2018小升初经典列方程解应用题汇总21题
小升初数学试题列方程解应用题通用含答案

小学数学小升初列方程解应用题1.甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船?2.甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米。
甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离。
3.哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?4.两筐苹果,每筐的个数相等,从甲筐卖出150个,从乙筐卖出194个后,剩下的苹果甲筐是乙筐的3倍,原来每筐有多少个?5.高中学生的人数是初中学生人数的5/6,高中毕业生的人数是初中毕业生人数的12/17。
高、初中的毕业生离校后,高、初中留下的人数都是520。
那么,高、初毕业生共有多少人?6.某商店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买,后来不得不按38%的利润重新定价,这样售出了其中的40%。
此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。
结果,实际获得的总利润是原定利润的30.2%。
那么,第二次降价后的价格是原定价的百分之多少?7.学校早晨6:00开校门,晚上6:40关校门。
下午有一同学问老师现在的时间,老么现在的时间是下午几点?8.甲河是乙河的支流,甲河水流速度为每小时3千米,乙河水流速度为每小时2千米。
一艘船沿乙河逆水航行6小时,行了84千米到达甲河,在甲河还要顺水航行133千米。
求这艘船一共航行多少小时?9.某校100名学生在一次语、数、外三科竞赛中,参加语文竞赛的有39人,参加数学竞赛的有49人,参加外语竞赛的有41人,既参加语文竞赛又参加数学竞赛的有14人,既参加数学竞赛又参加外语竞赛的有13人,既参加语文竞赛又参加外语竞赛的有9人,有1人三项都没有参加,问三项都参加的有多少人?参考答案1.61吨【解析】先找相等的关系。
(完整版)小升初数学专项题-列方程解应用题

列方程解应用题【基础概念】:列方程解决问题就是根据题目中的等量关系先列出方程,再求得问题中的未知量的一种解决问题的方法。
知量的一种解决问题的方法。
把所求问题用一个字母表示,把所求问题用一个字母表示,把所求问题用一个字母表示,并让其参与分析与列式,并让其参与分析与列式,并让其参与分析与列式,很快理很快理清题中的数量关系,可以使一些整数、分数、百分数的应用题化难为易,既可以节省时间,又可以提高解题能力。
【典型例题1】:贵诚超市推销一种积压商品,减价25%出售,每件售价42元,原定价是多少元?【小结】:解决这类问题首先要找到等量关系——原价-减少的钱数=现价,再根据等量关系列出方程,从而解决问题。
【巩固练习】1.列方程解答。
2.列方程解答。
【典型例题2】:甲乙两地相距480千米,客货两车同时从甲乙两地相向而行,客车平均每小时行65千米,货车平均每小时行60千米,行驶了3小时,这时两车还相距多少千米?小时,这时两车还相距多少千米?【小结】:解决这类问题的关键是要明确“行驶的路程、剩下的路程、甲乙两地的距离”之间的关系,即行驶的路程+剩下的路程=甲乙两地的距离,列出方程解答即可。
甲乙两地的距离,列出方程解答即可。
【巩固练习】【巩固练习】3. 甲乙两地相距480千米.客车和货车同时从两地相对开出,千米.客车和货车同时从两地相对开出,相向而行,相向而行,4小时后,小时后,两车还两车还相距80千米.已知货车每小时行53千米,问客车每小时行多少千米?千米,问客车每小时行多少千米?4.一辆客车和一辆货车从甲乙两地同时出发相向而行,经过45小时两车相遇,这时货车行了全程的40%,已知货车每小时行60千米,求甲乙两地的距离。
千米,求甲乙两地的距离。
