黄冈中学七年级数学期末考试试题
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 4.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)35.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .6.将图中的叶子平移后,可以得到的图案是()A .B .C .D .7.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④10.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 11.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 12.方程312x -=的解是( ) A .1x =B .1x =-C .13x =- D .13x =13.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )14.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.20.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).21.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________. 22.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.23.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 25.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.26.五边形从某一个顶点出发可以引_____条对角线.27.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.28.A 学校有m 个学生,其中女生占45%,则男生人数为________. 29.观察“田”字中各数之间的关系:则c 的值为____________________.30.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.33.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.34.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.35.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)36.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.37.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值. 38.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对;B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .4.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.5.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)m n m n a a a a +⋅=>,所以此题结果等于325a a +=,选A ;6.A解析:A 【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.7.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.8.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.10.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
湖北省黄冈市2023-2024学年七年级下学期期末数学试题
湖北省黄冈市2023-2024学年七年级下学期期末数学试题一、单选题1.下列实数中,是无理数的是( ) A .2B .0C .3.14D2.在平面直角坐标系中,属于第三象限的点是( ) A .()3,5PB .()3,5P -C .()3,5P --D .()3,5P -3.要调查下列问题,你觉得应用全面调查的是( ) A .了解黄冈市居民的环保意识 B .对某品牌口罩合格率的调查 C .企业招聘,对应聘人员进行面试D .对洋澜湖水质情况的调查4.要反映台州市某一周每天的最高气温的变化趋势,宜采用( ) A .条形统计图 B .扇形统计图 C .折线统计图D .频数分布统计图5.“x 的18与x 的和不超过6”可以表示为( )A .68xx +=B .68xx +≥C .865x ≤+ D .68xx +≤6.下列说法中正确的是( )A .如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等B .18-没有立方根C .有公共顶点,并且相等的角是对顶角D .同一平面内,无公共点的两条直线是平行线7.我国古代数学著作《增删算法统宗》记载了“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺.下列符合题意的方程组是( ) A .5152x y x y =-⎧⎪⎨=+⎪⎩B .5152x y x y =+⎧⎪⎨=-⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩8.如图,已知直线a b ∥,将一个直角三角尺按如图所示的位置摆放,若160∠=︒,则2∠的度数为( )A .30︒B .32︒C .42︒D .58︒9.如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为()2,3-,棋子“炮”的坐标为()3,2,则棋子“马”的坐标为( )A .()1,3B .()3,1C .()1,3-D .()1,3-10.若x 为实数,则[]x 表示不大于x 的最大整数,例如[][][]1,61,3,2,823π==-=-等.[]1x +是大于x 的最小整数,则方程[]6390x x -+=的解是( )A .83x =-B .196x =-C .72x =-或3x =-D .83x =-或196x =-二、填空题11.9的算术平方根是.12.一次数学测试后,某班40名学生按成绩分成4组,第1~3组的频数分别为12、10、6、则第4组的频率为 .13.在平面直角坐标系中,点()2,3P -到y 轴的距离是.14.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至多可打折.15.如图,四边形ABCD 为一长方形纸带,AB CD ∥,将纸带ABCD 沿EF 折叠,A 、D 两点分别与A '、D ¢对应,若2CFE CFD ∠∠'=,则BEA '∠的度数是︒.16.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩(其中12a a ≠),则方程组111222a x y c a a x y c a +=-⎧⎨+=-⎩的解是.17.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙均由点()2,0A 同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2024次相遇地点的坐标为.18.如图,在平面直角坐标系中,四边形OBCD 各个顶点的坐标分别是()()0,0,2,6O B ,()()8,9,10,0C D .现将点C 平移,平移后的对应点C '的坐标为()2,8a +,若32BDC S '=△,则a 的值为.三、解答题 19.计算:(1)(2)()214- 20.解下列不等式(组): (1)解不等式:3534x x --≥; (2)解不等式组:2442x x ->⎧⎪⎨≤⎪⎩①②.21.如图,12180,3B ∠+∠=︒∠=∠.(1)请判断DE 与BC 的位置关系,并说明理由; (2)若360,2C A B ∠=︒=∠∠,求3∠的度数.22.ABC V 与A B C '''V 在平面直角坐标系中的位置如图所示,A B C '''V 是由ABC V 经过平移得到的.(1)分别写出点A ',B ',C '的坐标;(2)说明A B C '''V 是由ABC V 经过怎样的平移得到的;(3)若点(),P a b 是ABC V 内的一点,平移后点P 在A B C '''V 内的对应点为()2,1P '--,求P O B V 的面积.23.为了了解国家“双减”政策的落实情况,某校随机调查了部分学生在家完成作业的时间,按时间由短到长划分为,,,A B C D四个等级,并绘制了如下不完整的条形统计图和扇形统计图.根据以上信息,解答以下问题:(1)请将条形统计图补充完整;(2)扇形统计图中m =______.n =______;(3)若该校有2000名学生,请估计全校在家完成作业时间为1小时及以下的学生有多少人? 24.某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买3套A 型和2套B 型课桌凳共需980元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的23,求该校本次购买A 型和B 型课桌凳共有哪几种方案?哪种方案的总费用最低?25.如图1,把一块含30︒的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上.(1)【特例初探】如图2,现把三角板绕B 点逆时针旋转n ︒,当090n <<,且点C 恰好落在DG 边上时,请求12∠+∠的度数.(2)【技能提升】在(1)的条件下,若2∠比1∠的一半多90︒,求n 的值.(3)【综合运用】如图2,现将射线BC 绕点B 以每秒5︒的转速逆时针旋转得到射线BC ',同时射线QA 绕点Q 以每秒4︒的转速顺时针旋转得到射线QA ',当射线QA 旋转至与QB 重合时,则射线,BC QA 均停止转动,设旋转时间为()s t .在旋转过程中,是否存在QA BC ''∥?若存在,求出此时t 的值;若不存在,请说明理由.26.如图1,在平面直角坐标系中,已知点()()2,4,4,2A B --,连接AB 与x 轴,y 轴分别相交于点,G H ,点(),0G a ,点()0,H b 满足()220a +=.(1)【基础训练】请你直接写出,G H 两点的坐标;(2)【能力提升】如图2,点(),C m n 在线段GH 上,,m n 满足1n m +=-,点D 在y 轴负半轴上,连接CD 交x 轴的负半轴于点M ,且CGM MOD S S =△△,求点D 的坐标;(3)【拓展延伸】如图3,P 为直线AB 上一点(异于,,A B G 三点),过P 点作AB 的垂线交x 轴于点,E PEG ∠和BGE ∠的平分线所在的直线相交于Q 点.当P 在直线AB 上运动时,请直接写出EQG ∠的度数.。
湖北省黄冈中学人教版七年级下册数学期末压轴难题试卷及答案百度文库
湖北省黄冈中学人教版七年级下册数学期末压轴难题试卷及答案百度文库一、选择题1.9的算术平方根是()A .3±B .9±C .3D .-3 2.下列生活现象中,属于平移的是( ).A .钟摆的摆动B .拉开抽屉C .足球在草地上滚动D .投影片的文字经投影转换到屏幕上 3.点A (-2,-4)所在象限为( ).A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行 B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角 5.把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124° 6.下列运算正确的是( ) A .164=± B .()3327-= C .42= D .393= 7.如图,在ABC 中,//DF AB 交AC 于点E ,交BC 于点F ,连接DC ,70A ∠=︒,38D ∠=︒,则DCA ∠的度数是( )A .42°B .38°C .40°D .32°8.如图,在平面直角坐标系中,点A 从原点O 出发,按A →A 1→A 2→A 3→A 4→A 5…依次不断移动,每次移动1个单位长度,则A 2021的坐标为( )A .(673,﹣1)B .(673,1)C .(674,﹣1)D .(674,1)二、填空题9.125的算术平方根是___. 10.在平面直角坐标系中,若点()27,2M a -和点()3,N b a b --+关于y 轴对称,则b a =____.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.已知点P 的坐标(3-a ,3a -1),且点P 到两坐标轴的距离相等,则点P 的坐标是_______________.16.在平面直角坐标系中,对于点(),P x y ,我们把点()1,1M y x -++叫做点P 的和谐点.已知点1A 的和谐点为2A ,点2A 的和谐点为3A ,点3A 的和谐点为4A ,……,这样依次得到点1A ,2A ,3A ,…,n A .若点1A 的坐标为()2,4,则点2021A 的坐标为______.三、解答题17.(1)已知2(1)4x -=,求x 的值;(2)计算:23112(2)8- 18.求下列各式中x 的值:(1)30.008x =;(2)3338x -=; (3)3(1)64x -=.19.根据下列证明过程填空:已知:如图,AD BC ⊥于点D ,EF BC ⊥于点F ,4C ∠=∠.求证:12∠=∠.证明:∵AD BC ⊥,EF BC ⊥(已知)∴______=90ADC ∠=︒(______________)∴//AD EF (_____________)∴1______∠=(_____________)又∵4C ∠=∠(已知)∴//______AC (_________)∴2______∠=(_________)∴12∠=∠(__________)20.如图,()3,2A -,()1,2B --,()1,1C -.将 ABC 向右平移 3 个单位长度,然后再向上平移 1 个单位长度,可以得到 111A B C .(1)画出平移后的 111A B C ,111A B C 的顶点 1A 的坐标为 ;顶点 1C 的坐标为 . (2)求 111A B C 的面积.(3)已知点 P 在 x 轴上,以 1A ,1C ,P 为顶点的三角形面积为 32,则 P 点的坐标为 .21.阅读下面的文字,解答问题. 22的小数部分我们不可能全部写出来,但是由于1222121,差就是21).解答下列问题:(110的整数部分是 ,小数部分是 ;(26a 13b ,求a +b 6(3)已知3x +y ,其中x 是整数,且0<y <1,求x -y 的相反数.二十二、解答题22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm 2的正方体纸盒,则这个正方体的棱长是 .(2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm 2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm 2,请你根据此方案求出各小路的宽度(π取整数).二十三、解答题23.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.24.如图,以直角三角形AOC 的直角顶点О为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 满足220a b b -+-=.(1)C 点的坐标为______;A 点的坐标为______.(2)如图1,已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为()0t t >.问:是否存在这样的t ,使ODP ODQ SS =?若存在,请求出t 的值:若不存在,请说明理由. (3)如图2,过O 作//OG AC ,作AOF AOG ∠=∠交AC 于点F ,点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.25.