2021版新高考数学一轮复习第三章导数及其应用3.4.2导数与函数零点课件新人教B版

合集下载

高考数学一轮复习 第三章 导数及其应用3

高考数学一轮复习 第三章  导数及其应用3

高考数学一轮复习 第三章 3.7 利用导数研究函数零点 题型一 数形结合法研究函数零点例1 (2020·全国Ⅰ)已知函数f (x )=e x -a (x +2). (1)当a =1时,讨论f (x )的单调性; (2)若f (x )有两个零点,求a 的取值范围. 解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)令f (x )=0,得e x =a (x +2),即1a =x +2ex ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0; 当x ∈(-1,+∞)时,φ′(x )<0, 所以φ(x )在(-∞,-1)上单调递增, 在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时, φ(x )→-∞;x →+∞时,φ(x )→0, 所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞. 教师备选已知函数f (x )=x e x +e x .(1)求函数f (x )的单调区间和极值;(2)讨论函数g (x )=f (x )-a (a ∈R )的零点的个数. 解 (1)函数f (x )的定义域为R , 且f ′(x )=(x +2)e x ,令f ′(x )=0得x =-2,则f ′(x ),f (x )的变化情况如表所示:x (-∞,-2)-2 (-2,+∞)f ′(x ) - 0 + f (x )单调递减-1e2 单调递增∴f (x )的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞). 当x =-2时,f (x )有极小值为f (-2)=-1e 2,无极大值.(2)令f (x )=0,得x =-1, 当x <-1时,f (x )<0;当x >-1时,f (x )>0,且f (x )的图象经过点⎝⎛⎭⎫-2,-1e 2,(-1,0),(0,1). 当x →-∞时,与一次函数相比,指数函数y =e -x 增长更快,从而f (x )=x +1e -x →0;当x →+∞时,f (x )→+∞,f ′(x )→+∞,根据以上信息,画出f (x )大致图象如图所示.函数g (x )=f (x )-a (a ∈R )的零点的个数为y =f (x )的图象与直线y =a 的交点个数. 当x =-2时,f (x )有极小值f (-2)=-1e2.∴关于函数g (x )=f (x )-a (a ∈R )的零点个数有如下结论:当a <-1e 2时,零点的个数为0;当a =-1e 2或a ≥0时,零点的个数为1;当-1e2<a <0时,零点的个数为2.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)当m =e 时,f (x )=ln x +ex ,f (x )的定义域为(0,+∞), f ′(x )=1x -e x 2=x -e x 2.令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )<0; 当x ∈(e ,+∞)时,f ′(x )>0,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=2. (2)由题意知g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, ∴x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点例2 (12分)(2021·全国甲卷)设函数f (x )=a 2x 2+ax -3ln x +1,其中a >0. (1)讨论f (x )的单调性; [切入点:判断f ′(x )的正负](2)若y =f (x )的图象与x 轴没有公共点,求a 的取值范围. [关键点:f (x )>0且f (x )有最小值]教师备选已知函数f (x )=x sin x +cos x ,g (x )=x 2+4. (1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点. (1)解 f ′(x )=sin x +x cos x -sin x =x cos x . 当x ∈⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-π2,0∪⎝⎛⎭⎫π2,π时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π2,π上单调递减. (2)证明 h (x )=x 2+4-4x sin x -4cos x , ∵h (-x )=x 2+4-4x sin x -4cos x =h (x ), ∴h (x )为偶函数. 又∵h (0)=0,∴x =0为函数h (x )的零点.下面讨论h (x )在(0,+∞)上的零点个数: h (x )=x 2+4-4x sin x -4cos x =x (x -4sin x )+4(1-cos x ). 当x ∈[4,+∞)时, x -4sin x >0,4(1-cos x )≥0, ∴h (x )>0, ∴h (x )无零点; 当x ∈(0,4)时,h ′(x )=2x -4x cos x =2x (1-2cos x ), 当x ∈⎝⎛⎭⎫0,π3时,h ′(x )<0; 当x ∈⎝⎛⎭⎫π3,4时,h ′(x )>0,∴h (x )在⎝⎛⎭⎫0,π3上单调递减,在⎝⎛⎭⎫π3,4上单调递增, ∴h (x )min =h ⎝⎛⎭⎫π3=π29+4-4π3sin π3-4cos π3=π29+2-23π3<0,又h (0)=0,且h (4)=20-16sin 4-4cos 4>0, ∴h (x )在⎝⎛⎭⎫0,π3上无零点,在⎝⎛⎭⎫π3,4上有唯一零点. 综上,h (x )在(0,+∞)上有唯一零点, 又h (0)=0且h (x )为偶函数, 故h (x )在R 上有且仅有三个零点.思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练2 已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3. 当x ∈(-∞,3-23)∪(3+23,+∞)时, f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞), 单调递减区间为(3-23,3+23). (2)证明 因为x 2+x +1>0在R 上恒成立, 所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2x 2+2x +3x 2+x +12≥0在R 上恒成立,当且仅当x =0时,g ′(x )=0, 所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0, f (3a +1)=13>0,故f (x )有一个零点.综上所述,f (x )只有一个零点.题型三 构造函数法研究函数的零点例3 (2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围. 解 (1)当a =2时,f (x )=x 22x (x >0),f ′(x )=x 2-x ln 22x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0, 则x >2ln 2,此时函数f (x )单调递减, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,2ln 2,单调递减区间为⎝⎛⎭⎫2ln 2,+∞. (2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解.设g (x )=ln xx (x >0),则g ′(x )=1-ln xx 2(x >0),令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝⎛⎭⎫0,1e , 又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e ,即a 的取值范围为(1,e)∪(e ,+∞). 教师备选(2022·南阳质检)已知f (x )=13x 3+32x 2+2x ,f ′(x )是f (x )的导函数.(1)求f (x )的极值;(2)令g (x )=f ′(x )+k e x -1,若y =g (x )的函数图象与x 轴有三个不同的交点,求实数k 的取值范围.解 (1)因为f ′(x )=x 2+3x +2=(x +1)(x +2), 令f ′(x )=0,得x 1=-1,x 2=-2, 当x 变化时,f ′(x ),f (x )的变化如表所示:x (-∞,-2)-2 (-2,-1)-1 (-1,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗由表可知,函数f (x )的极大值为f (-2)=-23,极小值为f (-1)=-56.(2)由(1)知g (x )=x 2+3x +2+k e x -1=x 2+3x +1+k e x , 由题知需x 2+3x +1+k e x =0有三个不同的解,即k =-x 2+3x +1e x有三个不同的解.设h (x )=-x 2+3x +1e x,则h ′(x )=x 2+x -2e x =x +2x -1e x ,当x ∈(-∞,-2)时,h ′(x )>0,h (x )单调递增, 当x ∈(-2,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,又当x →-∞时,h (x )→-∞, 当x →+∞时,h (x )→0且h (x )<0, 且h (-2)=e 2,h (1)=-5e .作出函数h (x )的简图如图,数形结合可知,-5e<k <0.思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,m >0.(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=x +mx -mx .当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,题中问题等价于求函数F (x )的零点个数.F ′(x )=-x -1x -m x ,当m =1时,F ′(x )≤0,函数F (x )为减函数,因为F (1)=32>0,F (4)=-ln 4<0, 所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,因为F (1)=m +12>0, F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即函数f (x )与g (x )的图象总有一个交点.课时精练1.(2022·贵阳模拟)已知函数f (x )=13x 3-12ax 2(a ≠0). (1)讨论f (x )的单调性;(2)当a =1时,g (x )=f (x )-2x +b ,讨论g (x )的零点个数.解 (1)f (x )的定义域为R ,f ′(x )=x 2-ax =x (x -a ),若a >0,当x ∈(-∞,0)∪(a ,+∞)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,若a <0,当x ∈(-∞,a )∪(0,+∞)时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,综上,当a >0时,f (x )在(-∞,0),(a ,+∞)上单调递增,在(0,a )上单调递减, 当a <0时,f (x )在(-∞,a ),(0,+∞)上单调递增,在(a,0)上单调递减.(2)g (x )=13x 3-12x 2-2x +b , 令g (x )=0,所以b =-13x 3+12x 2+2x , 令h (x )=-13x 3+12x 2+2x , 则h ′(x )=-x 2+x +2=-(x -2)(x +1),所以h ′(2)=0,h ′(-1)=0,且当x <-1时,h ′(x )<0;当-1<x <2时,h ′(x )>0;当x >2时,h ′(x )<0,所以h (x )极小值=h (-1)=13+12-2=-76, h (x )极大值=h (2)=-13×8+12×4+4=103, 如图,当b <-76或b >103时,函数g (x )有1个零点; 当b =-76或b =103时,函数g (x )有2个零点; 当-76<b <103时,函数g (x )有3个零点.2.已知函数f (x )=e x (ax +1),曲线y =f (x )在x =1处的切线方程为y =bx -e.(1)求a ,b 的值;(2)若函数g (x )=f (x )-3e x -m 有两个零点,求实数m 的取值范围.解 (1)f (x )=e x (ax +1),则f ′(x )=e x (ax +1)+e x ·a =e x (ax +1+a ),由题意知⎩⎪⎨⎪⎧ f ′1=e 2a +1=b ,f 1=e a +1=b -e ,解得⎩⎪⎨⎪⎧a =1,b =3e , ∴a =1,b =3e.(2)g (x )=f (x )-3e x -m =e x (x -2)-m ,函数g (x )=e x (x -2)-m 有两个零点,相当于函数u (x )=e x ·(x -2)的图象与直线y =m 有两个交点,u ′(x )=e x ·(x -2)+e x =e x (x -1),当x ∈(-∞,1)时,u ′(x )<0,∴u (x )在(-∞,1)上单调递减;当x ∈(1,+∞)时,u ′(x )>0,∴u (x )在(1,+∞)上单调递增,∴当x =1时,u (x )取得极小值u (1)=-e.又当x →+∞时,u (x )→+∞,当x <2时,u (x )<0,∴-e<m <0,∴实数m 的取值范围为(-e,0).3.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解 (1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1,∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0,当x <0时,取x =-1a, 则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增.∴当x =ln(-a )时,f (x )取得极小值,也是最小值.当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞,函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).4.(2022·潍坊模拟)已知函数f (x )=x 2-a sin x -2(a ∈R ). (1)若曲线y =f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数f (x )在x ∈(0,π)上的零点个数,并说明理由.解 (1)f ′(x )=2x sin x -x 2-a cos x sin 2x, f ′⎝⎛⎭⎫π2=π,所以f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =πx ,所以f ⎝⎛⎭⎫π2=π22, 即π24-a -2=π22,a =-π24-2. (2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x -2=0可转化为x 2-a -2sin x =0, 设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈⎣⎡⎭⎫π2,π时,g ′(x )>0,所以g (x )在区间⎣⎡⎭⎫π2,π上单调递增.当x ∈⎝⎛⎭⎫0,π2时, 设h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x ∈⎝⎛⎭⎫0,π2上单调递增, 又 g ′(0)=-2<0,g ′⎝⎛⎭⎫π2=π>0,所以存在x 0∈⎝⎛⎭⎫0,π2使得g ′(x )=0且x ∈(0,x 0)时g (x )单调递减, x ∈⎣⎡⎭⎫x 0,π2时g (x )单调递增. 综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减, 当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点, 综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点; 当a ≥π2时,函数f (x )在(0,π)上没有零点.。