5、有两包面粉,第一包重是第二包的两倍,如果从第一包取出10千克放入第二包,那么两包样重,问,第一包面粉多重?6、六年级学生合买一件礼物 给母校作纪念,如果 每人出6元则多48元,如果每人出4.5元 ,则小27元,求六年级学生人数?7、妈妈买回一箱梨,按计划天数,如果每天吃四个,由多出24个,如果每天吃6个,则少四个,问计划吃多少天,妈妈买回了多少梨?8、育英学校小学体育室里有足球个数是排球数的2倍,体育课上,每班借7个足球5个排球,排球借完时,还有足球72个,体育室原来有足球排球多少个?9、甲乙仓库的冰箱台数是乙仓库的2倍,每天从甲仓库运出3台,从乙仓库运出冰箱2台,运出几天后,乙仓库的冰箱正好用完,而甲仓库还有25 台,原来乙仓库还有冰箱多少台10、有三个连续的整数,已知最少的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续的整数?11、已知三个连续奇数之和是75,求这三个数? 12、10年前父亲的年纪是儿子年纪的7倍,15年后父亲的年纪是他儿子的2倍,问今年父子二人各多少岁?13、小明今年的年龄是明明年龄的5倍,25年后,小明的年龄是明明年龄的2倍少16,问小明和明明各多少岁14、商店购进一批皮球每只成本1.5元,出售时每只售价2元,当商店卖到皮球剩20只时,成本已经全部收回,并且赚了50元,问商店原进购皮球多少只?15、一辆卡车运矿石,晴天每天可运20次,雨天可运12次,一共运了112次,平均每天运次,问这几天当中有几个晴天几个雨天?14次,问这几天当中有几个晴天几个雨天?答案及解析:答案及解析:例1、【思路分析】:本题中的等量关系是:原价-减少的钱数=现价,减少的钱数=原价×25%,所以原价-原价×25%=现价,即可解决。
小升初专题列方程解应用题

列方程解应用题一、列简易方程解应用题10x+1.从而有3(105+x)=10x+1.7x=299999.x=42857。
答:这个六位数为142857。
说明:这一解法的关键有两点:示出来.这里根据题目的特点.采用“整体”设元的方法很有特色。
(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是一般语言与数学的形式语言之间的相互关系转化。
因此.要提高列方程解应用题的能力.就应在这两方面下功夫。
例2有一队伍以1.4米/秒的速度行军.末尾有一通讯员因事要通知排头.于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾.共用了10分50秒。
问:队伍有多长?分析:这是一道“追及又相遇”的问题.通讯员从末尾到排头是追及问题.他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题.他与排尾所行路程和为队伍长。
如果设通讯员从末尾到排头用了x秒.那么通讯员从排头返回排尾用了(650-x)秒.于是不难列方程。
解:设通讯员从末尾赶到排头用了x秒.依题意得2.6x-1.4x=2.6(650-x)+1.4(650-x)。
解得x=500。
推知队伍长为(2.6-1.4)×500=600(米)。
答:队伍长为600米。
说明:在设未知数时.有两种办法:一种是设直接未知数.求什么、设什么;另一种设间接未知数.当直接设未知数不易列出方程时.就设与要求相关的间接未知数。
对于较难的应用题.恰当选择未知数.往往可以使列方程变得容易些。
例3铁路旁的一条与铁路平行的小路上.有一行人与骑车人同时向南行进.行人速度为3.6千米/时.骑车人速度为10.8千米/时.这时有一列火车从他们背后开过来.火车通过行人用22秒.通过骑车人用26秒.这列火车的车身总长是多少?分析:本题属于追及问题.行人的速度为3.6千米/时=1米/秒.骑车人的速度为10.8千米/时=3米/秒。
火车的车身长度既等于火车车尾与行人的路程差.也等于火车车尾与骑车人的路程差。
小升初考试重点列方程解应用题

列方程解应用题例1:甲书架上的书是乙书架上的错误!,两个书架上各借出154本后,甲书架上的书是乙书架上的错误!,甲、乙两书架上原有书各多少本?例2:甲、乙两校共有22人参加竞赛,甲校参加人数的错误!比乙校参加人数的错误!少1人,甲、乙两校各有多少人参加?例3:某商店原有黑白、彩色电视机共630台,其中黑白电视机占15,后来又运进一些黑白电视机,这时黑白电视机占两种电视机总台数的30%。
问:又运进黑白电视机多少台?例6:某文具店用16000元购进4种练习本共6400本。
每本的单价是:甲种4元,乙种3元,丙种2元,丁种1。
4元.如果甲、丙两种本数相同,乙、丁两种本数也相同,那么丁种练习本共买了多少本?1、小明读一本故事书,已经读了全书的55%,比没读的多10页,这本书共有多少页?2、王师傅和李师傅共加工零件62个,王师傅加工零件个数的15比李师傅的错误!少2个,两人各加工零件多少个?3、六年级甲班比乙班少4人,甲班有错误!的人、乙班有错误!的人参加课外数学组,两个班参加课外数学组的共有29人,甲、乙两班共有多少人?4、某学校的男教师比女教师的错误!多8人.如果女教师减少4人,男教师增加8人,男、女教师人数正好相等。
