2020年陕西省铜川市新区中考数学一模试卷

合集下载

陕西省铜川市新区2020年中考数学一模试卷(含解析)

陕西省铜川市新区2020年中考数学一模试卷(含解析)

A.148°
B.78°
C.68°
D.50°
4.对于正比例函数 y=﹣3x,当自变量 x 的值增加 1 时,函数 y 的值增加( )
A.﹣3
B.3
C.﹣
D.
5.计算(﹣2x2y)3 的结果是( )
A.﹣8x6y3
B.6x6y3
C.﹣8x5y3
D.﹣6x5y3
6.如图,在△ABC 中,∠BAC=90°,AB=20,AC=15,△ABC 的高 AD 与角平分线 CF 交于
的顶端 B 在一条直线上,此时测得小华的眼睛到地面的距离 DC=1.6 米;然后,小华在 C
处蹲下,小康平移标杆到 H 处时,小华恰好看到标杆顶端 G 和树的顶端 B 在一条直线上,
此时测得小华的眼睛到地面的距离 MC=0.8 米.已知 EF=GH=2.4 米,CF=2 米,FH=1.6
米,点 C、F、H、A 在一条直线上,点 M 在 CD 上,CD⊥AC,EF⊥AC,CH⊥AC,AB⊥AC,
上的动点,则 PE+PQ 的最小值是

三、解答题(共 78 分) 15.计算: +(π﹣5)0﹣|2
﹣3|.
16.解分式方程:
+ =1.
17.如图,已知△ABC,利用尺规在 BC 上找一点 P,使得△ABP 与△ACP 均为直角三角形(不 写作法,保留作图痕迹)
18.如图,在矩形 ABCD 中,E 是 AB 的中点,连接 DE、CE. 求证:△ADE≌△BCE.
(2)所抽取的教师中,近两周家访次数的众数是
次,平均每位教师家访
次;
(3)若该市有 12000 名教师,请估计近两周家访不少于 3 次的教师有多少名?
20.如图,小华和小康想用标杆来测量河对岸的树 AB 的高,两人在确保无安全隐患的情况

2020年陕西省中考数学一模试卷(含答案解析)

2020年陕西省中考数学一模试卷(含答案解析)

2020年陕西省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−12的倒数是()A. −2B. 2C. 12D. −122.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A. B.C. D.3.下列计算正确的是()A. x3·x=x3B. x3−x2=xC. −x3·(−x)2=x5D. x6÷x=x54.如图,AB//CD,CE平分∠ACD交AB于E,若∠A=120°,则∠AEC=()A. 20°B. 25°C. 30°D. 50°5.某商场一天中售出李宁牌运动鞋10双,其中各种尺码的鞋的销售量如下表所示,则这10双鞋的尺码组成的一组数据中,众数和中位数分别为()鞋的尺寸(单位:厘米)23.52424.52526销售量(单位:双)12241A. 25,25B. 24.5,25C. 26,25D. 25,24.756.下列在正比例函数y=−4x的图象上的点是()A. (1,4)B. (−1,−4)C. (4,−1)D. (0.5,−2)7. 如图,在菱形ABCD 中,∠A =60°,AD =8,P 是AB 边上的一点,E ,F 分别是DP ,BP 的中点,则线段EF 的长为( )A. 8B. 2√5C. 4D. 2√2 8. 点A(1,m)在函数y =2x 的图象上,则m 的值是( )A. 1B. 2C. 12D. 09. 如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE的最小值为( )A. 32B. 2√10−2C. 2√13−2D. 410. 将抛物线y =−x 2向左移动2个单位,再向上移动3个单位后,抛物线的顶点为( )A. (2,3)B. (2,−3)C. (−2,3)D. (−2,−3)二、填空题(本大题共4小题,共12.0分)11. 在实数117,−(−1),π3,√1.21,313113113,√5中,无理数有______个.12. 不等式12x −5≤1−32x 的正整数解是______ .13. 如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数y =−6x 和y =2x 的图象交于点A 和点B ,若C 为x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为_________.14.在Rt△ABC中,∠ACB=90°.AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.三、计算题(本大题共1小题,共5.0分)15.解方程:xx+2−2x2−4=1.四、解答题(本大题共10小题,共73.0分)16.17.计算:(√3+1)×(√3−1)−√8+|1−√2|17.如图,△ABC的顶点在正方形网格的格点上,D是边AB上一点,请在其它边上找一点E,连接DE后,使得到的新三角形与△ABC相似.要求用无刻度的直尺作图,且作出两种不同的情况.18.如图,正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M.求证:AE⊥BF.19.东营市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创城”活动的宣传,校学生会就本校学生对东营“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如下图所示的两幅不完整的统计图(A:59分及以下;B:60−69分;C:70−79分;D:80−89分;E:90−100分).请你根据图中提供的信息解答以下问题:(1)求该校共有多少名学生;(2)将条形统计图补充完整;(3)在扇形统计图中,计算出“60−69分”部分所对应的圆心角的度数.20.如图,从地面B处测得热气球A的仰角为45°,从地面C处测得热气球A的仰角为30°,若BC为240米,求:热气球A的高度.21.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?22.小华和小军做摸卡片游戏,规则如下:甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为−7,−1,3.乙袋中的三张卡片所标的数值为−2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.若点A在第一象限,则小华胜,若点A在第三象限则小军胜.这个游戏对双方公平吗?请说明理由.23.如图,在△ABC中,∠A=60°,⊙O是△ABC的外接圆,过点B作⊙O的切线,交CO的延长线于点D,CD交⊙O于点E.(1)求证:BC=BD;(2)若BC=3,求CD的长.x2+bx+c交24.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B(3,5),抛物线y=−12 x轴于点C,D两点,且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F,使得△ACF的面积等于5,若存在,求出点F的坐标;若不存在,说明理由;(3)点M(4,k)在抛物线上,连接CM,求出在坐标轴的点P,使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形,请直接写出P点的坐标.25.如图,在平面直角坐标系中,A(−4√3,0)、B(0,−4),D为直线AB上一点,且D点横坐标为−√3,y轴上有一动点P,直线l经过D、P两点.(1)求直线AB的表达式和D点坐标;(2)当∠ADP=105°时,求点P坐标;(3)在直线l上取点Q(m,n)且mn=3√3,现过点Q作QM⊥y轴于M,QN⊥x轴于N.问:是否存在点P,使得直线DQ分长方形ONQM为两部分,其中所分成的三角形面积是△PDB面积的一半?若存在,直接写出P点坐标;若不存在,请说明理由.【答案与解析】1.答案:A的倒数是−2.解析:解:−12故选:A.根据倒数的定义求解.本题主要考查了倒数的定义,解题的关键是熟记定义.2.答案:D解析:本题考查了点线面体的相关知识点,熟记各种平面图形旋转得到的立体图形是解题关键.根据直角三角形绕直角边旋转是圆锥,可得答案.解:将一个直角三角形绕它的一条直角边旋转一周得到的几何体是圆锥,故选D.3.答案:D解析:本题考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.利用同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解:A.应为x3·x=x3+1=x4,故本选项错误;B.x3−x2没有同类项,不能合并,故本选项错误;C.−x3·(−x)2=−x2+2=−x5,故本选项错误;D.应为x6÷x1=x5,故本选项正确.故选D.4.答案:C解析:解:∵AB//CD,∠A=120°,∴∠ACD=60°,∵CE平分∠ACD,∴∠ECD=∠AEC=30°,∵AB//CD,∴∠AEC=∠ECD=30°,故选C.直接利用平行线的性质得出∠ACD=70°,再利用角平分线的性质得出答案.此题主要考查了平行线的性质以及角平分线的性质,正确得出∠ACD的度数是解题关键.5.答案:D解析:解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、26,中间两个数是24.5和25,则中位数是(24.5+25)÷2=24.75;数据25出现了四次,出现的次数最多,则众数是25.故选:D.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.此题考查了中位数和众数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.注意众数可以不止一个.6.答案:D解析:解:A、∵当x=1时,y=−4×1=−4≠4,∴此点不在正比例函数y=−4x图象上,故本选项错误;B、∵当x=−1时,y=(−4)×(−1)=4≠−4,∴此点不在正比例函数y=−4x图象上,故本选项错。