高三一轮复习2021版 第三章 第2讲 第1课时 导数与函数的单调性

高三一轮复习2021版 第三章 第2讲 第1课时 导数与函数的单调性

第2讲导数在研究函数中的应用第1课时导数与函数的单调性条件结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)内单调递增f′(x)<0f(x)在(a,b)内单调递减f′(x)=0f (x)在(a,b)内是常数函数[提醒](1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)对函数划分单调区间时,需确定导数等于零的点、函数的不连续点和不可导点;(3)如果一个函数具有相同单调性的单调区间不止一个,那么单调区间之间不能用“∪”连接,可用“,”隔开或用“和”连接;(4)区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响.判断正误(正确的打“√”错误的打“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数.() 答案:(1)×(2)√(3)√函数f(x)=cos x-x在(0,π)上的单调性是()A.先增后减B.先减后增C.增函数D.减函数解析:选D.因为f′(x)=-sin x-1<0.所以f(x)在(0,π)上是减函数,故选D.函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是()解析:选 C.根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.(教材习题改编)函数f(x)=e x-x的单调递增区间是________.解析:因为f(x)=e x-x,所以f′(x)=e x-1,由f′(x)>0,得e x-1>0,即x>0.答案:(0,+∞)已知f(x)=x3-ax在[1,+∞)上是增函数,则实数a的最大值是________.解析:f′(x)=3x2-a≥0,即a≤3x2,又因为x∈[1,+∞),所以a≤3,即a的最大值是3.答案:3利用导数判断或证明函数的单调性讨论函数f(x)=(a-1)ln x+ax2+1的单调性.【解】f(x)的定义域为(0,+∞),f′(x)=a-1x+2ax=2ax2+a-1x.①当a≥1时,f′(x)>0,故f(x)在(0,+∞)上单调递增;②当a≤0时,f′(x)<0,故f(x)在(0,+∞)上单调递减;③当0<a<1时,令f′(x)=0,解得x=1-a2a,则当x∈(0,1-a2a)时,f′(x)<0;当x∈( 1-a2a,+∞)时,f′(x)>0,故f(x)在(0,1-a2a)上单调递减,在(1-a2a,+∞)上单调递增.(2019·温州模拟)设函数f (x )=x ln(ax )(a >0).设F (x )=12f (1)x 2+f ′(x ),讨论函数F (x )的单调性.解:f ′(x )=ln(ax )+1,所以F (x )=12(ln a )x 2+ln(ax )+1,函数F (x )的定义域为(0,+∞),F ′(x )=(ln a )x +1x =(ln a )x 2+1x.①当ln a ≥0,即a ≥1时,恒有F ′(x )>0,函数F (x )在(0,+∞)上是增函数; ②当ln a <0,即0<a <1时,令F ′(x )>0,得(ln a )x 2+1>0,解得0<x < -1ln a ; 令F ′(x )<0,得(ln a )x 2+1<0,解得x > -1ln a. 所以函数F (x )在⎝⎛⎭⎫0,-1ln a 上为增函数, 在⎝⎛⎭⎫-1ln a ,+∞上为减函数.求函数的单调区间(1)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1)B .(0,1)C .(1,+∞)D .(0,+∞)(2)已知函数f (x )=13x 3+x 2+ax +1(a ∈R ),求函数f (x )的单调区间.【解】 (1)选B.y =12x 2-ln x ,y ′=x -1x =x 2-1x=(x -1)(x +1)x (x >0).令y ′<0,得0<x <1, 所以单调递减区间为(0,1).(2)f ′(x )=x 2+2x +a 开口向上,Δ=4-4a =4(1-a ).①当1-a ≤0,即a ≥1时,f ′(x )≥0恒成立, f (x )在R 上单调递增.②当1-a >0,即a <1时,令f ′(x )=0, 解得x 1=-2-4(1-a )2=-1-1-a ,x 2=-1+1-a ,令f ′(x )>0,解得x <-1-1-a 或x >-1+1-a ;令f ′(x )<0,解得-1-1-a <x <-1+1-a , 所以f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞);f (x )的单调递减区间为(-1-1-a ,-1+1-a ).综上所述:当a ≥1时,f (x )在R 上单调递增; 当a <1时,f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞),f (x )的单调递减区间为(-1-1-a ,-1+1-a ).1.已知函数f (x )=exx -m .则函数y =f (x )在x ∈(m ,+∞)上的单调递减区间为________,单调递增区间为________.解析:f ′(x )=e x (x -m )-e x (x -m )2=e x (x -m -1)(x -m )2,当x ∈(m ,m +1)时,f ′(x )<0, 当x ∈(m +1,+∞)时,f ′(x )>0,所以f (x )在(m ,m +1)上单调递减,在(m +1,+∞)上单调递增. 答案:(m ,m +1) (m +1,+∞)2.设函数f (x )=12x 2-m ln x ,求函数f (x )的单调区间.解:函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=(x +m )(x -m )x,当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上:当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).利用导数研究函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.主要命题角度有:(1)函数y =f (x )与y =f ′(x )图象的相互判定; (2)已知函数单调性求参数的取值范围; (3)比较大小或解不等式.角度一 函数y =f (x )与y =f ′(x )图象的相互判定 (1)(2017·高考浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )(2)设函数y =f (x )的图象如图,则函数y =f ′(x )的图象可能是( )【解析】 (1)原函数先减再增,再减再增,且x =0位于增区间内,故选D. (2)由y =f (x )图象可知,当x ∈(-∞,x 1)时,y =f (x )单调递增,所以f ′(x )>0. 当x ∈(x 1,x 2)时,y =f (x )单调递减,所以f ′(x )<0. 当x ∈(x 2,+∞)时,y =f (x )单调递增,所以f ′(x )>0. 所以y =f ′(x )的图象在四个选项中只有D 符合. 【答案】 (1)D (2)D角度二 已知函数单调性求参数的取值范围(1)(2019·浙江省高中学科基础测试)若函数f (x )=2x +ax(a ∈R )在[1,+∞)上是增函数,则实数a 的取值范围是( )A .[0,2]B .[0,4]C .(-∞,2]D .(-∞,4] (2)函数f (x )=kx -ln x 在区间(1,+∞)上单调递减,则k 的取值范围是________.【解析】 (1)由题意得f ′(x )=2-ax 2≥0在[1,+∞)上恒成立,则a ≤(2x 2)min =2,所以a ≤2,故选C.(2)因为函数f (x )=kx -ln x ,所以f ′(x )=k -1x ,函数在区间(1,+∞)上单调递减,则f ′(x )≤0在(1,+∞)上恒成立,即k -1x≤0在区间(1,+∞)上恒成立,故k ≤1x 在区间(1,+∞)上恒成立,因为在区间(1,+∞)上0<1x <1,故k ≤0.【答案】 (1)C (2)(-∞,0] 角度三 比较大小或解不等式(2019·宁波市效实中学月考)定义在R 上的函数f (x )的导函数是f ′(x ),若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f ⎝⎛⎭⎫1e (e 为自然对数的底数)、b =f (2)、c =f (log 28),则a 、b 、c 的大小关系为________(用“<”连接).【解析】 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,得f ′(x )>0,所以函数在(-∞,1)上单调递增,又f (x )=f (2-x ),得函数f (x )的图象关于直线x =1对称,所以函数f (x )图象上的点距离直线x =1越近函数值越大,又log 28=3,所以log 28>2-1e >2>1,得f (2)>f ⎝⎛⎭⎫1e >f (log 28),故c <a <b .【答案】 c <a <b(1)利用函数的单调性求参数的取值范围的解题思路①由函数在区间[a ,b ]上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间[a ,b ]上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.(2)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.[提醒] (1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.(2)注意函数的单调区间与函数在某区间上具有单调性是不同的.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.解析:设g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,所以当x >0时,g ′(x )>0,即g (x )在(0,+∞)上单调递增,又g (2)=f (2)2=0,所以f (x )>0的解集为(-2,0)∪(2,+∞).故填(-2,0)∪(2,+∞).答案:(-2,0)∪(2,+∞)利用导数研究函数单调性的方法(1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解,并注意函数f (x )的定义域.(2)含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.(3)已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.利用导数研究函数的单调性应注意4点 (1)求单调区间应遵循定义域优先的原则.(2)注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.(3)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (4)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.[基础达标]1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(-∞,1)D .(1,+∞) 解析:选D.由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 2.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是( ) A .增函数 B .减函数 C .先增后减D .先减后增解析:选A.在(0,2π)上有f ′(x )=1-cos x >0恒成立,所以f (x )在(0,2π)上单调递增. 3.(2019·台州市高三期末质量评估)已知函数f (x )=13ax 3+12ax 2+x (a ∈R ),下列选项中不可能是函数f (x )图象的是( )解析:选D.因f ′(x )=ax 2+ax +1,故当a <0时,判别式Δ=a 2-4a >0,其图象是答案C 中的那种情形;当a >0时,判别式Δ=a 2-4a >0,其图象是答案B 中的那种情形;判别式Δ=a 2-4a ≤0,其图象是答案A 中的那种情形;当a =0,即y =x 也是答案A 中的那种情形,应选答案D.4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 解析:选A.因为f (x )=x sin x ,所以f (-x )=(-x )sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又x ∈⎝⎛⎭⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3.所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A. 5.函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞) 解析:选B.由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2. 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B.6.(2019·温州七校联考)对于R 上可导的任意函数f (x ),若满足(x -3)f ′(x )≤0,则必有( )A .f (0)+f (6)≤2f (3)B .f (0)+f (6)<2f (3)C .f (0)+f (6)≥2f (3)D .f (0)+f (6)>2f (3)解析:选A.由题意知,当x ≥3时,f ′(x )≤0,所以函数f (x )在[3,+∞)上单调递减或为常数函数;当x <3时,f ′(x )≥0,所以函数f (x )在(-∞,3)上单调递增或为常数函数,所以f (0)≤f (3),f (6)≤f (3),所以f (0)+f (6)≤2f (3),故选A.7.函数f (x )=(x -3)e x 的单调递增区间是________.解析:因为f (x )=(x -3)e x ,则f ′(x )=e x (x -2),令f ′(x )>0,得x >2,所以f (x )的单调递增区间为(2,+∞).答案:(2,+∞)8.已知函数f (x )=ax +ln x ,则当a <0时,f (x )的单调递增区间是________,单调递减区间是________.解析:由已知得f (x )的定义域为(0,+∞).因为f ′(x )=a +1x =a ⎝⎛⎭⎫x +1a x,所以当x ≥-1a时f ′(x )≤0,当0<x <-1a 时f ′(x )>0,所以f (x )的单调递增区间为⎝⎛⎭⎫0,-1a ,单调递减区间为⎝⎛⎭⎫-1a ,+∞. 答案:⎝⎛⎭⎫0,-1a ⎝⎛⎭⎫-1a ,+∞ 9.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)10.(2019·浙江省名校协作体高三联考)已知函数f (x )=x 2e x ,若f (x )在[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意得,f ′(x )=e x (x 2+2x ),所以f (x )在(-∞,-2),(0,+∞)上单调递增,在(-2,0)上单调递减,又因为f (x )在[t ,t +1]上不单调,所以⎩⎪⎨⎪⎧t <-2t +1>-2或⎩⎨⎧t <0t +1>0,即实数t的取值范围是(-3,-2)∪(-1,0).答案:(-3,-2)∪(-1,0)11.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.故函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5).12.(1)设函数f (x )=x e 2-x +e x ,求f (x )的单调区间.(2)设f (x )=e x (ln x -a )(e 是自然对数的底数,e =2.718 28…),若函数f (x )在区间⎣⎡⎦⎤1e ,e 上单调递减,求a 的取值范围.解:(1)因为f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞).(2)由题意可得f ′(x )=e x ⎝⎛⎭⎫ln x +1x -a ≤0在⎣⎡⎦⎤1e ,e 上恒成立. 因为e x >0,所以只需ln x +1x -a ≤0,即a ≥ln x +1x 在⎣⎡⎦⎤1e ,e 上恒成立.令g (x )=ln x +1x. 因为g ′(x )=1x -1x 2=x -1x 2,由g ′(x )=0,得x =1. x ⎝⎛⎭⎫1e ,1 (1,e) g ′(x )- + g (x )g ⎝⎛⎭⎫1e =ln 1e +e =e -1,g (e)=1+1e ,因为e -1>1+1e,所以g (x )max =g ⎝⎛⎭⎫1e =e -1. 故a ≥e -1.[能力提升]1.(2019·丽水模拟)已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数).则下面四个图象中,y =f (x )的图象大致是( )解析:选C.由条件可知当0<x <1时,xf ′(x )<0,所以f ′(x )<0,函数递减.当x >1时,xf ′(x )>0,所以f ′(x )>0,函数递增,所以当x =1时,函数取得极小值.当x <-1时,xf ′(x )<0,所以f ′(x )>0,函数递增,当-1<x <0时,xf ′(x )>0,所以f ′(x )<0,函数递减,所以当x =-1时,函数取得极大值.符合条件的只有C 项.2.(2019·浙江新高考冲刺卷)已知定义在R 上的偶函数f (x ),其导函数f ′(x ).当x ≥0时,恒有x 2f ′(x )+f (-x )≤0,若g (x )=x 2f (x ),则不等式g (x )<g (1-2x )的解集为( ) A .(13,1) B .(-∞,13)∪(1,+∞)C .(13,+∞) D .(-∞,13) 解析:选A.因为定义在R 上的偶函数f (x ),所以f (-x )=f (x )因为x≥0时,恒有x2f′(x)+f(-x)≤0,所以x2f′(x)+2xf(x)≤0,因为g(x)=x2f(x),所以g′(x)=2xf(x)+x2f′(x)≤0,所以g(x)在[0,+∞)上为减函数,因为f(x)为偶函数,所以g(x)为偶函数,所以g(x)在(-∞,0)上为增函数,因为g(x)<g(1-2x)所以|x|>|1-2x|,即(x-1)(3x-1)<0<x<1,选A.解得133.已知定义在R上的函数f(x)满足f(-3)=f(5)=1,f′(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示,则不等式f(x)<1的解集是________.解析:依题意得,当x>0时,f′(x)>0,f(x)是增函数;当x<0时,f′(x)<0,f(x)是减函数.又f(-3)=f(5)=1,因此不等式f(x)<1的解集是(-3,5).答案:(-3,5)4.(2019·绍兴、诸暨高考模拟)已知函数f(x)=x3-3x,函数f(x)的图象在x=0处的切线方程是________;函数f(x)在区间[0,2]内的值域是________.解析:函数f(x)=x3-3x,切点坐标(0,0),导数为y′=3x2-3,切线的斜率为-3,所以切线方程为y=-3x;3x2-3=0,可得x=±1,x∈(-1,1),y′<0,函数是减函数,x∈(1,+∞),y′>0函数是增函数,f (0)=0,f (1)=-2,f (2)=8-6=2,函数f (x )在区间[0,2]内的值域是[-2,2].答案:y =-3x [-2,2]5.已知函数g (x )=13x 3-12ax 2+2x . (1)若g (x )在(-2,-1)内为减函数,求实数a 的取值范围;(2)若g (x )在区间(-2,-1)内不单调,求实数a 的取值范围. 解:(1)因为g ′(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数,所以g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,所以⎩⎪⎨⎪⎧g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3, 即实数a 的取值范围为(-∞,-3].(2)因为g (x )在(-2,-1)内不单调,g ′(x )=x 2-ax +2,所以g ′(-2)·g ′(-1)<0或⎩⎪⎨⎪⎧-2<a 2<-1,Δ>0,g ′(-2)>0,g ′(-1)>0.由g ′(-2)·g ′(-1)<0,得(6+2a )·(3+a )<0,无解.由⎩⎪⎨⎪⎧-2<a 2<-1,Δ>0,g ′(-2)>0,g ′(-1)>0,得⎩⎪⎨⎪⎧-4<a <-2,a 2-8>0,6+2a >0,3+a >0, 即⎩⎪⎨⎪⎧-4<a <-2,a >22或a <-22,a >-3,解之得-3<a <-22,即实数a 的取值范围为(-3,-22).6.设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)讨论函数f (x )的单调性.解:(1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞), 此时f ′(x )=2(x +1)2, 可得f ′(1)=12,又f (1)=0, 所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0.(2)函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2. 当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增; 当a <0时,令g (x )=ax 2+(2a +2)x +a ,Δ=(2a +2)2-4a 2=4(2a +1).①当a =-12时,Δ=0, f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减. ②当a <-12时,Δ<0,g (x )<0, f ′(x )<0,函数f (x )在(0,+∞)上单调递减.③当-12<a <0时,Δ>0, 设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a, x 2=-(a +1)-2a +1a .由于x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a >0,所以当x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, 当x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增,当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减; 当-12<a <0时, f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a , ⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.。