这个学校男、女教师各有多少人?5、某工厂第一车间的人数比第二车间的人数的错误!少30人。
如果从第二车间调10人到第一车间,则第一车间的人数就是第二车间的错误!。
求原来每个车间的人数。
6、把金放在水里称,其重量减轻119,把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?例1:一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的错误!.现在甲、乙两队合做若干天后,再由乙队单独做,做完后发现两段所用时间相等。
求两段一共用了几天?2、某项工程,甲、乙合做1天完成全部工程的245.如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的2413。
小升初数学试题列方程解应用题通用含答案

小升初数学试题列方程解应用题通用含答案甲船的油量为595+x吨,乙船的油量为225-x吨。
根据题意得:595+x=4(225-x)化简得:x=61所以,乙船要抽出61吨油给甲船。
2.120千米解析】设两镇间的距离为d千米。
甲行驶的距离为15×0.5=7.5千米,乙行驶的距离为10×t千米(t为小时数)。
甲返回西镇后,行驶的距离为15×0.5=7.5千米,再行驶d千米到东镇,总共行驶的距离为7.5+d+7.5+10t。
乙行驶的总距离为d千米。
根据题意得:7.5+d+7.5+10t=1.5+d+10(t-0.5)+30化XXX:d=120所以,两镇间的距离为120千米。
3.哥哥现在27岁,弟弟现在9岁解析】设弟弟当年的年龄为x岁,则哥哥当年的年龄为3x岁。
根据题意得:3x=x+27-30= x-3化简得:x=6所以,哥哥现在27岁,弟弟现在9岁。
4.每筐有68个苹果解析】设每筐有x个苹果,则甲筐剩下的苹果数为x-150,乙筐剩下的苹果数为x-194.根据题意得:x-150=3(x-194) 化简得:x=68所以,每筐有68个苹果。
5.高中毕业生有272人,初中毕业生有408人解析】设初中学生人数为x,则高中学生人数为5x/6.设初中毕业生人数为y,则高中毕业生人数为12y/17.根据题意得:5x/6-12y/17=520化XXX:y=204代入可得:x=680所以,高中毕业生有272人,初中毕业生有408人。
6.第二次降价后的价格是原定价的50%解析】假设原定价为1元/斤,按100%的利润定价,则售价为2元/斤。
按38%的利润重新定价,则售价为1.38元/斤。
售出其中的40%后,剩余的水果全部降价出售,实际获得的总利润为1.506元/斤。
设第二次降价后的售价为x元/斤,则有:0.6×1.38+0.4×x=1.506化简得:x=0.5所以,第二次降价后的价格是原定价的50%。
小升初列方程解应用题

1.有两根绳子总长 100 米,第一根绳子截去35,第二根绳子截去14又 6米后,两根绳 子剩下的长度相等。
求两根绳子原来各有多少米。
2.一辆大卡车从甲城开出,每小时行 45 千米,1 小时后,又有一辆小汽车从甲城开出,与大卡车顺着同一条路前进。
若小汽车每小时行 60 千米,它过几小时就可以追上大卡车?追上时离甲城有多远?3.李师傅以每个24 元的价格购进了一批芭比娃娃,然后以每个36 元的价格卖出。
当卖到总数的56时,不但收回了全部成本,还盈利 360 元。
问:李师傅—共购进了多少个也比娃娃?4.甲、乙两列火车同时从相距 1000 千米的两地开出,相对而行,6 小时后相距 130千 米。
甲车每小时行 85 千米,乙车每小时行多少千米?5.向阳小学六年级同学去划船,共 52 人乘坐 11 只船,大船每只坐 6 人,小船每只坐 4人,全部坐满并且每人都能坐到船。
求大、小船各有多少只。
6.饲养场有 5000 只鸡,其中母鸡只数比公鸡的 1.5 倍还多 500 只。
问:公鸡、母鸡各 养了多少只?7.学校买来一批书奖励三好学生,如果每人奖5 本,则差8 本;如果每人奖7 本,则差30 本。
这个学校有多少名三好学生?买了多少本书?后,又运进6.3 吨,现存的钢材比原来还多30%,这个8.仓库里有一批钢材,用去320仓库里原来有多少吨钢材?9.一个打字员打一份稿件,第一天打了30 页,第二天打了50 页,还剩下总页数的3没有7打。
这份稿件有多少页?10.某莱市场上原有450 千克马铃薯和一些未知质量的西红柿。
