高二文科数学上学期期末模拟试题(含答案)

合集下载

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知实数a 、b ,那么||||||a b a b +=-是0ab <的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2.若实数x ,y 满足约束条件020x y x y -≥⎧⎨+-≤⎩,则2z x y =-的最小值为()A .1-B .1C .2-D .23.已知数列{}n a 与{}n b 均为等差数列,且354a b +=,598a b +=,则47a b +=()A .5B .6C .7D .84.已知()110m a a a=++>,()31xn x =<,则m ,n 之间的大小关系是()A .m n >B .m n <C .m n=D .m n≤5.在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4,30a b A ===︒,则B =()A .30︒B .30︒或150︒C .60︒D .60︒或120︒6.若曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,则a b +=()A .2B .0C .1-D .2-7.抛物线()220x py p =>上一点M 的坐标为()2,1-,则点M 到焦点的距离为()A .3B .2C .1D .17168.函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,令(2)a f =',(4)b f =',(4)(2)2f f c -=,则下列数值排序正确的是()A .b a c <<B .a b c <<C .a c b <<D .c b a<<9.已知椭圆221(0)y x m m+=>的焦点在y 轴上,长轴长是短轴长的2倍,则m =()A .2B .1C .14D .410.已知函数()f x 的导函数()f x '的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点②()f x '在=1x -处取得极小值③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0正确的序号是()A .①④B .②③④C .②③D .①②④11.函数()sin e xxf x =在[],ππ-上大致的图象为()A .B .C .D .12.已知定义在R 上的函数()f x 的导函数为()f x ',若()e xf x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是()A .()20,eB .()0,2C .()2,e-∞D .(),2-∞二、填空题13.若命题“x ∃∈R ,22x m ->”是真命题,则实数m 的取值范围是______.14.已知直线1l :()2100mx y m ++=>,与双曲线C :2214x y -=的一条渐近线垂直,则m =__________.15.设{}n a 是公差不为0的等差数列,11a =且248,,a a a 成等比数列,则1291011a a a a ++= ___16.已知钝角三角形的三边a =k ,b =k +2,c =k +4,则k 的取值范围是___________.三、解答题17.设2:3,:11180p a x a q x x <<-+≤.(1)若1a =,“p 且q ”为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.19.如图,已知平面四边形ABCD ,45A ∠=︒,75ABC ∠=︒,30BDC ∠=︒,2BD =,CD =(1)求CBD ∠;(2)求AB 的值.20.已知函数()2()4(),R f x x x a a =--∈且(1)0f '-=.(1)求a 的值;(2)讨论函数()f x 的单调性;(3)求函数()f x 在[2,2]-上的最大值和最小值.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -,椭圆上任一点到两个焦点的距离之和(1)求椭圆C 的方程;(2)是否存在实数m ,使直线:l y x m =+与椭圆有两个不同的交点M 、N ,并使||||AM AN =,若存在,求出m 的值;若不存在,请说明理由.22.已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程;(2)当0a ≤时,对于任意0x >,证明:()cos f x x >.参考答案:1.D【分析】等式两边平方结合反例即可判断.【详解】因为2222||||||2|2|||0a b a b a ab b a ab b ab ab ab +=-⇒++=-+⇒=-⇒≤,所以必要性不成立;当1,2a b ==-时,满足0ab <,但||||||a b a b +≠-,所以必要性不成立;所以||||||a b a b +=-是0ab <的既不充分也不必要条件.故选:D .2.A【分析】画出可行域,平移基准直线20x y -=到可行域边界位置,由此来求得z 的最小值.【详解】020x y x y -=⎧⎨+-=⎩,解得1x y ==,设()1,1A ,平移基准直线20x y -=到可行域边界()1,1A 处时,2z x y =-取得最小值1211-⨯=-.故选:A3.B【分析】根据等差数列的性质即可求解.【详解】因为354a b +=,598a b +=,所以355912a b a b ++=+,即355912a a b b ++=+,根据等差数列的性质可知3559472212a a b b a b ++=+=+,所以476a b +=.故选:B.4.A【分析】利用基本不等式及其指数函数的单调性即可求解.【详解】∵0a >,∴1113m a a=++≥=,当且仅当1a =时,等号成立,即3m ≥,又∵1x <,∴1333x n =<=,即3n <,则m n >,故选:A .5.D【分析】根据4,30a b A ===︒,利用正弦定理求解.【详解】解:在ABC 中,4,30a b A ===︒,由正弦定理得sin sin a bA B=,所以sin sin 30sin 42b A B a ⋅===,所以B =60︒或120︒,故选:D 6.A【分析】求出导数,将0x =代入后,可得1a =,将()0,b 代入10x y -+=后可得1b =,进而得到a b +.【详解】由2y x ax b =++得2y x a '=+,又曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,故当0x =时,1y a '==又点()0,b 在10x y -+=上,则1b =,故2a+b =.故选:A .7.B【分析】将点M 坐标代入抛物线可得p ,则所求距离为12p+.【详解】()2,1M - 在抛物线上,42p ∴=,解得:2p =,∴点M 到焦点的距离为122p+=.故选:B.8.C【分析】利用导数的几何意义判断.【详解】由函数图象知:()()()42(2)442f f f f -''<<-,所以a c b <<,故选:C 9.D【分析】根据椭圆的方程,结合椭圆的几何性质,列式求解.【详解】由条件可知,2a m =,21b =,且22=⨯,解得:4m =.故选:D 10.B【分析】根据导函数()f x '的图像,求出函数的单调区间,求出函数的极值点,分析判断①②③,对于④:由于()f x 的图像在0x =处的切线斜率为()0f ',从而可由导函数的图像判断.【详解】根据()f x '的图像可得,在()2,3-上,()0f x '≤,所以()f x 在()2,3-上单调递减,所以()f x 在区间()2,3-上没有极值点,故①错误,③正确;由()f x '的图像可知,()f x '在()2,1--单调递减,在()1,1-单调递增,故②正确;根据()f x '的图像可得()00f '<,即()f x 的图像在0x =处的切线斜率小于0,故④正确.故选:B.11.B【分析】分析函数()f x 的奇偶性及其在[]0,π上的单调性,结合排除法可得出合适的选项.【详解】对任意的[]π,πx ∈-,()()()sin sin eexxx x f x f x ---==-=-,所以,函数()sin ex xf x =在[],ππ-上的图象关于原点对称,排除AC 选项,当0πx ≤≤时,()sin ex xf x =,则()πcos sin 4e e xxx x xf x ⎛⎫- ⎪-⎝⎭'==-,因为ππ3π444x -≤-≤,由()0f x '<可得π3π044x <-≤,则ππ4x <≤,由()0f x ¢>可得ππ044x -≤-<,则π04x ≤<,所以,函数()f x 在π0,4⎡⎫⎪⎢⎣⎭上单调递增,在π,π4⎛⎤ ⎥⎝⎦上单调递减,排除D 选项.故选:B.12.A【分析】设()()e 2xg x f x =-+,求导可得()g x 在R 上单调递减,再根据()ln 2f x x >+转化为()ln 4g x >,再结合()g x 的单调性求解即可.【详解】设()()e 2x g x f x =-+,则()()e xg x f x '-'=.因为()e xf x '<,所以()e 0x f x '-<,即()0g x '<,所以()g x 在R 上单调递减.不等式()ln 2f x x >+等价于不等式()ln 24f x x -+>,即()ln 4g x >.因为()22e 2f =+,所以()()222e 24g f =-+=,所以()()ln 2g x g >.因为()g x 在R 上单调递减,所以ln 2x <,解得20e x <<故选:A 13.(),2-∞【分析】求得22y x =-的最大值,结合题意,即可求得结果.【详解】22y x =-的最大值为2,根据题意,2m >,即m 的取值范围是(),2-∞.故答案为:(),2-∞.14.4【分析】求得双曲线C 的渐近线方程,根据直线垂直列出等量关系,即可求得结果.【详解】对双曲线C :2214x y -=,其渐近线方程为12y x =±,对直线1l :()2100mx y m ++=>,且斜率为02m-<,根据题意可得1122m -⨯=-,解得4m =.故答案为:4.15.910【详解】分析:由题意先求出{}n a 的通项公式,再利用裂项相消法求和即可.详解:∵数列{a n }是公差不为0的等差数列,a 1=1,且a 2,a 4,a 8成等比数列,∴(1+3d )2=(1+d )(1+7d ),解得d=1,或d=0(舍),∴a n =1+(n ﹣1)×1=n .∴129101111111111191112239102239101010a a a a ++=+++=-+-++-=-=⨯⨯⨯故答案为910点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.16.26k <<【分析】先解不等式cos 0C <,再结合两边之和大于第三边求解.【详解】解:∵c b a >>,且ABC 为钝角三角形,∴C ∠为钝角,∴()()()()222222224412cos 022222k k k a b c k k C ab k k k k ++-++---===<++,∴24120k k --<,解得26k -<<,由两边之和大于第三边得24k k k ++>+,∴2k >.∴26k <<.故答案为:26k <<17.(1){23}x x ≤<(2){0a a ≤或23}a ≤≤【分析】(1)先分别求得P 为真命题和q 为真命题的实数x 的取值范围,再根据p 且q 为真命题,利用集合的交集运算求解;(2)记{3}C x a x a =<<,根据p 是q 的充分不必要条件,由C B Ü求解.【详解】(1)解:当1a =时,P 为真命题,实数x 的取值范围为{13}A x x =<<,211180(2)(9)029x x x x x -+≤⇒--≤⇒≤≤,q 为真命题,实数x 的取值范围为{}29B x x =≤≤,∵p 且q 为真命题所以实数x 的取值范围为{23}A B x x ⋂=≤<;(2)记{3}C x a x a =<<∵p 是q 的充分不必要条件所以C BÜ当0a ≤时,C =∅,满足题意;当0a >时,239a a ≥⎧⎨≤⎩解得23a ≤≤;综上所述:实数a 的取值范围为{0a a ≤或23}a ≤≤18.(1){}311x x <<;(2)9a >.【分析】(1)根据零点分段法可得()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,然后分段解不等式,即得;(2)由题可得()min a f x >,然后求函数的最小值即得.【详解】(1)因为函数()29f x x x =+-,所以()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,所以931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解得311x <<,所以原不等式的解集为{}311x x <<;(2)由()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,可得函数()f x 在(),9-∞上单调递减,在()9,+∞上单调递增,当9x =时,函数()f x 有最小值为9,∴9a >.19.(1)60︒;(2.【分析】(1)由余弦定理求2BC ,根据勾股逆定理知90DCB ∠=︒,即可求CBD ∠.(2)由(1)得120ADB ∠=︒,应用正弦定理即可求AB 的值.【详解】(1)在△BCD 中,由余弦定理,有2222cos301BC BD CD BD CD =+-⋅︒=,222BC CD BD ∴+=,即90DCB ∠=︒,60CBD ∴∠=︒.(1)在四边形ABCD 中,756015ABD ∠=︒-︒=︒,∴120ADB ∠=︒,在△ABD 中,由正弦定理sin120sin 45AB BD =︒︒,则sin120sin 45BD AB ⋅︒=︒20.(1)12a =(2)调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎛⎫- ⎪⎝⎭(3)最大值为92,最小值为5027-【分析】(1)求导得2()324f x x ax '=--,代入(1)0f '-=,得可得答案;(2)由题意可得()(34)(1)f x x x '=-+,分别解()0f x '>,()0f x '<,即可得函数的单调递增、减区间;(3)根据导数的正负,判断函数在[2,2]-上的单调性,即可得答案.【详解】(1)解:因为函数()2()4(),R f x x x a a =--∈,∴()22()2()4324f x x x a x x ax =-+-=--',由(1)0f '-=,得3240a +-=,解得12a =;(2)解:由(1)可知2()34(34)(1)f x x x x x ==-'--+,解不等式()0f x '>,得43x >或1x <-,所以函数()f x 的单调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,解不等式()0f x '<,得413x -<<,所以函数()f x 的单调递减区间为41,3⎛⎫- ⎪⎝⎭;(3)解:当22x -≤≤时,函数()f x 与()f x '的变化如下表所示:令()0f x '=,解得43x =或=1x -,x[)2,1--=1x -41,3⎛⎫- ⎪⎝⎭43x =4,23⎛⎤ ⎥⎝⎦()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增因为9(1)2f -=,(2)0f =;所以当=1x -时,函数()f x 取得极大值9(1)2f -=;又因为(2)0f -=,450327f ⎛⎫=- ⎪⎝⎭,所以当43x =时,函数()f x 取得极小值450327f ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最大值为92,最小值为5027-.21.(1)2213x y +=(2)不存在,理由见解析【分析】(1)结合椭圆的定义,结合顶点坐标,即可求椭圆方程;(2)首先求线段MN 的中垂线方程,根据点A 在中垂线上,求m ,并判断是否满足0∆>.【详解】(1)椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -得1b =椭圆上任一点到两个焦点的距离之和2a =a =所以椭圆的方程为2213x y +=(2)设直线l 与椭圆C 两个不同的交点()()1122,,,M x y N x y ∵||||AM AN =所以,点A 在线段MN 的中垂线l ',下面求l '的方程联立方程2233y x m x y =+⎧⎨+=⎩去y ,可得2246330x mx m ++-=由()222(6)443312480m m m ∆=-⨯⨯-=-+>,解得22m -<<1232mx x +=-设MN 的中点为()00,P x y ,有120003244x x m m x y x m +==-=+=则l '的方程为344m m y x ⎛⎫-=-+ ⎪⎝⎭即2m y x =--由于点A 在直线MN 的中垂线l '上,解得2m =又∵22m -<<所以不存在实数m 满足题意.22.(1)1y x =-+或()2314y x =-(2)证明见解析【分析】(1)易知()1,0不在()f x 上,设切点()3000,1x x x -+,由导数的几何意义求出切线方程,将()1,0代入求出对应0x ,即可求解对应切线方程;(2)构造()()31cos 0g x x ax x x =-+->,求得()23sin g x x a x '=-+,再令()()u x g x '=,通过研究()u x '正负确定()g x '单调性,再由()g x '正负研究()g x 最值,进而得证.【详解】(1)由题,1a =时,()31f x x x =-+,()231f x x '=-,设切点()3000,1x x x -+,则切线方程为()()()320000131y x x x x x --+=--,该切线过点()1,0,则()()3200001311x x x x -+-=--,即3200230x x -=,所以00x =或032x =.又()01f =;()01f '=-;32328f ⎛⎫= ⎪⎝⎭,32324f ⎛⎫'= ⎪⎝⎭.所以,切线方程为1y x =-+或()2314y x =-;(2)设()()31cos 0g x x ax x x =-+->,则()23sin g x x a x '=-+,令()()()23sin 0u x g x x a x x '==-+>,则()6cos u x x x '=+,可知π02x <<,时,()0u x '>;π2x ≥时,()0u x '>,故0x >时均有()0u x '>,则()u x 即()g x '在()0,∞+上单调递增,()0g a '=-,因为0a ≤时,则()00g a '=-≥,()()00g x g ''>≥,故()g x 在()0,∞+上单调递增,此时,()()00g x g >=.所以,当0a ≤时,对于任意0x >,均有()cos f x x >.。

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解
C.若一个回归直线方程 ,则变量 每增加一个单位时, 平均增加3个单位
D.若一组数据2,4, ,8 平均数是5,则该组数据的方差也是5
2.甲、乙两名同学参加校园歌手比赛,7位评委老师给两名同学演唱比赛打分情况的茎叶图如图(单位:分),则甲同学得分的平均数与乙同学得分的中位数之差为
A.1B.2
C.3D.4
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()
A.先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为 ,然后抽取编号为 , , ,…的学生,这种抽样方法是分层抽样法
B.线性回归直线 不一定过样本中心
3.设椭圆C: 的左、右焦点分别为 、 ,P是C上的点, ⊥ ,
∠ = ,则C的离心率为
A. B. C. D.
4.下课后教室里最后还剩下甲、乙、丙三位同学,如果没有2位同学一起走的情况,则第二位走的是甲同学的概率是()
A. B. C. D.
5.设两圆 、 都和两坐标轴相切,且都过点(4,1),则两圆心的距离 =
13.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?”其意思为:“今有某地北面若干人,西面有7488人,南面有6912人,这三面要征调300人,而北面征调108人(用分层抽样的方法),则北面共有__________人.”
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()

安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

黄山市2018~2019学年度第一学期期末质量检测高二(文科)数学试题第Ⅰ卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线a平行于平面α,则下列结论错误..的是( )A. 直线a上的点到平面α的距离相等B. 直线a平行于平面α内的所有直线C. 平面α内有无数条直线与直线a平行D. 平面α内存在无数条直线与直线a成90°角【答案】B【解析】【分析】由题意,根据两直线的位置关系的判定,以及直线与平面的位置关系,逐一判定,即可得到答案.【详解】由题意,直线a平行于平面α,则对于A中,直线a上的点到平面α的距离相等是正确的;对于B中,直线a与平面α内的直线可能平行或异面,所以不正确;对于C中,平面α内有无数条直线与直线a平行是正确的;对于D中,平面α内存在无数条直线与直线a 成90°角是正确的,故选D.【点睛】本题主要考查了空间中两直线的位置关系的判定,其中解答中熟记空间中两条直线的三种位置关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.在空间直角坐标系中,点关于平面的对称点是( )A. B. C. D.【答案】D【解析】【分析】空间直角坐标系中任一点关于坐标平面的对称点为,即可求得答案【详解】根据空间直角坐标系中点的位置关系可得点关于平面的对称点是故选【点睛】本题考查了对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,属于基础题。

3.已知,则“”是“直线与直线垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,根据两直线垂直的性质求出的值,由此判断必要性,从而得到答案【详解】充分性:当时,两条直线分别为:与此时两条直线垂直必要性:若两条直线垂直,则,解得故“”是“直线与直线垂直”的充分不必要条件故选【点睛】本题是一道有关充分条件和必要条件的题目,需要分别从充分性和必要性两方面分析,属于基础题。