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A 为70°时,∵∠ACD -∠ABD =∠______∴∠ACD -∠ABD =______°∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线∴∠A 1CD -∠A 1BD =12(∠ACD -∠ABD ) ∴∠A 1=______°;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系______;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230度,则∠F =______.(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q -∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.26.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题1.C解析:C【分析】根据一个非负数的正的平方根,即为这个数的算术平方根解答即可.【详解】解:9的算术平方根是3,故选C.【点睛】本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.B【分析】根据平移的定义,对选项进行分析,排除错误答案.【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放,投影,故D错误.只有B选项为平移.故选:B.【点睛】解析:B【分析】根据平移的定义,对选项进行分析,排除错误答案.【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放,投影,故D错误.只有B选项为平移.故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状大小和方向,注意平移是沿着一条直线方向移动,熟练运用平移的性质是解答本题的关键.3.C【分析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限.故选C.【点睛】本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D【分析】根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可.【详解】解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;B:对顶角相等,选项正确,不符合题意;C:互为邻补角的两角和为180°,选项正确,不符合题意;D:相等的两个角不一定是对顶角,选项错误,符合题意;故答案选D.【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键.5.D【分析】根据角的和差可先计算出∠AEF,再根据两直线平行同旁内角互补即可得出∠2的度数.【详解】解:由题意可知AD//BC,∠FEG=90°,∵∠1=34°,∠FEG=90°,∴∠AEF=90°-∠1=56°,∵AD//BC,∴∠2=180°-∠AEF=124°,故选:D.【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键.6.C【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断.【详解】解:A 、164=,故本选项错误;B 、()3327-=-,故本选项错误;C 、42=,故本选项正确;D 、393≠,故本选项错误;故选:C .【点睛】此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键.7.D【分析】由//DF AB 可得到A ∠与FEC ∠的关系,利用三角形的外角与内角的关系可得结论.【详解】解://DF AB ,70A ∠=︒,70A FEC ∴∠=∠=︒. FEC D DCA ∠=∠+∠,38D ∠=︒,DCA FEC D ∴∠=∠-∠7038=︒-︒32=︒.故选:D .【点睛】本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键.8.C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(1,﹣1),A 5(2,﹣1),A 6(2,0),A 7(2,1),…,点A 坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位, 则2021÷6=336…5,所以,前336次循环运动点A 共向右运动336×2=672个单位,且在x 轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A 2021的坐标是(674,﹣1).故选:C .【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键.二、填空题9.【分析】直接利用算术平方根的定义计算得出答案.【详解】解:的算术平方根是:.故答案为:.【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析:15【分析】直接利用算术平方根的定义计算得出答案.【详解】解:12515 . 故答案为:15. 【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键.10.【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题.【详解】解:∵点M (2a-7,2)和N (-3﹣b ,a+b )关于y 轴对称,∴,解得:,则=.故 解析:116【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题.【详解】解:∵点M (2a -7,2)和N (-3﹣b ,a +b )关于y 轴对称,∴2732a b a b -=+⎧⎨+=⎩, 解得:42a b =⎧⎨=-⎩, 则b a =()21416-=. 故答案为:116. 【点睛】本题考查关于y 轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键. 11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB ),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB ),=180°-60°,=120°;∠DFE的邻补角的度数为:180°-120°=60°.考点:角的度量.12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DE C、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=45°,∠B=90°,∴∠BEF=45°,∴∠DEC=1(180°-45°)=67.5°.2故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 15.(2,2)或(4,-4).【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标.【详解】解:∵点P到两坐标轴的距离相等∴=∴解析:(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16.【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴A解析:()2,4【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A 2021的坐标即可.【详解】解:∵A 1的坐标为(2,4),∴A 2(−3,3),A 3(−2,−2),A 4(3,−1),A 5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505•••1,∴点A 2021的坐标与A1的坐标相同,为(2,4).故答案为:()2,4.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“和谐点”的定义并求出每4个点为一个循环组依次循环是解题的关键.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解. 【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(21 2【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x-=;∴12x-=±∴x=3或x=-1(2)原式1122-+ 12=,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2)32;(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x -1的值,进而得出x 的值.【详解】解:(1)x 3=0.008,则x =0.2;(2)x 3-3=38则x 3=3+38故x 3=278解得:x =32; (3)(x -1)3=64则x -1=4,解得:x =5.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD ;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】解析:FEC ∠;垂直的定义;同位角相等,两直线平行;3∠;两直线平行,同位角相等;GD ;同位角相等,两直线平行;3∠;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】证明:证明:∵AD BC ⊥,EF BC ⊥(已知)∴=90ADC FEC ∠=∠︒(垂直的定义)∴//AD EF (同位角相等,两直线平行)∴13∠=∠(两直线平行,同位角相等)又∵4C ∠=∠(已知)∴//AC GD (同位角相等,两直线平行)∴23∠∠=(两直线平行,内错角相等)∴12∠=∠(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键. 20.(1)见解析,,;(2)5;(3) 或【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P 点解析:(1)见解析,()0,3,()4,0;(2)5;(3) ()3,0 或 ()5,0【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据111A B C △的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P 点得坐标为 (),0t ,因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,求解即可. 【详解】解:(1) 如图,111A B C △ 为所作.1A (0,3),1C (4,0);(2) 计算 111A B C △ 的面积 111442421435222=⨯-⨯⨯-⨯⨯-⨯⨯=.(3)设P 点得坐标为(t ,0), 因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,解得 3t = 或 5t =, 即 P 点坐标为 (3,0) 或(5,0).【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)3,-3;(2)1;(3)−14【分析】(1)根据的大小,即可求解;(2)分别求得a 、b ,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解.【详解】解:(1)解析:(1)3-3;(2)1;(314【分析】(1(2)分别求得a、b,即可求得代数式的值;(3)求得x,小数部分y,即可求解.【详解】解:(1)∵34∴3-3;(2)∵2<3,34∴a2,b=3∴a+b=1;(3)∵12,∴13<14,∴x=13,y1∴x-y=13−1)∴x-y14.【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数部分和小数部分是解题的关键.二十二、解答题22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周解析:(1;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;(3)根据图形的平移求解.【详解】解:(1)∵正方体有6个面且每个面都相等,∴正方体的一个面的面积=2 dm2.∴正方形的棱长=2dm;故答案为:2dm;(2)甲方案:设正方形的边长为xm,则x2 =121π∴x =11π∴正方形的周长为:4x=44πm乙方案: 设圆的半径rm为,则πr2==121π∴r =11∴圆的周长为:2rπ= 22πm∴ 44π-22π=22π(2-)π∵ 4>π∴ 2π>∴20π->∴正方形的周长比圆的周长大故从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)依题意可进行如图所示的平移,设小路的宽度为ym ,则(π–y)2=121π-21π∴π–yπ∴yπ∵π取整数∴y33m;【点睛】本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;二十三、解答题23.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;∠FEG,(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.∠GEH=12【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB ∥CD ,∴∠PQB =∠PCD =110°,∵EF ∥BC ,∴∠BEF =∠PQB =110°,∵EF ∥BC ,∴∠BEF =∠PQB =110°,∵∠PEG =∠PEF ,∴∠PEG =12∠FEG ,∵EH 平分∠BEG ,∴∠GEH =12∠BEG ,∴∠PEH =∠PEG -∠GEH =12∠FEG -12∠BEG =12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 24.(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP=t ,OP=2-t ,OQ=2t ,AQ=4-解析:(1)()2,0C ,()0,4A ;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC∠+∠∠进行计算即可. 【详解】解:(1)∵+|b -2|=0, ∴a -2b =0,b -2=0, 解得a =4,b =2,∴A (0,4),C (2,0).(2)存在, 理由:如图1中,D (1,2),由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒, ∴0<t ≤2时,点Q 在线段AO 上, 即 CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,∴S △DOP =12•OP •y D =12(2-t )×2=2-t ,S △DOQ =12•OQ •x D =12×2t ×1=t ,∵S △ODP =S △ODQ ,∴2-t =t ,∴t =1.(3)结论:OHC ACE OEC ∠+∠∠的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC , ∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124414OHC ACE OEC ∠+∠∠+∠+∠+∠=∠∠+∠=2. 【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.25.(1)∠A ;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD 解析:(1)∠A;70°;35°;(2)∠A=2n∠A n(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=12(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=12∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=12(∠AEC+∠ACE)=12∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-12∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1)EAF EDG AED∠+∠=∠,证明见解析;(2)证明见解析;(3)80EKD∠=︒.【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。