【精选3份合集】陕西省铜川市2020年中考一模数学试卷有答案含解析

【精选3份合集】陕西省铜川市2020年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.计算:()()223311a a a ---的结果是( ) A .()21a x - B .31a -. C .11a - D .31a + 解析:B【解析】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=()23-31a a -=()23-11a a -() =31a - 故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.2.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC 为等腰直角三角形,则这样的点C 有( )A.6个B.7个C.8个D.9个解析:A【解析】【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②A B为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.3.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )A.4 B..5 C.6 D.8解析:C【解析】【详解】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.4.如图,65,AFD CD EB ∠=︒∕∕,则B Ð的度数为( )A .115°B .110°C .105°D .65°解析:A【解析】【分析】 根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.【详解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°−65°=115°,故选:A .【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.5.如图,在△ABC 中,cosB =2,sinC =35,AC =5,则△ABC 的面积是( )A . 212B .12C .14D .21解析:A【解析】【分析】根据已知作出三角形的高线AD ,进而得出AD ,BD ,CD ,的长,即可得出三角形的面积.【详解】解:过点A 作AD⊥BC,∵△ABC 中,2,sinC=35,AC=5, ∴cosB=22=BD AB, ∴∠B=45°, ∵sinC=35=AD AC =5AD , ∴AD=3, 2253-,∴BD=3,则△ABC 的面积是:12×AD×BC=12×3×(3+4)=212. 故选:A .【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.6.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .26±B .6C .2或3D 23 解析:A【解析】【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的方程,解之即可得出结论.【详解】∵方程2230x kx -+=有两个相等的实根,∴△=k 2-4×2×3=k 2-24=0,解得:k=6±故选A .【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.7.如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0)B.(﹣2,1)C.(﹣2,﹣1)D.(0,﹣1)解析:C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.8.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是( )A. B.C.D.解析:C【解析】【分析】。

