(k∈Z).故-90°-k·360°<90°-α<-k·360°(k∈Z).因此90°-α是第四象限的角.。
三角函数练习题及答案
三角函数练习题及答案三角函数是数学中的重要内容,它在几何、物理、工程等领域都有广泛的应用。
掌握好三角函数的概念和运用方法,对于解决实际问题具有重要意义。
本文将为大家提供一些三角函数练习题及其答案,希望能帮助读者更好地理解和掌握这一知识点。
一、正弦函数的练习题1. 计算角度为30°的正弦值。
解答:根据正弦函数的定义,正弦值等于对边与斜边的比值。
在一个单位圆上,角度为30°对应的三角形是一个等边三角形,因此对边与斜边的比值为1/2。
所以,角度为30°的正弦值为1/2。
2. 求解方程sin(x) = 1/2,其中x的取值范围为[0, 2π]。
解答:根据正弦函数的性质,可以知道sin(x) = 1/2的解有两个,分别是30°和150°。
由于x的取值范围为[0, 2π],所以需要将150°转换为弧度制,即150° *π/180 = 5π/6。
因此,方程sin(x) = 1/2的解为x = 30°和x = 5π/6。
二、余弦函数的练习题1. 计算角度为45°的余弦值。
解答:根据余弦函数的定义,余弦值等于邻边与斜边的比值。
在一个单位圆上,角度为45°对应的三角形是一个等腰直角三角形,邻边与斜边的比值为√2/2。
所以,角度为45°的余弦值为√2/2。
2. 求解方程cos(x) = √3/2,其中x的取值范围为[0, 2π]。
解答:根据余弦函数的性质,可以知道cos(x) = √3/2的解有两个,分别是30°和330°。
由于x的取值范围为[0, 2π],所以需要将330°转换为弧度制,即330°* π/180 = 11π/6。
因此,方程cos(x) = √3/2的解为x = 30°和x = 11π/6。
三、正切函数的练习题1. 计算角度为60°的正切值。
三角函数--2023高考真题分类汇编完整版
三角函数--高考真题汇编第一节三角函数概念、同角三角函数关系式和诱导公式1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023北京卷13)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=;β=.【分析】根据正切函数单调性以及任意角的定义分析求解.【解析】因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02αβ<<<,则00tan tan αβ<,取1020122π,2π,,k k k k ααββ=+=+∈Z ,则()()100200tan tan 2πtan ,tan tan 2πtan k k αααβββ=+==+=,即tan tan αβ<,令12k k >,则()()()()102012002π2π2πk k k k αβαβαβ-=+-+=-+-,因为()1200π2π2π,02k k αβ-≥-<-<,则()()12003π2π02k k αβαβ-=-+->>,即12k k >,则αβ>.不妨取1200ππ1,0,,43k k αβ====,即9ππ,43αβ==满足题意.故答案为:9ππ;43.第二节三角恒等变换1.(2023新高考I 卷6)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【解析】()222241025x y x x y +--=⇒-+=,所以圆心为()2,0B ,记()0,2A -,设切点为,M N ,如图所示.因为AB =,BM =,故AM =cos cos2AM MAB AB α=∠==,sin 2α=,15sin 2sincos 2224ααα==⨯.故选B.2.(2023新高考I 卷8)已知()1sin 3αβ-=,1cos sin 6αβ=,则()cos 22αβ+=()A.79B.19 C.19-D.79-【解析】()1sin sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,所以1sin cos 2αβ=,所以()112sin sin cos cos sin 263αβαβαβ+=+=+=,()()()2221cos 22cos 212sin 1239αβαβαβ⎛⎫+=+=-+=-⨯= ⎪⎝⎭.故选B.3.(2023新高考II 卷7)已知α为锐角,1cos 4α+=,则sin 2α=()A.38- B.18-+ C.34- D.14-+【解析】21cos 12sin 24αα+=-=,所以2231sin 284α⎫-==⎪⎪⎝⎭,则1sin24α-=或1sin 24α=.因为α为锐角,所以sin02α>,15sin24α-=舍去,得51sin 24α-=.故选D.第三节三角函数的图像与性质1.(2023新高考II 卷16)已知函数()()sin f x x ωϕ=+,如图所示,A ,B 是直线12y =与曲线()y f x =的两个交点,若π=6AB ,则()πf =_______.【解析】sin y x =的图象与直线12y =两个相邻交点的最近距离为2π3,占周期2π的13,所以12ππ36ω⋅=,解得4ω=,所以()()sin 4f x x ϕ=+.再将2π,03⎛⎫⎪⎝⎭代入()()sin 4f x x ϕ=+得ϕ的一个值为2π3-,即()2πsin 43f x x ⎛⎫=- ⎪⎝⎭.所以()2π3πsin 4π32f ⎛⎫=-=- ⎪⎝⎭.2.