高二文科数学上学期期末检测模拟试卷及答案

高二文科数学上学期期末检测模拟试卷及答案

连云港市~第一学期期末调研考试高二数学试题(选修历史)命题人:寇恒清 王建宏 审题人:李太敏 王 翔注意:1、本试题满分160分,考试时间120分钟。

2、答题前请将试卷密封线内的有关项目填写清楚,密封线内不能答题。

参考公式:线性回归方程系数公式()1221,.ni ii nii x y nx yb a y bx xn x ==-⋅==--∑∑一、填空题:本大题共14小题,每小题5分,共70分。

1、在一场演讲比赛中,七位评委为某参赛选手打出的分数 的茎叶图如右图所示,去掉一个最高分和一个最低分后,所 剩数据的方差为 。

2、由一组样本数据()()()1122,,,,,,n n x y x y x y 得到的回归直线方程为ˆy bx a =+,若已知回归直线的斜率是1.05,且4,5,x y ==则此回归直线方程是 。

3、曲线21y x x=-,在点()1,0处 的切线方程为 。

4、双曲线2214x y k-=的 离心率()1,2e ∈,则k 的 取值范围是 。

5、某算法流程图如右图所示,若输入2,1a b ==, 则输出值为 。

6、若抛物线2y x =上的点P 到直线1x =-的距离为2,则点P 到该抛物线焦点的距离 为 。

结束输出输出开始输入是否7、右面的伪代码运算后输出的结果是 。

8、已知双曲线()222109x y b b -=>的渐近线方程为53y x =±, 则此双曲线的焦点到渐近线的距离为 。

9、若函数()cos f x x x λ=+是区间,66ππ⎡⎤-⎢⎥⎣⎦上的减函数, 则λ的取值范围为 。

10、在区域(){},0,02M x y x y π=<<<<内随机撒一把黄豆,落在区域(){}2,N x y y x x π=<-内的概率是 。

11、双曲线()2210x y mn m n-=≠的离心率为32,有一个焦点与抛物线212y x =的焦点重合,则mn = 。

东海高级中学高二文科数学期末复习模拟试题(一)

东海高级中学高二文科数学期末复习模拟试题(一)

东海高级中学高二文科数学期末复习模拟试题(一)2010.1一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上)1.抛物线x y 42=的焦点坐标是 。

2.命题“R x ∈∃,012≤++x x ”的否定是 。

3.下面给出的伪代码运行结果是 。

4.要从容量为1003的总体中抽取一个容量是50的样本, 先从1003个个体中随机抽出3个并将其剔除,然后在剩 余的1000个个体中采用系统抽样的方法抽出50个个体组 成一个样本,那么每个个体被抽到的概率为 。

5.航天飞机发射后的一段时间内,第t 秒时的高度10)(3+=t t h ,其中h 的单位为米,则第1秒末航天飞机的瞬时速度是 米/秒。

6.口袋中有若干红球、黄球与蓝球,摸出红球的概率为0.45,摸出红球或黄球的概率为0.65,则摸出红球或蓝球的概率为 。

7.右上图是设计计算1017531⨯⨯⨯⨯⨯ 的流程图,那么,判断框中应补条件 。

8.已知中心在原点,对称轴为坐标轴的双曲线的一条渐近线为x y 34=,则该双曲线的离心率为 。

9.已知样本方差是由公式()212125121∑=-=k k x s 求得,则=+++1221x x x 。

10.若直线kx y =是x y ln =的切线,则=k 。

11.已知函数)(x f 的导函数13)(2-='x x f ,且2)1(=f ,则)(x f 的解析式为 。

12.将一颗骰子先后抛掷两次,观察向上的点数,则两次观察到的点数之和为数字 的概率是61。

第3题13.函数tx x x x f --=cos sin )(在⎥⎦⎤⎢⎣⎡2,0π上单调递增,则实数t 的取值范围是 。

14.给出下列命题:①若0)(0='x f ,则函数)(x f 在0x x =处有极值; ②0>m 是方程1422=+y m x 表示椭圆的充要条件; ③若x e x x f )8()(2-=,则)(x f 的单调递减区间为)2,4(-;④)1,1(A 是椭圆13422=+y x 内一定点,F 是椭圆的右焦点,则椭圆上存在点P ,使得PF PA 2+的最小值为3.其中为真命题的序号是 ▲ 。

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

荆州中学高二圆月期末考数学(文科)试题一,选择题:本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.设,则地一个必要不充分款件是()A. B. C. D.【结果】A【思路】【思路】当时,是成立,当成立时,不一定成立,依据必要不充分款件地判定方式,即可求解.【详解】由题意,当时,是成立,当成立时,不一定成立,所以是地必要不充分款件,故选A.【点睛】本题主要考查了必要不充分款件地判定问题,其中解答中熟记必要不充分款件地判定方式是解答本题地关键,着重考查了推理与论证能力,属于基础题.2.已知椭圆长轴在轴上,若焦距为4,则等于()A. 4B. 5C. 7D. 8【结果】8【思路】由椭圆地长轴在y轴上,则a2=m﹣2,b2=8﹣m,c2=a2﹣b2=2m﹣10.由焦距为4,即2c=4,即有c=2.即有2m﹣10=4,解得m=7.故结果为:7.3.已知直线和平面,若,,则过点且平行于地直线()A. 只有一款,不在平面内B. 只有一款,且在平面内C. 有无数款,一定在平面内D. 有无数款,不一定在平面内【结果】B【思路】【思路】假设m是过点P且平行于l地直线,n也是过点P且平行于l地直线,则与平行公理得出地结论矛盾,进而得出结果.【详解】假设过点P且平行于l地直线有两款m与n,则m∥l且n∥l由平行公理得m∥n,这与两款直线m与n相交与点P相矛盾,故过点且平行于地直线只有一款,又因为点P在平面内,所以过点P且平行于l地直线只有一款且在平面内.故选:B【点睛】本题主要考查了空间中直线与直线之间地位置关系,空间中直线与平面地位置关系.过一点有且只有一款直线与已知直线平行.4.已知数列是等差数列,且,则公差()A. B. 4 C. 8 D. 16【结果】B【思路】试题思路:等差数列中考点:等差数列地性质5.“更相减损术”是《九章算术》中记录地一种求最大公约数地算法,按其算理流程有如下程序框图,若输入地,分别为165,66,则输出地为()A. 2B. 3C. 4D. 5【结果】B【思路】【思路】由题中程序框图知,该程序地功能是利用循环结构计算并输出变量地值,模拟程序地运行过程,思路循环中各变量地变化情况,即可得到结果.【详解】由程序框图可知:输入时,满足,则,满足,则,满足,则,不满足,此时输出,故选B.【点睛】本题主要考查了循环结构地程序框图地计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构。

(某某市县区中学)高二(上学期)文科数学期末复习质量监测模拟考试试题卷(附答案解析)

(某某市县区中学)高二(上学期)文科数学期末复习质量监测模拟考试试题卷(附答案解析)

(某某市县区中学)高二(上学期)文科数学期末复习质量监测模拟考试试题卷(附答案解析)一、单选题(本大题共12小题,共48.0分)1.命题“∀x∈R,x2-x≥0”的否定是()A. ∀x∈R,x2-x≥0B. ∃x∈R,x2-x≥0C. ∀x∈R,x2-x<0D. ∃x∈R,x2-x<02.下列求导运算正确的是()A. (cos x)′=sin xB.C. (2x)′=2x log2eD.3.若a,b∈R,则|a|+|b|>1是|a+b|>1的()条件A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 非充分非必要条件4.曲线y=-x3+3x2在点(1,2)处的切线方程为()A. y=3x-1B. y=-3x+5C. y=3x+5D. y=2x5.从1,2,3,4这四个数中一次随机选取两个数,所取两个数之和为5的概率是()A. B. C. D.6.过定点P(0,2)作直线l,使l与曲线y2=4x有且仅有1个公共点,这样的直线l共有()A. 1条B. 2条C. 3条D. 4条7.函数的导数是( )A. B. C. D.8.某天,由重庆八中渝北校区发往沙坪坝校区的三辆校车分别在,,发车,何老师在至之间到达乘车地点乘坐校车,且何老师到达乘车地点的时刻是随机的,则他等车时间不超过10分钟的概率是( )A. B. C. D.9.若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A. B. 2 C. D. 410.设函数,f'(x)为f(x)的导函数,若函数g(x)=f(x)+f'(x)的图象关于原点对称,则cosθ的值是()A. B. C. D.11.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A. B. C. D.12.已知定义在R上的奇函数f(x),当x>0时xf′(x)>f(x),且f(3)=0,则不等式f(x)≥0的解集为()A. (-∞,-3]∪[3,+∞)B. [-3,3]C. (-∞,-3]∪[0,3]D. [-3,0]∪[3,+∞)二、单空题(本大题共4小题,共16.0分)13.一个骰子连续投2次,点数和为4的概率______ .14.若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列命题正确的是______ (写出所有正确命题的编号)①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3.②直线l:y=x-1在点P(1,0)处“切过”曲线C:y=ln x.③直线l:y=-x+π在点P(π,0)处“切过”曲线C:y=sin x.④直线l:y=x+1在点P(0,1)处“切过”曲线C:y=e x.15.已知过双曲线C:=1(a>0,b>0)的焦点的直线l与C交于A,B两点,且使|AB|=4a的直线l恰好有3条,则双曲线C的离心率为______.16.函数f(x)=x3+ax2+bx+a2(a,b∈R)在x=1处有极值为10,则b的值为______.三、解答题(本大题共6小题,共56.0分)17.若双曲线C与曲线x2-3y2=3有相同的渐近线,且过点(-6,3),试求C的方程.18.设函数f(x)=ln x-x(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数y=f(x)的极值.19.某商场举行抽奖活动,从装有编号为0,1,2,3四个小球的抽奖箱中同时抽出两个小球,两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.20.袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个,已知从袋子中随机抽取1个小球,取到标号为2的小球的概率是.(1)求n的值;(2)从袋子中不放回地随机抽取2个球,记第一次取出小球标号为a,第二次取出的小球标号为b.①记“a+b=2”为事件A,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.21.已知斜率为1的直线l过椭圆+y2=1的右焦点F交椭圆于A、B两点,(1)求焦点F的坐标及其离心率(2)求弦AB的长.22.(Ⅰ)设函数f(x)定义域为I,叙述函数f(x)在定义域I内某个区间D上是减函数的定义;(Ⅱ)用单调性的定义证明函数f(x)=在x∈[2,6]的单调性;(Ⅲ)当x∈[2,6]时,求函数f(x)=的值域.(某某市县区中学)高二(上学期)文科数学期末复习质量监测模拟考试试题卷(附答案解析)1.【答案】D【解析】【分析】本题考查全称命题的否定形式,属于基础题目.全称命题“∀x∈M,p(x)”的否定为特称命题“∃x∈M,¬p(x)”.【解答】解:命题“∀x∈R,x2-x≥0”的否定是“∃x∈R,x2-x<0”.故选:D.2.【答案】B【解析】解:(cos x)′=-sin x,,(2x)′=2x ln2,.故选:B.根据基本初等函数和复合函数的导数的求导公式求导即可.本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.3.【答案】B【解析】解:∵|a|+|b|≥|a+b|,∴若|a+b|>1,则|a|+|b|>1成立,即必要性成立,反之不一定成立,即充分性不成立即|a|+|b|>1是|a+b|>1必要不充分条件,故选:B.根据绝对值不等式的性质,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合绝对值不等式的性质是解决本题的关键.4.【答案】A【解析】【分析】本题主要考查了利用导数研究曲线上某点切线方程,属于基础题.根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可.【解答】解:∵y=-x3+3x2,∴y'=-3x2+6x,∴y'|x=1=(-3x2+6x)|x=1=3,∴曲线y=-x3+3x2在点(1,2)处的切线方程为y-2=3(x-1),即y=3x-1,故选:A.5.【答案】C【解析】解:从1,2,3,4这四个数中一次随机地取两个数,其基本事件共有以下6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).其中两个数的和为5的共有两个(1,4),(2,3).故所求事件的概率P==,故选:C.从1,2,3,4这四个数中一次随机地取两个数,其基本事件共有以下6个,其中两个数的和为5的共有两个(1,4),(2,3).据此可得出答案.把所有的基本事件一一列举出来,再找出所要求的事件包含的基本事件个数即可.6.【答案】C【解析】解:由题意可知过点p与x轴平行时直线与抛物线有一个交点;当过点p与x轴不平行时设直线方程为y=kx+2,与抛物线方程联立消去y得k2x2+(4k-4)x+4=0要使直线与曲线有且仅有1个公共点需△=(4k-4)2-16k2=0,解得k=,同时抛物线与y轴也只有一个交点,故y轴也符合;故选:C.通过图象可知当直线与抛物线相切时,与x轴平行时和y轴时直线与抛物线有且仅有1个公共点.本题主要考查了抛物线的应用.本题可采用数形结合方法解决.7.【答案】C【解析】试题分析:考点:函数求导公式点评:本题考查的是幂函数的导数:若则8.【答案】C【解析】【分析】本题考查与长度有关的几何概型,求出何老师等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设何老师到达时间为y,当y在17:50至18:00,或18:20至18:30时,何老师等车时间不超过10分钟,故.故选C .9.【答案】D【解析】【分析】本题考查椭圆及抛物线的简单几何性质,考查转化思想,属于基础题.求得椭圆的焦点坐标,由题意可得=2,即可求得p的值.【解答】解:由椭圆a=,b=,c2=a2-b2=4,则椭圆的焦点右焦点F(2,0),由抛物线y2=2px的焦点为,则=2,则p=4,故选:D.10.【答案】D【解析】【分析】本题考查了导数的运法和三角函数的化简,属于中档题.先求导,再利用两角差的正弦公式可得可得g(x)=-4sin(x+θ-),再根据函数的性质即可求出θ=,问题得以解决.【解答】解:f(x)=2cos(x+θ),(0<θ<π)∴f′(x)=-2sin(x+θ),∴g(x)=f(x)+f'(x)=2cos(x+θ)-2sin(x+θ)=-4sin(x+θ-),∵函数g(x)=f(x)+f'(x)的图象关于原点对称,∴θ-=kπ,k∈Z,∵0<θ<π,∴θ=,∴cosθ=,故选:D.11.【答案】D【解析】【分析】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想,属于基础题.先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为-1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【分析】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy-bc=0与渐近线y=垂直,所以,即b2=ac所以c2-a2=ac,即e2-e-1=0,所以或(舍去).故选D .12.【答案】D【解析】解:根据题意,设g(x)=,(x>0),则其导数g′(x)=,而当x>0时xf′(x)>f(x),必有g′(x)>0,即g(x)在(0,+∞)上为增函数,又由f(3)=0,则g(3)==0,在区间(0,3)上,g(x)<0,在区间(3,+∞)上,g(x)>0,而g(x)=,则在区间(0,3)上,f(x)<0,在区间(3,+∞)上,f(x)>0,又由f(x)是定义在R上的奇函数,则f(0)=0,f(-3)=-f(3)=0,且在区间(-∞,-3)上,f(x)<0,在区间(-3,0)上,f(x)>0,综合可得:不等式f(x)≥0的解集为[-3,0]∪[3,+∞);故选:D.根据题意,设g(x)=,(x>0),求出其导数,分析可得g(x)在(0,+∞)上为增函数,又由f(3)=0可得g(3)=0,分析可得g(x)的符号,进而分析f(x)在(0,+∞)上的符号规律,结合函数的奇偶性分析可得答案.本题考查函数的单调性与导数的应用,涉及函数的奇偶性、单调性的综合应用,属于中档题.13.【答案】【解析】解:由题意知本题是一个古典概型,试验发生包含的基本事件共6×6=36个,满足条件的事件是点数和为4的可以列举出有(1,3)、(2,2)、(3,1)共3个,∴故答案为:本题是一个古典概型,试验发生包含的基本事件共6×6个,满足条件的事件是点数和为4的可以列举出有(1,3)、(2,2)、(3,1)共3个,根据古典概型概率公式得到结果.本题考查古典概型,古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型.14.【答案】①③【解析】解:①,由y=x3,得y′=3x2,则y′|x=0=0,直线y=0是过点P(0,0)的曲线C的切线,又当x>0时y>0,当x<0时y<0,满足曲线C在P(0,0)附近位于直线y=0两侧,故命题①正确;②由y=ln x,得y′=,则y′|x=1=1,曲线在P(1,0)处的切线为y=x-1,由g(x)=x-1-ln x,得g′(x)=1-,当x∈(0,1)时,g′(x)<0,当x∈(1,+∞)时,g′(x)>0.则g(x)在(0,+∞)上有极小值也是最小值,为g(1)=0.即y=x-1恒在y=ln x的上方,不满足曲线C在点P附近位于直线l的两侧,故命题②错误,③由y=sin x,得y′=cos x,则y′|x=π=-1,直线y=-x+π是过点P(0,0)的曲线的切线,又x∈(-,0)时x<sin x,x∈(0,)时x>sin x,满足曲线C在P(0,0)附近位于直线y=-x+π两侧,故命题③正确;④函数y=e x的导数f′(x)=y=e x,则f′(0)=1,则切线方程为y=x+1,设g(x)=e x-(x+1),则g′(x)=e x-1,当x>0,g′(x)>0,函数g(x)递增,当x<0时,g′(x)<0,函数g(x)递减,则当x=0时,函数取得极小值同时也是最小值g(0)=1-1=0,则g(x)≥g(0)=0,即e x≥x+1,则曲线不在切线的两侧,故④错误.故答案为:①③分别求出每一个命题中曲线C的导数,得到曲线在点P出的导数值,求出曲线在点P 处的切线方程,再由曲线在点P两侧的函数值与对应直线上点的值的大小判断是否满足(ii),则正确的选项可求.本题考查命题的真假判断与应用,考查了利用导数研究过曲线上某点处的切线方程,综合考查导数的应用.15.【答案】【解析】解:由|AB|=4a的直线1恰好有3条,由双曲线的对称性可得,必有一条与x轴垂直,另两条关于x轴对称,令x=c,代入双曲线C:=1(a>0,b>0),可得y=±b=±,即有此时|AB|==4a,即为b2=2a2=c2-a2,e>1,可得e=.故答案为:.由|AB|=4a的直线1恰好有3条,由双曲线的对称性可得,必有一条与x轴垂直,另两条关于x轴对称,令x=c,代入双曲线方程,计算即可得到双曲线的离心率.本题考查双曲线的渐近线方程的求法,注意运用双曲线的对称性,考查运算能力,属于中档题.16.【答案】-11【解析】解:函数f(x)=x3+ax2+bx+a2,则f'(x)=3x2+2ax+b,因为f(x)在x=1处有极值为10,则,解得a=4,b=-11或a=-3,b=3,当a=4,b=-11时,f'(x)=3x2+8x-11,Δ=64+132>0,所以函数有极值点;当a=-3,b=3时,f'(x)=3(x-1)2≥0,所以函数无极值点.综上所述,b的值为-11.故答案为:-11.利用极值以及极值点的定义,列出方程组,求出a,b的值,然后进行检验即可.本题考查了利用导数研究函数极值的理解与应用,函数极值点的理解与应用,考查了逻辑推理能力与化简运算能力,属于中档题.17.【答案】解:设所求双曲线方程为x2-3y2=λ,λ≠0,把点(-6,3)代入,得:36-27=λ,即λ=9,∴双曲线C的方程为.【解析】设所求双曲线方程为x2-3y2=λ,λ≠0,把点(-6,3)代入,能求出双曲线C的方程.本题考查双曲线方程的求法,是基础题,解题时要注意双曲线性质的合理运用.18.【答案】解:(Ⅰ)f(x)的定义域是(0,+∞),f′(x)=,令f′(x)>0,解得:0<x<1,令f′(x)<0得x>1,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)由(Ⅰ)得:f(x)在x=1处取得极大值,f(x)极大值=f(1)=-1.【解析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出函数的极值即可.本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.19.【答案】解:从袋中同时抽两个小球共有(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)六种情况.(1)设抽出两个球的号码之和为3为事件A,事件A共包含(0,3)(1,2)两种情况,∴.(2)设抽出两球的号码之和为5为事件B,两球的号码之和为4为事件C,由上知,.∴中奖概率为P=.【解析】本题考查古典概型及其计算,互斥事件的概率,属于基础题.求古典概型事件的概率,首先要求出各个事件包含的基本事件,求基本事件个数的常用方法有:列举法、排列、组合法、图表法.(1)先列举出从袋中同时抽两个小球的所有情况,得到号码之和为3的所有情况,据古典概型概率公式求出中三等奖的概率.(2)先列举出从袋中同时抽两个小球的所有情况,得到号码之和为4,5的所有情况,据古典概型概率公式求出中一等奖,中二等奖的概率,利用互斥事件的概率公式求出中奖概率.20.【答案】(1)n=2(2) 1-【解析】(1)由题意可得=,解得n=2.(2)①由于是不放回抽取,事件A只有两种情况:第一次取0号球,第二次取2号球;第一次取2号球,第二次取0号球.所以P(A)=.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4恒成立”.(x,y)可以看成平面中的点,则全部结果所构成的区域为Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)==1-.21.【答案】(1)解:∵a2=4,b2=1∴…(2分)∴…(4分)离心率e==…(6分)(2)解:由斜率为1的直线l过椭圆+y2=1的右焦点F得直线l的方程为设A(x1,y1),B(x2,y2),…(7分)由得:…(8分)∴…(9分)所以:…(10分)=…(11分)=…(12分)【解析】(1)利用椭圆的标准方程,求出a,b,c即可求出椭圆的焦点坐标,以及椭圆的离心率.(2)设出AB坐标,求出直线方程,联立椭圆与直线方程,利用韦达定理以及弦长公式求解即可.本题考查椭圆的标准方程的应用,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.22.【答案】解:(Ⅰ)减函数的定义为:一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数.(Ⅱ)证明:设2≤x1<x2≤6,==,∵2≤x1<x2≤6,∴x2-x1>0,x1-1>0,x2-1>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2);则f(x)在x∈[2,6]上单调递减;(Ⅲ)由(Ⅱ)f(x)在x∈[2,6]上单调递减,则,f max(x)=f(2)=5,故f(x)在x∈[2,6]上的值域为[,5].【解析】(Ⅰ)根据题意,由减函数的定义可得答案;(Ⅱ)根据题意,由作差法分析可得结论,(Ⅲ)根据题意,利用函数的单调性求出函数的最大值和最小值,即可得答案.本题考查函数单调性的判断以及性质的应用,注意函数单调性的定义,属于基础题.。