陕西省铜川市2019-2020学年中考数学一模试卷含解析

陕西省铜川市2019-2020学年中考数学一模试卷含解析

陕西省铜川市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( ) A .1.6×104人 B .1.6×105人C .0.16×105人D .16×103人2.化简221x -÷11x -的结果是( ) A .21x + B .2xC .21x - D .2(x +1)3.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+4.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+5.如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数( )A .40°B .50°C .60°D .90°6.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα7.一次函数21y x =-的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限8.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°9.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km 都需付8元车费),超过3km 以后,每增加1km ,加收1.6元(不足1km 按1km 计),某人从甲地到乙地经过的路程是xkm ,出租车费为16元,那么x 的最大值是( ) A .11B .8C .7D .510.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于( )A .2﹣2B .1C .2D .2﹣l11.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°12.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,) C .(﹣161255,) D .(﹣121655,) 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.14.分解因式2242xy xy x ++=___________15.如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠B =150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD =_________.16.如图,无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,如果无人机距地面高度CD 为1003米,点A 、D 、B 在同一水平直线上,则A 、B 两点间的距离是_____米.(结果保留根号)17.一个扇形的面积是125πcm ,半径是3cm ,则此扇形的弧长是_____. 18.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知函数ky x=(x >0)的图象经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax+b 的图象经过点A 、D ,与x 轴的负半轴交于点E .若AC=32OD ,求a 、b 的值;若BC ∥AE ,求BC 的长. 20.(6分)已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x 轴、y 轴交于点B ,A ,与反比例函数的图象分别交于点C ,D ,CE ⊥x 轴于点E ,tan ∠ABO=12,OB=4,OE=1. (1)求该反比例函数的解析式; (1)求三角形CDE 的面积.21.(6分)如图,⊙O 中,AB 是⊙O 的直径,G 为弦AE 的中点,连接OG 并延长交⊙O 于点D ,连接BD 交AE 于点F ,延长AE 至点C ,使得FC=BC ,连接BC . (1)求证:BC 是⊙O 的切线; (2)⊙O 的半径为5,tanA=34,求FD 的长.22.(8分)如图,已知抛物线234y ax ax a =+-与x 轴负半轴相交于点A ,与y 轴正半轴相交于点B ,OB OA =,直线l 过A 、B 两点,点D 为线段AB 上一动点,过点D 作CD x ⊥轴于点C ,交抛物线于点 E . (1)求抛物线的解析式;(2)若抛物线与x 轴正半轴交于点F ,设点D 的横坐标为x ,四边形FAEB 的面积为S ,请写出S 与x 的函数关系式,并判断S 是否存在最大值,如果存在,求出这个最大值;并写出此时点E 的坐标;如果不存在,请说明理由.(3)连接BE ,是否存在点D ,使得DBE V 和DAC V 相似?若存在,求出点D 的坐标;若不存在,说明理由.23.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y (米)与小张出发后的时间x (分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y 与x 之间的函数表达式;求小张与小李相遇时x 的值.24.(10分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°. 操作发现如图1,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在BC 边上时,填空:线段DE 与AC 的位置关系是 ;②设△BDC 的面积为S 1,△AEC 的面积为S 1.则S 1与S 1的数量关系是 .猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长25.(10分)某初中学校组织400 位同学参加义务植树活动,每人植树的棵数在5至10之间,甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况7 8 9 10人数 3 6 15 6频率0.1 0.2 0.5 0.2表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)每人植树情况 6 7 8 9 10人数 3 6 3 11 6频率0.1 0.2 0.1 0.4 0.2根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是,正确的数据应该是;(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动400位同学一共植树多少棵?26.(12分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。