2021-2022学年湖北省黄冈市七年级(下)期末数学试卷及答案解析
2021-2022学年湖北省黄冈市七年级(下)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)下列选项中能由如图平移得到的是()A.B.C.D.2.(3分)下列各数:,,,25,π﹣3.14,,其中无理数的个数为()A.2个B.3个C.4个D.5个3.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)若m>n,则下列各式一定成立的是()A.m+3<n+3B.m﹣3<n﹣3C.>D.﹣3m>﹣3n 5.(3分)如图,下列不能判定AB∥EF的条件有()A.∠B+∠BFE=180°B.∠1=∠2C.∠3=∠4D.∠B=∠56.(3分)下列各式计算正确的是()A.2﹣3=B.|﹣1.7|=1.7﹣C.=±D.=﹣17.(3分)已知点P(2a+1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.8.(3分)已知x,y,z满足,则2x+y﹣z的值为()A.2B.3C.4D.5二、填空题(每小题3分,共24分)9.(3分)已知(x﹣1)2=4,则x的值为.10.(3分)若n<<n+1,且n是正整数,则n=.11.(3分)某校为了调查七年级12个班600名学生的身体发育状况,决定在12个班的每个班中抽取10名学生进行分析,在这个问题中的样本容量是.12.(3分)已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为.13.(3分)把三个能够重合的长方形如图排列在一个大长方形中,若大长方形的周长为888cm,则一个小长方形的周长等于cm.14.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别落在D′,C′的位置上,ED′与BC交于G点,若∠EFG=56°,则∠AEG=.15.(3分)若干学生分苹果,每人4个余20个,每人8个有一人分得的不够8个,则学生数为人.16.(3分)平面直角坐标系中,A(﹣3,1),B(﹣1,4),直线AB交x轴于C点,则C 点坐标为.三、解答题(共72分)17.(8分)计算:(1)﹣(﹣)﹣|﹣2|;(2).18.(8分)解不等式组:,并把解集在数轴上表示出来.19.(8分)用如图①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?20.(8分)如图,已知DE⊥AC于E点,BC⊥AC于点C,FG⊥AB于G点,∠1=∠2,求证:CD⊥AB.21.(10分)如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;(2)求正方形CDEF的面积.22.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x小时进行分组整理,并绘制了不完整的频数分布直方图和扇形统计图(如图),根据图中提供的信息,解答下列问题:(1)这次抽样调查的学生人数是人;(2)扇形统计图中“A”组对应的圆心角度数为,并将条形统计图补充完整;(3)若该校有2000名学生,试估计全校有多少名学生每周的课外阅读时间不少于6小时?23.(10分)浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(12分)如图,以直角△AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y 轴建立平面直角坐标系,点A(0,a),C(b,0)满足+|b﹣8|=0.(1)点A的坐标为;点C的坐标为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOA,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).2021-2022学年湖北省黄冈市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【解答】解:能由左图平移得到的是:选项C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.2.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,,是分数,属于有理数;25是整数,属于有理数;无理数有,π﹣3.14,,共3个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…(每两个1之间的0增加一个)等有这样规律的数.3.【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.4.【分析】利用不等式的基本性质化简,判断即可.【解答】解:A、∵m>n,∴m+3>n+3,错误;B、∵m>n,∴m﹣3>n﹣3,错误;C、∵m>n,∴,正确;D、∵m>n,∴﹣3m<﹣3n,错误;故选:C.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.5.【分析】根据平行线的判定逐项进行判断即可.【解答】解:A、∵∠B+∠BFE=180°,∴AB∥EF(同旁内角互补,两直线平行),故A不符合题意;B、∵∠1=∠2,∴DE∥BC(内错角相等,两直线平行),故B符合题意;C、∵∠3=∠4,∴AB∥EF(内错角相等,两直线平行),故C不符合题意;D、∵∠B=∠5,∴AB∥EF(同位角相等,两直线平行),故D不符合题意;故选:B.【点评】本题主要考查平行线的判定方法,掌握平行线的判定方法是解题的关键,即①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.6.【分析】根据二次根式的减法运算法则可判断A选项;根据绝对值的性质可判断B选项;根据算术平方根的计算可判断C选项;根据立方根的计算可判断D选项.【解答】解:A.=﹣,故A选项错误;B.=﹣1.7,故B选项错误;C.=,故C选项错误;D.=﹣1,故D选项正确.故选:D.【点评】本题考查二次根式的性质与化简、绝对值、算术平方根与立方根,熟练掌握基础知识是解答本题的关键.7.【分析】根据点在坐标系中位置得关于a的不等式组,解不等式组求得a的范围,即可判断.【解答】解:根据题意,得:,解不等式①,得:a>﹣,解不等式②,得:a<1,∴该不等式组的解集为:﹣<a<1,故选:C.【点评】本题考查的是解一元一次不等式组,根据题意准确列出不等式组,求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.【分析】按照解三元一次方程组的步骤先求出x=1+2z,y=1﹣3z,然后代入式子中进行计算即可解答.【解答】解:,①+②得:6x﹣12z=6,x﹣2z=1,x=1+2z,把x=1+2z代入①中得:4(1+2z)+3y+z=7,4+8z+3y+z=7,9z+3y=3,y=1﹣3z,把x=1+2z,y=1﹣3z代入2x+y﹣z中得:2(1+2z)+1﹣3z﹣z=2+4z+1﹣3z﹣z=3,故选:B.【点评】本题考查了解三元一次方程组,求代数式的值,熟练掌握解三元一次方程组是解题的关键.二、填空题(每小题3分,共24分)9.【分析】根据平方根的定义得到x﹣1=±2,进而求出x的值.【解答】解:(x﹣1)2=4,由平方根的定义可知,x﹣1=±2,即x=3或x=﹣1,故答案为:3或﹣1.【点评】本题考查平方根,理解平方根的定义是正确解答的前提.10.【分析】依据被开方数越大,对应的算术平方根越大,可估算出的大致范围,从而可确定出n的值.【解答】解:∵9<13<16,∴3<<4.∵n是正整数,∴n=3.故答案为:3.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.11.【分析】根据样本容量是样本中包含的个体的数目,可得答案.【解答】解:某校为了调查七年级12个班600名学生的身体发育状况,决定在12个班的每个班中抽取10名学生进行分析,在这个问题中的样本容量是12×10=120.故答案为:120.【点评】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位.12.【分析】根据不等式组的解集即可得出关于a、b的二元一次方程组,解方程组即可得出a、b值,将其代入方程ax+b=0中,解出方程即可得出结论.【解答】解:∵不等式组的解集是2<x<3,∴,解得:,∴方程ax+b=0为2x+1=0,解得:x=﹣.故答案为:﹣.【点评】本题考查了解一元一次不等式以及一元一次方程的解,解题的关键是求出a、b 值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.13.【分析】设小长方形的长为xcm,宽为ycm,则大长方形的长为(2x+y)cm,宽为(x+2y)cm,利用长方形的周长公式结合大长方形的周长为888cm,即可得出关于x,y的二元一次方程,解之即可求出x+y的值,再将其代入2(x+y)中即可求出结论.【解答】解:设小长方形的长为xcm,宽为ycm,则大长方形的长为(2x+y)cm,宽为(x+2y)cm,根据题意得:2(2x+y+x+2y)=888,解得:x+y=148,∴2(x+y)=296.故答案为:296.【点评】本题考查了生活中的平移现象以及二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.14.【分析】先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.【解答】解:∵AD∥BC,∴∠DEF=∠GFE=56°,由折叠可得,∠GEF=∠DEF=56°,∴∠DEG=112°,∴∠AEG=180°﹣112°=68°.故答案为:68°【点评】本题以折叠问题为背景,主要考查了平行线的性质,解题时注意:矩形的对边平行,且折叠时对应角相等.15.【分析】设有x个学生,可得:0<4x+20﹣8(x﹣1)<8,而x是整数,可得x=6.【解答】解:设有x个学生,根据题意得:0<4x+20﹣8(x﹣1)<8,解得:5<x<7,∵x是整数,∴x=6,故答案为:6.【点评】本题考查不等式组的应用,解题的关键是读懂题意,列出不等式.16.【分析】如图,根据A、B两点的坐标可以求出梯形ADEB的面积,然后再利用S△BCE =S梯形ADEB即可求出C点坐标﹣S△ADC【解答】解:如图,过A作AD⊥x轴于D,过B作BE⊥x轴于E.∵A(﹣3,1),B(﹣1,4),∴AD=1,BE=4,DE=(﹣1)﹣(﹣3)=2.===5.∴S梯形ADEB设C点坐标为(x,0),则CE=﹣1﹣x,CD=﹣3﹣x,﹣S△ADC=S梯形ADEB,∵S△BCE即﹣=5,∴﹣=5,解得x=﹣,∴C点坐标为(﹣,0).故答案为:(﹣,0).【点评】此题考查的知识点事:在平面直角坐标系中,根据点的坐标求面积的方法.三、解答题(共72分)17.【分析】(1)根据立方根,绝对值的定义化简计算即可.(2)加减消元法消掉y求出x,把x代入第一个方程求出y即可.【解答】解:(1)原式==.(2),①+②得:9x=3,解得x=,把x=代入①得:1+2y=4,解得y=,∴方程组的解是.【点评】本题考查实数运算和解二元一次方程组,解题关键是熟知立方根,绝对值的定义以及消元法解方程组的步骤.18.【分析】首先解两个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得:x≥﹣2.则不等式组的解集是﹣2≤x<2.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.【分析】设做第一种x个,第二种y个,根据共有1000张正方形纸板和2000张长方形纸板,列方程组求解.【解答】解:设做第一种x个,第二种y个,由题意得,,解得:.答:做第一种200个,第二种400个.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【分析】根据垂直于同一直线的两直线互相平行可得DE∥BC,再根据两直线平行,内错角相等可得∠2=∠DCF,然后求出∠1=∠DCF,根据同位角相等两直线平行可得GF ∥CD,再根据垂直于同一直线的两直线互相平行证明.【解答】证明:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠2=∠DCF,又∵∠1=∠2,∴∠1=∠DCF,∴GF∥DC,又∵FG⊥AB,∴CD⊥AB.【点评】本题考查了平行线的判定与性质以及垂直的判定,垂直于同一直线的两直线平行,熟记性质是解题的关键.21.【分析】(1)先利用点B和点C的坐标画出直角坐标系,然后根据点的坐标的意义即可得到点A、D、E、F的坐标;(2)利用正方形的面积公式和勾股定理解答即可.【解答】解:(1)如图:A(﹣6,3),D(2,1),E(1,3),F(﹣1,2);(2)因为CD=,所以正方形CDEF的面积=5.【点评】本题考查了坐标与图形性质:利用点的坐标求相应的线段长和判断线段与坐标轴的位置关系;记住坐标系中各特殊点的坐标特征.22.【分析】(1)由A时间段的人数及其所占百分比可得总人数;(2)用360°乘以A组的百分比可得,用总人数乘以B组的百分比求得其人数,再用总人数减去其他各组人数之和求得D组人数即可得;(3)用总人数乘以样本中D、E人数之和所占比例即可得.【解答】解:(1)这次调查的学生人数为8÷16%=50人,故答案为:50;(2)扇形统计图中“A”组对应的圆心角度数为360°×16%=57.6°,B时间段的人数为50×30%=15人,则D时间段的人数为50﹣(8+15+20+2)=5人,补全图形如下:故答案为:57.6°;(3)估计全校每周的课外阅读时间不少于6小时的学生有2000×=280人.【点评】本题考查频率分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.23.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的风扇的进价和售价,B型号的风扇的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.【解答】(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.【分析】(1)利用非负性即可求出a,b即可得出结论;(2)先表示出OQ,OP,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理∠FHO=∠GOD,即可得出结论.【解答】解:(1)∵+|b﹣8|=0,∴a﹣b+2=0,b﹣8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8﹣2t,∵D(4,3),=OQ×|x D|=t×4=2t,∴S△ODQS△ODP=OP×|y D|=(8﹣2t)×3=12﹣3t,∵△ODP与△ODQ的面积相等,∴2t=12﹣3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)∴2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD,∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点评】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.。
湖北省黄冈市七年级下学期数学期末考试试卷