人教版高二数学上册期末考试文科数学模拟试卷(附答案)

人教版高二数学上册期末考试文科数学模拟试卷(附答案)

11A-SX-0000002_高中二年级第一学期期末考试模拟试题7. 设抛物线 C :y24x 的焦点为 F ,直线 l :x=3,若过焦点 F 的直线与抛物2_高二数学( 文)__-_线 C 订交于 A, B 两点,则以线段 AB 为直径的圆与直线l 的地点关系为_-(全卷共 8 页,满分 150 分, 120 分钟达成)__:-题号一二三总分().号 -151617181920学 -(A )订交( B )相切_- 得分_( C )相离( D )以上三个答案均有可能__ -一、选择题:本大题共8 小题,每题5 分,共 40 分 .在每题给出的四个选项_aa_-8. 设 为空间中的一条直线,记直线与正方体 ABCDA 1B 1C 1D 1 的六个面所在___-中,只有一项为哪一项切合要求的 ._的平面订交的平面个数为m ,则 m 的全部可能取值构成的会合为()___线{2,4}{2,6}{4,6}{2,4,6}_ 的倾斜角为( ) ._( A ) ( B )(C )( D )封 1. 直线 x y3 0_ _ 密 o o o o_ (A ) 30 (B ) 45 ( C ) 60( D ) 135_-二、填空题:本大题共 6 小题,每题 5 分,共 30 分 .把答案填在题中横线上 ._ : - 2. 命题 “对随意 x ,都有 ln x 1 ”的否认是( )9.命题“若 a2b20 ,则 a b ”的逆否命题为 _____.名 3姓 - ( A )存在 x 3,使得 ln x 1 ( B )对随意 x 3,都有 ln x ≤1-10.经过点 M (2,1) 且与直线 3xy 8 0 垂直的直线方程为 _____.x ln x ≤1 ( D )对随意 x ≤3 ,都有 ln x 1- ( C )存在 使得3,11.班 - 2 2 一个四棱锥的三视图如下图,那么这个四_ - 3.1的焦点到其渐近线的距离为( )_ 双曲线 x y_棱锥的体积为 _____._-22__-(A ) 1 (B ) 2(C ) 2 ( D ) 2_12. 在中,,4 , BC . 以年2ABCAB3 BCAB_111 _线_4. 设是两个不一样的平面,a,b,c 是三条不一样的直线,()BC 所在的直线为轴将ABC 旋转一周,则_封 ,正 ( 主)视图侧 (左 )视图__ 密 _( A )若 a b , bc ,则 a //c( B )若 a// , b// ,则 a //b旋转所得圆锥的侧面积为_____._ -1_ -a b a //a_( C )若,( D )若,a,则// 13.若双曲线C 的一个焦点在直线_ _,则 b-1_22_xy俯视图_-5. “方程1 表示的曲线为椭圆”是“m n 0 ”的()l :4x3 y+20=0 上,一条渐近线与 l 平行,且__mn_-__ -双曲线 C 的焦点在 x 轴上,则双曲线 C 的标准方程为 _____;离心率为 _____._( A )充足不用要条件( B )必需不充足条件__-_ _-( C )充要条件( D )既不充足也不用要条件14. 在平面直角坐标系中,曲线C 是由到两个定点A(1,0) 和点 B( 1,0) 的距离之积__ll //C ,有以下四个结论: : 6.设是两个不一样的平面, 是一条直线, 若, ,,则( )2- , l // Im 等于 校的全部点构成的 . 关于曲线( A ) l 与 m 平行( B ) l 与 m 订交学○1曲线 C 是轴对称图形;( C ) l 与 m 异面( D ) l 与 m 垂直-1--2-11A-SX-00000022 曲线C 是中心对称图形;○○3 曲线 C 上全部的点都在单位圆x2 y 2 =1 内;○4 曲线 C 上全部的点的纵坐标y [ 1 , 1 ] .2 2此中,全部正确结论的序号是_____.三、解答题:本大题共 6 小题,共 80 分 .解答应写出文字说明,证明过程或演算步骤 .15.(本小题满分13 分)如图,在正三棱柱ABC A1 B1C1中,D为AB的中点.(Ⅰ)求证: CD 平面 ABBA ;1 1A1C1 (Ⅰ)求证:BC1//平面A1CD.B1A CDB 16.(本小题满分13 分)已知圆 C : x 2 y 2 6 x 8 y m 0 ,此中m R.(Ⅰ)假如圆 C 与圆x 2 y 2 1 相外切,求m的值;(Ⅰ)假如直线 x y 3 0 与圆C订交所得的弦长为 2 7 ,求m的值. 17.(本小题满分13 分)-3--4-11A-SX-0000002如图,在四棱柱 ABCD A1 B1C1 D1中,AA1平面ABCD,AB//CD,,2AB AD 设F为抛物线 C: y 2 x的焦点, A, B是抛物线C上的两个动点.AD CD 1,AA1 AB 2,E为 AA1 的中点 . (Ⅰ)若直线AB经过焦点F,且斜率为 2,求 | AB| ;(Ⅰ)求四棱锥C AEB 1B 的体积;(Ⅱ)若直线l: x y 4 0 ,求点A到直线l的距离的最小值 .(Ⅱ)求证:BC C1E ;(Ⅲ)判断线段B1 C 上能否存在一点M (与点C不重合),使得C, D,E,M四点共面 ? (结论不要求证明)B B1C C1A EA1D D119.(本小题满分14 分)18.(本小题满分13 分)-5--6-11A-SX-00000022 2如图, 在多面体 ABCDEF 中,底面 ABCD 为正方形, 四边形 BDEF 是矩形, 平面 已知椭圆 C :x2y 2 1 (a b 0) 的一个焦点为 (5, 0) ,离心率为5 . 点BDEF ⊥平面 ABCD.ab3P 为圆 M :x 2y 2(Ⅰ)求证:平面 ACF 平面 BDEF ;13 上随意一点, O 为坐标原点 .C 的标准方程;(Ⅱ)若过直线 BD 的一个平面与线段 AE 和 AF 分别订交于点 G 和 H (点 G(Ⅰ)求椭圆与点 A, E 均不重合),求证: EF //GH ;(Ⅱ)设直线 l 经过点 P 且与椭圆 C 相切, l 与圆 M 订交于另一点A ,点 A 关(Ⅲ)判断线段 CE 上能否存在一点 M ,使得平面 BDM // 平面 AEF ?若存在,于原点 O 的对称点为 B ,证明:直线 PB 与椭圆 C 相切 .求EM的值;若不存在,请说明原因 . ECEG FHDCAB20.(本小题满分 14 分)参照答案:-7--8-11A-SX-0000002一、选择题:本大题共8 小题,每题 5 分,共 40 分 .1.B2.C3.A4.D5.B6.A7.C8.D二、填空题:本大题共 6 小题,每题 5 分,共 30 分 .9. 若 a b ,则 a2 b2 0 10. x 3y 5 0 11. 1x 2y2 514. ○1 ○212. 15π13. 1,9 16 3注:第 13 题第一空 3 分,第二空 2 分;第14 题多项选择、少选或错选均不得分 .三、解答题:本大题共 6 小题,共80 分.15.(本小题满分13 分)( Ⅰ)证明:由于正三棱柱ABC A1 B1C1,D为AB的中点,因此 CD AB,AA1底面 ABC.1 分又由于 CD 底面 ABC ,因此 AA1 CD.3分又由于 AA1 I AB A,AB 平面 ABB1A1, AA1 平面 ABB1 A1,因此 CD 平面 ABB1A1. 6分( Ⅱ)证明:连结AC1 ,设 11O,连结 OD ,7 分AC I AC A C由正三棱柱ABC A1B1C1,得 AO OC1 , 1 1 又由于在ABC1中,AD DB ,O B1因此 OD//BC1,10分又由于 BC 平面 ACD,OD 平面 ACD ,A C1 1 1D因此 BC1 // 平面 A1CD .13 分 B 16.(本小题满分 13 分)(Ⅰ)解:将圆 C 的方程配方,得( x 3) 2 ( y 4) 2 25 m ,1分因此圆 C 的圆心为(3,4) ,半径 r 25 m ( m 25).3分由于圆 C 与圆x2 y 2 1 相外切,因此两圆的圆心距等于其半径和,即(3 0)2 (4 0)2 1 25 m ,5 分解得 m 9 .7 分(Ⅱ)解:圆 C 的圆心到直线x y 3 0 的距离 d| 3 4 3|2 2. 9分2由于直线 x y 3 0 与圆 C 订交所得的弦长为 2 7 ,因此由垂径定理,可得r 2 25 m (2 2)2 ( 7)2,11分解得 m 10. 13分17.(本小题满分 13 分)(Ⅰ)解:由于 AA1 平面 ABCD ,AD 平面 ABCD ,因此 AA1 AD .又由于 AB AD,AA1I AB A,因此 AD 平面 ABB1A1. 1分由于 AB//CD ,因此四棱锥 C AEB1B 的体积V C AEB1B 1 S四边形AEB B AD2分3 1-9--10-11A-SX-00000021[1(1 2) 2]1 1.4分3 2(Ⅱ)证明 :在底面 ABCD 中,由于 AB //CD ,AB AD ,ADCD 1,AB 2 ,因此AC2,BC 2,因此 AB 2AC 2BC 2 ,即 BCAC .6 分由于在四棱柱 ABCDA 1B 1C 1D 1 中, AA 1 平面 ABCD ,因此 CC 1 BC ,又由于 CC 1I ACC ,因此 BC平面 CAEC 1 ,8 分又由于 C 1 E 平面 CAEC 1 ,因此 BCC 1E . 10分点M (与点 C 不重合 ),C, D ,E,M 四点都不共面 .13 分18. (本小题满分 13 分)(Ⅰ) 解:由题意,得 F ( 1 ,0) ,则直线 AB 的方程为 y 2(x1). 2分22y 2(x1),消去 y,得 4x26x 1 0 . 3 分由2y22x,设点 A( x 1 , y 1 ) , B( x 2 , y 2 ) ,0 ,且 x 13 1 ,5 分则x 2, x 1x 224因此 | AB|5 | x 1 x 2 |5 (x 1 x 2 )24x 1 x 25.7分2(Ⅱ) 解:设 A( x 0 , y 0 ) ,则点 A 到直线 l 距离d| x 0 y 04|2.8 分由 A 是抛物线 C 上的动点,得 y 02 2 x 0 , 9 分 因此 d2 | 1y 02y 04|2| ( y 01)27|, 11 分224因此当 y 01时, d min 7 2 .4即点 A 到直线 l 的距离的最小值7 2.13分419. (本小题满分 14 分)(Ⅰ) 证明 :由于四边形 ABCD 是正方形,因此 AC BD . 1分又由于平面 BDEF 平面 ABCD ,平面 BDEF I 平面 ABCD BD , 且 AC 平面 ABCD ,因此 AC 平面 BDEF . 3分 又由于 AC平面 ACF ,因此平面 ACF 平面 BDEF .5 分(Ⅱ) 证明 :由题意, EF //BD , EF 平面 BDGH , BD平面 BDGH ,因此 EF // 平面 BDGH , 7 分又由于 EF平面 AEF ,平面 AEF I 平面 BDGHGH ,因此 EF//GH .9 分(Ⅲ)答:线段 CE 上存在一点 M ,使得平面 BDM // 平面 AEF ,此时EM1 .EC210 分-11--12-11A-SX-0000002以下给出证明过程 .同应当直线 PA // x 轴时,直线 PB 也与椭圆 C 相切 . 7分证明:设 CE 的中点为 M ,连结 DM , BM ,当直线 PA 与 x 轴既不平行也不垂直时,E由于 BD//EF , BD 平面 AEF , EF 平面 AEF ,设点 P( x 0 , y 0 ) ,直线 PA 的斜率为 k ,则 k 0 ,直线 PB 的斜率1 , 因此 BD// 平面 AEF .11 分kGM1F 因此直线 PA : y y 0 k( x x 0 ) ,直线 PB : y y 0设 ACI BD O ,连结 OM ,( x x 0 ) , 9 分Dk在 ACE 中,由于 OAOC , EMMC ,HCyy 0 k ( x x 0 ),O消去 y ,因此 OM //AE ,由x 2 y 2A1,9 4又由于 OM 平面 AEF , AE 平面 AEF ,B因此 OM//平面 AEF .13 分又由于 OM I BDO , OM ,BD 平面 BDM ,因此平面 BDM // 平面 AEF .14 分20. (本小题满分 14 分)(Ⅰ) 解:由题意,知 c5 ,c5 , 1 分a3因此 a 3 , b a 2 c 2 2,3分因此椭圆 C的标准方程为 x2y2. 4分194(Ⅱ) 证明:由题意,点 B 在圆 M 上,且线段 AB 为圆 M 的直径,因此 PA PB .5分当直线 PAx 轴时,易得直线 PA 的方程为 x3 ,由题意,得直线 PB 的方程为 y 2 ,明显直线 PB 与椭圆 C 相切 .得 (9 k 24) x 2 18( y 0 kx 0 )kx 9( y 0 2 360. 11分kx 0 )由于直线 PA 与椭圆 C 相切,因此1 [18( ykx ) k]24(9k 24)[9( ykx ) 2 36] 0 ,整理,得1144[( x 02 9) k 2 2x 0 y 0k y 024]0 .( 1) 12 分同理,由直线 PB 与椭圆 C 的方程联立,得 2144[( x 029)122x 0 y 0 1 y 02 4] .( 2)kk由于点 P 为圆 M :x 2 y 2 13 上随意一点,因此 x 02 y 02 13 ,即 y 0213 x 02 .代入( 1)式,得 ( x 02 9)k 2 2x 0 y 0 k (9 x 02 )0 ,代入( 2)式,得2144 [( x 02 9) 2x 0 y 0 k ( y 024)k 2 ]k 2144[( x 02 9) 2x 0 y 0 k (9 x 02 )k 2 ]k 2144 2 2 2k 2[( x 09) k2x 0 y 0 k (9 x 0 )]0 .-13--14-11A-SX-0000002因此此时直线PB与椭圆 C 相切.综上,直线PB与椭圆 C 相切.14 分-15--16-。