新教材高考数学一轮复习第3章导数及其应用微专题进阶课3构造法解fx与f′x共存问题课件新人教B版

新教材高考数学一轮复习第3章导数及其应用微专题进阶课3构造法解fx与f′x共存问题课件新人教B版
(-∞,1) 解析:由 f′(x)>12,可得fx-12x′=f′(x)-12>0,即 函数 F(x)=f(x)-12x 在 R 上是增函数.又由 f(1)=1 可得 F(1)=12,故
f(x)<x+2 1=12+12x,整理得 f(x)-12x<12,即 F(x)<F(1).由函数的单调性 可得不等式的解集为(-∞,1).
第三章 导数及其应用
微专题进阶课(三) 构造法解f(x)与f′(x)共存问题
以抽象函数为背景,题设条件或所求结论中具有f(x)与f′(x)共存 的不等式,旨在考查导数运算法则的逆向、变形应用能力的客观题, 是近几年高考中的一个热点.解答这类问题的策略是将f(x)与f′(x)共 存的不等式与导数运算法则结合起来,合理构造出相关的可导函数, 然后利用函数的性质解决问题.
A 解析:构造函数 F(x)=f(x)·g(x).由题意可知,当 x<0 时, F′(x)>0,所以 F(x)在(-∞,0)上单调递增.又因为 f(x),g(x)分别是 定义在 R 上的奇函数和偶函数,所以 F(x)是定义在 R 上的奇函数,从 而 F(x)在(0,+∞)上单调递增.而 F(3)=f(3)g(3)=0,所以 F(-3)=- F(3)=0,结合图像(图略)可知不等式 f(x)g(x)>0⇔F(x)>0 的解集为(-3,0) ∪(3,+∞).故选 A.
【点评】当题设条件中存在或通过变形出现特征“f′(x)g(x) +f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”, 构造可导函数 y=f(x)g(x),然后利用函数的性质巧妙地解决问题.
【点评】当题设条件中存在或通过变形出现特征“f′(x)g(x) +f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”, 构造可导函数 y=f(x)g(x),然后利用函数的性质巧妙地解决问题.