陕西省铜川市2019-2020学年中考第一次质量检测数学试题含解析

陕西省铜川市2019-2020学年中考第一次质量检测数学试题含解析

陕西省铜川市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则»AB的长等于()A.πB.2πC.3πD.4π2.估计5介于()A.0与1之间B.1与2之间C.2与3之间D.3与4之间3.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置()A.随点C的运动而变化B.不变C.在使PA=OA的劣弧上D.无法确定4.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣35.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°6.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a7.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC ;③△ABE ∽△ECF ;④∠BAE =∠1.A .1 个B .2 个C .1 个D .4 个8.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( )A .28×109B .2.8×108C .2.8×109D .2.8×10109.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( )A .4B .4.5C .5D .5.510.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-311.如图,矩形ABCD 中,AB=3,AD=3,将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形EBGF ,此时恰好四边形AEHB 为菱形,连接CH 交FG 于点M ,则HM=( )A .12B .1C 2D .3212.分式2231x x x +--的值为0,则x 的取值为( ) A .x=-3 B .x=3 C .x=-3或x=1 D .x=3或x=-1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将多项式32m mn -因式分解的结果是 .14.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A 、B 、C 、D 、E 五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)15.如图,为了测量铁塔AB 高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB=________米.16.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两,y 两,则根据题意,可得方程组为___. 17.如图,O e 的半径为1cm ,正六边形ABCDEF 内接于O e ,则图中阴影部分图形的面积和为________2cm (结果保留 ).18.如图,扇形OAB 的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到O′A′B′的位置时,则点O 到点O′所经过的路径长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x 元、每星期售出商品的利润为y 元,请写出y 与x 的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?20.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,3 1.732≈,2 1.414≈)21.(6分)如图,已知一次函数y=32x ﹣3与反比例函数k y x=的图象相交于点A (4,n ),与x 轴相交于点B . 填空:n 的值为 ,k 的值为 ; 以AB 为边作菱形ABCD ,使点C在x 轴正半轴上,点D 在第一象限,求点D 的坐标; 考察反比函数k y x =的图象,当2y ≥-时,请直接写出自变量x 的取值范围.22.(8分)已知:不等式23x -≤2+x (1)求不等式的解;(2)若实数a 满足a >2,说明a 是否是该不等式的解. 23.(8分)如图,已知在梯形ABCD 中,355AD BC AB DC AD sinB ∥,===,=,P 是线段BC 上一点,以P 为圆心,PA 为半径的P e 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP x =.(1)求证:ABP ECP V V ∽;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设APQ V 的面积为y ,求y 关于x 的函数关系式,并写出定义域;(3)如果QED V与QAP V 相似,求BP 的长. 24.(10分)如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为53°.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度i =5:1.(1)求此人所在位置点P 的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P 走到建筑物底部B 点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)25.(10分)有一个二次函数满足以下条件:①函数图象与x 轴的交点坐标分别为A(1,0),B(x 1,y 1)(点B 在点A 的右侧);②对称轴是x =3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;(1)将该函数图象x >x 1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x 轴的直线与图象“G”相交于点C(x 3,y 3)、D(x 4,y 4)、E(x 5,y 5)(x 3<x 4<x 5),结合画出的函数图象求x 3+x 4+x 5的取值范围.26.(12分)计算:203182sin 60(1)2-︒⎛⎫+-+ ⎪⎝⎭解不等式组3(1)45513x x x x --⎧⎪-⎨->⎪⎩…,并写出它的所有整数解. 27.(12分)解不等式组:12231x x x -⎧⎨+≥-⎩<.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.【详解】解:∵∠ACB=30°,∴∠AOB=60°,∴»AB的长=606180π⨯=2π,故选B.【点睛】此题考查弧长的计算,关键是根据圆周角得出∠AOB=60°.2.C【解析】【分析】【详解】解:∵459<<,<<,即23<<2~3之间故选C.【点睛】本题考查估计无理数的大小.3.B【解析】【分析】因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.【详解】解:连接OP ,∵CP 是∠OCD 的平分线,∴∠DCP=∠OCP ,又∵OC=OP ,∴∠OCP=∠OPC ,∴∠DCP=∠OPC ,∴CD ∥OP ,又∵CD ⊥AB ,∴OP ⊥AB ,∴¼¼AP BP=, ∴PA=PB .∴点P 是线段AB 垂直平分线和圆的交点,∴当C 在⊙O 上运动时,点P 不动.故选:B .【点睛】本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦. 4.A【解析】【分析】方程变形后,配方得到结果,即可做出判断.【详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.5.A【解析】分析:根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.详解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故选A.点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.6.D【解析】【分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【详解】解:A.x4•x4=x4+4=x8≠x16,故该选项错误;B.(a3)2=a3×2=a6≠a5,故该选项错误;C.(ab2)3=a3b6≠ab6,故该选项错误;D.a+2a=(1+2)a=3a,故该选项正确;故选D.考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.7.C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.8.D【解析】【分析】根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.9.B【解析】试题分析:根据平行线分线段成比例可得AC BDCE DF,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.故选B考点:平行线分线段成比例10.D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.11.D【解析】【分析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.【详解】如图,连接AC交BE于点O,∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,∴AB=BE,∵四边形AEHB为菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等边三角形,∵AB=3,AD=3,∴tan∠CAB=33 BCAB,∴∠BAC=30°,∴AC⊥BE,∴C在对角线AH上,∴A,C,H共线,∴AO=OH=32AB=332,∵O C=12BC=32,∵∠COB=∠OBG=∠G=90°,∴四边形OBGM是矩形,∴OM=BG=BC=3,∴HM=OH﹣OM=3,故选D.【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.12.A【解析】【分析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵原式的值为2, ∴2230{10x x x +--≠=,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故选:A .【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.m (m+n )(m ﹣n ).【解析】试题分析:原式=22()m m n -=m (m+n )(m ﹣n ).故答案为:m (m+n )(m ﹣n ).考点:提公因式法与公式法的综合运用.14.答案不唯一,如:AD【解析】【分析】根据勾股定理求出AD ,根据无理数的估算方法解答即可.【详解】由勾股定理得:AD =,34<.故答案为答案不唯一,如:AD .【点睛】本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .15.