四川省成都市树德中学2022-2023学年高二上学期期末检测数学(文)试题(含答案)

四川省成都市树德中学2022-2023学年高二上学期期末检测数学(文)试题(含答案)

成都树德中学高2021级高二上期期末检测数学(文科)试题(考试时间:120分钟试卷满分:150分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是A.①用随机抽样法,②用系统抽样法 B.①用系统抽样法,②用分层抽样法C.①用分层抽样法,②用随机抽样法 D.①用分层抽样法,②用系统抽样法2.下面命题正确的是A .“若0ab ≠,则0a ≠”的否命题为真命题;B .命题“若1x <,则21x <”的否定是“存在1≥x ,则21x ≥”;C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件;D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件.3.直线3y kx =+被圆()()22234x y -+-=截得的弦长为2,则直线的倾斜角为A.3π B.3π-或3πC.3π或23π D.6π或56π4.执行下面的程序框图,如果输入的3N =,那么输出的S =A.1B.32C.53D.525.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则双曲线C 的渐近线方程为A.y =B.3y x =±C.12y x =±D.2y x=±6.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球B.恰好有一个白球与都是红球C.至少有一个白球与都是白球D.至少有一个白球与至少一个红球7.已知点()M ,x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则1y z x =+的取值范围是A .[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦ B .12,2⎡⎤-⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎡⎤-⎢⎥⎣⎦8.变量x 与y 的数据如表所示,其中缺少了一个数值,已知y 关于x 的线性回归方程为 1.2 3.8y x =-,则缺少的数值为A .24B .25C .25.5D .26取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为A .0.852B .0.8192C .0.8D .0.7511.已知O 为坐标原点,双曲线)0(14:222>=-b b y x C 的右焦点为F ,以OF 为直径的圆与C 的两条渐近线分别交于与原点不重合的点,,B A 若||332||||AB OB OA =+,则ABF ∆的周长为A.6B.36C.324+D.344+12.已知12F F 、分别是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,椭圆C 过(2,0)A -和(0,1)B 两点,点P在线段AB 上,则12PF PF ⋅的取值范围为()A .11,5⎡⎫-+∞⎪⎢⎣⎭B .371,5⎡⎤⎢⎥⎣⎦C .[2,1]-D .11,15⎡⎤-⎢⎥⎣⎦二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线28y x =的焦点到其准线的距离为________.14.已知“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是假命题,则实数m 的取值范围为.15.在区间[0,1]上随机取两个数x、y ,则满足13x y -≥的概率为___________.16.已知直线y kx =与椭圆C :222212x yb b+=交于,A B 两点,弦BC 平行y 轴,交x 轴于D ,AD 的延长线交椭圆于E ,下列说法中正确的命题有__________.①椭圆C 的离心率为2;②12AE k k =;③12AE BE k k ⋅=-;④以AE 为直径的圆过点B .x2223242526y2324▲2628三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知圆C 上有两个点()()2,3,4,9A B ,且AB 为直径.(1)求圆C的方程;(2)已知()0,5P ,求过点P 且与圆C 相切的直线方程.18.(本小题满分12分)某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)求这50名问卷评分数据的中位数;(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.19.(本小题满分12分)已知双曲线C 的焦点在x 轴上,焦距为4,且它的一条渐近线方程为y =.(1)求C 的标准方程;(2)若直线1:12l y x =-与双曲线C 交于A ,B 两点,求||AB .20.(本题满分12分)某书店销售刚刚上市的高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:单价/元1819202122销量/册6156504845由数据知,销量y 与单价x 之间呈线性相关关系.(1)求y 关于x 的回归直线方程;附:=J1 (−p(−p(−p2,=−.(2)预计以后的销售中,销量与单价服从(1)中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?22.(本小题满分12分)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.公众号高中僧试题下载高2021级期末考试数学(文)试题参考答案一、1-5CDCCA6-10BCABD11-12BD二、13、11614、2m≤15、9216、②③④18、(1)由频率分布直方图可得:()0.028 2 0.0232 0.0156 0.004101a+⨯+++⨯=,解得a=0.006;(2)由频率分布的直方图可得设中位数为m,故可得()()0.004 0.006 0.023210700.0280.5m++⨯+-⨯=,解得m=76,所以这50名问卷评分数据的中位数为76.(3)由频率分布直方图可知评分在[40,60)内的人数为0.004 50100.00610505⨯⨯+⨯⨯=(人),评分在[50,60)内的人数为0.00650103⨯⨯=(人),设分数在[40,50)内的2人为12,a a,分数在[50,60)内的3人为123,,b b b,则在这5人中抽取2人的情况有:()12,a a,()11,a b,()12,a b,()13,a b,()21,a b,()22,a b,()23,a b,()12,b b,()13,b b,()23,b b,共有10种情况,其中分数在在[50,60)内的2人有()12,b b,()13,b b,()23,b b,有3种情况,所以概率为P=310.…………………………………12分19、(1)因为焦点在x轴上,设双曲线C的标准方程为22221(0,0)x y a ba b-=>>,由题意得24c=,所以2c=,①又双曲线C的一条渐近线为y x=,所以3ba=,②又222+=a b c,③联立上述式子解得a=1b=,故所求方程为2213x y-=;(2)设11(,)A x y,22(,)B x y,联立2211213y xx y⎧=-⎪⎪⎨⎪-=⎪⎩,整理得213604x x+-=,由2134((6)1504∆=-⨯⨯-=>,所以1212x x+=-,1224x x=-,即AB===20、(1)由表格数据得=18+19+20+21+225=20,=61+56+50+48+455=52.则J15 (i−)(y i−)=﹣40,J15 (i−)2=10,则=−4010=−4,=−=52﹣(﹣4)×20=132,则y关于的回归直线方程为=−4x+132;(2)获得的利润z=(x﹣10)(﹣4x+132)=﹣4x2+172x﹣1320,对应抛物线开口向下,则当x=−1722×(−4)=21.5时,z取得最大值,即为了获得最大利润,该单元测试卷的单价应定为21.5元.22、(1)由题意得12p=,即2p=,所以抛物线的准线方程为1x=-.(2)设(,),(,),(),A AB B c cA x yB x yC x y,重心(,)G GG x y.令2,0Ay t t=≠,则2Ax t=.由于直线AB过F,故直线AB方程为2112tx yt-=+,代入24y x=,得222(1)40ty yt---=,故24Bty=-,即2Byt=-,所以212(,Bt t-.又由于11(),(3)3G A B c G A B cx x x x y y y y=++=++及重心G在x轴上,故220ct yt-+=,得422211222((),2()),(3t tC t t Gt t t-+--.所以直线AC方程为222()y t t x t-=-,得2(1,0)Q t-.由于Q在焦点F的右侧,故22t>.从而424222124422242221|1||2|||223221222211||||1||||2||23Act t tFG yS t t ttt tS t tQG y t tt t-+-⋅⋅--====--+--⋅--⋅-.令22m t=-,则0m>,1221223434S mS m m mm=-=-++++3212≥-=+.当m=12SS取得最小值12+,此时(2,0)G.。

高二上学期期末数学试卷含答案解析(文科)

高二上学期期末数学试卷含答案解析(文科)

高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)将命题“x2+y2≥2xy”改写成全称命题为()A.对任意x,y∈R,都有x2+y2≥2xy成立B.存在x,y∈R,使x2+y2≥2xy成立C.对任意x>0,y>0,都有x2+y2≥2xy成立D.存在x<0,y<0,使x2+y2≤2xy成立2.(5分)过点M(﹣2,a),N(a,4)的直线的斜率为﹣,则a等于()A.﹣8 B.10 C.2 D.43.(5分)方程x2+y2+2x+4y+1=0表示的圆的圆心为()A.(2,4)B.(﹣2,﹣4)C.(﹣1,﹣2)D.(1,2)4.(5分)命题p:“x2﹣3x﹣4=0”,命题q:“x=4”,则p是q的()条件.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)给出下列结论:①若y=,则y′=﹣;②若f(x)=sinα,则f′(x)=cosα;③若f(x)=3x,则f′(1)=3.其中,正确的个数是()A.0个B.1个C.2个D.3个6.(5分)函数f(x)=1+3x﹣x3()A.有极小值,无极大值B.无极小值,有极大值C.无极小值,无极大值D.有极小值,有极大值7.(5分)到直线x=﹣2与到定点P(2,0)的距离相等的点的轨迹是()A.椭圆B.圆C.抛物线D.直线8.(5分)抛物线 x=﹣2y2的准线方程是()A.B.C.D.9.(5分)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为()A.B.C.D.10.(5分)设椭圆+=1与双曲线﹣y2=1有公共焦点为F1,F2,P是两条曲线的一个公共点,则cos∠F1PF2的值等于()A.B.C.D.11.(5分)某几何体的三视图如图所示,则该几何体的体积是()A.B.2πC.D.12.(5分)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上二、填空题(本大题共4小题,每题5分,共20分.请把正确答案填在题中的横线上)13.(5分)在空间直角坐标系中,若点点B(﹣3,﹣1,4),A(1,2,﹣1),则|AB|= .14.(5分)函数f(x)=x3﹣8x2+13x﹣6的单调减区间为.15.(5分)设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为.16.(5分)如图,正方体ABCD﹣A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为(注:把你认为正确的结论的序号都填上).三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(11分)已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)当m=﹣1时,求A∪B;(2)若A⊆B,求实数m的取值范围.18.(11分)求适合下列条件的圆的方程.(1)圆心在直线y=﹣4x上,且与直线l:x+y﹣1=0相切于点P(3,﹣2);(2)过三点A(1,12),B(7,10),C(﹣9,2).19.(12分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(Ⅰ)求证:DE∥平面A1CB;(Ⅱ)求证:A1F⊥BE.20.(12分)已知椭圆C 1: +y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上, =2,求直线AB 的方程.21.(12分)已知函数f (x )=为常数,e 是自然对数的底数),曲线y=f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值;(2)求f (x )的单调区间.22.(12分)已知点A (﹣2,0),B (2,0),曲线C 上的动点P 满足•=﹣3.(I )求曲线C 的方程;(Ⅱ)若过定点M (0,﹣2)的直线l 与曲线C 有公共点,求直线l 的斜率k 的取值范围;(Ⅲ)若动点Q (x ,y )在曲线上,求u=的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】直接把命题改写成含有全称量词的命题即可.【解答】解:命题“x2+y2≥2xy”是指对任意x,y∈R,都有x2+y2≥2xy成立,故命题“x2+y2≥2xy”改写成全称命题为:对任意x,y∈R,都有x2+y2≥2xy成立.故选:A.【点评】本题考查全称量词及全称命题,理解全称命题的定义及形式是解决问题的关键,是基础题.2.【分析】直接利用斜率公式求解即可.【解答】解:过点M(﹣2,a),N(a,4)的直线的斜率为﹣,∴,解得a=10.故选:B.【点评】本题考查直线的斜率公式的求法,基本知识的考查.3.【分析】把圆的一般方程化为圆的标准方程,可得圆心坐标.【解答】解:圆的方程 x2+y2+2x+4y+1=0,即(x+1)2+(y+2)2 =4,故圆的圆心为(﹣1,﹣2),故选:C.【点评】本题主要考查圆的标准方程,属于基础题.4.【分析】根据题意,求出方程x2﹣3x﹣4=0的根,分析可得若q:x=4成立,则有p:“x2﹣3x﹣4=0”成立,反之若p:“x2﹣3x﹣4=0”成立,则q:x=4不一定成立,结合充分必要条件的定义,分析可得答案.【解答】解:根据题意,p:“x2﹣3x﹣4=0”,即x=4或﹣1,则有若q:x=4成立,则有p:“x2﹣3x﹣4=0”成立,反之若p:“x2﹣3x﹣4=0”成立,则q:x=4不一定成立,则p是q的必要不充分条件;故选:B.【点评】本题考查充分必要条件的判断,关键是掌握充分必要条件的定义.5.【分析】根据题意,依次计算三个函数的导数,分析可得答案.【解答】解:根据题意,依次分析3个结论;对于①,y==x﹣3,则y′=(﹣3)x﹣4=,正确;对于②,f(x)=sinα,为常数,则f′(x)=0,错误;对于③,若f(x)=3x,则f′(x)=3,则f′(1)=3,正确;其中正确的有2个;故选:C.【点评】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题.6.【分析】求出函数的导数,根据函数的单调性求出函数的极值即可.【解答】解:f′(x)=3(1+x)(1﹣x),令f′(x)>0,解得:﹣1<x<1,令f′(x)<0,解得:x>1或x<﹣1,故f(x)在(﹣∞,﹣1)递减,在(﹣1,1)递增,在(1,+∞)递减,故函数f(x)即有极大值也有极小值,故选:D.【点评】本题考查了函数的单调性,极值问题,考查导数的应用,是一道基础题.7.【分析】确定M的轨迹是以点P为焦点,直线l为准线的抛物线,即可得出结论.【解答】解:动点M到定点P(2,0)的距离与到定直线l:x=﹣2的距离相等,所以M的轨迹是以点P为焦点,直线l为准线的抛物线,故选:C.【点评】本题主要考查了抛物线的定义,考查学生的计算能力,比较基础.8.【分析】由于抛物线y2=﹣2px(p>0)的准线方程为x=,则抛物线 x=﹣2y2即y2=﹣x 的准线方程即可得到.【解答】解:由于抛物线y 2=﹣2px (p >0)的准线方程为x=,则抛物线 x=﹣2y 2即y 2=﹣x 的准线方程为x=, 故选:D .【点评】本题考查抛物线的方程和性质,主要考查抛物线的准线方程的求法,属于基础题. 9.【分析】利用双曲线的渐近线方程经过的点,得到a 、b 关系式,然后求出双曲线的离心率即可.【解答】解:双曲线﹣=1的一条渐近线经过点(3,﹣4),可得3b=4a ,即9(c 2﹣a 2)=16a 2,解得=. 故选:D .【点评】本题考查双曲线的简单性质的应用,基本知识的考查.10.【分析】先求出公共焦点分别为F 1,F 2,再联立方程组求出P ,由此可以求出,cos ∠F 1PF 2=【解答】解:由题意知F 1(﹣2,0),F 2(2,0),解方程组得取P 点坐标为(),,cos ∠F 1PF 2==故选:B .【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用.11.【分析】由已知中几何体的三视图,我们可以判断出几何体的形状及底面直径,母线长,进而求出底面半径和高后,代入圆锥体积公式进行计算,此图圆锥下面放一个半球,把二者的体积进行相加即可;【解答】解:如图所示:俯视图为一个圆,说明图形底面是一个圆,再根据正视图和俯视图一样,可知上面是一个圆锥,高为2,直径为2,下面是一个半径为1的半球,可得该几何体的体积是V圆锥+V 半球=×π×12×2+=,故选:A .【点评】本题考查由三视图求几何体的体积,考查由三视图还原直观图,考查球和圆锥的体积,本题是一个基础题,运算量比较小.12.【分析】可采取排除法.分别考虑A ,B ,C ,D 中有一个错误,通过解方程求得a ,判断是否为非零整数,即可得到结论. 【解答】解:可采取排除法.若A 错,则B ,C ,D 正确.即有f (x )=ax 2+bx+c 的导数为f′(x )=2ax+b , 即有f′(1)=0,即2a+b=0,①又f (1)=3,即a+b+c=3②,又f (2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a 为非零整数.若B 错,则A ,C ,D 正确,则有a ﹣b+c=0,且4a+2b+c=8,且=3,解得a ∈∅,不成立;若C 错,则A ,B ,D 正确,则有a ﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;若D 错,则A ,B ,C 正确,则有a ﹣b+c=0,且2a+b=0,且=3,解得a=﹣不为非零整数,不成立. 故选:A .【点评】本题考查二次函数的极值、零点等概念,主要考查解方程的能力和判断分析的能力,属于中档题.二、填空题(本大题共4小题,每题5分,共20分.请把正确答案填在题中的横线上)13.【分析】根据空间直角坐标系中两点间的距离公式求出|AB|.【解答】解:空间直角坐标系中,点B(﹣3,﹣1,4),A(1,2,﹣1),则|AB|==5.故答案为:5.【点评】本题考查了空间直角坐标系中两点间的距离公式应用问题,是基础题.14.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.【解答】解:f′(x)=3x2﹣16x+13=(x﹣1)(3x﹣13),令f′(x)<0,解得:1<x<,故函数的递减区间是:(1,),故答案为:(1,).【点评】本题考查了函数的单调性问题,考查导数的应用,是一道基础题.15.【分析】利用双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),可得c=,a=1,进而求出b,即可得出双曲线的方程.【解答】解:∵双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),∴c=,a=1,∴b=1,∴C的方程为x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线方程与性质,考查学生的计算能力,属于基础题.16.【分析】根据正方体的几何特征,结合已知中的图形,我们易判断出已知四个结论中的两条线段的四个端点是否共面,若四点共面,则直线可能平行或相交,反之则一定是异面直线.【解答】解:∵A、M、C、C四点不共面1是异面直线,故①错误;∴直线AM与CC1同理,直线AM与BN也是异面直线,故②错误.是异面直线,故③正确;同理,直线BN与MB1同理,直线AM与DD是异面直线,故④正确;1故答案为:③④【点评】本题考查的知识点是空间中直线与直线之间的位置关系判断,其中判断两条线段的四个顶点是否共面,进而得到答案,是解答本题的关键.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.【分析】(1)根据并集的定义即可求出,(2)由题意可知,解得即可.【解答】解:(1)当m=﹣1时,B={x|﹣2<x<2},A∪B={x|﹣2<x<3}.(2)由A⊆B,知,解得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2].【点评】本题考查并集的法,考查实数的取值范围的求法,考查并集及其运算、集合的包含关系判断及应用等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.【分析】(1)设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,由已知可得,求解方程组得到a,b,r的值,则圆的方程可求;(2)设圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由已知列关于D,E,F的方程组,求解得答案.【解答】解:(1)设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,则有,解得a=1,b=﹣4,r=2.∴圆的方程为(x﹣1)2+(y+4)2=8;(2)设圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),则,解得D=﹣2,E=﹣4,F=﹣95.∴所求圆的方程为x2+y2﹣2x﹣4y﹣95=0.【点评】本题考查利用待定系数法求圆的方程,考查计算能力,是基础题.19.【分析】(Ⅰ)由D,E分别是AC,AB上的中点,结合中位线定理和线面平行的判定定理可得结论;(Ⅱ)由已知易得对折后DE⊥平面A1DC,即DE⊥A1F,结合A1F⊥CD可证得A1F⊥平面BCDE,再由线面垂直的性质可得结论.【解答】证明:(Ⅰ)∵D,E分别为AC,AB的中点,∴DE∥BC,∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB,(Ⅱ)由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,又DE⊥CD,A1D∩CD=D∴DE⊥平面A1DC,∵A1F⊂平面A1DC,∴DE⊥A1F,又∵A1F⊥CD,CD∩DE=D,CD,DE⊂平面BCDE;∴A1F⊥平面BCDE又∵BE⊂平面BCDE∴A1F⊥BE.【点评】本题考查直线与平面平行的判定,直线与平面垂直的判定与性质,考查学生的分析推理证明与逻辑思维能力,其中熟练掌握空间线面关系的判定及性质,会将空间问题转化为平面问题是解答本题的关键.20.【分析】(1)求出椭圆的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(xA ,yA),(xB,yB),根据,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用,即可求得直线AB的方程.【解答】解:(1)椭圆的长轴长为4,离心率为∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率∴椭圆C2的焦点在y轴上,2b=4,为∴b=2,a=4∴椭圆C2的方程为;(2)设A,B的坐标分别为(xA ,yA),(xB,yB),∵∴O,A,B三点共线,当斜率不存在时, =2不成立,∴点A,B不在y轴上当斜率存在时,设AB的方程为y=kx将y=kx代入,消元可得(1+4k2)x2=4,∴将y=kx代入,消元可得(4+k2)x2=16,∴∵,∴ =4,∴,解得k=±1,∴AB的方程为y=±x【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是掌握椭圆几何量关系,联立方程组求解.21.【分析】(1)求出函数的导函数,函数在点(1,f(1))处的切线与x轴平行,说明f′(1)=0,则k值可求;(2)求出函数的定义域,然后让导函数等于0求出极值点,借助于导函数在各区间内的符号求函数f(x)的单调区间.【解答】解:(1)由题意得,又,故k=1;(2)由(1)知,,设,则h′(x)=﹣﹣<0,即h(x)在(0,+∞)上是减函数,由h(1)=0知,当0<x<1时,h(x)>0,从而当x>1时,h(x)<0,从而f'(x)<0,综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).【点评】本题考查利用导数研究函数的单调性,考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.掌握不等式恒成立时所取的条件.22.【分析】(I)设P(x,y),运用向量的数量积的坐标表示,化简即可得到曲线C的方程;(Ⅱ)可设直线l:y=kx﹣2,运用直线和圆有公共点的条件:d≤r,运用点到直线的距离公式,解不等式即可得到取值范围;(Ⅲ)由动点Q(x,y),设定点N(1,﹣2),u=的几何意义是直线QN的斜率,再由直线和圆相交的条件d≤r,解不等式即可得到范围.【解答】解:(I)设P(x,y),=(x+2,y)•(x﹣2,y)=x2﹣4+y2=﹣3,即有x2+y2=1,P点的轨迹为圆C:x2+y2=1;(Ⅱ)可设直线l:y=kx﹣2,即为kx﹣y﹣2=0,当直线l与曲线C有交点,得,,解得,k或k.即有直线l的斜率k的取值范围是(﹣∞,﹣]∪[,+∞);(Ⅲ)由动点Q(x,y),设定点N(1,﹣2),则直线QN的斜率为k==u,又Q在曲线C上,故直线QN与圆有交点,由于直线QN方程为y+2=k(x﹣1)即为kx﹣y﹣k﹣2=0,当直线和圆相切时, =1,解得,k=﹣,当k不存在时,直线和圆相切,则k的取值范围是(﹣∞,﹣]【点评】本题考查平面向量的数量积的坐标表示,考查直线和圆的位置关系,考查直线斜率的公式的运用,考查运算能力,属于中档题.。