2021版新高考数学一轮复习第三章导数及其应用3.4.2导数与函数零点课件新人教B版

2021版新高考数学一轮复习第三章导数及其应用3.4.2导数与函数零点课件新人教B版

令x+1=t,则ln t<t-1(t>1),
所以 2 1 1 ln 1,
aa
a
所以S(x)在 (ln 1 , 2) 上有且只有一个零点,
aa
综上,0<a<1.
【规律方法】 处理函数y=f(x)与y=g(x)图象的交点问题的常用方法 (1)数形结合,即分别作出两函数的图象,观察交点情况; (2)将函数交点问题转化为方程f(x)=g(x)根的个数问题,通过构造函数y=f(x)g(x),利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.
【解析】(1)a=1,f(x)=x2-x-ln x,则
f′(x)=2x-1- 1 (2x 1)(x 1) (x 0),
x
x
当0<x<1时,f′(x)<0,函数f(x)单调递减,
当x>1时,f′(x)>0,函数f(x)单调递增, 所以f(x) 在x=1处取最小值0.
(2)由 f(x)=ax2-x-ln x,
a
(2)由(1)知,f(x)=x3-3x2+x+2. 设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4. 由题意知1-k>0, 当x≤0时,g′(x)=3x2-6x+1-k>0, g(x)单调递增, g(-1)=k-1<0,g(0)=4, 所以g(x)=0在(-∞,0]有唯一实根. 当x>0时,令h(x)=x3-3x2+4,
2
(2)若直线l与曲线y=f(x)有两个不同的交点,求实数a的取值范围.
【解题导思】
序号
(1)曲线y=f(x)在直线l的上方
1 2
x2

高考数学一轮总复习教学课件第三章 一元函数的导数及其应用第3节 导数与函数的极值、最值

高考数学一轮总复习教学课件第三章 一元函数的导数及其应用第3节 导数与函数的极值、最值
(3)解方程f′(x)=0,求出函数定义域内的所有根.
(4)列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.
(5)求出极值.
角度三
由函数极值(极值个数)求参数值(范围)
[例3] (1)已知函数f(x)=x3+ax2+bx+a2在x=1处有极小值10,则a+b
等于(
A.-7

C.-7或0
零,所以1.5是f(x)的极小值点,所以C正确;而x=-2和x=3,左右两侧
附近的导数值同号,所以-2和3不是函数的极值点,所以B,D错误.故
选AC.
3.(选择性必修第二册P94练习T1改编)已知函数f(x)=2sin x+

sin 2x,则f(x)的最小值是
.

解析:f′(x)=2cos x+2cos 2x=2cos x+2(2cos2x-1)=
当a>0时,令f′(x)=0,所以ex=a,x=ln a,
x
f′(x)
f(x)
(-∞,ln a)

ln a
0
极小值
(ln a,+∞)
+

f(x)在x=ln a处取得极小值f(ln a)=a-aln a-1,无极大值.
运用导数求函数f(x)极值的一般步骤
(1)确定函数f(x)的定义域.
(2)求导数f′(x).
(3)解:①由已知,可得f′(x)=x2+ax-2.
因为函数f(x)的图象在点(1,f(1))处的切线与直线2x+y-1=0平行,
所以f′(1)=a-1=-2,解得a=-1.经验证,a=-1符合题意.
②求函数f(x)的极值.

2025版高考数学全程一轮复习第三章一元函数的导数及其应用第三节导数与函数的极值最值课件

2025版高考数学全程一轮复习第三章一元函数的导数及其应用第三节导数与函数的极值最值课件
答案:C
(2)若-2是函数f(x)=(x2+ax-1)ex(a∈R)的极值点,则f(x)的极小值 点为( )
A.5e-2 B.1 C.-e D.-2
答案:B
解析:f′(x)=(2x+a)ex+(x2+ax-1)ex=[x2+(a+2)x+a-1]ex, 由题意得f′(-2)=[4-2(a+2)+a-1]e-2=0,解得a=-1, 故f′(x)=(x2+x-2)ex, 令f′(x)=0,解得x=-2或1, 令f′(x)>0,解得x>1或x<-2,令f′(x)<0,解得-2<x<1, 故f(x)在(-∞,-2),(1,+∞)上单调递增,在(-2,1)上单调递减, 故1为f(x)的极小值点.故选B.
答案:C
5.(易错)若函数f(x)=13x3-4x+m在[0,3]上的最大值为4,则m= ____4____.
解析:∵f′(x)=x2-4=(x+2)(x-2), 令f′(x)=0得x=-2或x=2. ∵0≤x≤3,∴x=2, 当0<x<2时,f′(x)<0, ∴函数f(x)在区间(0,2)上单调递减; 当2<x<3时,f′(x)>0, ∴函数f(x)在区间(2,3)上单调递增. 又f(0)=m,f(3)=m-3, ∵m>m-3, ∴x=0时,f(x)在[0,3]上取得最大值f(0)=m. ∴m=4.
(3)已知函数f(x)=12x2-(a+2)x+2a ln x+1在(4,6)上存在极值点, 则实数a的取值范围是___(_4_,__6)_____.
解析:f′(x)=x-(a+2)+2xa=x2−
a+2 x
x+2a=
x−2 x−a x
,x>0,
由题意f′(x)=

2024年高考数学一轮复习课件(新高考版) 第3章 §3.3 导数与函数的极值、最值

2024年高考数学一轮复习课件(新高考版)  第3章 §3.3 导数与函数的极值、最值

2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.3 导数与函数的极值、最值考试要求1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值f′(x)<0f′(x)>0都小,f′(a)=0;而且在点x=a附近的左侧,右侧,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y =f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点处的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧,右侧 ,则b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.(3)极小值点、极大值点统称为,极小值和极大值统称为 .f ′(x )>0f ′(x )<0极值点极值2.函数的最大(小)值(1)函数f (x )在区间[a ,b ]上有最值的条件:如果在区间[a ,b ]上函数y =f (x )的图象是一条 的曲线,那么它必有最大值和最小值.(2)求函数y =f (x )在区间[a ,b ]上的最大(小)值的步骤:①求函数y =f (x )在区间(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大的一个是最大值,最小的一个是最小值.连续不断极值端点处的函数值f (a ),f (b )常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的极值可能不止一个,也可能没有.( )(2)函数的极小值一定小于函数的极大值.( )(3)函数的极小值一定是函数的最小值.( )(4)函数的极大值一定不是函数的最小值.( )√××√1.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为√A.1B.2C.3D.4由题意知,只有在x=-1处,f′(-1)=0,且其两侧导数符号为左负右正,故f(x)的极小值点只有1个.2.函数f(x)=x3-ax2+2x-1有极值,则实数a的取值范围是_____________ _____________.f′(x)=3x2-2ax+2,由题意知f′(x)有变号零点,∴Δ=(-2a)2-4×3×2>0,43.若函数f(x)=x3-4x+m在[0,3]上的最大值为4,则m=____.f′(x)=x2-4,x∈[0,3],当x∈[0,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0,所以f(x)在[0,2)上单调递减,在(2,3]上单调递增.又f(0)=m,f(3)=-3+m,所以在[0,3]上,f(x)max=f(0)=4,所以m=4.第二部分命题点1 根据函数图象判断极值例1 (多选)(2023·华南师大附中模拟)如图是y =f (x )的导函数f ′(x )的图象,对于下列四个判断,其中正确的判断是A.当x =-1时,f (x )取得极小值B. f (x )在[-2,1]上单调递增C.当x =2时,f (x )取得极大值D. f (x )在[-1,2]上不具备单调性√√由导函数f′(x)的图象可知,当-2<x<-1时,f′(x)<0,则f(x)单调递减;当x=-1时,f′(x) =0;当-1<x<2时,f′(x)>0,则f(x)单调递增;当x=2时,f′(x)=0;当2<x<4时,f′(x)<0,则f(x)单调递减;当x=4时,f′(x)=0,所以当x=-1时,f(x)取得极小值,故选项A正确;f(x)在[-2,1]上有减有增,故选项B错误;当x=2时,f(x)取得极大值,故选项C正确;f(x)在[-1,2]上单调递增,故选项D错误.命题点2 求已知函数的极值例2 (2022·西南大学附中模拟)已知函数f(x)=ln x+2ax2+2(a+1)x(a≠0),讨论函数f(x)的极值.因为f(x)=ln x+2ax2+2(a+1)x,若a>0,则当x∈(0,+∞)时,f′(x)>0恒成立,故函数f(x)在(0,+∞)上单调递增,无极值.当a>0时,f(x)无极值.命题点3 已知极值(点)求参数例3 (1)(2023·福州质检)已知函数f(x)=x(x-c)2在x=2处有极小值,则c的值为√A.2B.4C.6D.2或6由题意,f′(x)=(x-c)2+2x(x-c)=(x-c)·(3x-c),则f′(2)=(2-c)(6-c)=0,所以c=2或c=6.若c=2,则f′(x)=(x-2)(3x-2),当x∈(2,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极小值,满足题意;若c=6,则f′(x)=(x-6)(3x-6),当x∈(-∞,2)时,f′(x)>0,f(x)单调递增;当x∈(2,6)时,f′(x)<0,f(x)单调递减;当x∈(6,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极大值,不符合题意.综上,c=2.(2)(2023·威海模拟)若函数f(x)=e x-ax2-2ax有两个极值点,则实数a的取值范围为√由f(x)=e x-ax2-2ax,得f′(x)=e x-2ax-2a.因为函数f(x)=e x-ax2-2ax有两个极值点,所以f′(x)=e x-2ax-2a有两个变号零点,当x>0时,g′(x)<0;当x<0时,g′(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.思维升华根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则a+b的值为A.-1或3B.1或-3√C.3D.-1因为f(x)=x3+ax2+bx-a2-7a,所以f′(x)=3x2+2ax+b,因为函数f(x)在x=1处取得极大值10,所以f′(1)=3+2a+b=0,①f(1)=1+a+b-a2-7a=10,②联立①②,解得a=-2,b=1或a=-6,b=9.当a=-6,b=9时,f′(x)=3x2-12x+9=(x-1)(3x-9),f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减,故f(x)在x=1处取得极大值10,符合题意.综上可得,a=-6,b=9.则a+b=3.√∴φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,又当x→+∞时,φ(x)→+∞,命题点1 不含参函数的最值例4 (2022·全国乙卷)函数f(x)=cos x+(x+1)sin x+1在区间[0,2π]的最小值、最大值分别为√f(x)=cos x+(x+1)sin x+1,x∈[0,2π],则f′(x)=-sin x+sin x+(x +1)·cos x=(x+1)cos x,x∈[0,2π].又f(0)=cos 0+(0+1)sin 0+1=2,f(2π)=cos 2π+(2π+1)sin 2π+1=2,命题点2 含参函数的最值例5 已知函数f(x)=-ln x(a∈R).(1)讨论f(x)的单调性;①若a≤0,则f′(x)<0在(0,+∞)上恒成立,所以f(x)在(0,+∞)上单调递减;②若a>0,则当x>a时,f′(x)<0;当0<x<a时,f′(x)>0,所以f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.所以f(x)max=f(a)=-ln a;思维升华求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f(x)的最值.跟踪训练2 (1)(2021·新高考全国Ⅰ)函数f(x)=|2x-1|-2ln x的最小值1为_____.函数f(x)=|2x-1|-2ln x的定义域为(0,+∞).当x>1时,f′(x)>0,所以f(x)min=f(1)=2-1-2ln 1=1;综上,f(x)min=1.(2)已知函数h(x)=x-a ln x+ (a∈R)在区间[1,e]上的最小值小于零,求a的取值范围.①当a+1≤0,即a≤-1时,h′(x)>0恒成立,即h(x)在(0,+∞)上单调递增,则h(x)在[1,e]上单调递增,故h(x)min=h(1)=2+a<0,解得a<-2;②当a+1>0,即a>-1时,在(0,a+1)上,h′(x)<0,在(a+1,+∞)上,h′(x)>0,所以h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增,若a+1≤1,求得h(x)min>1,不合题意;若1<a+1<e,即0<a<e-1,则h(x)在(1,a+1)上单调递减,在(a+1,e)上单调递增,故h(x)min=h(a+1)=2+a[1-ln(a+1)]>2,不合题意;若a+1≥e,即a≥e-1,则h(x)在[1,e]上单调递减,第三部分1.(多选)已知函数f(x)的导函数f′(x)的图象如图所示,则下列结论中正确的是A.f(x)在区间(-2,3)上有2个极值点B.f′(x)在x=-1处取得极小值C.f(x)在区间(-2,3)上单调递减D.f(x)在x=0处的切线斜率小于0√√√根据f′(x)的图象可得,在(-2,3)上,f′(x)≤0,∴f(x)在(-2,3)上单调递减,∴f(x)在区间(-2,3)上没有极值点,故A错误,C正确;由f′(x)的图象易知B正确;根据f′(x)的图象可得f′(0)<0,即f(x)在x=0处的切线斜率小于0,故D正确.√。