湖北省黄冈市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若2ym+5xn+3与﹣3x2y3是同类项,则mn=()A .B . -C . 1D . -22. (2分)如果a+b>0,ab>0,那么()A . a>0,b>0B . a<0,b<0C . a>0,b<0D . a<0,b>03. (2分)若关于x的不等式组的解集是x>4,则a的取值范围是()A . a≤4B . a>4C . a<4D . a≥44. (2分)二元一次方程x-2y=1有无数多组解,下列四组值中不是该方程的解的是()A . .B . .C . .D . .5. (2分)下列条件中能得到互相平行的直线的是()A . 互为邻补角的角平分线所在的直线B . 对顶角的平分线所在的直线C . 两条平行线的一对内错角的平分线所在的直线D . 两条平行线的一对同旁内角的平分线所在的直线6. (2分)三角形两边长为6与8,那么周长l的取值范围()A . 2<l<14B . 16<l<28C . 14<l<28D . 20<l<247. (2分)下列命题是真命题的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的四边形是矩形C . 对角线互相垂直的四边形是菱形D . 对角线互相垂直的四边形是正方形8. (2分)如图所示,∠1=∠2,BC=EF ,欲证△ABC≌△DEF ,则还须补充的一个条件是()A . AB=DEB . ∠ACE=∠DFBC . BF=ECD . ∠ABC=∠DEF9. (2分)关于x的不等式组有四个整数解,则a的取值范围是()A . a≥1B . 1<a≤2C . 1≤a<2D . 1<a<210. (2分)(2019·武汉模拟) 点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A .B .C .D .二、填空题 (共8题;共10分)11. (1分)某种生物细胞的直径约为0.000056米,用科学记数法表示为________米.12. (1分)(2017·柳江模拟) 因式分解:ab+a=________13. (1分)若n为正整数,且x2n=3,则(3x3n)2的值为________.14. (1分) (2017七下·江都月考) 一个多边形的内角和是1800°,这个多边形是________边形.15. (3分)如图,已知∠3=∠4,要说明△ABC≌△DCB,(1)若以“SAS”为依据,则需添加一个条件是________(2)若以“AAS”为依据,则需添加一个条件是________(3)若以“ASA”为依据,则需添加一个条件是________16. (1分) (2018八上·东城期末) 如果实数满足 ________;17. (1分) (2019八下·温江期中) 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC 交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD= AE+AF= 则,其中正确结论有________(填序号).18. (1分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为________ .三、解答题 (共8题;共70分)19. (10分) (2020八上·昆明期末)(1)计算:(2)分解因式:20. (10分) (2016八上·东城期末) 因式分解:(1) 4x2 -9(2) 3ax2 -6axy+3ay221. (5分)求不等式组的整数解.22. (5分) (2018八上·重庆期中) 先化简,再求值.(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=- .23. (10分) (2017七下·滦南期末) 解方程(不等式)组(1)解方程组;(2)解不等式组24. (5分)如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△C GF;(2)四边形EFGH是菱形.25. (15分)(2017·邗江模拟) 如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.26. (10分)(2017·阜宁模拟) 县内某小区正在紧张建设中,现有大量的沙石需要运输,“建安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“建安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“建安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分) 19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、25-1、25-2、25-3、26-1、26-2、。
2022-2023学年湖北省黄冈市黄冈中学数学七年级第一学期期末综合测试试题含解析
2022-2023学年七上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个数中,比0小的数是( )A .1-B .0C .1D .22.如图,一张地图上有A ,B ,C 三地,B 地在A 地的东北方向,若∠BAC =103°,则C 地在A 地的( )A .北偏西58方向B .北偏西68︒方向C .北偏西32方向D .西北方向3.当0a ≤时,下列各式中一定成立的是( )A .()22a a =-B .20a >C .22a a =-D .33a a =-4.在平面直角坐标系中,点(5,4)A -所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.据统计,截止至2018年11月11日24点整,天猫双十一全球购物狂欢节经过一天的狂欢落下帷幕,数据显示在活动当天天猫成交额高达2135亿元,请用科学计数法表示2135亿( )A .72.13510⨯B .82.13510⨯C .1021.3510⨯D .112.13510⨯6.如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,若∠EOB=50°,则∠BOD 的度数是( )7.若单项式12m a b -与212n a b 的和仍是单项式,则n m 的值是( ) A .9 B .8 C .6 D .38.如图,是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,第三行有4个点,第四行有8个点,那么这个三角形点阵中前几行的点数之和可能是( )A .513B .514C .511D .5109.-6的绝对值是( )A .-6B .6C .- 16D .1610.某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价为( )A .80元B .72元C .50元D .36元11.下列结论正确的是( )A .若0a <,0b >,则0a b ⋅>B .若0a >,0b <,则0⋅<a bC .若0a <,0b <,则0⋅<a bD .若0a =,0b ≠,则⋅a b 无法确定符号12.如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A .0条B .1条C .2条D .无数条二、填空题(每题4分,满分20分,将答案填在答题纸上)13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点(3,2),第4次接着运动到点()4,0,,按这样的运动规律,经过第2019次运动后,动点P 的横坐标是_____.14.比较:28°15′_____28.15°(填“>”、“<”或“=”).15.某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?若这个学校的学生数为,列方程为____.16.某种商品每件售价为60元,盈利20%,如果设这种商品的进价是x 元,那么根据题意列出的方程是________.17.若2x =-是关于x 的方程350x m -+=的解,则m 的值为__________.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)如图,已知∠AOC =60°,∠BOD =90°,∠AOB 是∠DOC 的3倍,求∠AOB 的度数.19.(5分)如图,在以点O 为原点的数轴上,点A 表示的数是3,点B 在原点的左侧,且6AB AO =.(1)B 点表示的数是多少?请说明理由.(2)若动点P 从O 点出发,以每秒2个单位长度的速度匀速向左运动,问经过几秒钟后3PA PB =?并求出此时P 点在数轴上对应的数.20.(8分)计算:()()()11059--+-;()()4121822⎛⎫---÷-⨯- ⎪⎝⎭ 21.(10分)对数轴上的点P 进行如下操作:将点P 沿数轴水平方向,以每秒m 个单位长度的速度,向右平移n 秒,得到点P '.称这样的操作为点P 的“m 速移”, 点P '称为点P 的“m 速移”点.(1)当1m =,3n =时,①如果点A 表示的数为5-,那么点A 的“m 速移”点A '表示的数为 ;②点B 的“m 速移”点B '表示的数为4,那么点B 表示的数为 ;③数轴上的点M 表示的数为1,如果2CM C M '=,那么点C 表示的数为 ;(2)数轴上E ,F 两点间的距离为2,且点E 在点F 的左侧,点E ,F 通过“2速移”分别向右平移1t ,2t 秒,得到点E '和F ',如果2E F EF ''=,请直接用等式表示1t ,2t 的数量关系.22.(10分)如图,平面上有四个点A 、B 、C 、D ,根据下列语句用没有刻度的直尺和圆规画图:(要求保留作图痕迹,并写明结论)(2)画射线AC ;(3)连接CD ,并将其反向延长至E ,使得2DE CD =;(4)在平面内找到一点P ,使P 到A 、B 、C 、D 四点距离最短.23.(12分)某商店出售网球和网球拍,网球拍每只定价80元,网球每个定价4元,商家为促销商品,同时向客户提供两种优惠方案:①买一只网球拍送3个网球:②网球拍和网球都按定价的9折优惠,现在某客户要到该商店购买球拍20只,网球x 个(x 大于20).(1)若该客户按优惠方案①购买需付款多少元?(用含x 的式子表示)(2)若该客户按优惠方案②购买需付款多少元?(用含x 的式子表示)(3)若100x =时,通过计算说明,此时按哪种优惠方案购买较为合算?(4)当100x =时,你能结合两种优惠方案给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算出所需的钱数.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、A【解析】根据实数比较大小的法则进行比较即可:∵0,1,2均为非负数,-1为负数,∴四个数中,比0小的数是-1.故选A .2、A【分析】根据方位角的概念可得∠DAB=45º,再由∠BAC =103°,可得∠DAC=∠BAC-∠DAB=103°-45º=58°. 【详解】解:如图:∵B 地在A 地的东北方向,∴∠DAB=45º,∵∠BAC=103°,∴∠DAC=∠BAC-∠DAB=103°-45º=58°. ∴C 地在A 地的北偏西58°方向 .故选A.【点睛】此题考查方位角以及角的运算,注意东北方向指的是北偏东45°3、A【分析】根据乘方运算法则进行分析.【详解】由0a ≤可得:A. ()22a a =-,正确B. 20a ≥,非负数性质,故错误;C. 220,0a a ≥-≤,故错误;D. 330,0a a ≤-≥,故错误;故选:A【点睛】考核知识点:乘方.理解乘方的意义是关键.4、B【分析】由题意根据各象限内点的坐标特征对选项进行分析解答即可.【详解】解:点(5,4)A -在第二象限.故选:B .【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】用科学记数法表示2135亿为:2135×108=2.135×1. 故选:D .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6、C【详解】解:∵OE 平分∠COB ,∴∠BOC=2∠EOB=2×50°=100°,∴∠BOD=180°-100°=80°.故选C .【点睛】本题考查1.角平分线的定义;2.余角和补角,掌握相关概念正确计算是关键.7、A【分析】根据题意可知单项式12m a b -与212n a b 是同类项,即相同字母的指数相同,可得出m ,n 的值,再代入求解即可.【详解】解:由题意可得:12,2m n -==,∴3,2m n ==,∴239n m ==.故选:A .【点睛】本题考查的知识点是单项式,理解同类项的定义是解此题的关键.8、C【分析】首先由题意可知这个三角点阵中的数,从第2行起,每行是它前一行的2倍,由此可计算出第n 行的规律.【详解】解:由图可知:从第2行起,每行是它前一行的2倍,第2行有2个点,即212-,第3行有4个点,即312-,第4行有8个点,即412-,……∴第n 行有12n -个点,∵92512=∴123456781222222221248163264128256511++++++++=++++++++=,故答案为:C .【点睛】本题考查了图形的规律探究问题,根据前4行的点数特点,得出这个点阵每一行与行数的关系是解题的关键. 9、B【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.10、C【分析】设该商品的进货价为每件x 元,根据售价﹣进价=利润列出方程,求解即可.【详解】设该商品的进货价为每件x 元,根据题意,得:60﹣x =0.2x解得:x =1.故选C .【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.11、B【分析】根据两个有理数相乘的乘法法则,两个非零的有理数相乘,同号为正,异号为负进行分析判断.【详解】解:A. 若0a <,0b >,则0⋅<a b ,故此选项不符合题意B. 若0a >,0b <,则0⋅<a b ,正确,符合题意C. 若0a <,0b <,则0a b ⋅>,故此选项不符合题意D. 若0a =,0b ≠,则=0⋅a b ,故此选项不符合题意故选:B .【点睛】本题考查有理数的乘法法则,题目比较简单,掌握两个有理数相乘的计算法则是解题关键.12、D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D .【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、1【分析】根据题意,分析点P 的运动规律,找到循环次数即可得解.【详解】分析图象可以发现,点P 的运动每4次位置循环一次,每循环一次向右移动四个单位,∴201945043=⨯+,当第504次循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故答案为:1.【点睛】本题属于规律题,通过观察图象得到循环规律是解决本题的关键.14、>【分析】首先利用度分秒换算法则进行转化,再比较大小.【详解】∵28°15′=28°+(15÷60)°=28.25°,∴28°15′>28.15°.故答案为>.15、52%x-(1-52%)x=80.【解析】由题意知女生人数为52%x ,则男生人数为(1-52%)x ,再根据女生比男生多80人即可列出方程. 【详解】设这个学校的学生数为,女生人数为52%x ,则男生人数为(1-52%)x ,依题意可列方程:52%x-(1-52%)x=80.【点睛】此题主要考察一元一次方程的应用,正确理解题意是关键.16、()120%60x +=【解析】根据等量关系:售价为1元,盈利20%,即售价是进价的120%列方程即可.【详解】根据题意,得(1+20%)x =1.故答案为:(1+20%)x =1.【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系.17、1【分析】把2x =-代入方程,即可得到一个关于m 的方程,求解即可.【详解】解:把2x =-代入方程得:650m --+=,解得:11m =,故答案为:1.【点睛】本题考查了一元一次方程的解,把2x =-代入方程是解题关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、112.5°【解析】试题分析:本题考查了角的和差及一元一次方程的应用,设∠COD =x °, ∠AOB =3x °,根据∠AOB =∠BOD +∠AOC -∠COD 列方程求解.解:设COD x ∠=︒,6090AOC BOD ∠=∠=,,60AOD x ∴∠=-,9060150AOB x x ∴∠=+-=-,AOB ∠是DOC ∠的3倍,337.5112.5AOB ∴∠=⨯=.19、(1)15-,理由见解析;(2)经过214秒钟或1秒钟后3PA PB =,此时P 点在数轴上对应的数为212-或-1. 【分析】(1)根据题意6AB OA =,可求出AB 的长,即可求出OB ,最后利用数轴上点的性质即可知道B 点表示的数.(2)设经过x 秒钟后3PA PB =,则23PA x =+, 152PB x =-或215PB x =-,根据题意可列方程,求出x ,即可知PO 长度,再利用数轴上点的性质即可知道P 点表示的数.【详解】(1)B 点表示的数是15-,理由如下:∵点A 表示的数是3∴3OA =∵6AB OA =∴6318AB =⨯=∴OB AB OA =-183=-15=又∵B 点在原点的左侧∴B 点表示的数是15-.(2)设经过x 秒钟后3PA PB =.①当P 点在线段OB 上时,则23PA x =+,152PB OB PO x =-=-,由题意得:()233152x x +=-, 解得:214x =. ∴2121242PO =⨯=, 此时点P 在数轴上所表示的数为212-; ②当P 点在线段OB 延长线上时,则23PA x =+,215PB PO OB x =-=-,由题意得: ()233215x x +=-,解得:12x =.