高二上学期文科数学期末试题(含答案)

高二上学期文科数学期末试题(含答案)

高二上学期文科数学期末试题(含答案)1、抛物线x y 162=的焦点坐标为( )A. )4,0(-B. )0,4(C. )4,0(D. )0,4(- 2.在ABC ∆中,“3π=A ”是“1cos 2A =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.直线220x y -+=经过椭圆22221(0)x y a b a b+=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A.5 B.12C.5D.234、ABC ∆中,角C B A ,,所对的边分别是c b a ,,,若A bccos <,则ABC ∆为 ( )A 、等边三角形B 、锐角三角形C 、直角三角形D 、钝角三角形5.函数f (x )=x -ln x 的递增区间为( )A .(-∞,1)B .(0,1)C .(1,+∞)D .(0,+∞)6. 已知函数()f x 的导函数()f x '的图象如图 所示,那么函数()f x 的图象最有可能的是( )7.设等比数列{}n a 的公比2q =,前n 项和为n S ,则24a S 的值为( ) (A )154(B )152(C )74 (D )728.已知实数x y ,满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,,,则2z x y =-的最小值是( )(A )5 (B )52 (C )5- (D )52- 9.已知12(1,0),(1,0)F F -是椭圆的两个焦点,过1F 的直线l 交椭圆于,M N 两点,若2MF N ∆的周长为8,则椭圆方程为( )(A )13422=+y x (B )13422=+x y (C )1151622=+y x (D )1151622=+x y10、探照灯反射镜的轴截面是抛物线)0(22>=x px y 的一部分,光源位于抛物线的焦点处,已知灯口圆的直径为60cm,灯深40cm,则抛物线的焦点坐标为 ( )A 、⎪⎭⎫ ⎝⎛0,245B 、⎪⎭⎫ ⎝⎛0,445C 、⎪⎭⎫ ⎝⎛0,845D 、⎪⎭⎫⎝⎛0,164511、双曲线C 的左右焦点分别为21,F F ,且2F 恰好为抛物线x y 42=的焦点,设双曲线C 与该抛物线的一个交点为A ,若21F AF ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为 ( )A 、2B 、21+C 、31+D 、32+12、如图所示曲线是函数d cx bx x x f +++=23)(的大致图象,则=+2221x x ( )A 、98B 、910C 、916D 、45二、填空题:本大题共4小题,每小题5分,共20分.13、若命题 "01,":0200<+-∈∃x x R x p ,则p ⌝为____________________;. 14.n S 为等差数列{}n a 的前n 项和,266a a +=,则=7S . 15.曲线ln y x x =+在点(1,1)处的切线方程为 . 16. 过点)3,22(的双曲线C 的渐近线方程为,23x y ±=P 为双曲线C 右支上一点,F 为双曲线C 的左焦点,点),3,0(A 则PF PA +的最小值为 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分10分)等差数列{}n a 的前n 项和记为n S ,已知10203050a a ==,.(1) 求通项n a ;(2)若242n S =,求n .18.(本题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,A 为B ,C 的等差中项. (Ⅰ)求A ;(Ⅱ)若a =2,△ABC 的面积为3,求b ,c 的值.19.(本题满分12分)若不等式()()222240a x a x -+--<对x R ∈恒成立,求实数a 的取值范围。

高二数学(文科)上学期期末模拟试卷(3)(含答案)

高二数学(文科)上学期期末模拟试卷(3)(含答案)