(2023全国甲卷理科10,文科12)已知()f x 为函数cos 26y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位所得函数,则()y f x =与1122y x =-交点个数为()A.1B.2C.3D.4【解析】因为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位可得()sin 2.f x x =-而1122y x =-过10,2⎛⎫- ⎪⎝⎭与()1,0两点,分别作出()f x 与1122y x =-的图像如图所示,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,结合图像可知有3个交点.故选C.3.(2023全国乙卷理科6,文科10)已知函数()()sin f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条对称轴,则512f π⎛⎫-= ⎪⎝⎭()A. B.12-C.12【解析】2222362T T ωωππππ=-=⇒=π=⇒=,所以()()sin 2.f x x ϕ=+又222,32k k ϕππ⋅+=+π∈Z ,则52,6k k ϕπ=-+π∈Z .所以5555sin 22sin 121263f k π⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=⋅--+π=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选D.【评注】本题考查了三角函数图像与性质,当然此题也可以通过画图快速来做,读者可以自行体会.4.(2023全国乙卷理科10)已知等差数列{}n a 的公差为23π,集合{}*cos n S a n =∈N ,若{},S a b =,则ab =()A.1- B.12-C.0D.12【解析】解法一(利用三角函数图像与性质)因为公差为23π,所以只考虑123,,a a a ,即一个周期内的情形即可.依题意,{}{}cos ,n S a a b ==,即S 中只有2个元素,则123cos ,cos ,cos a a a 中必有且仅有2个相等.如图所示,设横坐标为123,,a a a 的点对应图像中123,,A A A 点.①当12cos cos a a =时,且2123a a π-=,所以图像上点的位置必为如图1所示,12,A A 关于x =π对称,且1223A A π=,则1233a ππ=π-=,2433a ππ=π+=,32a =π.所以11122ab ⎛⎫=-⨯=- ⎪⎝⎭.②当13cos cos a a =时,3143a a π-=,所以图像上点的位置必为如图2所示,13,A A 关于x =π对称,且1343A A π=,则133a 2ππ=π-=,3533a 2ππ=π+=,2a =π.所以()11122ab =⨯-=-.综上所述,12ab =-.故选B.解法二(代数法)()()11113n a a n d a n 2π=+-=+-,21cos cos 3a a 2π⎛⎫=+ ⎪⎝⎭,31cos cos 3a a 4π⎛⎫=+ ⎪⎝⎭,由于{}{}*cos ,n S a n a b =∈=N ,故123cos ,cos ,cos a a a 中必有2个相等.①若121111cos cos cos cos 322a a a a a 2π⎛⎫==+=-- ⎪⎝⎭,即113cos 22a a =-,解得11cos 2a =或11cos 2a =-.若11cos 2a =,则1sin a =,3111113cos cos cos 132244a a a a 4π⎛⎫=+=-+=--=- ⎪⎝⎭,若11cos 2a =-,则1sin a =,3111113cos cos cos 13244a a a a 4π⎛⎫=+=-=+= ⎪⎝⎭,故131cos cos 2a a ab ==-.②若131111cos cos cos cos sin 322a a a a a 4π⎛⎫==+=-+ ⎪⎝⎭,得113cos 2a a =,解得11cos 2a =或11cos 2a =-.当11cos 2a =时,1sin a =,21111313cos cos cos 132244a a a a 2π⎛⎫=+=--=--=- ⎪⎝⎭,当11cos 2a =-时,1sin a =213cos 144a =+=,故121cos cos 2a a ab ==-.③若23cos cos a a =,与①类似有121cos cos 2a a ab ==-.综上,故选B.5.(2023北京卷17)已知函数()sin cos cos sin ,0,2f x x x ωϕωϕωϕπ=+><.(1)若()0f =,求ϕ的值;(2)若()f x 在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且213f π⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:3f π⎛⎫= ⎪⎝⎭;条件②:13f π⎛⎫-=- ⎪⎝⎭;条件③:()f x 在,23ππ⎡⎤--⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【分析】(1)把0x =代入()f x 的解析式求出sin ϕ,再由π||2ϕ<即可求出ϕ的值;(2)若选条件①不合题意;若选条件②,先把()f x 的解析式化简,根据() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上的单调性及函数的最值可求出T ,从而求出ω的值;把ω的值代入()f x 的解析式,由π13f ⎛⎫-=- ⎪⎝⎭和π||2ϕ<即可求出ϕ的值;若选条件③:由() f x 的单调性可知() f x 在π3x =-处取得最小值1-,则与条件②所给的条件一样,解法与条件②相同.【解析】(1)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()3(0)sin 0cos cos 0sin sin 2f ωϕωϕϕ=⋅+⋅==-,因为π||2ϕ<,所以π3ϕ=-.