新课标2023版高考数学一轮总复习第3章导数及其应用思维深化微课堂构造法解fx与f′x共存问题课件

新课标2023版高考数学一轮总复习第3章导数及其应用思维深化微课堂构造法解fx与f′x共存问题课件

当x<0时,即fxx2>19,g(x)>19=g(-3), 所以x∈(-∞,-3). 综上所述,x∈(-∞,-3)∪(0,3). 故选A.
1.已知xf ′(x)+nf(x)>0的形式,构造函数F(x)=f(x)·xn. 2.已知xf ′(x)-nf(x)>0的形式,构造函数F(x)=fxxn.
[应用体验] 设f(x)是定义在R上的偶函数,当x<0时,f(x)+xf ′(x)<0,且f(-4) =0,则不等式xf(x)>0的解集为________.
1.已知f ′(x)+nf(x)>0的形式,构造函数F(x)=f(x)·enx. 2.已知f ′(x)-nf(x)>0的形式,构造函数F(x)=fenxx.
[应用体验] 若定义在R上的函数f(x)满足f ′(x)+2f(x)>0,且f(0)=1,则不等 式f(x)>e12x的解集为________.
(-∞,-4)∪(0,4) 解析:令F(x)=xf(x),则F ′(x)=f(x)+xf ′(x),当x<0时,f(x)+xf ′(x)<0,所以当x<0时,F ′(x)<0,F(x)在(- ∞,0)上是减函数;因为f(x)是定义在R上的偶函数,所以F(x)=xf(x) 是奇函数,所以F(x)在(0,+∞)上也是减函数;又F(-4)=(-4)f(- 4)=0,根据函数图象可知,不等式xf(x)>0的解集为(-∞,- 4)∪(0,4).
A
解析:构造函数g(x)=
fx x2
,g′(x)=x·
xf′x-2fx x4

xf′x-x3 2fx,当x>0时,xf ′(x)-2f(x)>0,故g′(x)>0,g(x)在(0,+∞)

2021高考数学一轮复习第三章导数及其应用强化训练导数在函数中的应用理新人教A版

2021高考数学一轮复习第三章导数及其应用强化训练导数在函数中的应用理新人教A版

强化训练 导数在函数中的应用1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A.(0,+∞) B.(-∞,0) C.(-∞,1) D.(1,+∞)答案 D解析 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D. 2.函数f (x )=1+x -sin x 在(0,2π)上是( ) A.增函数 B.减函数C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增 答案 A解析 ∵f ′(x )=1-cos x >0,∴f (x )在(0,2π)上是增函数.3.f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( )A.f (a )<e af (0) B.f (a )>e af (0) C.f (a )<f 0eaD.f (a )>f 0ea答案 B 解析 令g (x )=f xex,∴g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex>0.∴g (x )在R 上为增函数,又∵a >0, ∴g (a )>g (0),即f aea>f 0e,即f (a )>e af (0).4.函数y =xe x 在[0,2]上的最大值是( )A.1eB.2e 2C.0D.12e 答案 A解析 易知y ′=1-xex ,x ∈[0,2],令y ′>0,得0≤x <1,令y ′<0,得1<x ≤2,所以函数y=x e x 在[0,1)上单调递增,在(1,2]上单调递减,所以y =x e x 在[0,2]上的最大值是1e,故选A. 5.直线y =a 与函数y =x 3-3x 的图象有三个相异的交点,则实数a 的取值范围为( ) A.(-2,2) B.[-2,2] C.[2,+∞) D.(-∞,-2]答案 A解析 考虑数形结合,y =x 3-3x 的导数y ′=3x 2-3=3(x -1)·(x +1),令y ′>0可解得x <-1或x >1,故y =x 3-3x 在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,函数的极大值为f (-1)=2,极小值为f (1)=-2,大致图象如图所示.而y =a 为一条水平直线,通过图象可得,y =a 介于极大值与极小值之间,则有三个相异交点.可得a ∈(-2,2).6.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x<0的解集为( ) A.⎝⎛⎭⎪⎫-∞,12B.(0,+∞)C.⎝ ⎛⎭⎪⎫12,+∞D.(-∞,0)答案 B解析 构造函数g (x )=f xex, 则g ′(x )=f ′x -f xex,因为f ′(x )<f (x ),所以g ′(x )<0, 故函数g (x )在R 上为减函数,又f (0)=12,所以g (0)=f 0e 0=12, 则不等式f (x )-12e x <0可化为f x e x<12, 即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).7.若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上单调递减,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫103,+∞解析 f ′(x )=x 2-ax +1,因为函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上单调递减,所以f ′(x )≤0在区间⎝ ⎛⎭⎪⎫12,3上恒成立,所以⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0,f ′3≤0,即⎩⎪⎨⎪⎧14-a 2+1≤0,9-3a +1≤0,解得a ≥103,所以实数a 的取值范围为⎣⎢⎡⎭⎪⎫103,+∞.8.若函数f (x )=x ln x -a2x 2-x +1(a >0)有两个极值点,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫0,1e 解析 因为f (x )=x ln x -a2x 2-x +1(x >0),所以f ′(x )=ln x -ax ,令h (x )=f ′(x ),则h ′(x )=1x-a =0,得f ′(x )有极大值点x =1a,由于x →0时f ′(x )→-∞;当x →+∞时,f ′(x )→-∞, 因此f (x )要有两个极值点, 只要f ′⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,解得0<a <1e . 9.若函数 f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________. 答案 [-3,0)解析 由题意,得f ′(x )=x 2+2x =x (x +2), 故f (x )在(-∞,-2),(0,+∞)上是增函数, 在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23,得x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0).10.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是________________. 答案 (-∞,2ln2-2]解析 由原函数有零点,可将问题转化为方程e x-2x +a =0有解问题,即方程a =2x -e x有解.令函数g (x )=2x -e x,则g ′(x )=2-e x, 令g ′(x )=0,得x =ln2,所以g (x )在(-∞,ln2)上是增函数,在(ln2,+∞)上是减函数, 所以g (x )的最大值为g (ln2)=2ln2-2, 因此,a 的取值范围就是函数g (x )的值域, 所以a ∈(-∞,2ln2-2].11.已知函数f (x )=ln x +a (1-x )在(2,+∞)上为单调函数,求实数a 的取值范围. 解 方法一 f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以当a ≤0时,f (x )在(0,+∞)上单调递增,符合要求;当a >0时,f (x )在⎝ ⎛⎭⎪⎫1a,+∞上单调递减,则2≥1a ,即a ≥12.所以实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞. 方法二 f (x )的定义域为(0,+∞),f ′(x )=1x-a .由题意得,当x ∈(2,+∞)时,f ′(x )≥0恒成立或f ′(x )≤0恒成立,即a ≤1x 恒成立或a ≥1x恒成立.∵x ∈(2,+∞),∴0<1x <12,∴a ≤0或a ≥12,∴实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.12.(2020·东北四校联考)已知f (x )=1x +e xe -3,F (x )=ln x +exe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数.解 (1)f ′(x )=-1x 2+e x e =x 2e x-ee x2, 令g (x )=x 2e x-e ,x >0, 则g ′(x )=e x(x 2+2x )>0, 即g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<g (1)=0,则f ′(x )<0,当x >1时,g (x )>0,则f ′(x )>0, 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +exe -3,且f (1)=-1<0,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞,x →+∞时,F (x )→+∞,画出函数F (x )图象的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.13.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π].①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0); ③f (x )在[0,x 0]上是减函数; ④f (x )在[x 0,π]上是减函数.那么上面命题中真命题的序号是________. 答案 ①④解析 f ′(x )=cos x -13,由f ′(x )=0,得cos x =13,即x =x 0,因为x 0∈[0,π],当0<x <x 0时,f ′(x )>0;当x 0<x <π时,f ′(x )<0,所以f (x )的最大值为f (x 0),f (x )在[x 0,π]上是减函数.14.(2019·泰安模拟)已知函数f (x )=12e 2x +(a -e)e x-a e x +b (其中e 为自然对数的底数)在x =1处取得极大值,则实数a 的取值范围是________. 答案 (-∞,-e)解析 由题意可知f ′(x )=e 2x+(a -e)e x -a e =(e x +a )·(e x-e),当a ≥0时,若x >1,则f ′(x )>0,若x <1,则f ′(x )<0,所以f (x )在x =1处取得极小值,不符合题意.当a <0时,令f ′(x )=0,得x =1或x =ln(-a ),为使f (x )在x =1处取极大值,则ln(-a )>1,即a <-e.15.(2019·贵阳、安顺模拟)不等式kx ≥sin x2+cos x (x >0)恒成立,则k 的最小值为( )A.13B.23C.14D.1 答案 A解析 令h (x )=kx -sin x2+cos x (x >0),则h ′(x )=k -1+2cos x2+cos x2,令t =cos x ,则t ∈[-1,1], 令g (t )=1+2t 2+t 2,则g ′(t )=-2t -12+t3≥0,∴g (t )在[-1,1]上单调递增, ∴g (t )的值域为⎣⎢⎡⎦⎥⎤-1,13,∴①当k ≥13时,h ′(x )≥0,此时h (x )单调递增,∴h (x )>h (0)=0,符合条件;②当k ≤0时,因为h ⎝ ⎛⎭⎪⎫π2=k ·π2-12<0,不符合条件; ③当0<k <13时,对于0<x <π2,h (x )<kx -sin x3,令F (x )=kx -sin x 3,则F ′(x )=k -cos x3,存在x 0∈⎝⎛⎭⎪⎫0,π2,使得x ∈(0,x 0)时,F ′(x )<0, ∴F (x )在(0,x 0)上单调递减, ∴F (x 0)<F (0)=0,即当x ∈(0,x 0)时,h (x )<0,不符合条件,综上,k 的取值范围为⎣⎢⎡⎭⎪⎫13,+∞, ∴k 的最小值为13.16.(2019·辽宁沈阳三校联考)已知函数f (x )=ax -ln xx,a ∈R .(1)若f (x )≥0,求a 的取值范围;(2)若y =f (x )的图象与直线y =a 相切,求a 的值. 解 (1)由题意知,函数f (x )的定义域为(0,+∞). 由f (x )≥0,得ax -ln xx≥0,所以ax ≥ln x x ,又x >0,所以a ≥ln x x2.令g (x )=ln x x 2,则g ′(x )=1-2ln x x3. 令g ′(x )>0,得0<x <e ,令g ′(x )<0,得x > e. 所以当0<x <e 时,g (x )单调递增,当x >e 时,g (x )单调递减.所以当x =e 时,g (x )取得最大值g (e)=12e ,所以a ≥12e ,即a 的取值范围是⎣⎢⎡⎭⎪⎫12e ,+∞. (2)设y =f (x )的图象与直线y =a 相切于点(t ,a ),依题意可得⎩⎪⎨⎪⎧f t=a ,f ′t =0.因为f ′(x )=a -1-ln xx2,所以⎩⎪⎨⎪⎧at -ln tt=a ,a -1-ln t t 2=0,消去a 可得t -1-(2t -1)ln t =0.(*)令h (t )=t -1-(2t -1)ln t ,则h ′(t )=1t-2ln t -1,易知h ′(t )在(0,+∞)上单调递减,且h ′(1)=0, 所以当0<t <1时,h ′(t )>0,h (t )单调递增, 当t >1时,h ′(t )<0,h (t )单调递减,所以当且仅当t =1时,h (t )=0,即(*)式成立,所以a =1-ln 112=1.。