高二数学(文科)上学期期末模拟试卷(3)一、单选题1.执行如图所示的程序框图,若输入x ,y 的值分别是288,123,则输出的结果是( ) A .42 B .39 C .13 D .32.某工厂为了对40个零件进行抽样调查,将其编号为00,01,…38,39.现要从中选出5个,利用下面的随机数表,从第一行第3列开始,由左至右依次读取,选出来的第5个零件编号是( )0647 4373 8636 9647 3661 4698 6371 6233 2616 8045 6011 1410 9577 7424 6762 4281 1457 2042 5332 3732 2707 3607 5124 5179 A .36 B .16 C .11 D .143.“9k >”是“方程22194x y k k +=--表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件4.用秦九韶算法计算函数()432354f x x x x =++-,当2x =时,2v 的值为( )A .10B .2C .12D .145.曲线421y x ax =++在点(1, 2)a -+处的切线斜率为8,则实数a 的值为( ) A .6- B .6 C .12 D .12- 6.2020世界虚拟现实(VR )产业大会于10月19日在江西南昌举行.虚拟现实(VR )技术是20世纪发展起来的一项全新的实用技术,它囊括了计算机、电子信息、仿真技术于一体,随着社会生产力和科学技术的不断发展,VR 技术被认为是经济发展的新增长点,某公司引进VR 技术后,VR 市场收人(包含软件收入和硬件收入)逐年翻一番,据统计该公司VR 市场收入情况如图所示,则下列说法错误的是:( ) A .该公司2019年的VR 市场总收入是2017年的4倍B .该公司2019年的VR 软件收入是2018年的软件收入的3倍C .该公司2019年的VR 软件收入是2017年的软件收入的6倍D .该公司2019年的VR 硬件收入比2017年和2018年的硬件收入总和还要多 7.下列说法中不正确...的是( ) A .函数()tan f x x =图象的所有对称中心可表示为点,02k ⎛⎫⎪⎝⎭π,k Z ∈. B .如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变.C .对命题0:p x ∃∈R ,使得20010x x -+<,则:p x ⌝∀∈R ,有210x x -+>.D .命题“在ABC 中,若sin sin A B >,则a b >”为真命题. x y x0 1 3 4 y2.44.54.66.5若y 对x 的回归方程是0.83ˆyx a =+,则其中a 的值为( ) A .2.64 B .2.84 C .3.95 D .4.359.如图,CD ,BE 分别是边长为2的等边ABC 的中线,圆O 是ABC 的内切圆,线段OB 与圆O 交于点F ,在ABC 中随机取一点,则此点取自图中阴影部分的概率是( )A .354π B .18π C .327π D .3108π10.如图是函数y =f (x )的导数y =f '(x )的图象,则下面判断正确的是( ) A .在(﹣3,1)内f (x )是增函数 B .在x =1时,f (x )取得极大值 C .在(4,5)内f (x )是增函数 D .在x =2时,f (x )取得极小值11.如图,从双曲线22135x y -=的左焦点F 引圆223x y +=的切线FP 交双曲线右支于点P ,T 为切点,M 为线段FP 的中点,O 为坐标原点,则||||MO MT -=( ) A 53 B 3 C 5 D 5312.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过2F 的直线与双曲线的右支交于两点,A B ,若1:3:4AF AB =,且2F 是AB 的一个四等分点,则双曲线C 的离心率是( )A 5B 10C .52D .5二、填空题13.已知m R ∈,设命题[]:1,1p x ∀∈-,2224820x x m m --+-≥成立,命题[]:1,2q x ∃∈,()212log 11x mx -+<-成立.如果“p q ∨”为真,“p q ∧”为假,则m 的取值范围为_______. 14.曲线C 是平面内与两个定点()12,0F -和()22,0F 的距离的积等于常数()224aa>的点的轨迹.给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则12F PF △的面积不大于212a . 其中,所有正确结论的序号是________.15.若函数()2ln f x ax x x =+有两个极值点,则实数a 的取值范围是__________.16.在平面直角坐标系xOy 中,点M 的坐标为()1,2-,且0OM ON +=,动点P 与,M N 连线的斜率之积为12-,则动点P 的轨迹方程为______________,PMN 面积的取值范围是_______________.三、解答题17.在ABC 中,角,,A B C 的对边分别为,,a b c ,且()()()sin sin sin A C a c B b c +-=-. (1)求A ; (2)如果ABC 是锐角三角形,求22sin sin B C +的取值范围. 18.已知等差数列{}n a 中,628a a -=,且1621,,a a a 依次成等比数列. (1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若111n S =,求n 的值. 19.配速是马拉松运动中常使用的一个概念,是速度的一种,是指每公里所需要的时间,相比配速,把心率控制在一个合理水平是安全理性跑马拉松的一个重要策略.图1是一个马拉松跑者的心率y (单位:次/分钟)和配速x (单位:分钟/公里)的散点图,图2是一次马拉松比赛(全程约42公里)前3000名跑者成绩(单位:分钟)的频率分布直方图.(1)由散点图看出,可用线性回归模型拟合y 与x 的关系,求y 与x 的线性回归方程;(2)该跑者如果参加本次比赛,将心率控制在160左右跑完全程,估计他跑完全程花费的时间,并估计他能获得的名次.参考公式:a ̂=ȳ−b̂⋅x̄,()()()1122211ˆn niii ii i nni ii i x x y y x y nxyb x x xnx ====---==--∑∑∑∑ y =b ̂x +a ̂ 参考数据:135y =.20.“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:cm ),经统计,树苗的高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于27cm 的为优质树苗.(1)求图中a 的值;(2)已知所抽取的这120株树苗来自于A ,B 两个试验区,部分数据如下列联表:A 试验区B 试验区合计 优质树苗 20 非优质树苗60 合计将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A ,B 两个试验区有关系,并说明理由;(3)通过用分层抽样方法从B 试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.附:参考公式与参考数据:22()()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++()20P K k ≥0.010 0.005 0.0010k6.6357.879 10.82821.已知椭圆:C 22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F , 点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形.(1)求椭圆C 的方程;(2)设点P 是椭圆C 上一动点,求线段PM 的中点Q 的轨迹方程;(3)过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为1k ,2k ,且1k +28k = ,探究:直线AB 是否过定点,并说明理由. 22.已知函数21()ln ()2f x x ax a R =-∈. (1)若()f x 在点(2,f (2))处的切线与直线210x y -+=垂直,求实数a 的值;(2)求函数()f x 的单调区间;(3)讨论函数()f x 在区间[1,2]e 上零点的个数.参考答案1.D 【分析】执行程序框图,写出每次循环得到的值,当0r =时,满足条件,输出x 的值. 【详解】执行程序框图,由288123242÷=,知123,42x y ==由12342239÷=,知42,39x y == 由423913÷=,知39,3x y ==由393130÷=,知3,0x y ==,即0r =,输出3x =,结束循环故选:D. 2.C 【分析】根据随机数表,结合随机抽样的分法,由左至右依次读取,即可求解. 【详解】利用随机数表,从第一行第3列开始,由左至由一次读取, 即47开始读取,在编号范围内的提取出来,可得36,33,26,16,11,则选出来的第5个零件编号是11. 故选:C. 3.A 【分析】根据双曲线的标准方程可得()()940k k --<,解出k 的取值范围,进而可得结果. 【详解】方程22194x y k k +=--表示双曲线,则()()940k k --<,解得9k >或4k <,所以“9k >”是“方程22194x y k k +=--表示双曲线”的充分不必要条件,故选:A 4.D 【分析】本题可根据秦九韶算法依次计算,即可得到答案. 【详解】因为()()()()43235423054f x x x x x x x x =++-=+++-,所以当2x =时,02v =,1237v x =+=,27014v x =+=, 故选:D. 5.A 【分析】先求导函数,再利用导数的几何意义,建立方程,即可求得a 的值. 【详解】由421y x ax =++,得342y x ax '=+,则曲线421y x ax =++在点(1, 2)a -+处的切线斜率为428a --=,得6a =-. 故选:A.【点睛】本题考查导数的几何意义,函数导数的计算,考查学生的计算能力,属于基础题. 6.C 【分析】根据VR 市场收人逐年翻一番,结合条形统计图判断. 【详解】设2017年的VR 市场收入m ,则软件收入为0.1m ,硬件收入0.9m , 则2018年的VR 市场收入2m ,则软件收入为0.4m ,硬件收入1.6m , 则2019年的VR 市场收入4m ,则软件收入为1.2m ,硬件收入2.8m , 则2017和2018年的硬件收入为2.5m 小于2019年的硬件收入,故选:C 7.C 【分析】由正切函数的对称性判断A ;由平均数公式与方差公式判断B ;由特称命题的否定判断C ;利用正弦定理判断D. 【详解】由正切函数的对称性可知,函数()tan f x x =图象的所有对称中心可表示为点,02k ⎛⎫⎪⎝⎭π,k Z ∈,A 正确; 设一组数1x 、2x 、⋯、n x 的均值为x ,则12n x x x xn ++⋯+=,方差2222121[()()()]n s x x x x x x n=-+-++-…,这组中每个数减去同一个非零常数t ,则这一组数的平均数12()()()n x t x t x t x x t n-+-+⋯+-'==-, 方差()()()()()222122()'n x t x t x t x t x t x t s n⎡⎤⎡⎤⎡⎤---+---+⋯+---⎣⎦⎣⎦⎣⎦=()()()2222121n x x x x x x s n ⎡⎤=-+-+⋯+-=⎢⎥⎣⎦,即这一组数的平均数改变,方差不改变,故B 正确;因为命题0:p x ∃∈R ,使得20010x x -+<是特称命题,所以:p x ⌝∀∈R ,有210x x -+≥,C 不正确;在ABC 中,设三角形外接圆半径为R ,若sin sin A B >,则2sin 2sin R A R B >,由正弦定理可知a b >,D 正确. 故选:C. 【点睛】易错点睛:全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可. 8.B 【解析】由题意可得013424x +++==, 2.4 4.5 4.6 6.54.54y +++==, 回归方程过样本中心点,则4.50.832a =⨯+, 解得: 2.84a =. 本题选择B 选项.点睛:(1)正确理解计算,b a 的公式和准确的计算是求线性回归方程的关键. (2)回归直线方程y bx a =+必过样本点中心(),x y .9.A 【分析】设圆半径为1,求出阴影部分面积和正三角形面积即可得概率. 【详解】 设1OD =,∵ABC 是正三角形,圆O 是其内切圆,则263DOF ππ∠==,∴阴影部分面积为211166S ππ'=⨯⨯=, 又由1OD =得3CD =,则AB =ABC面积为132S =⨯=∴所求概率为1S P S π'===故选:A . 10.C 【分析】根据图形,利用单调性和极值的几何特征逐一判断即可. 【详解】解:根据题意,依次分析选项: 对于A ,在(﹣3,32-)上,f ′(x )<0,f (x )为减函数,A 错误; 对于B ,在(32-,2)上,f ′(x )>0,f (x )为增函数,x =1不是f (x )的极大值点,B 错误; 对于C ,在(4,5)上,f ′(x )>0,f (x )为增函数,C 正确;对于D ,在(32-,2)上,f ′(x )>0,f (x )为增函数,在(2,4)上,f ′(x )<0,f (x )为减函数,则在x =2时f (x )取得极大值,D 错误; 故选:C . 【点睛】本题考查函数单调性和极值的图形特征,是基础题. 11.A 【分析】根据双曲线的定义,中位线的性质,可转化为()1||||||2PF PF FT FT a '-+=-,计算即可.【详解】 如图,因为O 为'FF ,M 为PF 的中点, 所以MO 为'PFF 的中位线,可得|MO |=11,||||22PF FM PF '==. 又1||||||||||2MT FM FT PF FT =-=-,()1||||||||||2MO MT PF PF FT FT a '∴-=-+=-,3,||a FT === ||||MO MT ∴-=故选:A 12.B 【解析】若1:3:4AF AB =,则可设13,4AF m AB m ==,因为2F 是AB 的一个四等分点; 若214BF AB =,则22,3BF m AF m ==,但此时12330AF AF m m -=-=,再由双曲线的定义,得122AF AF a -=,得到0a =,这与0a >矛盾;若214AF AB =,则22,3AF m BF m ==,由双曲线的定义,得12112122532{{AF AF m a BF am a BF BF BF m a -====-=-=⇒,则此时满足22211AF AB BF +=,所以1ABF ∆ 是直角三角形,且190BAF ∠=︒ , 所以由勾股定理,得2222221212(3)(2)AF AF FF a a c +=⇒+=,得e =, 故选B.【点睛】本题考查了双曲线的定义与简单几何性质,直角三角形的判定与性质,考查转化思想与运算能力,分类讨论思想,属于中档题,首先对2F 是AB 的一个四等分点进行分类讨论,经过讨论,只有214AF AB =成立,经过分析,发现证明了1ABF ∆ 是直角三角形,且190BAF ∠=︒,因此可利用勾股定理得到,a c 之间的关系,进而得到e 的值,综合分析发现得到1ABF ∆ 是直角三角形是解决问题的关键. 13.13,22⎛⎫⎧⎫-∞⋃⎨⎬ ⎪⎝⎭⎩⎭【分析】利用参变量分离法求出当命题p 为真命题时参数m 的取值范围,由()212log 11x mx -+<-可得出212x mx -+>,利用参变量分离法可求得当命题q 为真命题时参数m 的取值范围,由题意可知,命题p 、q 中一真一假,然后分p 真q 假、p 假q 真两种情况讨论,综合可求得实数m 的取值范围. 【详解】若p 为真:对[]1,1x ∀∈-,224822m m x x -≤--恒成立, 设()222f x x x =--,配方得()()213f x x =--,所以,函数()f x 在[]1,1-上的最小值为3-,2483m m ∴-≤-,即24830m m -+≤,解得1322m ≤≤,所以,命题p 为真时1322m ≤≤;若q 为真:[]1,2x ∃∈,由()212log 11x mx -+<-可得212x mx -+>成立, 所以,211x m x x x-<=-成立,设()1g x x x =-,易知()g x 在[]1,2上是增函数,()g x ∴的最大值为()322g =,32m ∴<, 所以,命题q 为真时32m <.因为p q ∨为真,p q ∧为假,则命题p 、q 中一真一假,当p 真q 假时132232m m ⎧≤≤⎪⎪⎨⎪≥⎪⎩,可得32m =;当p 假q 真时132232m m m ⎧⎪⎪⎨⎪<⎪⎩或,可得12m <.综上所述,m 的取值范围是13,22⎛⎫⎧⎫-∞⋃⎨⎬ ⎪⎝⎭⎩⎭.故答案为:13,22⎛⎫⎧⎫-∞⋃⎨⎬ ⎪⎝⎭⎩⎭. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥. 14.②③ 【分析】由题意可得:曲线C 是平面内与两个定点()12,0F -和()22,0F 的距离的积等于常数()224aa>,利用直接法,设动点的坐标为(),x y ,即可得动点的轨迹方程,然后由方程的特点即可判断① ②③. 【详解】对于①:设动点的坐标为(),x y ,则由两点间距离公式得:2a =,即()()2222422x y x y a ⎡⎤⎡⎤++-+=⎣⎦⎣⎦, 将点()0,0代入方程验证,发现不过原点,故①不正确;对于②:用x -代替方程中的x ,y -代替y ,得()()()()2222422x y x y a ⎡⎤⎡⎤-++---+-=⎣⎦⎣⎦,即()()2222422x y x y a ⎡⎤⎡⎤-+++=⎣⎦⎣⎦方程不变,故此曲线关于坐标原点对称,故②正确; 对于③:由题意知点P 在曲线C 上,则12F PF △的面积122212121111sin sin 222F PF SPF PF F PF a F PF a =∠=∠≤,故③正确; 故答案为:②③ 【点睛】关键点点睛:本题的关键点是设出动点坐标(),x y ,利用两点间距离公式求动点的轨迹方程2a =,利用方程即可判断① ②③的正确性.15.102a -<< 【解析】分析:2012f x xlnx ax x f x lnx ax ()(>),().=+'=++ 令12g x lnx ax =++(), 由于函数函数()2ln f x ax x x =+有两个极值点点0g x ⇔=()在区间∞(0,+) 上有两个实数根.求出g x ()的导数,当0a ≥ 时,直接验证;当0a <时,利用导数研究函数g x () 的单调性可得,要使g x () 有两个不同解,只需要11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭解得即可.详解:2012f x xlnx ax x f x lnx ax ()(>),().=+'=++ 令12g x lnx ax =++(), 由于函数函数()2ln f x ax x x =+有两个极值点点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x+'=+=(), 当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去.当0a < 时,令0gx '=() ,解得12x a=- , 令0gx '()> ,解得102x a<<- ,此时函数g x ()单调递增;令0gx '()< ,解得12x a>- ,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根, 则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<. ∴实数a 的取值范围是(102a -<<. 点睛:本题考查了利用导数研究函数的单调性极值,考查了等价转化方法,考查了推理能力和计算能力,属于中档题.16.()2221199x y x +=≠±0,2⎛ ⎝⎦【分析】求得N 点坐标,根据题意12NP MP K K ⋅=-,列出方程,即可求得动点P 的轨迹方程;根据P 在曲线上运动,设平行与MN 的椭圆切线方程为2y x b =-+,与椭圆联立,根据相切,求得b ,代入面积公式,即可求得面积最大值,即可得答案. 【详解】因为M 的坐标为()1,2-,且0OM ON +=,可得(1,2)N -,设(,)P x y ,所以21MP y K x -=+,21NP y K x +=-(1x ≠±), 由题意得:221112y y x x -+⋅=-+-, 整理可得动点P 的轨迹方程为:()2221199x y x +=≠±;直线MN 的斜率2(2)211K --==---,设平行与MN 的椭圆切线方程为2y x b =-+, 与椭圆联立可得2222199y x b x y =-+⎧⎪⎨+=⎪⎩(1x ≠±),即2298290x bx b -+-=,22(8)49(29)0b b ∆=--⨯⨯-=,解得2b =, 所以该切线与直线MN的距离d ==,MN =所以PMN面积的最大值1122102S MN d =⨯⨯=⨯=, 所以随着P 在椭圆上运动,PMN的面积取值范围为0,2⎛ ⎝⎦. 故答案为:()2221199x y x +=≠±;⎛ ⎝⎦. 【点睛】解题的关键是根据斜率乘积为12-列出表达式,进行求解,易错点为斜率必定存在,故1x ≠±,在求面积取值范围时,可联立直线与曲线方程,先求得最大值,再得范围,属中档题. 17.(1)3A π=;(2)5(4,3]2.【分析】(1)利用正弦定理角化边可得222b c a bc +-=,再利用余弦定理可得A ∠的余弦值,结合特殊角的三角函数值以及角的范围可求出A ∠的度数;(2)由A 求出C B +,并用C 表示出B ,根据C 与B 都为锐角求出C 的范围,将B 代入所求式子中,利用二倍角公式与辅助角公式化为一个角的正弦函数,由C 的范围求出这个角的范围,利用正弦函数的性质求出22sin sin C B +的取值范围.【详解】(1)因为()()()sin sin sin A C a c B b c +-=- 所以由正弦定理得,()()()a c a c b b c +-=-, 化为222b c a bc +-=,可得2221cos 22b c a A bc +-==, 因为0A π<<,则3A π=;(2)由(1)得3A π=,则233C B πππ+=-=,所以23B C π=-, 因为ABC 为锐角三角形,所以203202C C πππ⎧<-<⎪⎪⎨⎪<<⎪⎩,解得62C ππ<<,设()22222sin sin sin sin ()3C C B f C C π=+=+- 41cos(2)1cos 2322C Cπ---=+111[cos2(cos22)]22C C C =-+-11111(cos22)12cos2)2222C C C C =-=+-1sin(2)126C π=-+, 因为62C ππ<<,所以52666C πππ<-<, 则1sin(2)126C π<-, 即53()42f C <, 所以22sin sin C B +的取值范围是5(4,3]2.【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. 18.(1)23n a n =+;(2)25n =. 【分析】(1)由628a a -=求得公差d ,再由1a ,6a ,21a 依次成等比数列可求得1a ,从而得通项公式; (2)用裂项相消法法求得和n S 后,利用111n S =解方程可得n 的值. 【详解】(1)设数列{}n a 的公差为d ,因为628a a -=,所以48d =,解得2d =,因为1621,,a a a 依次成等比数列,所以26121a a a =,即()()211152202a a a +⨯=+⨯,解得15a =, 所以23n a n =+; (2)由(1)知111(23)(25)n n n b a a n n +==++, 所以11122325n b n n ⎛⎫=- ⎪++⎝⎭,所以11111112577923255(25)n n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+-= ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎣⎦, 由15(25)11n n =+,得25n =.【点睛】裂项相消法是较难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()122121n n n +--()()()()1121212121n n n n ++---=--1112121n n +=---;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误. 19.(1)25285x y ∧=-+;(2)210分钟,192名. 【分析】(1)由散点图的数据求出回归方程的系数可得回归方程;(2)由回归方程估算出该跑者的配速,可得其花费时间为210分钟,帧频分布直方图计算出210分钟的累积频率,由频率可得大约名次. 【详解】解:(1)由散点图中数据和参考数据得 4.55677.565x ++++==,1001091301651711355y ++++==, ()()()51522222211.536(1)300(5)1(26) 1.5(35)25( 1.5)(1)01 1.5ˆiii ii x x y y bx x ==---⨯+-⨯+⨯-+⨯-+⨯-===--+-+++-∑∑,135(25)62ˆ85ˆay bx =-=--⨯=, 所以y 与x 的线性回归方程为25285x y ∧=-+. (2)将160y =代入回归方程得5x =,所以该跑者跑完马拉松全程所花的时间为425210⨯=分钟.从马拉松比赛的频率分布直方图可知成绩好于210分钟的累积频率为()0.0008500.00242102000.064⨯+⨯-=,有6.4%的跑者成绩超过该跑者,则该跑者在本次比赛获得的名次大约是0.0643000192⨯=名. 20.(1)0.025;(2)没有,理由见解析;(3)35. 【分析】(1)根据频率分布直方图计算即可(2)由题意完善列联表,计算2K ,比较临界值即可得出结论(3)根据分层抽样抽出的5株树苗中优质树苗和非优质树苗分别为2株和3株,记2株优质树苗为1a 、2a ,记3株非优质树苗为1b 、2b 、3b ,列出基本事件,利用古典概型求解即可. 【详解】(1)根据频率直方图数据,有2(22a a ⨯⨯++0.1020.20)1⨯+=,解得:0.025a =. (2)根据频率直方图可知,样本中优质树苗棵树有120(0.1020.0252)30⨯⨯+⨯=列联表如下:可得;22120(10302060)70503090K ⨯-⨯=⨯⨯⨯7210.310.8287=<< 所以,没有99.9%的把握认为优质树苗与,A B 两个试验区有关系注:也可由22120(10302060)70503090K ⨯-⨯=⨯⨯⨯7210.28610.8287=≈<得出结论 (3)由(2)知:B 试验区选中的树苗中优质树苗有20株,非优质树苗有30故用分层抽样在这50株抽出的5株树苗中优质树苗和非优质树苗分别为2株和3株 记2株优质树苗为1a 、2a ,记3株非优质树苗为1b 、2b 、3b 则从这5株树苗中随机抽取2株的共有以下10种不同结果:()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b ,其中,优质树苗和非优质树苗各有1株的共有以下共6种不同结果:()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b∴优质树苗和非优质树苗各有1株的概率为63105=. 【点睛】本题主要考查了频率分布直方图,独立性检验,古典概型,属于中档题.21.(1)22184x y +=;(2)22(1)12x y +-=;(3)直线AB 是过定点1,22⎛⎫-- ⎪⎝⎭,理由见解析. 【分析】(1)由点(0,2)M 是椭圆的一个顶点,可知2b =,又12F MF △是等腰直角三角形,可得a =,即可求得椭圆的标准方程;(2)设00(,)P x y ,线段PM 的中点坐标(,)Q x y ,再利用点P 是椭圆C 上一动点,即可求得线段PM 的中点Q 的轨迹方程;(3)若直线AB 的斜率存在,设AB 方程代入椭圆方程,利用韦达定理及1k +28k =,可得直线AB 方程,从而可得直线AB 过定点;若直线AB 的斜率不存在,设AB 方程为0x x =,求出直线AB 方程,即可得结论; 【详解】(1)由点(0,2)M 是椭圆的一个顶点,可知2b =, 又12F MF △是等腰直角三角形,可得a =,即a =28a =,24b =所以椭圆的标准方程为22184x y +=;(2)设00(,)P x y ,线段PM 的中点坐标(,)Q x y ,可得000222x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,即00222x x y y =⎧⎨=-⎩又点P 是椭圆C 上一动点,所以222(22)18(4)x y -+=,整理得22(1)12x y +-=所以线段PM 的中点Q 的轨迹方程是:22(1)12xy +-= (3)若直线AB 的斜率存在,设AB 方程为y kx m =+,依题意2m ≠±,联立22184y kx m x y =+⎧⎪⎨+=⎪⎩,得222(12)4280k x kmx m +++-=由已知0∆>,设1122(,),(,)A x y B x y ,由韦达定理得:2121222428,1212km m x x x x k k --+==++, 128k k += 12221211212222y y kx m k k k x m x x x x -+-+-=+=+-∴+ 12212121142(2)()2(2)2(2)828x x km k m k m k m x x x x m +-=+-+=+-=+-=- 42kmk m ∴-=+,整理得122m k =- 故直线AB 方程为122y kx k =+-,即122y k x ⎛⎫=+- ⎪⎝⎭,所以直线AB 过定点1,22⎛⎫-- ⎪⎝⎭若直线AB 的斜率不存在,设AB 方程为0x x =,设0000(,),(,)A x y B x y -,由已知得0000228y y x x ---+=,解得012x =-, 此时直线AB 方程为12x =-,显然过点1,22⎛⎫-- ⎪⎝⎭;综上,直线AB 过定点1,22⎛⎫-- ⎪⎝⎭【点睛】方法点睛:本题考查求轨迹方程,直线过定点问题,圆锥曲线中定点问题的两种解法:(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 22.(1)54a =;(2)答案见解析;(3)答案见解析. 【分析】(1)求出函数()f x 的导数,由114122a -⨯=-可求出a 的值; (2)求出()f x 的导数,通过讨论a 的范围,判断导函数符号,求出函数的单调区间即可;本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

江西省宜丰中学2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析

江西省宜丰中学2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析

高二期末考试数学试题(文科)一,选择题(每小题5分,共60分)1.命题“”地否定是( )A. B.C. D.【结果】C【思路】【思路】依据特称命题地否定是全称命题即可得到结论.【详解】依据题意,先改变量词,然后否定结论,可得原命题地否定是:“”,故选C.【点睛】本题主要考查特称命题地否定,其方式是先改变量词,然后否定结论。