【解析】【分析】在Rt △ABC 中,直接利用tan ∠ACB=tan30°=AB BC . 【详解】在Rt △ABC 中,tan ∠ACB=tan30°=AB BC ,解得.故答案为【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.16.561645x y x y y x +=⎧⎨+=+⎩【解析】设每只雀、燕的重量各为x 两,y 两,由题意得:5616{45x y x y y x+++== 故答案是:5616{45x y x y y x +++==或5616{34x y x y+== . 17.6π. 【解析】【分析】连接OA,OB,OC ,则根据正六边形ABCDEF 内接于O e 可知阴影部分的面积等于扇形OAB 的面积,计算出扇形OAB 的面积即可.【详解】解:如图所示,连接OA,OB,OC ,∵正六边形ABCDEF 内接于O e∴∠AOB=60°,四边形OABC 是菱形,∴AG=GC,OG=BG ,∠AGO=∠BGC∴△AGO ≌△BGC.∴△AGO 的面积=△BGC 的面积∵弓形DE 的面积=弓形AB 的面积∴阴影部分的面积=弓形DE 的面积+△ABC 的面积=弓形AB 的面积+△AGB 的面积+△BGC 的面积=弓形AB 的面积+△AGB 的面积+△AGO 的面积=扇形OAB 的面积=2603601π⨯ =6π故答案为6π.【点睛】 本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.18.76π 【解析】【分析】点O 到点O′所经过的路径长分三段,先以A 为圆心,1为半径,圆心角为90度的弧长,再平移了AB 弧的长,最后以B 为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可.【详解】解:∵扇形OAB 的圆心角为30°,半径为1, ∴AB 弧长=30π1π,1806⋅⋅= ∴点O 到点O′所经过的路径长=90π1π72π.18066⋅⋅⨯+= 故答案为:7π.6 【点睛】本题考查了弧长公式:π180n R l ⋅⋅=.也考查了旋转的性质和圆的性质. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) 0≤x <20;(2) 降价2.5元时,最大利润是6125元【解析】【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【详解】(1)根据题意得y=(70−x−50)(300+20x)=−20x 2+100x+6000,∵70−x−50>0,且x≥0,∴0≤x<20.(2)∵y=−20x 2+100x+6000=−20(x−52)2+6125, ∴当x=52时,y 取得最大值,最大值为6125, 答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点睛】本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.20.3.05米.【解析】【分析】延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,解直角三角形即可得到结论.【详解】延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,在Rt △ABC 中,tan ∠ACB=AB BC, ∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt △AGF 中,∵∠FAG=∠FHD=60°,sin ∠FAG=FG AF, ∴sin60°=32.5FG =, ∴FG=2.165,∴DM=FG+GM ﹣DF≈3.05米.答:篮框D 到地面的距离是3.05米.考点:解直角三角形的应用.21. (1)3,1;133);(3) x 6≤-或x 0>【解析】【分析】(1)把点A(4,n)代入一次函数y=32x-3,得到n的值为3;再把点A(4,3)代入反比例函数kyx=,得到k的值为1;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,3),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=13,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比函数的性质即可得到当y≥-2时,自变量x的取值范围.【详解】解:(1)把点A(4,n)代入一次函数y=32x-3,可得n=32×4-3=3;把点A(4,3)代入反比例函数kyx=,可得3=4k,解得k=1.(2)∵一次函数y=32x-3与x轴相交于点B,∴32x-3=3,解得x=2,∴点B的坐标为(2,3),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt△ABE中,22223123AE BE++==∵四边形ABCD是菱形,∴13AB∥CD,∴∠ABE=∠DCF,∵AE ⊥x 轴,DF ⊥x 轴,∴∠AEB=∠DFC=93°,在△ABE 与△DCF 中,AEB DFC ABE DCF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (ASA ),∴CF=BE=2,DF=AE=3,∴∴点D 的坐标为(3).(3)当y=-2时,-2=12x,解得x=-2. 故当y≥-2时,自变量x 的取值范围是x≤-2或x >3.22.(1)x ≥﹣1;(2)a 是不等式的解.【解析】【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得. (2)根据不等式的解的定义求解可得【详解】解:(1)去分母得:2﹣x≤3(2+x ),去括号得:2﹣x≤6+3x ,移项、合并同类项得:﹣4x≤4,系数化为1得:x≥﹣1.(2)∵a >2,不等式的解集为x≥﹣1,而2>﹣1,∴a 是不等式的解.【点睛】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键23.(1)见解析;(2)312(4 6.5)y x x =-<<;(3)当5PB =或8时,QED V与QAP V 相似. 【解析】【分析】(1)想办法证明B C APB EPC ∠∠∠∠=,=即可解决问题;(2)作A AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.想办法求出AQ 、PN 的长即可解决问题;(3)因为DQ PC P ,所以EDQ ECP V V ∽,又ABP ECP V V ∽,推出EDQ ABP V V ∽,推出ABP △相似AQP V 时,QED V与QAP V 相似,分两种情形讨论即可解决问题; 【详解】(1)证明:Q 四边形ABCD 是等腰梯形,B C ∴∠∠=,PA PQ Q =,PAQ PQA ∴∠∠=,AD BC ∵∥,PAQ APB PQA EPC ∴∠∠∠∠=,=,APB EPC ∴∠∠=,ABP ECP ∴V V ∽.(2)解:作AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.在Rt ABM V 中,3sin ,55AM B AB AB ===Q , 34AM BM ∴=,=,43PM AN x AM PN ∴==﹣,==,PA PQ PN AQ ⊥Q =,,224AQ AN x ∴==(﹣),1312(4 6.5)2y AQ PN x x ∴=⋅⋅=-<<. (3)解:DQ PC Q P ,EDQ ECP ABP ECP ∴V V QV V ∽,∽,EDQ ABP ∴V V ∽,ABP ∴V 相似AQP V 时,QED V与QAP V 相似, PQ PA APB PAQ ∠∠Q =,=,∴当BA BP =时,BAP PAQ V V ∽,此时5BP AB ==,当AB AP =时,APB PAQ V V ∽,此时28PB BM ==,综上所述,当PB=5或8时,QED V与△QAP V 相似. 【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.24.(1)此人所在P 的铅直高度约为14.3米;(2)从P 到点B 的路程约为17.1米【解析】分析:(1)过P 作PF ⊥BD 于F ,作PE ⊥AB 于E ,设PF =5x ,在Rt △ABC 中求出AB ,用含x 的式子表示出AE ,EP ,由tan ∠APE ,求得x 即可;(2)在Rt △CPF 中,求出CP 的长.详解:过P 作PF ⊥BD 于F ,作PE ⊥AB 于E ,∵斜坡的坡度i =5:1,设PF =5x ,CF =1x ,∵四边形BFPE 为矩形,∴BF =PEPF =BE.在RT △ABC 中,BC =90,tan ∠ACB =AB BC , ∴AB =tan63.4°×BC≈2×90=180,∴AE =AB -BE =AB -PF =180-5x ,EP =BC +CF≈90+10x.在RT △AEP 中,tan ∠APE =1805490123AE x EP x -≈=+, ∴x =207, ∴PF =5x =10014.37≈. 答:此人所在P 的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×20737.1,BC+CP=90+37.1=17.1.答:从P到点B的路程约为17.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.25.(1)y=12(x﹣3)1﹣1;(1)11<x3+x4+x5<9+12.【解析】【分析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3+x4+x5的取值范围,易得直线与图象“G”要有3个交点时x3+x4+x5的取值范围.【详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1)设二次函数表达式为:y=a(x﹣3)1﹣1.∵该图象过A(1,0)∴0=a(1﹣3)1﹣1,解得a=12.∴表达式为y=12(x﹣3)1﹣1(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11,当直线过y=12(x﹣3)1﹣1的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=﹣12(x﹣3)1+1,∴令12(x﹣3)1+1=﹣1时,解得或x=3﹣∴x3+x4+x5<综上所述11<x3+x4+x5<【点睛】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.26.(1)7-(1)0,1,1.【解析】【分析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式=1﹣,=7(1)()3145{513x xxx-≥---①>②,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集是:﹣1<x≤1.故不等式组的整数解是:0,1,1.【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键27.﹣4≤x<1【解析】【分析】先求出各不等式的【详解】12231x x x -⎧⎨+≥-⎩< 解不等式x ﹣1<2,得:x <1,解不等式2x+1≥x ﹣1,得:x≥﹣4,则不等式组的解集为﹣4≤x <1.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