(2)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><,所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭,所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+,又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,32k k ϕ-+=-+∈Z ,所以π2π,6k k ϕ=-+∈Z ,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减,所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.第四节解三角形1.(2023全国甲卷理科16)在ABC △中,2AB =,60BAC ∠=︒,BC =D 为BC 上一点,AD 平分BAC ∠,则AD =.【解析】如图所示,记,,,AB c AC b BC a ===由余弦定理可得22222cos606b b +-⨯⨯⨯︒=,解得1b =(负值舍去).由ABC ABD ACD S S S =+△△△可得,1112sin602sin30sin30222b AD AD b ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得1212bAD b +===+.2.(2023全国甲卷文科17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc .(2)若cos cos 1cos cos a B b A ba Bb A c--=,求ABC △面积.3.(2023全国乙卷理科18)在ABC △中,120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【解析】(1)利用余弦定理可得2222cos 14212cos120527BC AC AB AC AB BAC =+-⋅∠=+-⨯⨯⨯︒=+=.故BC =.又由正弦定理可知sin sin BC ACBAC ABC=∠∠.故sin sin14AC BAC ABC BC ⋅∠∠====.(2)由(1)可知tan ABC ∠=在Rt BAD △中,tan 2AD AB ABC =⋅∠=⨯=故1122255ABD S AB AD =⨯⨯=⨯⨯=△,又11sin 21sin120222ABC S AB AC BAC =⨯⨯⨯∠=⨯⨯⨯︒=△,所以2510ADC ABC ABD S S S =-=-=△△△.5.(2023新高考I 卷17)已知在ABC △中,3A B C +=,()2sin sin A C B -=.(1)求sin A ;(2)设=5AB ,求AB 边上的高.【解析】(1)解法一因为3A B C +=,所以4A B C C ++==π,所以4C π=,2sin()sin()A C A C -=+2sin cos 2cos sin sin cos cos sin A C A C A C A C⇒-=+sin cos 3cos sin A C A C ⇒=tan 3tan 3sin A C A ⇒==⇒=解法二因为3A B C +=,所以4A B C C ++==π,所以4C π=,所以4A B 3π+=,所以4B A 3π=-,故2sin()sin()4AC A 3π-=-,即2sin cos 2cos sin sin cos cos sin 4444A A A A ππ3π3π-=-,得sin 3cos A A =.又22sin cos 1A A +=,()0,A ∈π,得310sin 10A =.(2)若||5AB =.如图所示,设AC 边上的高为BG ,AB 边上的高为CH ,||CH h =,由(1)可得10cos 10A =,||||cos ||102AG AB A AB =⋅==,||||2BG CG ===,所以||AC =,||||2||6||5AC BG CH AB ===.6.(2023新高考II 卷17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知ABC △的面,D 为BC 的中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .【解析】(1)依题意,122ADC ABC S S ==△△,133sin 242ADC S AD DC ADC =⋅⋅∠==△,解得2DC =,2BD =.如图所示,过点A 作AE BC ⊥于点E .因为60ADC ∠= ,所以12DE =,32AE =,则15222BE =+=,所以3tan 5AE B BE ==.(2)设AB = c ,AC = b ,由极化恒等式得2214AB AC AD BC ⋅- =,即2114⋅--b c =b c ,化简得()22244⋅-+=-b c =b c ,即cos cos 2BAC bc BAC ⋅⋅∠=∠=-b c =b c ①,又1sin 2ABC S bc BAC =∠=△,即sin bc BAC ∠=.②①得tan BAC ∠=0πBAC <∠<得2π3BAC ∠=,代入①得4bc =,与228b c +=联立可得2b c ==.7.(2023北京卷7)在ABC △中,()()()sin sin sin sin a c A C b A B +-=-,则C ∠=()A.6π B.3π C.32π D.65π【分析】利用正弦定理的边角变换与余弦定理即可得解.【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选B.。
三角函数的概念