全称性命题地否定地方式也是如此.2.为了解名学生地学习情况,采用系统抽样地方式,从中抽取容量为地样本,则分段地间隔为()A. B. C. D.【结果】C【思路】试题思路:由题意知,分段间隔为,故选C.考点:本题考查系统抽样地定义,属于中等题.3.以下茎叶图记录了甲,乙两组各五名学生在一次英语听力测试中地成绩(单位:分).已知甲组数据地中位数为15,乙组数据地平均数为16.8,则x,y地值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8【结果】C【思路】【思路】识别茎叶图,依据中位数,平均数地定义,可求出x,y地值.【详解】依据茎叶图中地数据可得:甲组数据是9,12,10+x,24,27。

它地中位数是15,可得10+x=15,解得:x=5。

乙组数据地平均数为:,解得:y=8,所以x,y地值分别为5和8,故选C.【点睛】本题主要考查茎叶图及中位数,平均数地定义,依据茎叶图得到各数据进行求解是解题地关键.4.已知椭圆地左焦点为则m=()A. 2B. 3C. 4D. 9【结果】B【思路】试题思路:由题意,知该椭圆为横椭圆,所以,故选B.考点:椭圆地几何性质.5.执行如图所示地程序框图,输出地s值为( )A. 2B.C.D.【结果】C【思路】试题思路:时,成立,第一次进入循环:。

成立,第二次进入循环:。

成立,第三次进入循环:,不成立,输出,故选C.【名师点睛】解决此类型问题时要注意:第一,要明确是当型循环结构,还是直到型循环结构,并依据各自地特点执行循环体。

第二,要明确图中地累计变量,明确每一次执行循环体前和执行循环体后,变量地值发生地变化。

(完整word版)高二第一学期数学期末考试题及答案(人教版文科)

(完整word版)高二第一学期数学期末考试题及答案(人教版文科)

2017—2018学年度第一学期高二数学期末考试题文科(提高班)选择题(每题5分, 共60分)1.在相距2km的A、B两点处测量目标C, 若∠CAB=75°, ∠CBA=60°, 则A、C两点之间的B. 3 km距离是()A. 2 kmA.2kmC. kmD. 3 km2. 已知椭圆()的左B.4C.3D.2焦点为,则()A.93. 在等差数列中,,则B. 15C. 20D. 25的前5项和=()A.74. 某房地产公司要在一块圆形的土地上,设计一B. 100m2C. 200m2D. 250m2个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A. 50m2A.50m25. 如图所示, 表示满足不等式的点所在的平面区域为()B .C .D .A .6. 焦点为(0, ±6)且与双曲线有相同渐近线的双曲线方程是()B .A .C .D .7. 函数的导数为()B .A .C .D .8. 若<<0, 则下列结论正确的是()B .A. bA .bC. -2D .9. 已知命题: 命题.则下列判断正确的是()B. q是真命题A. p是假命题A.p是假命题C. 是真命题D. 是真命题10. 某观察站B. 600米C. 700米D. 800米与两灯塔、的距离分别为300米和500米, 测得灯塔在观察站北偏东30 , 灯塔在观察站正西方向, 则两灯塔、间的距离为()A. 500米A.500米11. 方程表示的曲线为()A. 抛物线A.抛物线B. 椭圆 C. 双曲线D.圆12. 已知数列的前项和为, 则的值是()A. -76A.-76B. 76C. 46D. 13二、填空题(每题5分, 共20分)13.若, , 是实数, 则的最大值是_________14.过抛物线的焦点作直线交抛物线于、两点, 如果, 那么=___________.15.若双曲线的顶点为椭圆长轴的端点, 且双曲线的离心率与该椭圆的离心率的积为1, 则双曲线的方程是____________.16.直线是曲线y=l.x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡二、填空题(共4小题, 每题5分)13. 2 14、 815. 16.三、解答题(共6小题, 17题10分, 其他每小题12分)17.已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18.已知不等式组的解集是, 且存在, 使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19.某公司生产一种电子仪器的固定成本为20000元, 每生产一台仪器需增加投入100元, 已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时, 公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20.根据下列条件, 求双曲线的标准方程.(1)经过点, 且一条渐近线为;(2) 与两个焦点连线互相垂直, 与两个顶点连线的夹角为.21.已知函数在区间上有最小值1和最大值4, 设.(1)求的值;(2)若不等式在区间上有解, 求实数k的取值范围.22.已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数, 使得, 恒成立?若存在, 求常数的值或取值范围;若不存在, 请说明理由.文科(提高班)选择题(每题5分, 共60分)1.考点: 1. 2 应用举例试题解析:由题意, ∠ACB=180°-75°-60°=45°, 由正弦定理得=, 所以AC=·sin60°=(km).答案:C2.考点: 2. 1 椭圆试题解析:, 因为, 所以, 故选C.答案:C3.考点: 2. 5 等比数列的前n项和试题解析: .答案:B4.考点: 3. 3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为, 则宽为,所以矩形面积为 , 故选C答案: C5.考点:3..二元一次不等式(组)与简单的线性规划问题试题解析: 不等式等价于或作出可行域可知选B答案: B6.考点: 2. 2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为.答案:B7.考点: 3. 2 导数的计算试题解析:, 故选B.答案:B8.考点: 3. 1 不等关系与不等式试题解析:根据题意可知, 对两边取倒数的得, 综上可知, 以此判断:A.正确;因为:, 所以:, B错误;, 两个正数相加不可能小于, 所以C错误;, D错误, 综上正确的应该是A.答案:A9.考点: 1. 3 简单的逻辑联结词试题解析:当时, (当且仅当, 即时取等号), 故为真命题;令, 得, 故为假命题, 为真命题;所以是真命题.答案:C10.考点: 1. 2 应用举例试题解析:画图可知在三角形ACB中, , , 由余弦定理可知, 解得AB=700.答案:C11.考点: 2. 1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离, 点不在直线上, 符合抛物线的定义;答案:A12.考点: 2. 3 等差数列的前n项和试题解析:由已知可知:, 所以, , , 因此, 答案选A.答案:A二. 填空题(每题5分, 共20分)13.考点: 3. 4 基本不等式试题解析:, , 即,则, 化简得, 即, 即的最大值是2.答案:214.考点: 2. 3 抛物线试题解析:根据抛物线方程知, 直线过焦点, 则弦, 又因为, 所以.答案:815.考点: 2. 2 双曲线试题解析:椭圆长轴的端点为, 所以双曲线顶点为, 椭圆离心率为,所以双曲线离心率为, 因此双曲线方程为答案:16.考点: 3. 2 导数的计算试题解析:设曲线上的一个切点为(m, n), , ∴,∴.答案:三、解答题(共6小题, 17题10分, 其他每小题12分)17.考点: 2. 3 等差数列的前n项和试题解析: (Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2, 公比为4的等比数列(Ⅲ)由答案: (Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1, 2, 3, 4}18.考点: 3. 2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令, 由题意得时, .当即, (舍去)当即, .综上可知, 的取值范围是.答案: (Ⅰ);(Ⅱ)的取值范围是19.考点: 3. 4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时, 有最大值为当时,是减函数,∴当时, 的最大值为答:每月生产台仪器时, 利润最大, 最大利润为元.答案:(1);(2)每月生产台仪器时, 利润最大, 最大利润为元20.考点: 双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为, 两顶点为由与两个焦点连线垂直得, 所以由与两个顶点连线的夹角为得, 所以, 则所以方程为21.考点: 3. 2 一元二次不等式及其解法试题解析: (1), 因为, 所以在区间上是增函数,故, 解得.(2)由已知可得, 所以, 可化为,化为, 令, 则, 因, 故,记, 因为, 故,所以的取值范围是22.考点: 3. 3 导数在研究函数中的应用试题解析:(1), 所求切线的斜率所求切线方程为即(2)由, 作函数,其中由上表可知, , ;,由, 当时, , 的取值范围为, 当时, , 的取值范围为∵, 恒成立, ∴答案:(1)(2)存在, , 恒成立100.在中, 角所对的边分别为, 且满足, .(.)求的面积;(II)若, 求的值.46.考点: 正弦定理余弦定理试题解析:(Ⅰ)又, , 而, 所以, 所以的面积为:(Ⅱ)由(Ⅰ)知, 而, 所以所以答案: (1)2(2)。

湖北省荆门市2018-2019学年高二上学期期末质量检测数学(文)试题 Word版含解析

湖北省荆门市2018-2019学年高二上学期期末质量检测数学(文)试题 Word版含解析

荆门市2018—2019学年度上学期期末高二年级质量检测数学(文科)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.经过点,倾斜角为地直线方程为 A. B. C. D.【结果】D【思路】【思路】先求出直线地斜率,再由点斜式求得直线地方程.【详解】倾斜角为地直线地斜率,再依据直线经过点,由点斜式求得直线地方程为,即,故选:D.【点睛】本题考查了由点斜式地方式求直线地方程,属于基础题.2.为了解某地区地中小学生视力情况,拟从该地区地中小学生中抽取部分学生进行调查,事先已了解到该地区小学,初中,高中三个学段学生地视力情况有较大差异,而男女生视力情况差异不大,在下面地抽样方式中,最正确地抽样方式是( )A. 简单随机抽样B. 按分层抽样C. 按学段分层抽样D. 系统抽样【结果】C【思路】试题思路:符合分层抽样法地定义,故选C.考点:分层抽样.3.阅读如图地程序框图,运行相应地程序,若输入N地值为15,则输出N地值为 A. 0B. 1C. 2D. 3【结果】D【思路】【思路】该程序地功能是利用循环结构计算并输出变量N地值,思路循环中各变量值地变化情况,可得结果.【详解】模拟程序地运行,可得满足款件N能被3整除,不满足款件,执行循环体,不满足款件N能被3整除,不满足款件,执行循环体,不满足款件N能被3整除,满足款件,退出循环,输出N地值为3.故选:D.【点睛】本题考查了程序框图地应用问题,解题时应模拟程序框图地运行过程,属于基础题.4.复数A. 1B. -1C.D.【结果】D【思路】【思路】利用复数代数形式地乘除运算,再由虚数单位地性质求解.【详解】,.故结果为:【点睛】本题考查复数代数形式地乘除运算,考查复数地基本概念,是基础题.5.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择地游戏盘是A. B. C. D.【结果】A【思路】由几何概型公式:A中地概率为,B中地概率为,C中地概率为,D中地概率为.本题选择A选项.点睛:解答几何概型问题地关键在于弄清题中地考察对象和对象地活动范围.当考察对象为点,点地活动范围在线段上时,用线段长度比计算。

2022—2023学第一学期期末学业水平检测 高二 文科数学 (必修3、选修1-1)(1)

2022—2023学第一学期期末学业水平检测   高二   文科数学  (必修3、选修1-1)(1)

第 1 页 共 8 页按秘密级事项管理★启用前2022—2023学年第一学期期末学业水平检测 高二文科数学试题 (必修3、选修1-1)2023年01月本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(填空题和解答题两部分). 考生作答时,将第Ⅰ卷的选择题答案填涂在答题卷的答题卡上(答题注意事项见答题卡),将第Ⅱ卷的填空题和解答题答在答题卷上.考试结束后,将答题卷交回.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列四个命题为真命题的是 A. “全等三角形的面积相等” 的否命题 B. “若0a+b=,则,a b 互为相反数”的逆命题 C. “若1c ≤,则220x x c ++=无实根”的逆否命题 D. “不等边三角形的三个内角相等”的逆命题 2. 已知x y ∈R ,,则“ln ln x y =”是“x y =”的A .充要条件B .必要不充分条件C . 充分不必要条件D .既不充分也不必要条件3.焦点在x 轴上的椭圆2214x y m +=的焦距为4,则m 的值等于第 2 页 共 8 页A .8B .5C .5或3D .5或84. 执行右图所示的程序框图,若输入的x 为-4,则输出y 的值为A .4B .2C .1D .0.55.在平面直角坐标系xOy 中,抛物线y 2=4x 的焦点为F ,点P (m ,-4)在抛物线上,则PF 的长为A .5B .4C .3D .2 6. 十二律为我国古代汉族的乐律学名词,是古代的定音方法,分为“黄钟、太簇、姑冼、蕤宾、夷则、无射”六种阳律以及“大吕、夹钟、中吕、林钟、南吕、应钟”六种阴律.现从“太簇、蕤宾、夷则、大吕、中吕、应钟”六种音律中任选两种,则至少有一种来自阴律的概率为A.52 B. 157 C. 1511 D. 54 7. 已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b -=>>的渐近线相切,则该双曲线的离心率是A.B .53C .52D.第 3 页 共 8 页8.已知3()x xf x e=,则()f x A .在(-∞,+∞)上单调递增 B .(-∞,1)在上单调递减 C .有极大值3e,无极小值 D .有极小值3e,无极大值 9.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是A .抛一枚硬币,出现正面朝上B .掷一个正方体的骰子,出现3点朝上C .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D .从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球 10.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =第 4 页 共 8 页A .510B .505C .1020D .101011.设()'f x 是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是A BC D12. 发现土星卫星的天文学家乔凡尼卡西尼对把卵形线描绘成轨道有兴趣.像笛卡尔卵形线一样, 笛卡尔卵形线的作法也是基于对椭圆的针线作法作修改,从而产生更多的卵形曲线.卡西尼卵形线是由下列条件所定义的:曲线上所有点到两定点(焦点)的距离之积为常数. 已知:曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数2(1)a a >的点的轨迹,则下列命题中错误的是4 9 2 35 7 816第 5 页 共 8 页A. 曲线C 过坐标原点B. 曲线C 关于坐标原点对称C. 曲线C 关于坐标轴对称D. 若点P 在曲线C 上,则△F 1PF 2 的面积不大于212a 第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,共20分.13.已知函数()323f x x x =-++,曲线y =f (x )在点(1, f (1))处的切线方程为 .14.若200辆汽车通过某段公路时的速度频率直方图如图所示,则速度在区间[50,60)内的汽车大约有 辆.(14题)15. 命题“0x R ∃∈,使()200110m x mx m +-+-≤”是假命题,则实数m 的取值范围为 .16.在矩形ABCD 中,AB =5,AC =7,现向该矩形ABCD 内随机投一点P ,则∠APB >90°的概率为 .三、解答题: 本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分10分)2025年内蒙古赤峰市将实行新高考“312++”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二.共选六科参加高考.其中偏理方向是二选一时选物理,偏文方向是二选一时选历史,对后四科选择没有限定.(Ⅰ)学生甲随机选课,求他选择偏理方向及生物学科的概率;(Ⅱ)学生甲、学生乙同时随机选课,约定选择偏理方向及生物学科,求他们选课相同的概率.18. (本小题满分12分)命题p:曲线222280x y mx my++-+=表示一个圆;命题q:指数函数=-在定义域内为单调递增函数.()(21)xf x m(Ⅰ)若p⌝为假命题,求实数m的取值范围;(Ⅱ)若p q∧为假,求实数m的取值范围.∨为真,p q第 6 页共 8 页第 7 页 共 8 页19. (本小题满分12分)给出下列条件:①焦点在轴上;②焦点在轴上;③抛物线上横坐标为的点到其焦点F 的距离等于;④抛物线的准线方程是. (Ⅰ)对于顶点在原点的抛物线:从以上四个条件中选出两个适当的条件,使得抛物线的方程是,并说明理由;(Ⅱ)过点的任意一条直线与交于,不同两点,试探究是否总有?请说明理由.20. (本小题满分12分)已知函数321()33f x x x ax =-+ .(Ⅰ)若()f x 在点 (1, f (1))处切线的倾斜角为4π,求实数a 的值; (Ⅱ)若1a =-,求()f x 的单调区间.x y 1A 22x =-O C C 24y x =(4,0)l 2:4C y x =A B OA OB ⊥第 8 页 共 8 页21. (本小题满分12分)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为AB = (Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是△BPQ 面积的2倍,求k 的值.22.(本小题满分12分) 已知a R ∈,函数()()2ln 0f x a x a x=+>. (Ⅰ)求函数()f x 的极值:(Ⅱ)若函数()f x 无零点,求a 的取值范围.。