铜川市2020年中考数学一模试卷(I)卷

铜川市2020年中考数学一模试卷(I)卷

铜川市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2019·鞍山) 2019年6月9日中央电视台新闻报道,端午节期间天猫网共计销售粽子123000000个,将数据123000000用科学记数法表示为()A . 12.3×10B . 1.23×10C . 1.23×10D . 0.123×102. (2分) (2020八下·丽水期中) 在 ABCD中,∠A:∠B:∠C=3∶6∶3,∠D的度数()A . 90°B . 67.5°C . 112.5°D . 120°3. (2分) (2020七下·中卫月考) 下列计算正确的是()A .B .C .D .4. (2分)以下说法正确的是()A . 在同一年出生的400人中至少有两人的生日相同B . 一个游戏的中奖率是1%,买100张奖券,一定会中奖C . 一副扑克牌中,随意抽取一张是红桃K,这是必然事件D . 一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是5. (2分)(2016·孝感) 如图是由四个相同的小正方体组成的几何体,则这个几何体的主视图是()A .B .C .D .6. (2分)(2017·阜阳模拟) 介于 +1和之间的整数是()A . 2B . 3C . 4D . 57. (2分)某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A . 小强从家到公共汽车在步行了2公里B . 小强在公共汽车站等小明用了10分钟C . 公共汽车的平均速度是30公里/小时D . 小强乘公共汽车用了20分钟8. (2分)已知抛物线(<0)过、、、四点,则与的大小关系是()A . >B .C . <D . 不能确定二、填空题 (共6题;共14分)9. (1分) (2019八下·番禺期末) 计算:=________.10. (9分)如图,反映了甲离开A的时间与离A地的距离的关系,反映了乙离开A地的时间与离A地的距离之间的关系,根据图象填空:(1)当时间为2小时时,甲离A地________ 千米,乙离A地________ 千米;(2)当时间为6小时时,甲离A地________ 千米,乙离A地________ 千米;(3)当时间________ 时,甲、乙两人离A地距离相等;(4)当时间________ 时,甲在乙的前面,当时间________ 时,乙超过了甲;(5)对应的函数表达式为________ ,对应的函数表达式为________ .11. (1分) (2019八下·潜山期末) 在市业余歌手大奖赛的决赛中,参加比赛的10名选手成绩统计如图所示,则这10名选手成绩的中位数是________.12. (1分)(2017·乌拉特前旗模拟) 如图,把同样大小的黑色棋子摆放在正多边形的边上,第一个图形需要3个黑色棋子,第二个图形需要8个黑色棋子,…,按照这样的规律摆下去,第n(n是正整数)个图形需要黑色棋子的个数是________(用含n的代数式表示).13. (1分) (2017八上·江阴开学考) 如图,在△ABC中E是BC上的一点,EC=2EB,点D是AC的中点,AE、BD交于点F,AF=3FE.若△ABC的面积为18,给出下列命题:①△ABE的面积为6;②△ABF的面积和四边形DFEC的面积相等;③点F是BD的中点;④四边形DFEC的面积为.其中,正确的结论有________.(把你认为正确的结论的序号都填上)14. (1分) (2018八下·江都月考) 如图,把Rt△ABC绕点A逆时针旋转46°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________。

铜川市2020年中考数学一模试卷C卷

铜川市2020年中考数学一模试卷C卷

铜川市2020年中考数学一模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·宝安模拟) 下列运算正确的是()A . a²a3=a6B . 2a+3a=5a2C . (a+b)2=a2+b²D . (-ab²)3=-a3b62. (2分)若,,则().A . a、b互为相反数B . a、b互为倒数C . ab=5D . a=b3. (2分)化简3(2x-3)-4(3-2x)结果为()A . 2x-3B . 4x-21C . -2x+3D . 14x-214. (2分)如果关于x的一元二次方程kx2-x+1=0有两个不相等的实数根,那么k的取值范围是()A . k<B . k<且k≠0C . -≤k<D . -≤k<且k≠05. (2分)已知α是锐角,且点A(, a),B(sinα+cosα,b), C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是()A . a<b<cB . a<c<C . b<c<aD . c<b<a6. (2分)如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A . 40°B . 50°C . 60°D . 140°\7. (2分)(2019·株洲模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A . 20B . 10C . 5D .8. (2分)(2019·株洲模拟) 由方程组,可得x与y的关系是()A .B .C .D .9. (2分)(2019·株洲模拟) 如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为()A .B .C .D .10. (2分)(2019·株洲模拟) 如图,A , B , C三点均在二次函数y=x2的图象上,M为线段AC的中点,BM∥y轴,且MB=2.设A , C两点的横坐标分别为t1、t2(t2>t1),则t2﹣t1的值为()A . 3B . 2C . 2D . 2二、填空题 (共7题;共7分)11. (1分)(2012·常州) 计算:|﹣2|=________,(﹣2)﹣1=________,(﹣2)2=________, =________.12. (1分)的整数部分是a,的小数部分是b,则ab=________.13. (1分) (2017八下·岳池期中) 已知a、b、c是三角形的三边长,如果满足(a﹣6)2+ +|c ﹣10|=0,则三角形的形状是________.14. (1分)已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是________.15. (1分)(2019·株洲模拟) 面试时,某应聘者的学历、经验和工作态度的得分分别是75分、80分、85分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是________分.16. (1分)(2019·株洲模拟) 我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内正六边形的面积S6 ,则S6=________.17. (1分)(2019·株洲模拟) 如图,在平面直角坐标系中,四边形是正方形,点的坐标为,弧是以点为圆心,为半径的圆弧;弧是以点为圆心,为半径的圆弧,弧是以点为圆心,为半径的圆弧,弧是以点为圆心,为半径的圆弧.继续以点,,,为圆心按上述作法得到的曲线…称为正方形的“渐开线”,则点的坐标是________.三、综合题 (共9题;共47分)18. (5分)(2019·吉林) 墙壁及淋浴花洒截面如图所示,已知花洒底座与地面的距离为,花洒的长为,与墙壁的夹角为43°.求花洒顶端到地面的距离(结果精确到)(参考数据:,,)19. (5分)(2019·株洲模拟) 计算:20. (5分)(2018·玉林) 先化简再求值:(a﹣)÷ ,其中a=1+ ,b=1﹣.21. (2分)(2014·台州) 如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).22. (10分)(2019·株洲模拟) 某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2000名学生的数学成绩进行统计分析,相应数据的统计图表如下:各类学生成绩人数比例统计表等第A B C D人数类别农村20024080县镇290132130城市24013248(注:等第A、B、C、D分别代表优秀、良好、合格、不合格)(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有15000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.23. (10分)(2019·株洲模拟) 已知矩形ABCD中,AB=2,BC=m ,点E是边BC上一点,BE=1,连接AE ,沿AE翻折△ABE使点B落在点F处.(1)连接CF ,若CF∥AE ,求m的值;(2)连接DF ,若≤DF≤ ,求m的取值范围.24. (2分)(2018·白银) 如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA= 时,求AF的长.25. (6分)(2019·株洲模拟) 已知点A(s,t)在反比例函数(k为常数,k≠0)的图象上.(1)当s=﹣1,t=3时,则k=________;(2)当点A在第二象限时,将双曲线(x<0)沿着y轴翻折,翻折后的曲线与原曲线记为曲线L,与过A点的直线y=b(b>0)交于点C,连接AO,过点O作AO的垂线与直线y=b交于点B.①如图(1),当时,求值;②如图(2),若A(﹣1,),作直线x=n(n>0)交曲线L于G点,分别交射线AB,射线OB于点E,F,当时,直接写出n的取值范围.26. (2分)(2018·攀枝花) 如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A(x1 , 0)、B(x2 ,0)(x1<x2)两点,与y轴交于C点,且﹣.(1)求抛物线的解析式;(2)抛物线顶点为D,直线BD交y轴于E点;①设点P为线段BD上一点(点P不与B、D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF面积的最大值;②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、综合题 (共9题;共47分)18-1、19-1、20-1、21-1、22-1、22-2、23-1、24-1、24-2、25-1、26-1、。