∴21224PO =⨯=.此时点P 在数轴上所表示的数为24-; 所以经过21秒钟或1秒钟后3PA PB =,此时P 点在数轴上对应的数为21-或-1.【点睛】本题考查数轴及列一元一次方程解决问题.根据题意列出方程是解答本题的关键,特别注意P 点位置的两种情况.20、(1)6;(2)3-.【解析】(1)原式利用减法法则变形,计算即可求出值;(2)按顺序先进行乘方运算,再进行乘除运算,最后进行加减运算即可求出值.【详解】()1原式10591596=+-=-=;()2原式11821232=--÷⨯=--=-. 【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序以及运算法则是解本题的关键.21、(1)①-2;②1;③-1;(2)211t t -=或123t t -=【分析】(1)①根据定义计算出点A 向右平移了1⨯3=3个单位长度得到点A ',由此得到点A 的“m 速移”点A '表示的数为-5+3=-2;②设点B 表示的数是x ,列方程134x +⨯=求解即可;③设点C 表示的数是y ,则点C 的“m 速移”点C '表示的数为13y +⨯=y+3,根据点M 表示的数为1,2CM C M '=,列方程12(31)y y -=+-,求解即可;(2)设点E 表示的数是a ,则点F 表示的数是a+2,得到点E '表示的数是a+2t 1,点F '表示的数是(a+2)+22t ,根据2E F EF ''=,列方程21(2)2(2)22a t a t ++-+=⨯,计算即可.【详解】(1)①∵点A 表示的数为5-,将点A 沿数轴水平方向,以每秒1个单位长度的速度,向右平移3秒,即将点A 向右平移了1⨯3=3个单位长度得到点A ',∴点A 的“m 速移”点A '表示的数为-5+3=-2,故答案为:-2;②设点B 表示的数是x ,则134x +⨯=,解得x=1,故答案为:1;③设点C 表示的数是y ,则点C 的“m 速移”点C '表示的数为13y +⨯=y+3,∵点M 表示的数为1,2CM C M '=, ∴12(31)y y -=+-,解得y=-1或y=-5(舍去),故答案为:-1;(2)设点E 表示的数是a ,则点F 表示的数是a+2,∵点E ,F 通过“2速移”分别向右平移1t ,2t 秒,得到点E '和F ',∴点E '表示的数是a+2t 1,点F '表示的数是(a+2)+22t ,∵2E F EF ''=, ∴21(2)2(2)22a t a t ++-+=⨯,∴212224t t +-=,解得211t t -=或123t t -=.【点睛】此题考查利用数轴表示有理数,数轴上两点间的距离公式,列方程解决问题,数轴上动点问题,数轴上点的平移规律,正确表示出点平移后所表示的数,由此计算两点间的距离是解题的关键.22、(1)见解析;(2)见解析;(3)见解析;(4)见解析.【分析】(1)直接连接A 、B 两点即可;(2)以点A 为端点,沿AC 方向延长AC 即可;(3)直接连接CD 即可得到线段CD ,再反向延长,取点E ,使得D 、E 在点C 的两端,且CD=CE 即可;(4)点P 到A 、D 的距离最短,即点P 在线段AD 上,同理,点P 到C 、B 的距离最短,即点P 在线段BC 上,据此解题.【详解】(1)如图,线段AB 即为所作;(2)如图,射线AC 即为所作;(3)如图,点E 即为所作;(4)线段AD 与线段CB 的交点即为所求的P 点.【点睛】本题考查尺规作图,涉及线段、射线等知识,是重要考点,难度较易,掌握相关知识是解题关键.23、(1)1600601360460x x x ≤⎧⎨+>⎩,,(2)()1440 3.6x +元;(3)选择方案①购买较为合算;(4)先按方案①购买20只球拍,获赠60个网球,然后按方案②购买40个网球,共需付款1744元【分析】(1)根据优惠方案①对x 进行分类讨论,分别求出对应的总付款即可;(2)根据题意,列出代数式即可;(3)将x=100分别代入(1)和(2)的代数式中,即可判断;(4)根据题意,可先按方案①购买20只球拍,获赠60个网球,然后按方案②购买40个网球即可.【详解】解:(1)由题意可知:当60x ≤时此时该客户按优惠方案①购买需付款80×20=1600元;当60x >时,此时该客户按优惠方案①购买需付款8020(203)4x ⨯+-⨯⨯=(13604)x +元答:该客户按优惠方案①购买需付款1600601360460x x x ≤⎧⎨+>⎩,, (2)(80204)90%x ⨯+⨯=(1440 3.6)x +元答:该客户按优惠方案②购买需付款(1440 3.6)x +元.(3)当100x =时方案①:136041001760+⨯=元方案②:1440 3.61001800+⨯=元∵17601800<∴方案①划算答:选择方案①购买较为合算.(4)先按方案①购买20只球拍,获赠60个网球,然后按方案②购买40个网球此时共需付款20×80+40×4×90%=1744元答:先按方案①购买20只球拍,获赠60个网球,然后按方案②购买40个网球,共需付款1744元.【点睛】此题考查的是用代数式表示实际意义和求代数式的值,掌握实际问题中的各个量之间的关系是解决此题的关键.。
黄冈中学春季七年级期末考试(密卷)
七年级期末考试数学试题一、选择题:(每小题3分,共30分)1、有23000名初中毕业生参加了升学考试,为了了解23000名考生的升学成绩,从中抽取了200名考生的试卷进行统计分析,以下说法正确的是()A.23000名考生是总体B.每名考生是个体C.200名考生是总体的一个样本D.样本容量是2002、下面4个汽车标志图案中,不是轴对称图形的是()3、装饰大世界出售下列形状的地砖:①三角形;②凸四边形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有()A.1种B.2种C.3种D.4种4、如图所示,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(3,5),B(2,4),C(1,2),△A′B′C′与△ABC关于y轴对称,将△A′B′C′先向下平移2个单位长度,再向左平移1个单位长度,此时A′的坐标为()A.(-4,3)B.(-2,5)C.(-1,3)D.(-1,0)5. 小明说为方程ax+by=10的解,小惠说为方程ax+by=10的解.两人谁也不能说服对方.如果你想让他们的解都正确,需要添加的条件是()A.a=12,b=10B.a=10,b=10C.a=10,b=11D.a=9,b=106、已知△ABC的一个外角等于80°,那么它的三条高所在直线的交点在()A.三角形内B.三角形外C.三角形的一边上D.无法确定7、不等式组与不等式组同解,则()A.B.C.D.8、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1、∠2之间保持一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.∠A=∠1-∠2B.2∠A=∠1-∠2C.3∠A=2∠1-∠2D.3∠A=2(∠1-∠2)9、某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x,y的是()10、如图,已知的周长是20,分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则S△为()ABCA.15B.30C.45D.60二、填空题:(每空3分,共30分)11、若2a>3a,且c+1>0,则a(c+1)__________0.12、已知点P(2m-3,m-5)在第四象限,则m的取值范围是__________.13、一个n边形的每一个内角都相等,且比它的一个外角大100°,则边数n=__________.14、如图,在△ABC中,∠A∶∠B∶∠C=3∶5∶10,又BC=NC,MC=CA,MN=AB,则∠BCM∶∠BCN等于__________.15、如图所示,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动.当线段PD最短时,点P的坐标为__________.16、如图所示,AD是△ABC中BC边上的中线,若AB=2,AD=3,则AC的取值范围是__________.17、若不等式组无解,则a的取值范围是__________.18、如图,O为∠A的平分线上的一点,OD⊥BC于点D,OF⊥AC于点F,∠AOC=110°,且OD=OF,则∠ABC=__________.19、如图,AD为△ABC的中线,BE为△ABD的中线,若△ABC的面积为40,BD=5,则点E到BC 边的距离为__________.20、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满,则有__________名女生.三、解答题(共60分)21、解方程组(每小题3分,共6分)(1)(2)22、解不等式组(每小题3分,共6分)(1)(2)23、(5分)关于x,y的方程组的解满足方程. 求a的值.24、(5分)已知方程组的解为非负数,且x>y,求m的取值范围.25、(6分)某校开展“爱我家乡,绿化黄冈”植树活动.该校初三甲、乙两班共有学生101人,甲班的同学和乙班的同学每人植树4棵,其余同学每人植树3棵,这样两个班共植树345棵.问甲、乙两班各有学生多少人?26、(6分)已知如图,AB∥CD,AB= CE,BC=FC,∠DCB+∠ECF=180°,求证:△ABC≌△ECF.27、(8分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=__________,n=__________;(2)在扇形统计图中,D组所占圆心角的度数是__________;(3)全校共有3000名学生,该校平均每周体育锻炼时间不少于6小时的学生约有多少名?28、(7分)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半、电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)29、(11分)如图,过线段AB的两个端点作射线AM、BN,使AM∥BN,作∠MAB、∠NBA的平分线交于E.(1)求∠AEB的度数;(2)如图①若DC经过点E,且DC⊥BN,求证:AD+BC=AB;(3)如图②若DC经过点E,DC的两端点在AM、BN移动,AD+BC=AB还成立吗?若成立,请说明理由.若不成立,请写出AD、BC、AB之间的关系.答案:4、A点关于y轴对称点A′的坐标为(-3,5),平移后A′的坐标即是(-4,3).5、6、∵△ABC的一个内角为110°,∴△ABC是钝角三角形,钝角三角形三条高所在直线交点在形外.8、如图,易得∠A=∠A′,∠3=∠2+∠A,∠1=∠3+∠A′,∴∠1=∠2+∠A+∠A′=∠2+2∠A,即2∠A=∠1-∠2.10、过O分别作OE⊥AB,OF⊥AC,连接AO,依题意易证得OE=OF=OD=3,11、<解析:∵2a>3a,∴3a-2a<0,即a<0,∵c+1>0,∴a(c+1)<0.12、解析:依题意,.13、9解析:依题意,设外角为x,则每个内角为100+x,又∵x+100+x=180,∴x=40°,.14、1∶4解析:依题意,易得∠A=30°,∠B=50°,∠C=100°,由BC=NC,MC=CA,MN=AB,∴△MCN≌△ACB (SSS),∴∠MCN=∠ACB=100°,∠N=∠ABC=50°,∵BC=NC,∴∠BCN=80°,∴∠BCM=100°-80°=20°,∠BCM∶∠BCN=1∶4.15、(5,4)解析:当线段PD最短时,PD∥y轴,又∵P在BC上,BC∥x轴,∴P(5,4).16、4<AC<8解析:延长AD至E,使DE=AD.连接BE,易证△ADC≌△EDB(SAS),AE=2AD=6,在△ABE中,6-2<BE<2+6,即4<AC<8.17、a≥6解析:依题意,2a-1≥a+5,∴a≥6.18、40°解析:∵OD=OF,OD⊥BC,OF⊥AC,∴OC是△ABC的角平分线.又∵∠B=180°-(∠BAC+∠BCA)∠AOC=180°-(∠BAC+∠BCA)∴∠AOC=90°+∠B,又∵∠AOC=110°,∴∠B=40°.19、4解析:过E作EF⊥BD,依题意易得又∵BD=5,∴EF=4.20、30解析:设该班女生为x人,宿舍y间,依题意可得又∵x、y均为正数,且x-5必是5的倍数,∴x=30.21、(1)解:②-①×2,得13y=65 y=5把y=5代入①中∴x=2.(2)解:原方程组可整理为:①×2-②,得 11y=22 y=2把y=2代入①中,∴x=422、(1)解:由①可得x≤-3由②可得(2)解:原不等式组可化为:由①可得x≥-5 由②可得,x≤-4 ∴-5≤x≤-423、依题意:②-①,可得,2x-y=9a-8 又∵2x-y=4a+1,∴9a-8=4a+124、解:依题意:②×2-①,可得x=m-3 ③将③代入②中,∴y=5-m又∵x≥0,y≥0,x>y∴4<m≤5.25、解:设甲、乙两班分别各有学生x,y人,依题意可得答:甲班有学生51人,乙班有学生50人.26、证明:∵AB∥CD,∴∠DCB+∠B=180°又∵∠DCB+∠ECF=180°∴∠B=∠ECF在△ABC与△ECF中,∴△ABC≌△ECF(SAS)27、(1)8;4(2)(3)答:该校平均每周体育锻炼时间不少于6小时的学生约为2340名.28、解:(1)设电视机购进x台,洗衣机购进y台,依题意,可得又∵x是整数,∴x=34,35,36,37,38,39,因此有六种进货方案.(2)设销售后总利润为W,则依题意,W=200x+100y=100x+10000,∵W随x增大而增大,∴当x=39时,W max=13900.答:当电视机购进39台时获得利润最多,最多利润为13900元. 29、(1)解:∵AE,BE分别是∠MAB,∠NBA的平分线,∴∠1=∠2,∠3=∠4又∵AM∥BN,∴∠MAB+∠NBA=180°,即∠1+∠2+∠3+∠4=180°∴∠1+∠3=90°,∴∠AEB=90°.(2)证明:过E作EF⊥AB,∵DC⊥BN,AM∥BN,∴DC⊥AM,∵AE是∠MAB的平分线∴EF=DE.在Rt△AFE与Rt△ADE中,∴Rt△AFE≌Rt△ADE(HL)∴AD=AF又∵在△BEF与△BEC中∴△BEF≌△BEC(AAS)∴BF=BC∴AB=AF+BF=AD+BC.(3)成立. 在AB上截取AG,使AG=AD.∵AE是∠MAB角平分线,∴∠1=∠2∴在△AGE与△ADE中∴△AGE≌△ADE(SAS)∴∠5=∠6∵AM∥BN,∴∠6+∠7=180°又∵∠5+∠8=180°,∴∠8=∠7又∵BE是∠ABN的平分线,∴∠3=∠4 ∴在△BEG与△BEC中,∴△BEG≌△BEC(AAS)∴BG=BC又∵AB=AG+BG,∴AB=AD。
湖北省黄冈市黄州中学-度七年级上学期数学期末考试试卷(word版含答案)
一:选择题(本道题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1、-5的绝对值是( )A 、B 、15C 、D 、2、设a,b 互为相反数,c,d 互为倒数,则2018a +14cd +2018b 的值是( )A 、0B 、14C 、- --14 D 、20083、地球的直径是12742千米,则用科学记数法表示这个数为( )A 0.12742×108B 12.742×106C 1.2742×107D 1.2742×1064、下列计算:①0−(−5)=−5;②(−9)+(−3)=−12;③23×(−94)=−32;④−36÷6=6,其中正确的有( )A 、1个B 、2个C 、3个D 、4个5、余角是,的补角是,则与的大小关系是( )A 、<B 、>C 、=D 、不能确定6、已知2y −x =5,那么(x −2y)2−3x +6y 的值为( )A 、10B 、40C 、80D 、2107、点是直线外一点,为直线上三点,PA=4cm,PB=5cm,PC=2cm,则点到直线的距离是( )A 、2cmB 、小于2cmC 、不大于2cmD 、4cm8、一列长为150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需要的时间是( )A 、30秒B 、40秒C 、50秒D 、60秒二:填空题(本道题共8个小题,每小题3分,共24分)9、一只蚂蚁由数轴上表示的点先向右爬3个单位长度,再向左爬5个单位长度,则此蚂蚁所在的位置表示的数是 。
10、若3x m+5和x 3y 是同类项,则11、如果−2x n−1+1=0是关于的一元一次方程,那么应满足的条件是 12、化简:2(a −b )−(2a +3b)=_________.13、若|3m −5|+(n +3)2=0,则6m −(n +2)14、一列依次排列的数:-1,2,3,-4,5,6,-7,8,9…中第100个数是 15、已知线段AB=10cm ,直线AB 上有点C ,且BC=4cm ,M 是线段AC 的中点,则AM=cm 。
湖北省黄冈中学2020-2021学年七年级下学期期末考试数学试题