5.2 三角函数的概念 5.2.1 三角函数的概念1.判断下列说法是否正确(正确的打“√”,错误的打(“×”).(1)sin α=y .( × )(2)第三象限角的正弦值、余弦值、正切值都是负值.( × ) (3)终边相同的角不一定相等,其三角函数值一定相等.( √ )题型1 三角函数的定义2.在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点⎝⎛⎭⎫1213,513和⎝⎛⎭⎫-35,45,那么sin αcos β=( B )A .-3665B .-313C .413D .4865解析:∵角α,β的终边与单位圆分别交于点⎝⎛⎭⎫1213,513和⎝⎛⎭⎫-35,45,∴由定义知sin α=513,cos β=-35,∴sin αcos β=513×⎝⎛⎭⎫-35=-313. 3.已知角α的终边经过点(-4,3),则cos α等于( D ) A .45B .35C .-35D .-45解析:由题意可知x =-4,y =3,r =(-4)2+32=5,所以cos α=x r =-45.4.若α=2π3,则α的终边与单位圆的交点P 的坐标是( B )A .⎝⎛⎭⎫12,32B .⎝⎛⎭⎫-12,32C .⎝⎛⎭⎫-32,12 D .⎝⎛⎭⎫12,-32解析:设P (x ,y ),因为角α=2π3在第二象限,所以x =-12,y =1-⎝⎛⎭⎫-122=32,所以P ⎝⎛⎭⎫-12,32.题型2 三角函数的符号5.代数式sin 120°cos 210°的值为( B ) A .正数 B .负数 C .0D .不存在解析:因为120°是第二象限角,所以sin 120°>0;又210°是第三象限角,所以cos 210°<0.所以sin 120°cos 210°<0.故选B.6.如果点P (sin θcos θ,cos θ)位于第四象限,则角θ是( C ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:因为点P (sin θcos θ,cos θ)位于第四象限,所以⎩⎪⎨⎪⎧ sin θ cos θ>0,cos θ<0,则⎩⎪⎨⎪⎧sin θ<0,cos θ<0,所以角θ是第三象限角.7.若x 是象限角,求函数y =|sin x |sin x +cos x |cos x |+|tan x |tan x的值域.解:当x 是第一象限角时,sin x >0,cos x >0,tan x >0,y =1+1+1=3; 当x 是第二象限角时,sin x >0,cos x <0,tan x <0,y =1-1-1=-1; 当x 是第三象限角时,sin x <0,cos x <0,tan x >0,y =-1-1+1=-1; 当x 是第四象限角时,sin x <0,cos x >0,tan x <0, y =-1+1-1=-1.综上,函数的值域是{-1,3}. 题型3 公式一的应用 8.计算:sin(-1 410°)= 12.解析:sin(-1 410°)=sin(-4×360°+30°)=sin 30°=12.9.计算:cos ⎝⎛⎭⎫-11π6= 32. 解析:cos ⎝⎛⎭⎫-11π6=cos ⎝⎛⎭⎫-2π+π6=cos π6=32. 10.tan 405°-sin 450°+cos 750°=32. 解析:原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32.易错点1 忽视不是象限角的情况致误11.若sin α>0,cos α≥0,则角α的终边位于__第一象限或y 轴的正半轴__. 解析:因为sin α>0,cos α≥0,所以角α的终边位于第一象限或y 轴的正半轴. [误区警示] 本题容易忽视cos α=0时,角α的终边在坐标轴上的情况. 易错点2 对公式一理解不透致误 12.sin13π4__<__0.(用“>”“<”“=”填空) 解析:sin13π4=sin ⎝⎛⎭⎫2π+5π4=sin 5π4<0. [误区警示] 本题容易出现sin13π4=sin ⎝⎛⎭⎫3π+π4=sin π4>0的错误.(限时30分钟)一、选择题1.已知角α的终边过点P (2,-2),则tan α的值为( B ) A .1 B .-1 C .22D .-22解析:由三角函数的定义知,tan α=-22=-1.2.sin(-1 380°)的值为( D ) A .-12B .12C .-32D .32解析:sin(-1 380°)=sin(-360°×4+60°)=sin 60°=32. 3.如果角α的终边过点(2sin 30°,-2cos 30°),那么sin α=( D ) A .12B .-12C .32D .-32解析:依题意可知点(2sin 30°,-2cos 30°),即(1,-3),则r =12+(-3)2=2,因此sin α=y r =-32.4.(多选题)已知角α的终边在直线y =-3x 上,则sin α+cos α等于( BD )A .-35B .-105C .35D .105解析:①当在角α的终边上取一点P (1,-3)时,此时x =1,y =-3,所以r =1+(-3)2=10.所以sin α=y r =-310,cos α=x r =110.所以sin α+cos α=-310+110=-105.②当在角α的终边上取一点(-1,3)时,此时x =-1,y =3,所以r =10.所以sin α=yr =310,cos α=x r =-110,所以sin α+cos α=105.5.若tan x <0,且sin x -cos x <0,则角x 的终边在( D ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:因为tan x <0,所以角x 的终边在第二或第四象限,又sin x -cos x <0,所以角x 的终边在第四象限.6.(多选题)下列命题中正确的是( CD ) A .