铜川市中考数学一模试卷

铜川市中考数学一模试卷

铜川市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七下·顺义期中) 的倒数是()A .B .C .D .2. (2分)(2020·抚顺) 一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若,则∠2的度数是()A . 15°B . 20°C . 25°D . 40°3. (2分)(2019·黄冈) 下列运算正确的是()A .B .C .D .4. (2分) (2017八上·雅安期末) 某班50名同学的数学成绩为:5人100分,30人90分,10人75分,5人60分,则这组数据的众数和平均数分别是()A . 90,85B . 30,85C . 30,90D . 90,825. (2分)抛物线,,的图象开口最大的是()A .B . y= -3x2C . y=2x2D . 不确定6. (2分) (2018八上·汉滨期中) 如图,AB∥CD,BC平分∠ABE, ∠C=34°,则∠BED的度数等于()A .B .C .D .7. (2分) (2017七下·临沭期末) 不等式组的解集在数轴上表示为()A .B .C .D .8. (2分)(2018·邯郸模拟) 如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠BAC的平分线交BC于点D,过点D作DE⊥AB,垂足为E,连接CE交AD于点F,则以下结论:①AB=2CE;②AC=4CD;③CE⊥AD;④△DBE 与△ABC的面积比是:1:()其中正确结论是()A . ①②B . ②③C . ③④D . ①④9. (2分)一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A . x>0B . x<0C . x>2D . x<210. (2分)如图由边长为1cm正方形组成的6×5的方格阵,点O、A、B、P都在格点上〔即行和列的交点处),M、N分别是0A、OB上的动点,则△PMN周长的最小值是()A . 2B . 2C . 1++D . 2+2二、填空题 (共6题;共6分)11. (1分) (2017八下·双柏期末) 要使二次根式有意义,则x的取值范围是________.12. (1分) (2019七下·阜阳期中) 分解因式: ________.13. (1分)若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(5,8),则点P在⊙A________.14. (1分) (2019九上·宝应期末) 在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b,c,a =3,c=5,则tanB=________.15. (1分)(2017·道外模拟) 已知一个圆锥形零件的高线长为4,底面半径为3,则这个圆锥形的零件的侧面积为________.16. (1分)(2012·台州) 请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=________(用a,b的一个代数式表示).三、解答题 (共9题;共78分)17. (5分)(2017·湖州) 解方程:.18. (5分)已知:如图,在□ABCD中,∠BCD的平分线CE交AD于E,∠ABC的平分线BG交CE于F,交AD 于G.(1)试找出图中的等腰三角形,并选择一个加以说明(2)试说明:AE=DG.(3)若BG将AD分成3:2的两部分,且AD=10,求□ABCD的周长。

铜川市数学中考一模试卷

铜川市数学中考一模试卷

铜川市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·开鲁模拟) 下列四个数中,-2020的倒数是()A . 2020B .C .D .2. (2分) (2017八上·路北期末) 下列平面图形中,不是轴对称图形的是()A .B .C .D .3. (2分)(2017·娄底模拟) 我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A . 6.75×103吨B . 67.5×103吨C . 6.75×104吨D . 6.75×105吨4. (2分) (2019八下·邓州期中) 若分式的值为0,则x的值为()A . 0B . 1C .D .5. (2分)袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率()A .B .C .D .6. (2分) (2019八上·荣昌期末) 如图,在中, . 是的垂直平分线,平分, .则的长为()A . 6B . 5C . 4D . 37. (2分)(2012·淮安) 下列说法正确的是()A . 两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B . 某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C . 学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D . 为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式8. (2分)(2020·镇海模拟) 下列运算中正确的是()A . 2a2•a=3a3B . (ab2)2=ab4C . 2ab2÷b2=2aD . (a+b)2=a2+b29. (2分)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A .B .C .D .10. (2分)(2019·哈尔滨) 某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为().A . 20%B . 40%C . 18%D . 36%11. (2分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A . 55°B . 45°C . 40°D . 35°12. (2分)(2019·秀洲模拟) 如图,在直角坐标系中,O为坐标原点,点A(4,0),以OA为对角线作正方形ABOC,若将抛物线y= x2沿射线OC平移得到新抛物线y= (x-m)2+k(m>0).则当新抛物线与正方形的边AB有公共点时,m的值一定是()A . 2,6,8B . 0<m≤6C . 0<m≤8D . 0<m≤2 或 6 ≤ m≤8二、填空题 (共6题;共6分)13. (1分)(2016·兴化模拟) 若y= 有意义,则x的取值范围是________.14. (1分)(2018·惠山模拟) 因式分解:a3-4a=________.15. (1分) (2018七上·南宁期中) 如果(a+b)2+|b+2|=0,则ba=________.16. (1分)(2017·南关模拟) 如图,抛物线y=ax2+bx+c(a<0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(3,0)在该抛物线上,则a﹣b+c的值为________.17. (1分)用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,则这个圆锥的底面半径是________cm。