黄冈中学2021年度七年级下册期末试卷一、精心选一选(每小题3分,共30分)下列各小题都给出了四个选项,其中只有一项是符合题目要求的, 请把符合要求的选项前面的字母填写在指定的位置. 1.下列运算正确的是( )。
A.1055a a a=+; B.2446a a a =⨯ ; C.a a a =÷-10 ; D.044a a a -2.如图,AB ∥ED ,则∠A +∠C +∠D =( ) A .180° B .270°C .360°D .540°3.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD , 使其不变形,这样做的根据是( ).A .两点之间的线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形有稳定性 4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标 有1、2、3、4的四块),你认为将其中的哪一些块带去,就能 配一块与原来一样大小的三角形? 应该带( ).A .第1块B .第2 块C .第3 块D .第4块 5.下列轴对称图形中,只有两条对称轴的图形是 ( )6.小华利用计算器计算0.0000001295×0.0000001295时,发现计算器的显示屏上显示如下图的结果,对这个结果表示正确的解释应该是( ).A .1.677025×10—14B .1.677025×1014C .(1.677025×10)—14D .1.677025×10×(—14)7. 下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( ) A 、12cm, 3cm, 6cm ; B 、8cm, 16cm, 8cm ; C 、6cm, 6cm, 13cm ; D 、2cm, 3cm, 4cm 。
8.墙上有一面镜子,镜子对面的墙上有一个数字式电子钟。
如果在镜子里看到该电子钟的时间显示如图所示,那么它的实际时间是( ) A .12∶51 B .15∶21 C .15∶51 D .12∶219.将一圆形纸片对折后再对折,得到图3,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )题目虽然简 单,也要 仔细呦!AB C DF12341.677025×10-14图3(第3题图)图 2A .B .C .D .ABCDABCDE 第4题图10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示 水的最大深度h 与时间t 之间的关系的图像是( )二、耐心填一填:(每小题3分,共30分)11.单项式c b a 3252-的系数是 . 12. 小明量得课桌长为1.025米,四舍五入到十分位为_____米,有_____个有效数字. 13. 如图,∠1+∠2=284°,b ∥c ,则∠3= ,∠4= .14.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是_____ _ .15.科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,……仔细观察以上数列,则它的第11个数应该是 . 16.丽丽在洗手后,没有把水龙头拧紧,该水龙头每秒会滴下2滴水,每滴水约0.05毫升,设t 小时内该水龙头共滴了m 毫升水,请你写出该水龙头流失的水量m 与时间t 的关系式: 。
湖北省黄冈市2023-2024学年七年级上学期期末数学试题
湖北省黄冈市2023-2024学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,绝对值最大的是()A .3-B .1-C .0D .22.我国约有9600000平方千米的土地,平均1平方千米土地一年从太阳得到的能量相当于燃烧150000吨煤所产生的能量,把150000用科学记数法可表示为()A ..41510⨯B .41510⨯C .51.510⨯D .51510⨯3.如图所示的平面图形绕直线l 旋转一周,可以得到的立体图形是()A .B .C .D .4.下列计算正确的是()A .233a a a +=B .235a b ab +=C .32ab ab ab --=D .32ab ab ab-+=-5.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥.若70AOC ∠=︒,则CON ∠的度数为()A .35︒B .45︒C .55︒D .60︒6.小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从甲脐橙园运脐橙x 千克到乙脐橙园,则可列方程为().A .()700025000x =+B .700025000x -=⨯C .()700025000x x -=+D .()700025000x x +=-7.某商店换季促销,将一件标价为240元的T 恤7折售出,获利20%,则这件T 恤的成本为()A .138元B .140元C .162元D .170元8.如图,将一些形状相同的小五角星按图中所示放置,据此规律,第59个图形五角星的个数为()A .3600B .3500C .3599D .3499二、填空题14.钟表上2时35分时,时针与分针所成的角是15.如图所示,在长方形ABCD 中,AD 的边长为m ,正方形GBIH 的边长为16.如图,将一段长为100cm 绳子AB 拉直铺平后折叠(绳子无弹性,折叠处长度忽略不计),使绳子与自身一部分重叠.若将绳子(1)如图1,若120AOB ∠=︒,求EOF ∠的度数;(2)如图2,若AOB a ∠=,求EOF ∠的度数;(3)若将题中的“平分”的条件改为“23EOB ∠=其他条件不变,求EOF ∠的度数.(用含α23.某超市在春节期间开展打折促销活动,方案如下:一次性购物优惠办法少于300元不予优惠低于600元但不低于300元九折优惠600元或超过600元其中600元部分给予九折优惠,超过优惠(1)求A 和B 两点之间的距离;t(秒);①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.。
2019-2020黄冈中学数学七年级上册 期末测试(一)含答案解析
期末测试(一)一、选择题。
1.在下列四个实数中,最大的数是( )A.-3 B.0 D.2.如图,数轴上有三个点A、B、C,若点A、B 表示的数互为相反数,则图中点C 对应的数是( )A.-2B.0C.1D.43.如图是由5 个相同的正方体搭成的几何体,从正面看,所看到的图形是( )A. B. D.4.如果以x=-5 为方程的解构造一个一元一次方程,那么下列方程中不满足要求的是( )A.x+5=0B.x-7= -12C.2x+5= -5D.5.已知∠1:∠2:∠3=2:3:6,且∠3 比∠1 大60°,则∠2=( )A.10°B.60°C.45°D.80°6.在一条直线上顺次取A、B、C 三点,使得AB=5 cm,BC=3 cm,如果O 是线段AC 的中点,那么线段OB 的长度是( )A.0.5 cm B.1 cm C.1.5 cm D.2 cm7.下列运算中,正确的是( )A.3a-a=2B.2ab+3ba= 6abC.( -6)÷(-2)=-3D.8.如图,∠AOB= 90°,∠BOC= 40°,OD 平分∠AOC,则∠BOD 的度数是( )A.25°B.30°C.40°D.60°9.已知方程2x+k=5 的解为正整数,则k 所能取的正整数为( )A.1B.1 或3 C.3 D.2 或310.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5 吨,每吨水费x 元;超过5 吨,超过部分每吨加收2 元,小明家今年5 月份用水9 吨,缴纳水费44 元,根据题意列出关于x 的方程正确的是( )A.5x+4(x+2)=44B.5x+4(x-2)=44C.9(x+2)=44D.9(x+2)-4x2= 44二、填空题。
11.计算= .12.若a、b 互为相反数,c、d 互为倒数,p 的绝对值等于2,则关于x 的方程(a+b)x²+3cdx-p²=0 的解为.13.在数轴上与表示3 的点相距4 个单位长度的点表示的数是.14.已知一个多项式与2x²-8x 的和等于5x²+3x-7,则这个多项式是.15.已知a²+2a=1,则代数式2a²+4a-1 的值是.16.若∠α= 39°21'38’’,则∠α的补角为.17.如图所示,射线OA 表示偏28°方向,射线OB 表示方向,∠AOB= .18.商店为了促销某种商品,将定价为每件3 元的商品以下列方式优惠销售:若购买不超过5 件,按原价付款;若一次性购买5 件以上,超过部分打八折.小华买了n 件该商品共付了27 元钱,则n 的值是.19.已知线段AB,在AB 的延长线上取一点C,使AC=2BC,在AB 的反向延长线上取一点D,使DA= 2AB,那么线段AC 长是线段DB 长的.20.观察下列各式,你能发现什么规律?3×5 =15,而15= 4²-1,5×7 =35,而35= 6²-1,......11×13= 143,而143= 12² -1.将你猜想到的规律用含一个字母的式子表示出来:.三、解答题。
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线2.当x取2时,代数式(1)2x x-的值是()A.0 B.1 C.2 D.33.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数, 若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.2064.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是()A.B.C.D.5.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.6.下列每对数中,相等的一对是()A.(﹣1)3和﹣13B.﹣(﹣1)2和12C.(﹣1)4和﹣14D.﹣|﹣13|和﹣(﹣1)37.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5928.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④ 9.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 10.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .11.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°12.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 13.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 14.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1 15.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元二、填空题16.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.17.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.18.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.19.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________20.单项式﹣22πa b的系数是_____,次数是_____.21.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.22.计算:()222a -=____;()2323x x ⋅-=_____.23.若a a -=,则a 应满足的条件为______.24.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.25.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.26.将520000用科学记数法表示为_____.27.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y )2019的值为_____. 28.3.6=_____________________′29.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.30.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.三、压轴题31.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
【3套打包】黄冈市七年级下册数学期末考试试题(含答案)
最新七年级下册数学期末考试题及答案一、选择题(本大题共 8 小题,每题 3 分,共 24 分) 1.如图,是一个“七”字形,与∠1 是内错角的是( )A .∠2B .∠3C .∠4D .∠52.如图,有一底角为 35°的等腰三角形纸片,现过底边上一点, 沿与腰垂直的方向将其剪开,分成三角形和四边形两部分, 则四边形中,最大角的度数是( )A .110°B .125°C .140°D .160°3.点 P (-2,3)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.某班共有学生 49 人,一天该班某男生因事请假,当天的男生人数恰为女生人数的一 半.若该班男生人数为 x ,女生人数为 y ,则下列方程组中,能正确求出 x 、y 的是( )A .492(1)x y y x -=⎧⎨=+⎩B .492(1)x y y x +=⎧⎨=+⎩C .492(1)x y y x -=⎧⎨=-⎩D .492(1)x y y x +=⎧⎨=-⎩5.在正整数范围内,方程 3x +y =10 的解有( ) A .0 组B .1 组C .2 组D .3 组6.已知 a <b ,则下列不等式中正确的是()A .a +3>b +3B .3a >3bC .-3a >-3bD .33a b> 7.不等式-3x ≤6 的解集在数轴上正确表示为()8.下面各调查中,最适合使用全面调查方式收集数据的是()A .了解一批节能灯的使用寿命B .了解某班全体同学的身高情况C .了解动物园全年的游客人数D .了解央视“新闻联播”的收视率 二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9.如图,把长方形 ABCD 沿 E F 对折后,使两部分重合,若∠1=52°,则∠AEF = 度. 10.在平面直角坐标系中,若点 Q (m ,-2m +4)在第一象限 则 m 的取值范围是 . 11.在△ABC 中,已知两条边 a =3,b =4,则第三边 c 的取值 范围是 .12.方程 3x -5y =15,用含 x 的代数式表示 y ,则 y = .13.已知57x y =⎧⎨=⎩是二元一次方程 k x -2y -1=0 的一组解,则 k =.14.某种药品的说明书上,贴有如右表所示的标签,一次服用这种药品的剂量 xmg (毫克)的范围是 .15.如图,是小恺同学 6 次数学测验的成绩统计表,则该同学 6 次成绩中的最低分是 .16.本学期实验中学组织开展课外兴趣活 动,各活动小班根据实际情况确定了计 划组班人数,并发动学生自愿报名,报 名人数与计划人数的前 5 位情况如下:若用同一小班的计划人数与报名人数的比值大小来衡量进入该班的难易程度,学生 中对于进入各活动小班的难易有以下预测:①篮球和航模都能进;②舞蹈比写作容 易;③写作比奥数容易;④舞蹈比奥数容三、解下列方程组、不等式(组)(本大题共 4 小题,每小题 6 分,共 24 分) 17.43624x y x y +=⎧⎨+=⎩ 18.15(2)3224x x y x y ⎧-+=⎪⎨⎪+=⎩19.2151132x x -+-< 20.936325x x -≥⎧⎨-≤⎩四、应用题(本大题共2小题,每小题8分,共16 分)21.某风景点的团体购买门票票价如下:今有甲、乙两个旅行团,已知甲团人数少于50 人,乙团人数不超过100 人.若分别购票,两团共计应付门票费1950 元,若合在一起作为一个团体购票,总计应付门票费1545 元.(1)请你判断乙团的人数是否也少于50 人;(2)求甲、乙两旅行团各有多少人?(3)甲旅行团单独购票,有无更省钱的方案?说明理由.22.“你记得父母的生日吗?”