马铃薯卖出1,西红柿卖出370%后,马铃薯的质量比西红柿的2 倍还多150 千克。
问:莱市场上原有西红柿多少千克?11.搬运完一个仓库的货物,甲需要10 小时,乙需要12 小时,丙需要15 小时。
有相同的仓库A 和B,甲在 A 仓库,乙在B 仓库同时开始搬运货物。
丙先到A 仓库帮甲搬运,中途又转到B仓库帮乙搬运,最后两个仓库的货物同时搬完。
《小升初解方程专项练习》

欢迎阅读《小升初,解方程专题》一.字母的运算二.去括号(主要是运用乘法的分配律和加减法的运算性质)应用上面的性质去掉下面各个式子的括号,能进行运算的要进行运算三.等式的性质.1.等式的定义:,叫做等式;2.等式的性质:(1).等号的两边同时加上或减去同一个数,等号的左右两边仍相等;用字母表示为:若a=b,c为任意一个数,则有a+c=b+c(a-c=b-c);(2).等号的两边同时乘以同一个数,等号的左右两边仍相等;用字母表示为:;(3).等号的两边同时除以同一个不为零的数,等号的左右两边仍相等.用字母表示为:;四.方程1.方程的定义:含有未知数的等式叫做方程;2.方程的解:满足方程的未知数的值,叫做方程的解;3.解方程:求方程的解的过程,叫做解方程.四则运算:加——加数+加数=和乘——因数×因数=积→→加数=和-另一个加数→→因数=积÷另一个因数减——被减数-减数=差除——被除数÷除数=商被减数=减数+差被除数=除数×商减数=被减数-差除数=被除数÷商差=被减数-减商=被除数÷除数一、求加数或求因数的方程加数=和-加数7+x=19 x+120=176 58+x=90因数=积÷因数7 x=63 x × 9=4.5 4.4x=444二、求被减数或求被除数的方程被减数=差+ 减数x-6=19 x-3.3=8.9 x-25.8=95.4被除数=商×除数x ÷7=9 x÷4.4=10 x÷78=10.5三、求减数或除数的方程减数=被减数-减数9-x=4.5 73.2-x=52.5 87-x=22除数=被除数÷商3.3÷x=0.3 8.8÷x=4.4 9÷x=0.03四、带括号的方程(先将小括号内的式子看作一个整体来计算,然后再来求方程的解)欢迎阅读3×(x-4)=46 (8+x) ÷5=15先把(x-4)当作因数算。
小升初专题列方程解应用题

列方程解应用题一、列简易方程解应用题10x+1,从而有3(105+x)=10x+1,7x=299999,x=42857。
答:这个六位数为142857。
)说明:这一解法的关键有两点:示出来,这里根据题目的特点,采用“整体”设元的方法很有特色。
(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是一般语言与数学的形式语言之间的相互关系转化。
因此,要提高列方程解应用题的能力,就应在这两方面下功夫。
例2有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒。
问:队伍有多长分析:这是一道“追及又相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所行路程和为队伍长。
如果设通讯员从末尾到排头用了x秒,那么通讯员从排头返回排尾用了(650-x)秒,于是不难列方程。
解:设通讯员从末尾赶到排头用了x秒,依题意得(650-x)+(650-x)。
解得x=500。
推知队伍长为#()×500=600(米)。
答:队伍长为600米。
说明:在设未知数时,有两种办法:一种是设直接未知数,求什么、设什么;另一种设间接未知数,当直接设未知数不易列出方程时,就设与要求相关的间接未知数。
对于较难的应用题,恰当选择未知数,往往可以使列方程变得容易些。
例3铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少分析:本题属于追及问题,行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒。
火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差。
如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x-1)×22或(x-3)×26,由此不难列出方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018小升初列方程解应用题汇总
1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。