高考数学一轮复习第3章导数及其应用第13节导数的概念与运算课件文

高考数学一轮复习第3章导数及其应用第13节导数的概念与运算课件文
∴y′|x=x0=-12+x10. 依题意,知-12+x10=12,∴x0=1,则 P1,-12. 又切点 P1,-12在直线 y=12x+b 上, 故-12=12+b,得 b=-1.
2021/12/13
第二十四页,共四十二页。
命题角度 3 导数与函数图象
(2018 许昌模拟)已知函数 y=f(x)的图象是下列四个图象之一,且 其导函数 y=f′(x)的图象如图所示,则该函数的图象是( )
C.y=2x
D.y=x
【答案】D
2021/12/13
第三十五页,共四十二页。
【解析】∵ f(x)=x3+(a-1)x2+ax, ∴ f ′(x)=3x2+2(a-1)x+a. 又 f(x)为奇函数, ∴ f(-x)=-f(x)恒成立, 即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax 恒成立, ∴ a=1,∴ f ′(x)=3x2+1, ∴ f ′(0)=1, ∴ 曲线 y=f(x)在点(0,0)处的切线方程为 y=x. 故选 D.
2.(2018 江西南昌六校联考)若曲线 y=ax2+bx(a,b 为常数)过点 P(2,-5),且该曲线在点 P 处的切线与直线 2x-7y+3=0 垂直,则 a+b 的值等于________.
【答案】-3
2021/12/13
第三十页,共四十二页。
【解析】∵直线 2x-7y+3=0 的斜率 k=27, ∴切线的斜率为-72, ∵曲线 y=ax2+bx(a,b 为常数)过点 P(2,-5),且该曲线在点 P 处的切线与直线 2x-7y+3=0 垂直,
【答案】0
2021/12/13
第三十二页,共四十二页。
【解析】由题意可知,直线 y=kx+2 与曲线 y=f(x)的切点为(3,1), 则可得1f=3=3k+1,2

2023版高考数学一轮总复习第三章导数及其应用第一讲导数的概念及运算课件理

2023版高考数学一轮总复习第三章导数及其应用第一讲导数的概念及运算课件理

先化为和、差的形式,再求导
根式形式
先化为分数指数幂的形式,再求导
三角形式
先利用三角函数公式转化为和或差的形式,再求导
复合形式
先确定复合关系,由外向内逐层求导,必要时可换元
P(x0,f(x0))处的切线的斜率k,即k= f '(x0) .相应地,切线方程为y-f(x0)=
f '(x0)(x-x0).
说明 函数y=f(x)在某点处的导数、曲线y=f(x)在某点处切线的斜率和
倾斜角,这三者是可以相互转化的.
考点2
ቤተ መጻሕፍቲ ባይዱ
导数的运算
1.基本初等函数的导数公式
基本初等函数
导函数
f(x)=C(C为常数)
y=3x-1,则f(1)+f '(1)=
5
.
考向扫描
考向1
导数的运算
1.典例 求下列函数的导数:
(1)y=(x+1)(x+2)(x+3);


2
(2)y=sin (1-2cos );
2
4
2−1
1
(3)y=ln
(x> ).
2+1
2
考向1
解析
导数的运算
(1)因为y=(x+1)(x+2)(x+3)=(x2+3x+2)(x+3)=x3+6x2+11x+6,
f '(x)=
a
考点2
导数的运算
2.导数的四则运算法则
若f '(x),g'(x)存在,则
(1)[f(x)±g(x)] ' =f '(x)±g'(x) ;
(2)[f(x)·g(x)]'= f '(x)g(x)+f(x)g'(x) ;

高考数学一轮复习第3章一元函数的导数及其应用1导数的概念意义及运算课件新人教版

高考数学一轮复习第3章一元函数的导数及其应用1导数的概念意义及运算课件新人教版
f(x)=ln x
导函数
f'(x)=0
f'(x)=αxα-1
f'(x)=cos x
f'(x)=-sin x
f'(x)=axln a
f'(x)=ex
1
f'(x)=
ln
1
f'(x)=

4.导数的运算法则
(1)[f(x)±g(x)]'= f'(x)±g'(x) ;
(2)[f(x)g(x)]'= f'(x)g(x)+f(x)g'(x) ;
3.通过函数的图象直观理解导数的几何意义.
1
,y=
x
4.能根据导数的定义求函数y=c,y=x,y=x2,y=x3, y=
x 的导数.
5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单
函数的导数;能求简单的复合函数(限于形如f(ax+b))的导数.
6.会使用导数公式表.
备考指导
导数是高中数学的重点,而求给定函数的导数则是解决导数问题的基本.复
由 f'(x)= 2 ,得 f'(2)=
.

4
.
4.函数y=sin 3x的导函数是 y'=3cos 3x .
设y=sin u,u=3x,则yx'=yu'·
ux'=(sin u)'·
(3x)'=cos u·
3=3cos 3x.
5.曲线y=3(x2+x)ex在点(0,0)处的切线方程为
y=3x
.
由题意可知y'=3(2x+1)ex+3(x2+x)ex=3(x2+3x+1)ex,得k=y'|x=0=3.