这是某中学在七年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50 名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)已知该校七年级共900 名学生,据此推算,该校七年级学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?五、综合题(本题12 分)23.江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4 位选手的短信支持率,情况如图2,第二次公布短信支持率时,每位选手的短信支持条数均有增加,且每位选手增加的短信支持条数相同.图1图2(1)比较图1,图2的变化情况,写出2条结论;(2)设第一次4位短信支持总条数为a与第二次4位短信支持总条数b,写出a、b之间的等式关系,并证明这个等式关系.(3)若第三次公布4 位选手的短信支持率情况时,1、2、3 号选手没有增加短信支持,而4号选手增加短信支持30 条,因此高于1号的短信支持率但仍低于3号的短信支持率,求第一次4位选手短信支持总条数a的取值范围.参考答案1.A.2.B.3.B.4.D.5.D.6.C.7.D.8.B.9.116;10.0<m<2;11.c>7;12.0.6x-3;13最新人教版七年级第二学期下册期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算中,正确的是()A、x•x2=x2B、(x+y)2=x2+y2C.(x2)3=x6D、x2+x2=x4答案:C2.一片金箔的厚度为0.000000091m,用科学记数法表示0.000000091为()A、0.91×10﹣7B、9.1×10﹣8C、-9.1×108D、9.1×108答案:B3.如果a<b,下列各式中正确的是()A、ac2<bc2B、11a b>C、﹣3a>﹣3b D、44a b>答案:C4.下列长度的三条线段能组成三角形的是()A、1.5cm,2cm,2.5cmB、2cm,5cm,8cmC.1cm,3cm,4cm D、5cm,3cm,1cm答案:A5.下列从左到右边的变形,是因式分解的是()A、(3﹣x)(3+x)=9﹣x2B、(y+1)(y﹣3)=﹣(3﹣y)(y+1)C、4yz﹣2y2z+z=2y(2z﹣yz)+zD、﹣8x2+8x﹣2=﹣2(2x﹣1)2答案:D6.下列各图中,正确画出AC边上的高的是()答案:D7.不等式组24357xx>-⎧⎨-≤⎩的解集在数轴上可以表示为()答案:B8.已知12x y =⎧⎨=⎩是方程组120ax y x by +=-⎧⎨-=⎩的解,则a +b =( )A 、2B 、﹣2C 、4D 、﹣4 答案:B9.如图AB ∥CD ,∠E =40°,∠A =110°,则∠C 的度数为( ) A 、60° B 、80° C 、75° D 、70°答案:D10.若(a ﹣1)2+|b ﹣2|=0,则以a 、b 为边长的等腰三角形的周长为( ) A 、5 B 、4 C 、3 D 、4或5 答案:A11.边长为a ,b 的长方形,它的周长为14,面积为10,则a 2b +ab 2的值为( ) A 、35 B 、70 C 、140 D 、280 答案:D12.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x 、y 分钟,列出的方程是( )A 、142502502900x y x y ⎧+=⎪⎨⎪+=⎩ B 、158********x y x y +=⎧⎨+=⎩ C 、14802502900x y x y ⎧+=⎪⎨⎪+=⎩ D 、152********x y x y +=⎧⎨+=⎩ 答案:D 13.下列命题:①三角形内角和为180°;②三角形的三条中线交于一点,且这点在三角形内部;③三角形的一个外角等于两个内角之和;④过一点,有且只有一条直线与已知直线平行;⑤对顶角相等.其中真命题的个数有()A、1个B、2个C、3个D、4个答案:C14.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()A、50°B、100°C、45°D、30°答案:D15.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A、a≥1B、a>1C、a≤﹣1D、a<﹣1答案:A16.如图,△ABC的面积为1.第一次操:分别延长AB,BC,CA至点A1,B1,C1,使A1B =AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过()次操作.A、6B、5C、4D、3答案:C二、填空题(共4小题,每小题3分,满分12分)17.分解因式:2a3﹣2a=.答案:2a(a+1)(a﹣1);18.把一副三角板按如图所示拼在一起,则∠ADE=.答案:135°19.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为.答案:a<420.如图,一张长方形纸片ABCD,分别在边AB、CD上取点M,N,沿MN折叠纸片,BM 与DN交于点K,若∠1=70°,则∠CNK=°.答案:40三、解答题(本大题共6个大题,共56分,解答应写出文字说明、证明过程或演算步骤) 21.(9分)(1)用简便方法计算:1992+2×199+1(2)已知x 2﹣3x =1,求代数式(x ﹣1)(3x +1)﹣(x +2)2﹣4的值. 答案:(1)原式=(199+1)2=40000(2)原式=3x 2-2 x -1-(x 2+4 x +4)-4=2 x 2-6 x -9=2(x 2-3 x )-9=2-9=-722.(12分)(1)解方程组:5316232x y x y +=⎧⎨-=-⎩(2)解不等式组3221152x xx x -≤⎧⎪++⎨<⎪⎩,并找出整数解.答案:(1)22x y =⎧⎨=⎩(2)31x -<≤,整数解为:-2,-1,0,123.(8分)如图,将方格纸中的三角形ABC 先向右平移2格得到三角形DEF ,再将三角形DEF 向上平移3格得到三角形GPH .(1)动手操作:按上面步骤作出经过两次平移后分别得到的三角形; (2)设AC 与DE 相交于点M ,则图中与∠BAC 相等的角有 个; (3)若∠BAC =43°,∠B =32°,则∠PHG = °.答案:(1)如下图,(2)4(3)10524.(8分)“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x)2+;(2)已知x2﹣4x+y2+2y+5=0,求x+y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.答案:(1)﹣2;1;(2)原方程化为:(x-2)2+(y+1)2=0,所以,x=2,y=-1,x+y=1(3)x2﹣1-(2x﹣3)=x2﹣2x+2=(x-1)2+1>0所以,x2﹣1>2x﹣325.(9分)某公司分两次采购甲、乙两种商品,具体情况如下:(1)求甲、乙商品每件各多少元?(2)公司计划第三次采购甲、乙两种商品共31件,要求花费资金不超过475元,问最多可购买甲商品多少件?答案:26.(10分)发现:已知△ABC 中,AE 是△ABC 的角平分线,∠B =72°,∠C =36° (1)如图1,若AD ⊥BC 于点D ,求∠DAE 的度数;(2)如图2,若P 为AE 上一个动点(P 不与A 、E 重合),且PF ⊥BC 于点F 时,∠EPF = °.(3)探究:如图2△ABC 中,已知∠B ,∠C 均为一般锐角,∠B >∠C ,AE 是△AB最新七年级(下)期末考试数学试题及答案一、选择题(每小题3分,共42分.) 1.点A (-3,4)所在象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.解方程组322510x y y x --⎧⎨⎩=①=②时,把①代入②,得( ) A .2(3y -2)-5x=10 B .2y -(3y -2)=10 C .(3y -2)-5x=10D .2y -5(3y -2)=103.要反映我县2019年6月30日-7月6日这一周内每天的最高气温的变化情况,宜采用( ) A .条形统计图 B .扇形统计图 C .折线统计图D .频数分布直方图4.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A .50°B .45°C .35°D .30°5.下列不等式变形中,一定正确的是( ) A .若ac >bc ,则a >b B .若a >b ,则am 2>bm 2 C .若ac 2>bc 2,则a >bD .若m >n ,则-22m n->6.不等式组21102x x x +≥-⎧⎪⎨⎪⎩<的解集在数轴上表示正确的是( )7.如图,直线a 、b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,一定有a ∥bB .当a ∥b 时,一定有∠1=∠2C .当a ∥b 时,一定有∠1+∠2=90°D .当∠1+∠2=180°时,一定有a ∥b8.已知|a+b -,则(b -a )2019的值为( ) A .1 B .-1C .2019D .-20199.已知12x y -⎧⎨⎩==是二元一次方程组325x y a bx y ⎨-⎩+⎧==的解,则b -a 的值是( )A .1B .2C .3D .410.若关于x 的不等式组324x a x a ⎩+-⎧⎨<>无解,则a 的取值范围是( )A .a≤-3B .a <-3C .a >3D .a≥311.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .1512.某校组织部分学参加安全知识竞赛,并将成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则: ①参加本次竞赛的学生共有100人; ②第五组的百分比为16%; ③成绩在70-80分的人数最多; ④80分以上的学生有14名; 其中正确的个数有( )A .1个B .2个C .3个D .4个13.已知关于x 的不等式组(235)322x a x x -≥-+⎧⎨⎩>仅有三个整数解,则a 的取值范围是( )A .12≤a <1 B .12≤a≤1 C .12<a≤1 D .a <114.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种B .3种C .2种D .1种二、填空题(每小题3分,共15分) 15的立方根是 .16.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是. 17.若二元一次方程组3354x y x y +-⎧⎨⎩==的解为0x ay b⎧⎨⎩==,则a -b= .18.已知关于x 的不等式3x -m+1>0的最小整数解为2,则实数m 的取值范围是 . 19.在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P (x ,y )的终结点已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 3的坐标为 . 三、解答题20.(1|1-; (2)解不等式2223x xx +--<,并把解集在数轴上表示出来;(3)解方程组:521123x y y x +--⎧⎪⎨⎪⎩==. 21.求不等式组121232x x -+≤⎧⎪⎨⎪⎩<22.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a= ,b= ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?23.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a、b的值.24.已知关于x,y的方程组22324x y mx y m⎨-⎧++⎩=①=②的解满足不等式组3050x yx y+≤+⎧⎨⎩>,求满足条件的m的整数值.25.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)求证:CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF,并说明理由.26.为培养学生自主意识,拓宽学生视野,促进学习与生活的深度融合我市某中学决定组织部分学生去青少年综合实践基地进行综合实践活动在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生现有甲、乙两种大客车它们的载客量和租金如表所示学校计划此实践活动的租车总费用不超过300元,为了安全每辆客车上至少要有2名老师.(1)参加此次综合实践活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,租用客车总数为多少辆?(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案与试题解析1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.【分析】根据二元一次方程组解法中的代入消元法求解.【解答】解:把①代入②得:2y-5(3y-2)=10,故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想.3.【分析】根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【解答】解:根据统计图的特点,知要反映我县2019年6月30日-7月6日这一周内每天的最高气温的变化情况,最适合使用的统计图是折线统计图.故选:C.【点评】此题主要考查了统计图的选择.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.4.【分析】由条件可先求得∠B,再由平行线的性质可求得∠2.【解答】解:∵AC⊥AB,∴∠BAC=90°,∵∠1=60°, ∴∠B=30°, ∵a ∥b , ∴∠2=∠B=30°, 故选:D .【点评】本题主要考查平行线的性质,掌握两直线平行同位角相等是解题的关键. 5. 【分析】利用不等式的性质和c <0对A 进行判断;利用不等式的性质和m=0对B 进行判断;利用不等式的性质对C 、D 进行判断.【解答】解:A 、若ac >bc ,则c <0,所以a <b ,所以A 选项错误; B 、若a >b ,m=0,则am 2>bm 2不成立,所以B 选项错误; C 、若ac 2>bc 2,c 2>0,则a >b ,所以C 选项正确; D 、若m >n ,则-12m <-12n ,所以D 选项错误. 故选:C .【点评】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变. 6. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式2x+1≥x ,得:x≥-1, 解不等式2x-1<0,得:x <2, 则不等式组的解集为-1≤x <2, 故选:A .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 7. 【分析】根据平行线的判定定理与性质对各选项进行逐一判断即可. 【解答】解:A 、若∠1=∠2不符合a ∥b 的条件,故本选项错误; B 、若a ∥b ,则∠1+∠2=180°,∠1不一定等于∠2,故本选项错误; C 、若a ∥b ,则∠1+∠2=180°,故本选项错误;D 、如图,由于∠1=∠3,当∠3+∠2=180°时,a ∥b ,所以当∠1+∠2=180°时,一定有a ∥b ,故本选项正确.故选:D.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理与性质是解答此题的关键.8.【分析】利用非负数的性质列出方程组,求出方程组的解得到a与b的值,代入原式计算即可求出值.【解答】【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.9.【分析】把x与y的值代入方程组求出a与b的值,即可求出所求.【解答】【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组324x a x a ⎩+-⎧⎨<>无解, ∴a -4≥3a+2,解得:a≤-3,故选:A . 【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.11. 【分析】设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据前两束气球的价格,即可得出关于x 、y 的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个, 根据题意得:316320x y x y ++⎧⎨⎩=①=②,方程(①+②)÷2,得:2x+2y=18.故选:B .【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12. 