解:设乙有书x本,则甲有书3x本
X+3X=82×2
2、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.
解:设下层有书X本,则上层有书3X本
3X-60=X+60
3、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.
解:设乙缸有X条,则甲缸有1/2X条
X-9=1/2X+9
4、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.
解:设计划时间为X小时
60×(X-1)=40×(X+1)
5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?
解:设四年级种树X棵,则五年级种(3X-10)棵
(3X-10)-X=62
6、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.
解:设原计划生产时间为X天
40×(X+6)=60×(X-4)
7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?
解:设X天后,乙仓存粮是甲仓的2倍
(32+4X)×2=57+9X
8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?
解:设直尺每把x元,小刀每把就是(1.9-x)元
4X+6×(1.9-X)=9
9、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?
解:设原来每个粮仓各存粮X吨
X-130=(X-230)×3
10、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.
解:设两人各加工X个零件
X/(50-40)=X/50+5-1
11、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?
解:设橘子每千克X元,则苹果每千克(X+2.2)元
2.5×(X+2.2)+2X=1
3.6
12、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?
解:设钢笔每支X元,则圆珠笔每支2X/3
4X+9×2X/3=24
13、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.
解:设十位上数字为X,则个位上的数字为2X,这个原两位数为(10X+2X)
10×2X+X=(10X+2X)+36
14、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.
解:设个位数字为X,则十位数字为(X-1)
X+(X-1)=[X+10×(X-1)] ×0.2
15、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?
解:设现在每只盒子中各有x个球,原来各盒中球的个数分别为(x-2)个、(x+2)个、(x÷2)个、2x个
(x-2)+ (x+2)+ (x÷2)+ 2x=45
16、25除以一个数的2倍,商是3余1,求这个数.
解:设这个数为X
(25-1)÷2X=3
17、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.
解:设甲车速度为X小时/小时
(X-48)×1.5=18
18、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,甲车先出发2小时后乙车才出发,两车同时到达B地.求A、B两地的距离.解:设A、B两地的距离为X千米
(X-30×2)/30=X/45
19、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.
解:设师傅每小时加工X个零件
6X=12×(3+6)
20、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升.
解:设甲桶原来有X升油,则乙桶原来有(X-15)升油
X+15+145=3X
21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.
解:设细木工每人得X元
(200×6+X)/(6+1)=X-30。