高考数学一轮总复习第3章导数及其应用第2节导数的应用第5课时利用导数研究函数的零点问题教师用书

高考数学一轮总复习第3章导数及其应用第2节导数的应用第5课时利用导数研究函数的零点问题教师用书

第5课时 利用导数研究函数的零点问题考点1 讨论函数的零点个数——综合性(2021·海口模拟)已知函数f(x)=.(1)判断f(x)的单调性,并比较2 0202 021与2 0212 020的大小;(2)若函数g(x)=(x-2)2+x(2f(x)-1),其中≤a≤,判断g(x)的零点的个数,并说明理由.参考数据:ln 2≈0.693.解:(1)函数f(x)=,定义域是(0,+∞),故f′(x)=.令f′(x)>0,解得0<x<e;令f′(x)<0,解得x>e,故f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,则f(2 020)>f(2 021),即>,故2 021ln 2 020>2 020ln 2 021,故ln 2 0202 021>ln 2 0212 020,故2 0202 021>2 0212 020.(2)因为g(x)=(x2-4x+4)+2ln x-x,所以g′(x)=ax+-2a-1=.令g′(x)=0,解得x=2或x=,①当a=时,则g′(x)=≥0,g(x)在(0,+∞)上单调递增,且g(2)=2ln 2-2<0,g(6)=2ln 6-2>0,故g(2)g(6)<0,故存在x0∈(2,6),使得g(x0)=0,故g(x)在(0,+∞)上只有1个零点;②当<a<时,则<2,则g(x)在上单调递增,在上单调递减,在(2,+∞)上单调递增,故g(x)在(0,+∞)上有极小值g(2),g(2)=2ln 2-2<0,有极大值g=2a--2ln a-2,且g(2)=2ln 2-2<0,g(6)=8a+2ln 6-6>2ln 6-2>0,故g(2)g(6)<0,故存在x1∈(2,6),使得g(x1)=0,故g(x)在(2,+∞)上只有1个零点,另一方面令h(a)=g=2a--2ln a-2,h′(a)=2+-=2>0,所以h(a)在上单调递增,所以h(a)<h=e--2-2ln <0,则g<0,故g(x)在上没有零点.综上:当≤a≤时,g(x)只有1个零点.已知函数f(x)=x-(e为自然常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)设a∈R,讨论函数g(x)=x-ln x-f(x)的零点个数.解:(1)f(x)=x-,则f′(x)=.因为f(x)在(0,+∞)上单调递增,所以f′(x)≥0在(0,+∞)上恒成立.记φ(x)=e x+ax-a,则φ(x)≥0在(0,+∞)上恒成立,φ′(x)=e x+a.当a≥-1时,φ′(x)=e x+a>1+a≥0,即φ(x)在(0,+∞)上单调递增,所以φ(x)>φ(0)=1-a≥0,所以-1≤a≤1;当a<-1时,令φ′(x)=e x+a=0,解得x=ln(-a).当0<x<ln(-a)时,φ′(x)<0,φ(x)在(0,ln(-a))上单调递减;当x>ln(-a)时,φ′(x)>0,φ(x)在(ln(-a),+∞)上单调递增,所以φ(x)≥φ(ln(-a))=-2a+a ln(-a)≥0,解得-e2≤a<-1.综上可得,实数a的取值范围是[-e2,1].(2)g(x)=x-ln x-f(x)=-ln x(x>0),令g(x)=0,得a=(x>0).令h(x)=,则h′(x)=,当x∈(0,1]时,ln x≤0,x-1≤0,所以h′(x)≥0,h(x)单调递增;当x∈(1,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)在(0,+∞)单调递增,又h(x)=∈R,a∈R,所以y=a与h(x)=的图象只有一个交点,所以a∈R,g(x)只有唯一一个零点.考点2 由函数的零点个数求参数的范围——综合性(2022·湖南模拟)已知函数f(x)=x3+3a(x+1)(a∈R).(1)讨论f(x)的单调性;(2)若函数g(x)=f(x)-x ln x-3a在上有两个不同的零点,求a的取值范围.解:(1)f′(x)=3x2+3a.①当a≥0时,f′(x)≥0,f(x)在R上单调递增;②当a<0时,令f′(x)>0,解得x<-或x>,令f′(x)<0,解得-<x<,所以f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.综上,当a≥0时,f(x)在R上单调递增;当a<0时,f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.(2)g(x)=x3+3ax-x ln x,依题意,x3+3ax-x ln x=0在上有两个不同的解,即3a=ln x-x2在上有两个不同的解.设h(x)=ln x-x2,x∈,则h′(x)=-2x=.当x∈时,h′(x)≥0,h(x)单调递增;当x∈时,h′(x)<0,h(x)单调递减,所以h(x)max=h=-ln 2-,且h=-ln 2-,h(2)=ln 2-4,h>h(2),所以-ln 2-≤3a<-ln 2-,所以-ln 2-≤a<-ln 2-,即实数a的取值范围为.已知函数f(x)=x2+ax+1-,a∈R.(1)若f(x)在(0,1)上单调递减,求a的取值范围;(2)设函数g(x)=f(x)-x-a-1,若g(x)在(1,+∞)上无零点,求整数a的最小值.解:(1)由题知f′(x)=2x+a+≤0在(0,1)上恒成立,即a≤-2x恒成立.令h(x)=-2x,则h′(x)=-2=-2>0,所以h(x)在(0,1)上单调递增,所以a≤h(x)min=h(0)=1.故a的取值范围是(-∞,1].(2)由已知x>1,假设g(x)=0⇔-a=x+,记φ(x)=x+,则φ′(x)=1+.令φ′(x)>0,解得x>1+,所以φ(x)在(1,1+)上单调递减,在(1+,+∞)上单调递增,φ(1+)=1++=1+=1+∈(2,3),由题知-a=φ(x)在(1,+∞)内无解,故-a<φ(1+)<3,所以a>-φ(1+),所以整数a的最小值为-2.考点3 函数极值点的偏移问题——综合性(2021·新高考全国Ⅰ卷)已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<+<e.(1)解:函数f(x)的定义域为(0,+∞),又f′(x)=1-ln x-1=-ln x,当x∈(0,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,故f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:因为b ln a-a ln b=a-b,故b(ln a+1)=a(ln b+1),即=,故f =f .设=x1,=x2,由(1)可知不妨设0<x1<1,x2>1.因为x∈(0,1)时,f(x)=x(1-ln x)>0,x∈(e,+∞)时,f(x)=x(1-ln x)<0,故1<x2<e.先证:x1+x2>2,若x2≥2,x1+x2>2必成立.若x2<2,要证x1+x2>2,即证x1>2-x2,而0<2-x2<1,故即证f(x1)>f(2-x2),即证f(x2)>f(2-x2),其中1<x2<2.设g(x)=f(x)-f(2-x),1<x<2,则g′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)].因为1<x<2,故0<x(2-x)<1,故-ln x(2-x)>0,所以g′(x)>0,故g(x)在(1,2)上单调递增,所以g(x)>g(1)=0,故f(x)>f(2-x),即f(x2)>f(2-x2)成立,所以x1+x2>2成立,综上,x1+x2>2成立.设x2=tx1,则t>1,结合=,=x1,=x2,可得x1(1-ln x1)=x2(1-ln x2),即1-ln x1=t(1-ln t-ln x1),故ln x1=,要证x1+x2<e,即证(t+1)x1<e,即证ln (t+1)+ln x1<1,即证ln (t+1)+<1,即证(t-1)ln (t+1)-t ln t<0.令S(t)=(t-1)ln (t+1)-t ln t,t>1,则S′(t)=ln (t+1)+-1-ln t=ln -.先证明一个不等式:ln(x+1)≤x.设u(x)=ln(x+1)-x,则u′(x)=-1=,当-1<x<0时,u′(x)>0;当x>0时,u′(x)<0,故u(x)在(-1,0)上为增函数,在(0,+∞)上为减函数,故u(x)ma x=u(0)=0,故ln(x+1)≤x成立.由上述不等式可得当t>1时,ln ≤<,故S′(t)<0恒成立,故S(t)在(1,+∞)上为减函数,故S(t)<S(1)=0,故(t-1)ln (t+1)-t ln t<0成立,即x1+x2<e成立.综上所述,2<+<e.对称化构造是解决极值点偏移问题的方法,该方法可分为以下三步:已知函数f(x)=ln x-ax有两个零点x1,x2(x1<x2).(1)求实数a的取值范围;(2)求证:x1·x2>e2.(1)解:f′(x)=-a=(x>0),①若a≤0,则f′(x)>0,不符合题意.②若a>0,令f′(x)=0,解得x=.当x∈时,f′(x)>0;当x∈时,f′(x)<0.由题意知f(x)有两个零点的必要条件为f(x)=ln x-ax的极大值f=ln -1>0,解得0<a<.显然e∈,f(e)=1-a e<0,∈,f=2ln-.设t=>e,g(t)=2ln t-t,g′(t)=-1<0,所以g(t)在(e,+∞)上单调递减,g(t)<g(e)=2-e<0,即f <0.所以实数a的取值范围为.(2)证明:因为f(1)=-a<0,所以1<x1<<x2.构造函数H(x)=f-f=ln -ln -2ax,0<x<.H′(x)=+-2a=>0,所以H(x)在上单调递增,故H(x)>H(0)=0,即f >f.由1<x1<<x2,知-x1>,故f(x2)=f(x1)=f <f=f.因为f(x)在上单调递减,所以x2>-x1,即x1+x2>.故ln (x1x2)=ln x1+ln x2=a(x1+x2)>2,即x1·x2>e2.拓展考点 隐零点求解问题已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.(1)解:f(x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-,g′(1)=a-1=0,得a=1.若a=1,则g′(x)=1-.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明:由(1)知f(x)=x2-x-x ln x,f′(x)=2x-2-ln x(x>0).设h(x)=2x-2-ln x,h′(x)=2-.当x∈时,h′(x)<0;当x∈时,h′(x)>0,所以h(x)在上单调递减,在上单调递增.又h(e-2)>0,h<0,h(1)=0,所以h(x)在上有唯一零点x0,在上有唯一零点1,且当x∈(0,x0)时,h(x)>0;当x∈(x0,1)时,h(x)<0;当x∈(1,+∞)时,h(x)>0.因为f′(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f′(x0)=0得ln x0=2(x0-1),故f(x0)=x0(1-x0).由x0∈得f(x0)<.因为x=x0是f(x)在(0,1)上的最大值点,由e-1∈(0,1),f′(e-1)≠0得f(x0)>f(e-1)=e-2,所以e-2<f(x0)<2-2.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)·f′(x)+x+1>0,求k的最大值.解:(1)当a≤0时,f(x)的单调递增区间是(-∞,+∞),无单调递减区间;当a>0时,函数f(x)的单调递减区间是(-∞,ln a),单调递增区间是(ln a,+∞).(解答过程略)(2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+(x>0)恒成立.令g(x)=+x(x>0),得g′(x)=+1=(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点),且eα=α+2.当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=+α.又eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.1.按导函数零点能否精确求解可以把零点分为两类:1.已知函数f(x)=e x-a-eln(e x+a),若关于x的不等式f(x)≥0恒成立,求实数a的取值范围.解:由函数f(x)=e x-a-eln(e x+a),求得定义域为,对函数求导可得:f′(x)=e x-,则存在一个x0,使得f′(x0)=0,且-<x<x0时,f′(x)<0,x>x0时,f′(x)>0,则f(x)≥f(x0)=e x0-a-eln(e x0+a)=-a-e·ln e=e x0+-2e-a=e x0+a+-2e-2a.因为e x0+a+≥2e,所以f(x0)≥2e-2e-2a=-2a≥0,则a≤0,所以实数a的取值范围为(-∞,0].2.已知函数f(x)=.(1)求函数f(x)的零点及单调区间;(2)求证:曲线y=存在斜率为6的切线,且切点的纵坐标y0<-1.(1)解:函数f(x)的零点为e.函数f(x)的单调递增区间为(e,+∞),单调递减区间为(0,e).(解答过程略)(2)证明:要证曲线y=存在斜率为6的切线,即证y′==6有解,等价于1-ln x-6x2=0在x>0时有解.构造辅助函数g(x)=1-ln x-6x2(x>0),g′(x)=--12x<0,函数g(x)在(0,+∞)上单调递减,且g(1)=-5<0,g=1+ln 2->0,所以∃x0∈,使得g(x0)=1-ln x0-6x=0.即证明曲线y=存在斜率为6的切线.设切点坐标为,则y===-6x0,x0∈.令h(x)=-6x,x∈,由h(x)在区间上单调递减,则h(x)<h=-1,.所以y0<-1求证:x1x2>e2(e为自然对数的底数).[四字程序]思路参考:转化为证明ln x1+ln x2>2,根据x1,x2是方程f′(x)=0的根建立等量关系.令t=,将ln x1+ln x2变形为关于t的函数,将ln x1+ln x2>2转化为关于t的不等式进行证明.证明:欲证x1x2>e2,需证ln x1+ln x2>2.若f(x)有两个极值点x1,x2,则函数f′(x)有两个零点.又f′(x)=ln x-mx(x>0),所以x1,x2是方程f′(x)=0的两个不等实根.于是,有解得m=.另一方面,由得ln x2-ln x1=m(x2-x1),从而得=,于是,ln x1+ln x2==.又0<x1<x2,设t=,则t>1.因此,ln x1+ln x2=,t>1.要证ln x1+ln x2>2,即证>2,t>1.即当t>1时,有ln t>.设函数h(t)=ln t-,t>1,则h′(t)=-=≥0,所以,h(t)为(1,+∞)上的增函数.又h(1)=0,因此,h(t)>h(1)=0.于是,当t>1时,有ln t>.所以ln x1+ln x2>2成立,即x1x2>e2.思路参考:将证明x1x2>e2转化为证明x1>.依据x1,x2是方程f′(x)=0的两个不等实根,构造函数g(x)=,结合函数g(x)的单调性,只需证明g(x2)=g(x1)<g.证明:由x1,x2是方程f′(x)=0的两个不等实根,且f′(x)=ln x-mx(x>0),所以mx1=ln x1,mx2=ln x2.令g(x)=,g(x1)=g(x2),由于g′(x)=,因此,g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.又x1<x2,所以0<x1<e<x2.令h(x)=g(x)-g(x∈(0,e)),h′(x)=>0,故h(x)在(0,e)上单调递增,故h(x)<h(e)=0,即g(x)<g.令x=x1,则g(x2)=g(x1)<g.因为x2,∈(e,+∞),g(x)在(e,+∞)上单调递减,所以x2>,即x1x2>e2.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量k=t1-t2<0构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设k=t1-t2<0,则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2.即只需证明t1+t2>2,即>2⇔k(1+e k)<2(e k-1)⇔k(1+e k)-2(e k-1)<0.设g(k)=k(1+e k)-2(e k-1)(k<0),则g′(k)=k e k-e k+1.令m(k)=k e k-e k+1,则m′(k)=k e k<0,故g′(k)在(-∞,0)上单调递减,故g′(k)>g′(0)=0,故g(k)在(-∞,0)上单调递增,因此g(k)<g(0)=0,命题得证.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量=k∈(0,1)构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设=k∈(0,1),则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2,即只需证明t1+t2>2,即>2⇔ln k<⇔ln k-<0.设g(k)=ln k-(k∈(0,1)),g′(k)=>0,故g(k)在(0,1)上单调递增,因此g(k)<g(1)=0,命题得证.1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要具有良好的转化与化归能力、运算求解能力、逻辑思维能力.本题的解答体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.已知函数f(x)=x ln x-2ax2+x,a∈R.(1)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(2)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.(1)解:f′(x)=ln x+2-4ax.因为f(x)在(0,+∞)内单调递减,所以f′(x)=ln x+2-4ax≤0在(0,+∞)内恒成立,即4a≥+在(0,+∞)内恒成立.令g(x)=+,则g′(x)=.所以,当0<x<时,g′(x)>0,即g(x)在内单调递增;当x>时,g′(x)<0,即g(x)在内单调递减.所以g(x)的最大值为g=e,所以实数a的取值范围是.(2)证明:若函数f(x)有两个极值点分别为x1,x2,则f′(x)=ln x+2-4ax=0在(0,+∞)内有两个不等根x1,x2.由(1),知0<a<.由两式相减,得ln x1-ln x2=4a(x1-x2).不妨设0<x1<x2,则<1,所以要证明x1+x2>,只需证明<,即证明>ln x1-ln x2,亦即证明>ln.令函数h(x)=-ln x,0<x<1,所以h′(x)=<0,即函数h(x)在(0,1)内单调递减.所以当x∈(0,1)时,有h(x)>h(1)=0,所以>ln x,即不等式>ln成立.综上,x1+x2>,命题得证.。