若cos θ<0,则θ是第二或第三象限角 B .若sin α=sin β,则α与β是终边相同的角C .若角α是第三象限角,则sin αcos α>0且cos αtan α<0D .设角α为第二象限角,且⎪⎪⎪⎪cos α2=-cos α2,则角α2为第三象限角 解析:若cos θ<0,则θ为第二或第三象限角或终边在x 轴的负半轴上,A 不正确;若sin α=sin β,则α与β的终边不一定相同,B 不正确;∵α是第三象限角,∴sin α<0,cos α<0,tan α>0,∴sin αcos α>0且cos αtan α<0,C 正确;∵角α为第二象限角,∴角α2在第一或第三象限,又由条件知cos α2≤0,∴α2在第三象限,D 正确.二、填空题7.sin 420°cos 750°+sin(-690°)cos(-660°)=__1__.解析:原式=sin(360°+60°)cos(720°+30°)+sin(-720°+30°)·cos(-720°+60°)=sin 60°cos 30°+sin 30°cos 60°=32×32+12×12=1. 8.sin13π6+cos 13π3-tan ⎝⎛⎭⎫-23π4的值为__0__.解析:原式=sin ⎝⎛⎭⎫2π+π6+cos ⎝⎛⎭⎫4π+π3-tan ⎝⎛⎭⎫-6π+π4=sin π6+cos π3-tan π4=12+12-1=0.9.已知角α的终边经过点P (3,-4t ),且sin(2k π+α)=-35,其中k ∈Z ,则t 的值为916. 解析:因为sin(2k π+α)=-35(k ∈Z ),所以sin α=-35.又角α的终边过点P (3,-4t ),故sin α=-4t9+16t 2=-35,解得t =916⎝⎛⎭⎫t =-916舍去. 三、解答题10.已知角α的终边所在的直线上有一点P (-3,m +1),m ∈R . (1)若α=60°,求实数m 的值;(2)若cos α<0且tan α>0,求实数m 的取值范围.解:(1)依题意,得tan α=m +1-3=tan 60°=3,解得m =-4.(2)由cos α<0且tan α>0,得α为第三象限角,故m +1<0,所以m <-1. 11.已知角α的终边经过点P (3,4). (1)求tan(-6π+α)的值; (2)求sin (α-4π)cos (6π+α)·sin(α-2π)·cos(2π+α)的值.解:因为角α的终边经过点P (3,4), 所以x =3,y =4,则r =32+42=5, 所以sin α=y r =45,cos α=x r =35,tan α=y x =43.(1)tan(-6π+α)=tan α=43.(2)原式=sin αcos α·sin α·cos α=sin 2α=⎝⎛⎭⎫452=1625.。
专题练 第12练 三角函数的概念与三角恒等变换
第12练 三角函数的概念与三角恒等变换1.(2021·北京)函数f (x )=cos x -cos 2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98D .偶函数,最大值为98答案 D解析 由题意,f (-x )=cos(-x )-cos(-2x ) =cos x -cos 2x =f (x ), 所以该函数为偶函数,又f (x )=cos x -cos 2x =-2cos 2x +cos x +1 =-2⎝⎛⎭⎫cos x -142+98, 所以当cos x =14时,f (x )取最大值98.2.(2021·全国甲卷)若α∈⎝⎛⎭⎫0,π2,tan 2α=cos α2-sin α,则tan α等于( ) A.1515 B.55 C.53 D.153答案 A解析 方法一 因为tan 2α=sin 2αcos 2α=2sin αcos α1-2sin 2α,且tan 2α=cos α2-sin α,所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14.因为α∈⎝⎛⎭⎫0,π2,所以cos α=154,tan α=sin αcos α=1515. 方法二 因为tan 2α=2tan α1-tan 2α=2sin αcos α1-sin 2αcos 2α=2sin αcos αcos 2α-sin 2α=2sin αcos α1-2sin 2α,且tan 2α=cos α2-sin α,所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14.因为α∈⎝⎛⎭⎫0,π2, 所以cos α=154,tan α=sin αcos α=1515. 3.(2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( ) A.53 B.23 C.13 D.59答案 A解析 由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α>0, 所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53. 4.(2018·全国Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |等于( )A.15B.55C.255 D .1 答案 B解析 由cos 2α=23,得cos 2α-sin 2α=23,∴cos 2α-sin 2αcos 2α+sin 2α=23, 又cos α≠0,∴1-tan 2α1+tan 2α=23,∴tan α=±55,即b -a 2-1=±55,∴|a -b |=55. 5.