【分析】根据条形统计图逐项分析即可.【解答】解:①参加本次竞赛的学生共有8÷(1-4%-12%-40%-28%)=50(人),此项错误; ②第五组的百分比为1-4%-12%-40%-28%=16%,此项正确;③成绩在70-80分的人数最多,此项正确;④80分以上的学生有50×(28%+16%)=22(名),此项错误;故选:B .【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.13. 【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.【解答】解:由x >2a -3,由2x≥3(x -2)+5,解得:2a -3<x≤1,由关于x 的不等式组()232325x a x x -≥-+⎧⎨⎩>仅有三个整数: 解得:-2≤2a -3<-1,解得12≤a<1,故选:A.【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.14.【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【解答】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=4043x,∵x、y均为非负整数,∴x=1、y=12;x=4、y=8;x=7、y=4;x=10、y=0所以购买资金恰好用尽的情况下,购买方案有4种,故选:A.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.15.【分析】,再根据立方根的定义即可得出答案.【解答】=8,2;故答案为:2.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故答案为:16°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.17.【分析】把x、y的值代入方程组,再将两式相加即可求出a-b的值.【解答】解:将x ay b⎧⎨⎩==代入方程组3354x yx y+-⎧⎨⎩==,得:3354a ba b+-⎧⎨⎩=①=②,①+②,得:4a-4b=7,则a-b=7 4故答案为:74.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.18.【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【解答】解:解不等式3x-m+1>0,得:x>1 3m-,∵不等式有最小整数解2,∴1≤13m-<2,解得:4≤m<7,故答案为4≤m<7.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.19.【分析】根据坐标变换的定义,求出P3即可.【解答】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(-3,3),故答案为(-3,3).【点评】本题考查了几何变换:四种变换方式:对称、平移、旋转、位似.掌握在直角坐标系中各种变换的对应的坐标变化规律,是解决问题的关键.20. 【分析】(1)先计算立方根、算术平方根和绝对值,再计算加减可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(3)利用加减消元法求解可得.【解答】解:(1)原式=5--;(2)去分母,得 6x -3(x+2)<2(2-x ),去括号,得 6x -3x -6<4-2x ,移项,合并得 5x <10,系数化为1,得x <2,不等式的解集在数轴上表示如下:(3)②×6得:6x -2y=10③,①+③得:11x=11,即x=1,将x=1代入①,得y=-2,则方程组的解为12x y -⎧⎨⎩==.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.21. 【分析】先求出不等式组的解集,再求出不等式组的正整数解即可.【解答】解:121232x x -⎧+≤⎪⎨⎪⎩<①② ∵解不等式①得:x >-1,解不等式②得:x≤3,∴不等式组的解集为-1<x≤3,∴不等式组的正整数解为1、2、3.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.22.分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【解答】解:(1)根据题意得:2÷0.04=50(人),则a=50-(2+3+15+5)=25;b=5÷50=0.10;故答案为:25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点评】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.23.【分析】(1)根据点的位置,直接写出点的坐标;(2)根据(1)中发现的规律,两点的横坐标、纵坐标都互为相反数,即横坐标的和为0,纵坐标的和为0,列方程,求a、b的值.【解答】解:(1)由图象可知,点A(2,3),点D(-2,-3),点B(1,2),点E(-1,-2),点C(3,1),点F(-3,-1);对应点的坐标特征为:横坐标、纵坐标都互为相反数;(2)由(1)可知,a+3+2a=0,4-b+2b-3=0,解得a=-1,b=-1.【点评】本题考查了坐标系中点的坐标确定方法,对应点的坐标特征.关键是通过观察发现规律,列方程求解.24.【分析】首先根据方程组可得34040mm+≤+⎧⎨⎩>,再解不等式组,确定出整数解即可.【解答】解:①+②得:3x+y=3m+4,②-①得:x+5y=m+4,∵不等式组3050x yx y+≤+⎧⎨⎩>,∴34040mm+≤+⎧⎨⎩>,解不等式组得:-4<m≤-43,则m=-3,-2.【点评】此题主要考查了一元一次不等式组的整数解,关键是用含m的式子表示x、y.25.【分析】(1)根据平行线的性质,得到∠ACE=40°,根据平角的定义以及角平分线的定义,即可得到∠ACF=70°,进而得出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,运用等角的余角相等,即可得到∠GCO=∠GCD,即CG平分∠OCD;(3)当∠O=60°时,。
(完整word版)黄冈中学初一年级期末考试数学试题
黄冈市启黄中学2011年秋季七年级数学期末考试试题满分: 120分 时间:120分钟一. 填空题(每小题3分,共24分)1.在1()2-- ,1-,0,22-,4(3)-,2--,328-,2(2)--中,是正有理数的有 个. 2.若2313x y a b +-与53110a b -是同类项,则xy = . 3.若13a +与213a +互为相反数,则a 的值是____ .4.如图,将长方形ABCD 沿AE 折叠,已知60CED '∠=︒,则AED ∠的度数是_______.5.规定一种新的运算:ba b a 11+=⊗,则=⊗21____. 6.如果3(3)16m ym y --++是关于y 的二次三...项式,则m 的值是____. 7. 商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折 销售,但要保证利润率最低为5%,则最多可打____折.8.若∠MON =80°,且OA 平分∠MOP , OB 平分∠NOP ,当射线OP 在∠MON 外部..绕 点O 旋转时,∠AOB 度数是__________________. 二. 选择题(每小题3分,共30分)9.如图1,∠1+∠2等于( ) A .60° B .90° C .110° D .180° 10.一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯 的角度可能是( )A .第一次向右拐80°,第二次向右拐100°B .第一次向右拐80°,第二次向左拐100°C .第一次向左拐75°,第二次向左拐75°D .第一次向右拐50°,第二次向左拐50° 11.如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是( )12.2009年我省GDP 突破万亿达到10052.9亿元,这意味着安徽已经成为全国GDP 万亿俱乐部的第14个成员,10052.9亿元用科学记数法表示为(保留三个有效数字)( )A .121.0010⨯元 B .121.00510⨯元 C .121.0110⨯元 D .121.0052910⨯元(第11题)1 2 (第9题)(第4题)B . D .B . A . D .13.实数a 在数轴上的位置如图所示,则114-+-a a 化简后为( ) A . 7 B . -7 C . 2a-15 D . 无法确定14. 甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的6040%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈中学2008年秋季七年级数学期末考试试题
一、填空题(共10小题,每小题3分,共30分)
1.1
32
-的绝对值是 ;
23的倒数是 ;2-的相反数是 . 2.我国西部地区的面积约为6.40×106平方千米,它精确到 位,有 个有效数字.
3.若2313m n a b +-与351
10
b a -是同类项,则mn = .
4.某足球队在足球联赛中共赛22场,得39分,若胜一场得3分,平一场得1分,负一场得0分,已知该球队共负7场,则该球队共胜 场.
5.已知方程11x +=-与方程2x k x -=-有相同的解,那么k = .
6.如图,若,,80AB DE BC FE B ∠=︒,则E ∠= .
7.延长AB 到C 点,使1
3
BC AB =,D 为AC 的中点,BC =2,则AD = .
8.如果一个角与它的余角之比为1∶2,那么这个角与它的补角之比 为 . 9.如图,O 是直线AB 上的一点,120,90AOD AOC ∠=︒∠=︒,OE 平
分BOD ∠,则图中小于平角的角共有 个,其中互余的角共
有 对.
10.已知60AOB ∠=︒,过O 的射线OC 使:3:2AOC AOB ∠∠=,则BOC ∠= . 二、选择题(每小题3分,共30分。
11~18为单选题,只有一个选项最符合题意,19~20为
多选题,有两个或两个以上选项符合题意。
) 11.若||2,||3m n ==,则||m n +的值是( )
A .5
B .1
C .3或1
D .5或1 12.已知0a b c ++=,则代数式()()()a b b c c a abc ++++的值为( )
A .-1
B .1
C .0
D .2 13.如果方程21x a x +=-的解是4x =-,那么a 的值为( )
A .3
B .5
C .-5
D .-13
14.小明在假期里参加了四天一期的夏令营活动,这四天各天的日期之和为86,则夏令营的
开营日为( ) A .20日 B .21日 C .22日 D .23日 15.下列图形中,不是正方体展开图的是( )
F E C
D
A
B
O E
C
D A B
A .
B .
C .
D .
16.3点半时,钟表的时针和分针所成锐角是( )
A .70°
B .75°
C .85°
D .90°
17.如图,已知,20,130AB
DE B D ∠=︒∠=︒,那么BCD ∠等于( )
A .60°
B .70°
C .80°
D .90°
18.如图,已知,,80,40AB DC AD BC B EDA ∠=︒∠=︒,
则CDO ∠=( ) A .80° B .70° C .60° D .40°
19.下列变形中,正确的是( )
A .若25x x =,则x =5
B .若77,x -=则1x =-
C .若
10.2x
x -=,则1012x x -=
D .若
x y
a a
=,则ax ay = 20.如图,直线34l l ⊥,且14∠=∠,则下列判断正确的是( )
A .1
2l l
B .1423∠+∠=∠+∠
C .1390∠+∠=︒
D .24∠=∠
三、解答题(8小题,共60分) 21.解方程(每小题4分,共16分) (1)82(4)x x =--; (2)3(2)1(21)x x x -+=--;
(3)
124364
x x x
+---=
; (4)
131
10.20.4
x x +--=.
22.(6分)化简求值
求2222(32)(4)(2)a b a b ab a ab a b ---+-的值,其中2, 3.a b =-=- l 4
l 1 l 2
l 3
4
3
1
2
A
D O
B
E
C
E
B
A D
23.(6分)如图,C 、D 将线段AB 分成2∶3∶4三部分,E 、F 、G 分别是AC 、CD 、DB 的
中点,且EG =12cm ,求AF 的长.
24.(6分)某件商品的标价为1100元,若商店按标价的80%降价销售仍可获利10%,求该商
品的进价是多少元? 25.(6分)如图所示,O 是直线AC 上一点,OB 是一条射线,OD 平分AOB ∠,OE 在BOC
∠内,1
,603
BOE EOC DOE ∠=∠∠=︒,求EOC ∠的度数.
26.(6分)某人原计划骑车以12千米/时的速度由A 地到B 地,这样便可以在规定的时间到
达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定的时间早4分钟到达B 地,求A 、B 两地间的距离.
27.(7分)如图,已知,,3AD BC EF BC C ⊥⊥∠=∠,求证:1 2.∠=∠
28.(7分)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,
甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费. (1)问该中学库存多少套桌凳?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,
现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理. 你认为哪种方案省时又省钱?为什么?
B A
D F C E
G 2 3
4 1 E
O C
A D B
A C D
B E F G
启黄初中2008年秋季七年级数学期末考试参考答案
1.133,
,222;
2.万,3; 3.4(其中4
3,3m n ==); 4.12; 5.-6; 6.100°; 7.4; 8.1∶5;
9.9,6(,,,,,COD DOB BOE COE DOE COE DOE DOB COD COE EOB DOB ∠∠∠∠∠∠∠∠∠∠∠∠与与与与与与); 10.30°或150° 11.D 12.C 13.A 14.A 15.B 16.B 17.B 18.C 19.BCD 20.AC
21.(1)45x =;(2)32x =;(3)45x =;(4)13
5
x =
22.解:原式=2222232424a b a b ab a ab a b a ab --++-=+
当2a =-,3b =-时,原式24(2)(2)(3)22=⨯-+-⨯-=
23.解:设2AC x =,则3,4CD x DB x ==,又有E 、G 分别平分AC 、DB ,
故11
,222
EC AC x DG DB x =
===,
由3212EG EC CD DG x x x =++=++=,得x =2, ∴377
227(cm)222
AF AC CF x x x =+=+
==⨯= 24.解:设该商品的进价为x 元,由题意得110080%(110%)x ⨯=+,解方程得x =800.
答:该商品的进价为800元.
(1100x80%=1375元,1375/(1+10%)=1250元,该商品的进价是1250元。
?)
25.解:设BOE ∠为x°,则60DOB x ∠=︒-︒,由OD 平分AOB ∠,得2AOB DOB ∠=∠,
故有32(60)180x x x ++-=,解方程得x =30,故90.EOC ∠=︒ 26.解:设A 、B 两地间距离为x 千米,由题意得
20412156060
x x =++,解方程得x =24. 答:A 、B 两地间距离为24千米.
27.证明:∵,AD BC EF BC ⊥⊥(已知),∴AD
EF (垂直于同一条直线的两直线平行)
∴14∠=∠(两直线平行,同位角相等)
又∵3C ∠=∠(已知)
∴AC DG (同位角相等,两直线平行) ∴24∠=∠(两直线平行,内错角相等) ∴12∠=∠(等量代换)
28.解:(1)设该中学库存x 套桌凳,由题意得:
2016168
x x
-=+,解方程得x =960. (2)设①②③三种修理方案的费用分别为y 1、y 2、y 3元,则:
1 2 3
960
(8010)5400,
16
960
(12010)5200,
168
960 (8012010)5040
16168
y y y =+⨯=
=+⨯=
+
=++⨯=
++
综上可知,选择方案③更省时省钱.。