高二数学文科上学期期末试题(附答案)-学习文档

高二数学文科上学期期末试题(附答案)-学习文档

2019高二数学文科上学期期末试题(附答案)查字典数学网为大家介绍2019高二数学文科上学期期末试题,考生们应多加练习,对大家会有很大帮助的。

一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z=(1+ai)(2+i)是纯虚数,则实数a的值为A.2B.-C.D.-22.如图所示是数列一章的知识结构图,下列说法正确的是A.概念与分类是从属关系B.等差数列与等比数列是从属关系C.数列与等差数列是从属关系D.数列与等比数列是从属关系,但数列与分类不是从属关系3.下列说法中错误的是A.对于命题p:?x0R,sin x01,则綈p:?xR,sin xB.命题若0C.若pq为真命题,则p,q均为真命题;D.命题若x2-x-2=0,则x=2的逆否命题是若x2,则x2-x-2.4.1A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件5.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如下几组样本数据:x3456y2.5344.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是A.=0.7x+0.35B.=0.7x+1C.=0.7x+2.05D.=0.7x+0.456.三角形的面积为S=(a+b+c)r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为A.V=abcB.V=ShC.V=(S1+S2+S3+S4)r,(S1、S2、S3、S4为四个面的面积,r 为内切球的半径)D.V=(ab+bc+ac)h,(h为四面体的高)7.函数f(x)=x5-x4-4x3+7的极值点的个数是A.1个B.2个C.3个D.4个8.已知椭圆+=1,F1、F2分别为其左、右焦点,椭圆上一点M到F1的距离是2,N是MF1的中点,则|ON|(O为原点)的长为A.1B.2C.3D.4选择题答题卡题号12345678得分答案二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在答题卷对应题号后的横线上.9.已知复数z=1+,则||=____________.10.读下面的程序框图,当输入的值为-5时,输出的结果是________.11.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中的白色地面砖有______________块.12.曲线f(x)=xsin x在点处的切线方程是______________.13.已知双曲线-=1(a,b0)的顶点到渐近线的距离等于,则双曲线的离心率e是________.三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤.14.(本小题满分11分)在某测试中,卷面满分为100分,60分及以上为及格,为了调查午休对本次测试前两个月复习效果的影响,特对复习中进行午休和不进行午休的考生进行了测试成绩的统计,数据如下表所示:分数段[29~40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]午休考生人数23473021143114不午休考生人数1751671530173参考公式及数据:K2=P(K2k0)0.100.050.0250.0100.005k02.7063.8415.0246.6357.879(1)根据上述表格完成列联表:及格人数不及格人数总计午休不午休总计(2)能否在犯错误的概率不超过0.025的前提下认为午休与考生及格有关系?对今后的复习有什么指导意义?15.(本小题满分12分)已知:a,b,c0.求证:a(b2+c2)+b(a2+c2)+c(a2+b2)6abc.16.(本小题满分12分)已知抛物线y2=4x的焦点是F,准线是l,过焦点的直线与抛物线交于不同两点A,B,直线OA(O为原点)交准线l于点M,设A(x1,y1),B(x2,y2).(1) 求证:y1y2是一个定值;(2) 求证:直线MB平行于x轴.必考Ⅱ部分一、填空题:本大题共1个小题,每小题5分,共5分.请把答案填在答题卷对应题号后的横线上.1.从抛物线x2=4y上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为________.二、选择题:本大题共1个小题,每小题5分,满分5分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.已知定义在R上的函数f(x)的导数是f(x),若f(x)是增函数且恒有f(x)0,则下列各式中必成立的是A.2f(-1)C.2f(1)f(2)D.3f(2)2f(3)三、解答题:本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤.3.(本小题满分13分)已知函数f(x)=-x3+3x.(1)求函数f(x)的单调区间和极值;(2)当x[0,a],a0时,设f(x)的最大值是h(a),求h(a)的表达式.4.(本小题满分13分)(1)证明:xln x(2)讨论函数f(x)=ex-ax-1的零点个数.5. (本小题满分14分)如图,已知焦点在x轴上的椭圆+=1(b0)有一个内含圆x2+y2=,该圆的垂直于x轴的切线交椭圆于点M,N,且(O为原点).(1)求b的值;(2)设内含圆的任意切线l交椭圆于点A、B.求证:,并求|AB|的取值范围.湖南师大附中2019届高二第一学期期末考试试题数学(文科)参考答案必考Ⅰ部分(100分)6.C 【解析】△ABC的内心为O,连结OA、OB、OC,将△ABC 分割为三个小三角形,这三个小三角形的高都是r,底边长分别为a、b、c;类比:设四面体A-BCD的内切球球心为O,连接OA、OB、OC、OD,将四面体分割为四个以O为顶点,以原面为底面的四面体,高都为r,所以有V=(S1+S2+S3+S4)r.7.B 【解析】f(x)=x4-4x3-12x2=x2(x+2)(x-6),所以f(x)有两个极值点x=-2及x=6.8.D 【解析】据椭圆的定义,由已知得|MF2|=8,而ON是△MF1F2的中位线,故|ON|=4.二、填空题9.10.2 【解析】①A=-50,②A=-5+2=-30,③A=-3+2=-10,④A=-1+2=10,⑤A=21=2.11.4n+2 【解析】第1个图案中有6块白色地面砖,第二个图案中有10块,第三个图案中有14块,归纳为:第n个图案中有4n+2块.12.x-y=013. 【解析】由题意知=tan 30=?e==.∵K25.75.024,因此,有97.5%的把握认为午休与考生及格有关系,即能在犯错误的概率不超过0.025的前提下认为午休与考生及格有关系.(10分)对今后的复习的指导意义就是:在以后的复习中,考生应尽量适当午休,以保持最佳的学习状态.(11分)(2)据题意设A,M(-1,yM),(8分)由A、M、O三点共线有=?y1yM=-4,(10分)又y1y2=-4则y2=yM,故直线MB平行于x轴.(12分)必考Ⅱ部分(50分)一、填空题1.10 【解析】设P(xP,yP),∵|PM|=|PF|=yP+1=5,yP=4,则|xP|=4,S△MPF=|MP||xP|=10.二、选择题2.B 【解析】由选择支分析可考查函数y=的单调性,而f(x)0且f(x)0,则当x0时0,即函数在(-,0)上单调递减,故选B.三、解答题3.【解析】(1)f(x)=-3x2+3=-3(x+1)(x-1)(2分)列表如下:x(-,-1)-1(-1,1)1(1,+)f(x)-0+0-f(x)递减极小值递增极大值递减所以:f(x)的递减区间有:(-,-1),(1,+),递增区间是(-1,1);f极小值(x)=f(-1)=-2,f极大值(x)=f(1)=2.(7分)(2)由(1)知,当0此时fmax(x)=f(a)=-a3+3a;(9分)当a1时,f(x)在(0,1)上递增,在(1,a)上递减,即当x[0,a]时fmax(x)=f(1)=2(12分)综上有h(a)=(13分)4.【解析】 (1)设函数(x)=xln x-x+1,则(x)=ln x(1分) 则(x)在(0,1)上递减,在(1,+)上递增,(3分)(x)有极小值(1),也是函数(x)的最小值,则(1)=1ln 1-1+1=0 故xln xx-1.(5分)(2)f(x)=ex-a(6分)①a0时,f(x)0,f(x)是单调递增函数,又f(0)=0,所以此时函数有且仅有一个零点x=0;(7分)②当a0时,函数f(x)在(-,ln a)上递减,在(ln a,+)上递增,函数f(x)有极小值f(ln a)=a-aln a-1(8分)ⅰ.当a=1时,函数的极小值f(ln a)=f(0)=a-aln a-1=0则函数f(x)仅有一个零点x=0;(10分)ⅱ.当0当0故此时f(x)?+,则f(x)还必恰有一个小于ln a的负根;当a1时,2ln a0,计算f(2ln a)=a2-2aln a-1考查函数g(x)=x2-2xln x-1(x1) ,则g(x)=2(x-1-ln x),再设h(x)=x-1-ln x(x1),h(x)=1-=0故h(x)在(1,+)递增,则h(x)h(1)=1-1-ln 1=0,所以g(x)0,即g(x)在(1,+)上递增,则g(x)g(1)=12-21ln 1-1=0即f(2ln a)=a2-2aln a-10,则f(x)还必恰有一个属于(ln a,2 ln a)的正根.故0综上:当a(-,0]{1}时,函数f(x)恰有一个零点x=0,当a(0,1)(1,+)时函数f(x)恰有两个不同零点. (13分) 5.【解析】(1)当MNx轴时,MN的方程是x=,设M,N由知|y1|=,即点在椭圆上,代入椭圆方程得b=2.(3分)(2)当lx轴时,由(1)知当l不与x轴垂直时,设l的方程是:y=kx+m,即kx-y+m=0 则=?3m2=8(1+k2)(5分)?(1+2k2)x2+4kmx+2m2-8=0,=16k2m2-4(1+2k2)(2m2-8)=(4k2+1)0,设A(x1,y1),B(x2,y2)则,(7分)x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2-+m2xkb1==0,即.即椭圆的内含圆x2+y2=的任意切线l交椭圆于点A、B时总有.(9分)(2)当lx轴时,易知|AB|=2=(10分)当l不与x轴垂直时,|AB|===(12分)设t=1+2k2[1,+),(0,1]则|AB|==所以当=即k=时|AB|取最大值2,当=1即k=0时|AB|取最小值,(或用导数求函数f(t)=,t[1,+)的最大值与最小值)综上|AB|.(14分)2019高二数学文科上学期期末试题就为大家整理到这儿了,同学们要好好复习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二文科数学上学期期末模拟考试一、单选题1.命题“20,30x x x ∀>-+>都有”的否定是( ) A. 20,30x x x ∃>-+>使得 B. 20,30x x x ∃>-+≤使得 C. 20,30x x x ∀>-+≥都有 D. 20,30x x x ∀≤-+>都有2.若点P 到点()4,0F 的距离比它到直线50x +=的距离小于1,则P 点的轨迹方程是( ) A. 216y x =- B. 232y x =- C. 216y x = D. 232y x =3.已知等差数列{}n a 的前n 项和为n S ,若714S =,则246a a a ++=( ) A. 2 B. 4 C. 6 D. 84.已知函数()f x 的导函数为()f x ',且满足()()21ln f x xf x +'=,则()1f '=( ) A. e - B. 1 C. -1 D. e5.若实数,x y 满足10{0 0x y x y x -+≥+≥≤,则2z x y =-的最小值为( )A. 0B. 1-C. 32-D. 2- 6.双曲线221my x -=的一个顶点在抛物线的212y x =的准线上,则该双曲线的离心率为A.B.C.D. 7.(2017·湖北省七市(州)联考)在各项都为正数的数列{a n }中,首项a 1=2,且点(2n a , 21n a -)在直线x-9y =0上,则数列{a n }的前n 项和S n 等于( ) A. 3n-1 B.()2132--C. 132n +D. 232n n+8.已知集合{}2|230A x R x x =∈--<, {}|1B x R x m =∈-<<,若x A ∈是x B ∈的充分不必要条件,则实数m 的取值范围为( )A. ()3,+∞B. ()1,3-C. [)3,+∞D. (]1,3-9.设椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F 、2F , P 是C 上的点, 212PF F F ⊥,1230PF F ∠=︒,则C 的离心率为( ).A.B. 13C. 12D. 10.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A. [1,+∞)B. [1, 32) C. [1,2) D. [32,2) 11.已知1F 、2F 为双曲线C : 22221(0,0)x y a b a b -=>>的左、右焦点,点P 在C 上, 123PF PF =,且121cos 3F PF ∠=,则双曲线的离心率e =( )A.B.C. 2D. 312.已知正项等比数列{}n a (*n N ∈)满足7652a a a =+,若存在两项m a , n a14a =,则15m n+的最小值为( ) A. 2B. 1C. 74D. 114二、填空题13.已知F 1,F 2是椭圆22x y 143+=的两个焦点,过F 1的直线l 交椭圆于M,N 两点,则ΔMF 2N 的周长为___________14.若关于x 的不等式ax b >的解集为1-5⎛⎫∞ ⎪⎝⎭,,则关于x 的不等式2405ax bx a +->的解集________. 15.已知公差不为零的等差数列{}n a 的前n 项和为n S ,且26a =,若137,,a a a 成等比数列,则8S 的值为_____________.16.已知函数f (x )=e x , ()1ln22x g x =+的图象分别与直线y =m 交于A ,B 两点,则|AB |的最小值为________.三、解答题17.已知0c >,且1c ≠,设:p 函数xy c =在R 上单调递减, :Q 函数()221f x x cx =-+在1,2⎛⎫+∞⎪⎝⎭上为增函数, P Q ∧为假, P Q ∨为真,求实数c 的取值范围.18.已知ABC ∆的内角A B C 、、所对的边分别为a b c 、、, 6ac =,且()2cos cos a c B b C -=. (1)求ABC ∆的面积S ; (2)若b =,求sin sin A C +的值.19.已知数列{}n a 满足122nn n a a +=+()*,n λ∈∈N R ,且11a=.(1)证明数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列{}n a 的前n 项和n S .20.20.已知函数f (x )=x ln x -x . (Ⅰ)求函数f (x )的极值;(Ⅱ)若∀x >0,f (x )+ax 2≤0成立,求实数a 的取值范围.21.已知椭圆C : 2222x 1y a b+= (a>b>0),长轴长为4(Ⅰ)椭圆的求椭圆的标准方程;(Ⅱ)设过定点M(0,2)的直线l 与椭圆C 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求直线l 的斜率k 的取值范围.高二文科期末模拟考试(一)参考答案1.B2.C3.C4.C5.D6.A7.A8.A9.D10.B11.A 12.C 13.8 14.41,5⎛⎫- ⎪⎝⎭15.88 16.2ln2+ 17.1|12c c ⎧⎫<<⎨⎬⎩⎭. 【解析】试题分析:由函数xy c =在R 上单调递减,值01c <<,则:1p c ⌝>;由()221f x x cx =-+在1,2⎛⎫+∞⎪⎝⎭上为增函数,知1:02q c <≤,则1:2q c ⌝>,由P Q ∧为假, P Q ∨为真,则,P Q 中一真一假,分类讨论,即可求解实数c 的取值范围.试题解析:∵函数y=c x在R 上单调递减,∴0<c <1. 即p :0<c <1,∵c>0且c≠1,∴¬p :c >1.又∵f(x )=x 2﹣2cx+1在(,+∞)上为增函数,∴c≤. 即q :0<c≤,∵c>0且c≠1,∴¬q :c >且c≠1. 又∵“P∧Q”为假,“P∨Q”为真, ∴p 真q 假,或p 假q 真.①当p 真,q 假时,{c|0<c <1}∩{c|c>,且c≠1}={c|<c <1}. ②当p 假,q 真时,{c|c >1}∩{c|0<c≤}=∅.综上所述,实数c 的取值范围是{c|<c <1}. 18.(1)S =;(2)14. 【解析】试题分析:(1)根据题目所给的等式,运用正弦定理将其进行化简,然后求得角B 的值,再根据三角形面积公式1sin 2S ac B =即可求得ABC ∆的面积; (2)根据(1)中角B 的值,运用余弦定理再配方求得a c +的值,再根据正弦定理可求得sin sin a cA C++的值,进而可求得sin sin A C +的值。

试题解析:(1)∵()2cos cos a c B b C -=,∴()2sin sin cos sin cos A C B B C -=, 整理得: ()2sin cos sin cos cos sin sin sin A B B C B C B C A =+=+=,∵sin 0A ≠,∴1cos 2B =,∴60,sin B B =︒=.∴ABC ∆的面积11sin 62222S ac B ==⨯⨯=. (2)由余弦定理得2271cos 122a c B +-==,解得2213a c +=. 又∵6ac =,∴2,3a c ==或3,2a c ==. ∴5a c +=. ∵sin sin sin b a cB A C+=+,∴sin sin sin a c A C B b ++==. 19.(1)见解析;(2)()112nn S n =+-.【解析】试题分析:(1)对题设中的递推关系变形为111222n n n n a a ++=+,从而得到一个新的等差数列2n n a ⎧⎫⎨⎬⎩⎭,其通项为22n n a n=,由此得12n n a n -=⋅.(2)利用错位相减法求n S . 解析:(1)由()*122n n n a a n N +=+∈ ,等式两端同时除以12n +到111222n n n n a a ++∴=+,即 111222n n n n a a ++-= , (2)11122a =,∴数列2n n a ⎧⎫⎨⎬⎩⎭是首项为12,公差为12的等差数列, ()1112222n na n n ∴=+-=, 12n n a n -∴=⋅,∴数列{}n a 的前n 项和: 0121122232...2n n S n -=⋅+⋅+⋅++⋅ 1232122232...2n n S n =⋅+⋅+⋅+⋅②﹣①,得:()0121222...22n n n S n -=-++++⋅,即()112n n S n =+-.20.(1) 当x =1时,函数f (x )有极小值,极小值为f (1)=-1,无极大值. (2) 21(, e ⎤-∞-⎥⎦【解析】试题分析:(1) x ∈(0,+∞),f ′(x )=ln x ,讨论f ′(x )的符号,求出f (x )的单调区间,从而求出函数的极值;(2)∀x >0,f (x )+ax 2≤0成立通过变量分离转化为a ≤1lnxx x-在(0,+∞)上恒成立问题即可. 试题解析:(Ⅰ)依题意,x ∈(0,+∞),f ′(x )=ln x , 令f ′(x )=0,得x =1,当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减,当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增, ∴当x =1时,函数f (x )有极小值,极小值为f (1)=-1,无极大值. (Ⅱ)∀x >0,f (x )+ax 2≤0,a ≤-,令g (x )=-,g ′(x )=--=,当0<x <e 2时,g ′(x )<0,当x >e 2时,g ′(x )>0,∴g (x )在(0,e 2]上是减函数,在[e 2,+∞)上是增函数, ∴g (x )min =g (e 2)=-=-,∴a ≤-,∴a 的取值范围是.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.21.(Ⅰ) 24x +y 2=1(Ⅱ)k∈(-2,-2)∪(2,2).【解析】试题分析:(1)由题意可得22224{2a c a a b c ===+,解得即可; (2)直线l 的方程为2y kx =+,设1122A x y B x y (,),(,).与椭圆方程联立,由0>,解得k 的取值范围.可得根与系数的关系.若AOB ∠ 为锐角,则0OA OB ⋅>,把根与系数的关系代入又得到k 的取值范围,取其交集即可.试题解析:(Ⅰ)依题意,22224{ 2a c a abc ===+,解得2{1a b ==, 故椭圆C 的方程为24x +y 2=1.(Ⅱ)如图,依题意,直线l 的斜率必存在,设直线l 的方程为y =kx +2,A(x 1,y 1),B(x 2,y 2),联立方程组222{ 14y kx x y =++=,消去y 整理得(1+4k 2)x 2+16kx +12=0,由韦达定理,x 1+x 2=21614k k -+,x 1x 2=21214k+, ∴y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4=221214k k ++223214k k-++4=224414k k -+, 因为直线l 与椭圆C 相交,则Δ>0,即256k 2-48(1+4k 2)>0, 解得k<-2或k>2, 当∠AOB 为锐角时,向量0OA OB ⋅>,则x 1x 2+y 1y 2>0,即21214k ++224414k k -+>0,解得-2<k<2, 故当∠AOB 为锐角时,k∈(-2,-∪,2). 【点睛】熟练掌握椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立、直线的点斜式、分类讨论思想方法等是解题的关键.。

相关文档
最新文档