(2022·新高考全国Ⅱ)若sin(α+β)+cos(α+β)=22cos ⎝⎛⎭⎫α+π4sin β,则( ) A .tan(α-β)=1 B .tan(α+β)=1 C .tan(α-β)=-1 D .tan(α+β)=-1 答案 C解析 由题意得sin αcos β+cos αsin β+cos αcos β-sin αsin β=22×22(cos α-sin α)·sin β,整理得sin αcos β-cos αsin β+cos αcos β+sin αsin β=0,即sin(α-β)+cos(α-β)=0,所以tan(α-β)=-1,故选C.6.(多选)(2021·新高考全国Ⅰ)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A .|OP 1―→|=|OP 2―→| B .|AP 1―→|=|AP 2―→| C.OA →·OP 3―→=OP 1―→·OP 2―→ D.OA →·OP 1―→=OP 2―→·OP 3―→ 答案 AC解析 由题意可知, |OP 1―→|=cos 2α+sin 2α=1, |OP 2―→|=cos 2β+(-sin β)2=1,所以|OP 1―→|=|OP 2―→|,故A 正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1―→|≠|AP 2―→|,故B 错误; 因为OA →·OP 3―→=cos(α+β),OP 1―→·OP 2―→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3―→=OP 1―→·OP 2―→,故C 正确; 因为OA →·OP 1―→=cos α,OP 2―→·OP 3―→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA →·OP 1―→=22,OP 2―→·OP 3―→=cos 3π4=-22,所以OA →·OP 1―→≠OP 2―→·OP 3―→,故D 错误.7.(2022·北京)若函数f (x )=A sin x -3cos x 的一个零点为π3,则A =________;f ⎝⎛⎭⎫π12=________. 答案 1 - 2解析 依题意得f ⎝⎛⎭⎫π3=A ×32-3×12=0,解得A =1, 所以f (x )=sin x -3cos x =2sin ⎝⎛⎭⎫x -π3, 所以f ⎝⎛⎭⎫π12=2sin ⎝⎛⎭⎫π12-π3=2sin ⎝⎛⎭⎫-π4=- 2. 8.(2020·江苏)已知sin 2⎝⎛⎭⎫π4+α=23,则sin 2α的值是________. 答案 13解析 因为sin 2⎝⎛⎭⎫π4+α=23,所以1-cos ⎝⎛⎭⎫π2+2α2=23,即1+sin 2α2=23,所以sin 2α=13.9.(2022·枣庄模拟)已知sin ⎝⎛⎭⎫π6-α=23,则cos ⎝⎛⎭⎫2α-4π3等于( ) A .-59 B.59 C .-13 D.13答案 A解析 cos ⎝⎛⎭⎫2α-4π3=cos ⎝⎛⎭⎫-π+2α-π3 =-cos ⎝⎛⎭⎫2α-π3=-cos ⎝⎛⎭⎫π3-2α =-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π6-α =-⎝⎛⎭⎫1-2·29=-59. 10.(2022·南京师大附中模拟)已知sin x +cos x =-15,则cos 2x 等于( )A .-2425B.725 C .-725D .±725答案 D解析 因为sin x +cos x =-15,故(sin x +cos x )2=125,所以2sin x cos x =-2425,故x 为第二或第四象限角, 则(sin x -cos x )2=4925,故sin x -cos x =±75,即cos x -sin x =±75,所以cos 2x =cos 2x -sin 2x=(cos x +sin x )(cos x -sin x )=±725.11.(2022·淄博模拟)cos 10°2sin 10°-2cos 10°等于( )A.32B. 2C. 3 D .2 答案 A 解析cos 10°2sin 10°-2cos 10°=cos 10°-4sin 10°cos 10°2sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-(cos 10°-3sin 10°)2sin 10°=32.12.(2022·潍坊模拟)在平面直角坐标系Oxy 中,若角α的顶点在坐标原点,始边在x 轴的正半轴上,且终边经过点P (-1,2),则sin α(1+sin 2α)sin α+cos α等于( )A .-65B .-25 C.25 D.65答案 C解析 因为角α的终边经过点P (-1,2), 所以x =-1,y =2,r =|OP |=5, 所以sin α=y r =255,cos α=x r =-55,则sin 2α=2sin αcos α=-45,故sin α(1+sin 2α)sin α+cos α=25×⎝⎛⎭⎫1-45555=25. 13.(多选)(2022·重庆巴蜀中学模拟)已知f (x )=5sin x +12cos x (x ∈R )在x =x 0处取得最大值a ,则( ) A .a =13B .f ⎝⎛⎭⎫x 0+π2=-13C .sin x 0=513D .cos ⎝⎛⎭⎫2x 0+π4=-2338 答案 ACD解析 由题设知f (x )=13sin(x +φ)且sin φ=1213,cos φ=513,则f (x 0)=13sin(x 0+φ)=a =13,A正确;所以sin(x 0+φ)=1, 而f ⎝⎛⎭⎫x 0+π2=13sin ⎝⎛⎭⎫x 0+π2+φ =13cos(x 0+φ)=0,B 错误; 由上知x 0=2k π+π2-φ且k ∈Z ,则sin x 0=sin ⎝⎛⎭⎫π2-φ=cos φ=513,C 正确; 同理cos x 0=1213,则cos ⎝⎛⎭⎫2x 0+π4=22(cos 2x 0-sin 2x 0)=22(2cos 2x 0-1-2sin x 0cos x 0) =-2338,D 正确.14.