高考数学一轮复习第3章一元函数的导数及其应用2利用导数研究函数的单调性课件新人教版

高考数学一轮复习第3章一元函数的导数及其应用2利用导数研究函数的单调性课件新人教版

π
π
-π,, 0,
____________.
2
2
由题意可知 f'(x)=sin x+xcos x-sin x=xcos x.
令 f'(x)=xcos x>0,解得其在区间(-π,π)内的解集为
即 f(x)的单调递增区间为
π
-π,- 2
,
π
0, 2
.
π
-π,2

π
0,
2
,
解题心得利用导数讨论函数单调性或求单调区间的方法
等,都需要考虑函数的单调性,所以也是高考必考知识.应用时,要注意函数
的定义域优先,准确求导变形,转化为导函数在某区间上的符号问题.常用
到分类讨论和数形结合的思想,对数学运算核心素养有一定的要求.




01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.
解 (1)若a=1,则f(x)=3x-2x2+ln x的定义域为(0,+∞),
1
-42 +3+1
故 f'(x)= -4x+3=


=
-(4+1)(-1)
(x>0).

当x∈(0,1)时,f'(x)>0,即函数f(x)=3x-2x2+ln x单调递增;



1
2
7
7
即 g(x)在区间[1,4]上单调递增,g(x)max=g(4)= − =- ,即 a≥- .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
综上知,当a≤1或a>e-1或a=2( e-1)时,
g(x)在[0,1]上有两个零点;
当1<a≤e-1且a≠2( e -1)时,g(x)在[0,1]上有三个零点.
【规律方法】 利用导数研究方程根(函数零点)的技巧 (1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、
变化趋势等. (2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置. (3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整 体展现.
底数).
(1)求f(x)的单调区间. (2)讨论g(x)=f(x) (x 1) 在区间[0,1]上零点的个数.
2
【解题导思】
序号 1
序号
2
联想解题
由方程f(x)=0的解想到函数f(x)的零点
题目拆解
(1)f(x)的单调区间
求f′(x)并分析其正负确定单调区 间
(2)g(x)在区间[0,1] 上零点的个数
所以
f (1) e f (1) e
(2a 1) (a 1)
b
b, e,
所以a=1,b=3e.
(2)方法一:g(x)=f(x)-3ex-m =ex(x-2)-m, 函数g(x)=ex(x-2)-m有两个零点,相当于曲线u(x)=ex·(x-2)与直线y=m有两个 交点.u′(x)=ex·(x-2)+ex=ex(x-1), 当x∈(-∞,1)时,u′(x)<0, 所以u(x)在(-∞,1)上单调递减,
3
考点二 已知函数零点个数求参数问题 【典例】已知曲线f(x)=ex(ax+1)在x=1处的切线方程为y=bx-e. (1)求a,b. (2)若函数g(x)=f(x)-3ex-m有两个零点,求实数m的取值范围.
【解题导思】
序号
题目拆解 (1)曲线f(x)= ex(ax+1)在x=1处的切线 方程为y=bx-e.
【变式训练】
设函数f(x)=ln
x+
m,m∈R.讨论函数g(x)=f′(x)-
x
x 3
零点的个数.
【解析】由题设,g(x)=f′(x)-
令g(x)=0,得m=- 1 x3+x(x>0).
3
设φ(x)=- 1 x3+x(x>0),
3
则φ′(x)=-x2+1=-(x-1)(x+1),
x=1 3x
m x2
(2)令g(x)=0,得f(x)=0或x= 1 ,
2
先考虑f(x)在区间[0,1]上的零点个数, ①当a≤1时,f(x)在[0,1]上单调递增且f(0)=0, 所以f(x)在[0,1]上有一个零点; ②当a≥e时,f(x)在[0,1]上单调递减且f(0)=0, 所以f(x)在[0,1]上有一个零点;
可知①当m> 2 时,函数g(x)无零点;
3
②当m= 2 时,函数g(x)有且只有一个零点;
3
③当0<m< 2 时,函数g(x)有两个零点;
3
④当m≤0时,函数g(x)有且只有一个零点.
综上所述,当m> 2 时,函数g(x)无零点;
3
当m= 2 或m≤0时,函数g(x)有且只有一个零点;
3
当0<m< 2 时,函数g(x)有两个零点.
x 3
(x>0),
当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;
当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.
所以x=1是φ(x)的极大值点,也是φ(x)的最大值点. 所以φ(x)的最大值为φ(1)= 2 .
3
由φ(0)=0,结合y=φ(x)的图象(如图),
当x∈(1,+∞)时,u′(x)>0, 所以u(x)在(1,+∞)上单调递增, 所以x=1时,u(x)取得极小值u(1)=-e, 又x→+∞时,u(x)→+∞; x<2时,u(x)<0,所x-m=ex(x-2)-m,
g′(x)=ex·(x-2)+ex=ex(x-1),
讨论f(x)在[0,1]上的单调性,判断 f(x)的零点个数,最后确定g(x)零点 的个数.
【解析】1.因为f(x)=3ln x- 1 x2+2x-3ln 3- 3 (x>0),所以f′(x)=
2
2
3 x+2=x2 2x 3=(x 3)(x 1),
x
x
x
当x∈(0,3)时,f′(x)>0,f(x)单调递增;
当x∈(-∞,1)时,g′(x)<0,所以g(x)在(-∞,1)上单调递减,
(2)函数g(x)有两个零点
求导数,根据导数的几何意 义,求出切线的斜率,解方程 组,即可求出a和b的值
求导数,利用导数确定函数 的单调性,求出函数的极值, 结合函数的零点与方程实数 根的关系,数形结合,即可求 出实数m的值.
【解析】(1)f(x)=ex(ax+1), f′(x)=ex(ax+1)+ex·a=ex(ax+1+a),
当x∈(3,+∞)时,f′(x)<0,f(x)单调递减,
所以f(x)max=f(3)=3ln 3- 9 +6-3ln 3- 3 =0,
2
2
因为当x→0时,f(x)→-∞;当x→+∞时,f(x)→-∞,所以方程f(x)=0只有一个解.
答案:1
2.(1)因为f(x)=ex-ax-1,所以f′(x)=ex-a,当a≤0时,f′(x)>0恒成立,所以f(x)的 单调递增区间为(-∞,+∞),无单调递减区间; 当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)的单调递减区间 为(-∞,ln a), 单调递增区间为(ln a,+∞).
第二课时 导数与函 数零点
内容索引
核心考点·精准研析 核心素养·微专题 核心素养测评
考点一 判断函数零点(方程根)的个数
【典例】1.已知函数f(x)=3ln x- 1 x2+2x-3ln 3- 3 ,则方程f(x)=0的解的
2
2
个数为________.
2.(2019·武汉模拟)已知函数f(x)=ex-ax-1(a∈R)(e=2.718 28…是自然对数的
③当1<a<e时,f(x)在[0,ln a)上单调递减,在(ln a,1]上单调递增,而f(1)=
e-a-1,当e-a-1≥0,即1<a≤e-1时,f(x)在[0,1]上有两个零点,
当e-a-1<0,即e-1<a<e时,
f(x)在[0,1]上有一个零点.
当x= 1 时,由f (1) =0得a=2( e -1).
相关文档
最新文档