(2022·潮汕模拟)小说《三体》中的“水滴”是三体文明派往太阳系的探测器,由强相互作用力材料制成,被形容为“像一滴圣母的眼泪”.小刘是《三体》的忠实读者,他利用几何作图软件画出了他心目中的水滴(如图),由线段AB ,AC 和优弧BC 围成,其中BC 连线竖直,AB ,AC 与圆弧相切,已知“水滴”的水平宽度与竖直高度之比为74,则cos ∠BAC 等于( )A.1725B.437C.45D.57 答案 A解析 设优弧BC 的圆心为O ,半径为R ,连接OA ,OB ,OC ,如图所示,易知“水滴”的水平宽度为|OA |+R ,竖直高度为2R , 则由题意知|OA |+R 2R =74,解得|OA |=52R ,AB 与圆弧相切于点B ,则OB ⊥AB , 在Rt △ABO 中,sin ∠BAO =|OB ||OA |=R 52R =25,由对称性可知∠BAO =∠CAO , 则∠BAC =2∠BAO , ∴cos ∠BAC =1-2sin 2∠BAO =1-2×⎝⎛⎭⎫252=1725.15.(2022·宜宾模拟)已知tan α+tan β=3,cos αcos β=14,则sin(α+β)=________.答案 34解析 tan α+tan β=sin αcos β+cos αsin βcos αcos β=3,因为cos αcos β=14,所以sin αcos β+cos αsin β=sin(α+β) =3cos αcos β=34.16.(2022·陕西宝鸡中学模拟)sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)=________. 答案 0解析 sin(θ+75°)+cos(θ+45°)-3cos(θ+15°) =sin(θ+15°+60°)+cos(θ+45°)-3cos(θ+15°)=sin(θ+15°)cos 60°+cos(θ+15°)sin 60°+cos(θ+45°)-3cos(θ+15°) =12sin(θ+15°)+32cos(θ+15°)+cos(θ+45°)-3cos(θ+15°)=12sin(θ+15°)-32cos(θ+15°)+cos(θ+45°) =sin 30°sin(θ+15°)-cos 30°cos(θ+15°)+cos(θ+45°) =-cos(θ+45°)+cos(θ+45°)=0.[考情分析] 三角函数的概念与三角恒等变换是高考常考内容,主要考查三角函数的概念、同角三角函数关系式、诱导公式,以及三角恒等变换的综合应用,给值求值问题.试题难度中等,常以选择题、填空题的形式出现. 一、三角函数的定义、诱导公式及基本关系式 核心提炼1.同角三角函数基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.(sin α±cos α)2=1±2sin αcos α.3.诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.练后反馈题目 4 8 9 10 13 正误错题整理:二、两角和与差的三角函数 核心提炼两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.练后反馈题目 5 6 7 11 15 16 正误错题整理:三、三角恒等变换 核心提炼1.二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,tan 2α=2tan α1-tan 2α.2.半角公式:sin α2=±1-cos α2,cos α2=±1+cos α2,tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α. 3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中tan φ=ba .练后反馈题目 1 2 3 12 14 正误错题整理:1.[T3补偿](2022·西安模拟)已知θ∈⎝⎛⎭⎫3π2,2π,且cos 2θ+cos θ=0,则sin 2θ+sin θ等于( ) A .0 B. 3 C .- 3 D .2 答案 C解析 由cos 2θ+cos θ=0, 得2cos 2θ+cos θ-1=0, 即(cos θ+1)(2cos θ-1)=0, 因为θ∈⎝⎛⎭⎫3π2,2π,所以cos θ>0,进而得cos θ=12,故θ=5π3,所以sin 2θ+sin θ=sin 10π3+sin 5π3=sin 4π3+sin ⎝⎛⎭⎫-π3=-2sin π3=- 3.2.[T4补偿](2022·郑州模拟)已知α∈⎝⎛⎭⎫0,π2,且sin 2α+sin 2α=710,则cos 2α等于( ) A.35 B.45 C .-35 D .-45答案 B解析 依题意知,2sin αcos α+sin 2αsin 2α+cos 2α=710, 即2tan α+tan 2αtan 2α+1=710, 整理得3tan 2α+20tan α-7=0,因为α∈⎝⎛⎭⎫0,π2,即tan α>0, 解得tan α=13, 所以cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=45. 3.[T12补偿](2022·长春模拟)已知角α的终边与单位圆交于点P ⎝⎛⎭⎫63,-33,则sin ⎝⎛⎭⎫π2-α+cos(π-2α)等于( )A .-33 B.6+13 C.33 D.6-13 答案 D解析 由已知sin ⎝⎛⎭⎫π2-α+cos(π-2α) =cos α-cos 2α, 因为角α的终边与单位圆交于点P ⎝⎛⎭⎫63,-33, 所以cos α=63⎝⎛⎭⎫632+⎝⎛⎭⎫-332=63, cos 2α=2cos 2α-1=13, 所以cos α-cos 2α=63-13=6-13. 4.[T10补偿](2022·毕节模拟)函数f (x )=sin x +cos x +sin 2x 的最大值为( )A .1B .1- 2C .1+ 2D .3答案 C解析 f (x )=sin x +cos x +sin 2x=sin x +cos x +2sin x cos x ,令t =sin x +cos x =2sin ⎝⎛⎭⎫x +π4, 所以t ∈[-2,2],则t 2=(sin x +cos x )2=1+2sin x cos x ,所以2sin x cos x =t 2-1,所以原函数可化为y =t 2+t -1,t ∈[-2,2],对称轴为t =-12, 所以当t =2时,y =t 2+t -1取得最大值,所以函数f (x )的最大值为(2)2+2-1=1+2,即f (x )=sin x +cos x +sin 2x 的最大值为1+ 2.5.[T9补偿](2022·衡水模拟)已知sin ⎝⎛⎭⎫α+π6=-13,则cos ⎝⎛⎭⎫4π3-α=________. 答案 13解析 cos ⎝⎛⎭⎫4π3-α=-cos ⎝⎛⎭⎫π3-α =-cos ⎝⎛⎭⎫π2-α-π6 =-sin ⎝⎛⎭⎫α+π6=13. 6.[T11补偿](2022·淄博模拟)sin 12°(2cos 212°-1)3-tan 12°=________. 答案 18解析 因为sin 12°(2cos 212°-1)3-tan 12° =sin 12°cos 12°cos 24°3cos 12°-sin 12°=14sin 48°2sin 48°=18.。
高考数学三角函数知识点总结及练习
高考数学三角函数知识点总结及练习三角函数总结及统练本文旨在总结和统练三角函数的基础知识,包括以下内容:一、基础知识1.集合S表示与角α终边相同的角的集合,其中β=2kπ+α,k∈Z。
2.三角函数是x、y、r三个量的比值,共有六种定义。
3.三角函数的符号口诀为“一正二弦,三切四余弦”。
4.三角函数线包括正弦线MP=sinα、余弦线OM=cosα和正切线AT=tanα。
5.同角三角函数的关系包括平方关系、商数关系和倒数关系,可以用“凑一拆一,切割化弦,化异为同”的口诀记忆。
6.诱导公式口诀为“奇变偶不变,符号看象限”,其中包括正弦、余弦、正切和余切的公式。
7.两角和与差的三角函数包括正弦、余弦、正切和余切的公式,以及三角函数的和差化积公式。
8.二倍角公式包括sin2α=2sinαcosα、cos2α=2cos2α-1=1-2sin2α=cosα-sinα、tan2α=2tanα/1-tan2α,以及对应的cos、tan公式。
9.三角函数的图象和性质,包括函数y=sinx、y=cosx和y=tanx的定义和定义域。
总之,三角函数是数学中的重要概念,掌握其基础知识对于研究高等数学和其他相关学科都有很大的帮助。
对于函数 $y=\sin x$,其定义域为 $[-\pi/2,\pi/2]$,值域为$[-1,1]$。
当 $x=2k\pi+\pi/2$ 时,函数取最大值 $1$;当$x=2k\pi-\pi/2$ 时,函数取最小值$-1$。
函数的周期为$2\pi$,是奇函数。
在区间 $[2k\pi-\pi/2,2k\pi+\pi/2]$ 上是增函数,在区间$[2k\pi-\pi,2k\pi]$ 上也是增函数,其中$k\in\mathbb{Z}$。
在区间 $[2k\pi,2k\pi+\pi]$ 上是减函数。
对于函数 $y=Asin(\omega x+\phi)$,当 $A>0$ 且$\omega>0$ 时,函数图像可以通过将横坐标缩短到原来的$\dfrac{1}{\omega}$ 倍,纵坐标伸长为原来的 $A$ 倍,再将图像左移$\dfrac{\phi}{\omega}$ 个单位得到。
三角函数的概念及计算练习题.doc
三角函数的概念和计算 练习题 题号 1 2 3 45678 9 10 答案 的值 ( ) A 大于 0 B 小于 0 C 等于 0 D 不确定 2.函数 y sin x | cos x | tan x 的值域是( ) | sin x | cos x | tan x | A . {1} B . {1, 3} C .{-1} D . {-1,3} 3.已知 sin cos 1) 号 2sin 3cos = ,则 tan α的值是( 5 学 8 8 8
5 5 5 3 3 C .- 3 3 A .- B. 4 D. 4 4 4 9、已知 sin 1 1 的值为 ( ) ,则 cos7 2 15、化简: 1 2 sin 610 cos 430 sin 250 cos790
D.无法确定 A.± B. C. 线 3 3 3 4.若 cos(-1000 )=a ,则 tan800 =( ) A. 1 a 2 B. 1a 2 C. 1 a 2 D. 1a 2a a a a 5、对于诱导公式中的角α,下列说法正确的是( ) 封 A .α一定是锐角 B . 0≤α< 2π 名 C .α一定是正角 D .α是使公式有意义的任意角 姓 6、 sin 19 的值等于. 3 2 2 2 2 7、若 cos 3, 2 , 则 sin 2 的值是( ) 3 5 4 级A. B.3 C. 45 5 5 D. 班 5 8、 sin 4 · cos 25 · tan 5 的值是( ) 3 6 4 A.23
B . -2 23 23 3 C. 3D. 3 π +α )= 3 ,则 sin( 3π -α )值为( 10、已知 sin( ) 4 2 4 A. 1 B.— 1 C. 3 D. — 3 2 2 2 2 二、计算题 11、已知角α的终边在直线 y = - x 上,试求角α的各三角函数值 12、计算: tan2010 ° 1 cos 1 cos 13、化简 cos 1 (α 为第四象限角) 1 cos 14、 cos +cos 2 +cos 3 +cos 4 = 5