陕西省铜川市2020中考数学质量检测试题

陕西省铜川市2020中考数学质量检测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) A.2 B.3 C.5 D.7 2.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.133.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150°B.140°C.130°D.120°4.若ab<0,则正比例函数y=ax与反比例函数y=bx在同一坐标系中的大致图象可能是()A.B.C.D.5.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D6.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是44 37.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19°B.38°C.42°D.52°8.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .49.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )A .B .C .D .10.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定二、填空题(本题包括8个小题)11.当x = __________时,二次函数226y x x =-+ 有最小值___________.12.若分式方程x a 2x 4x 4=+--的解为正数,则a 的取值范围是______________. 13.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____.14.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .15.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km .16.计算tan 260°﹣2sin30°﹣2cos45°的结果为_____.17.如图,点,A B 是反比例函数(0,0)k y k x x=>>图像上的两点(点A 在点B 左侧),过点A 作AD x ⊥轴于点D ,交OB 于点E ,延长AB 交x 轴于点C ,已知2125OAB ADC S S ∆∆=,145OAE S ∆=,则k 的值为__________.18.在实数范围内分解因式:226x - =_________三、解答题(本题包括8个小题)19.(6分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:a= %,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?20.(6分)如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,OF ⊥AB ,交AC 于点F ,点E 在AB 的延长线上,射线EM 经过点C ,且∠ACE+∠AFO=180°.求证:EM 是⊙O 的切线;若∠A=∠3影部分的面积.(结果保留π和根号).21.(6分)如图所示,一次函数y=kx+b 与反比例函数y=m x的图象交于A (2,4),B (﹣4,n )两点.分别求出一次函数与反比例函数的表达式;过点B 作BC ⊥x 轴,垂足为点C ,连接AC ,求△ACB 的面积.22.(8分)如图,四边形ABCD 中,∠A=∠BCD=90°,BC=CD ,CE ⊥AD ,垂足为E ,求证:AE=CE .23.(8分)计算:101()2sin601tan60(2019)2π--+-+-; 解方程:24(3)9x x x +=- 24.(10分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?25.(10分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?26.(12分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.2.A【解析】【分析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3,故选A.【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.3.A【解析】【分析】直接根据圆周角定理即可得出结论.【详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.4.D【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.5.B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.1.732【详解】≈-,1.732()---≈,1.7323 1.268()---≈,1.73220.268()---≈,1.73210.732因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.6.C【解析】【详解】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.故选C.【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.7.D【解析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.8.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD113故选A.考点: 1.旋转;2.勾股定理.9.A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A .【点睛】 此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键. 10.B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B. 考点:一元二次方程根的判别式.二、填空题(本题包括8个小题)11.1 5【解析】二次函数配方,得:2(1)5y x =-+,所以,当x =1时,y 有最小值5,故答案为1,5.12.a <8,且a≠1【解析】分式方程去分母得:x=2x-8+a ,解得:x=8- a ,根据题意得:8- a >2,8- a≠1,解得:a <8,且a≠1.故答案为:a <8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.13.72°【解析】【分析】首先根据正五边形的性质得到AB=BC=AE ,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE 为正五边形,∴AB=BC=AE ,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键14.(10,3)【解析】【分析】根据折叠的性质得到AF=AD ,所以在直角△AOF 中,利用勾股定理求得OF=6,然后设EC=x ,则EF=DE=8-x ,CF=10-6=4,根据勾股定理列方程求出EC 可得点E 的坐标.【详解】∵四边形AOCD 为矩形,D 的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE 折叠,使D 落在BC 上的点F 处,∴AD=AF=10,DE=EF ,在Rt △AOF 中=6,∴FC=10−6=4,设EC=x ,则DE=EF=8−x ,在Rt △CEF 中,EF 2=EC 2+FC 2,即(8−x)2=x 2+42,解得x=3,即EC 的长为3.∴点E 的坐标为(10,3).15.1.【解析】【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.【详解】解:设A 港与B 港相距xkm ,根据题意得: 3262262x x +=+- , 解得:x=1,则A 港与B 港相距1km .故答案为:1.【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程. 16.1 【解析】 【分析】 分别算三角函数,再化简即可. 【详解】 解:原式=23()-2×12-2×2 =1.【点睛】本题考查掌握简单三角函数值,较基础.17.203【解析】【分析】过点B 作BF ⊥OC 于点F ,易证S △OAE =S 四边形DEBF =145,S △OAB =S 四边形DABF ,因为2125OAB ADC S S ∆∆=,所以2125DABF ADC S S ∆=四边形,425BCF ADC S S ∆∆=,又因为AD ∥BF ,所以S △BCF ∽S △ACD ,可得BF:AD=2:5,因为S △OAD =S △OBF ,所以12×OD×AD =12×OF×BF ,即BF:AD=2:5= OD :OF ,易证:S △OED ∽S △OBF ,S △OED :S △OBF =4:25,S △OED :S 四边形EDFB =4:21,所以S △OED =815 ,S △OBF = S △OED + S 四边形EDFB =815+145=103, 即可得解:k=2 S △OBF =203. 【详解】解:过点B 作BF ⊥OC 于点F ,由反比例函数的比例系数|k|的意义可知:S △OAD =S △OBF ,∴S △OAD - S △OED =S △OBF 一S △OED ,即S △OAE =S 四边形DEBF =145,S △OA B =S 四边形DABF , ∵2125OAB ADC S S ∆∆=,∴2125DABFADCSS∆=四边形,425BCFADCSS∆∆=,∵AD∥BF∴S△BCF∽S△ACD,又∵425BCFADCSS∆∆=,∴BF:AD=2:5,∵S△OAD=S△OBF,∴12×OD×AD =12×OF×BF∴BF:AD=2:5= OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21 ∵S四边形EDFB=145,∴S△OED=815,S△OBF= S△OED+ S四边形EDFB=815+145=103,∴k=2 S△OBF=203.故答案为20 3.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.18.2(().【解析】【分析】先提取公因式2后,再把剩下的式子写成x2-2,符合平方差公式的特点,可以继续分解.【详解】2x2-6=2(x2-3)=2(().故答案为2()(.【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.三、解答题(本题包括8个小题)19.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)详见解析;(2)133 2π-【解析】【分析】(1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC⊥CE,于是得到结论;(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论.【详解】:(1)连接OC ,∵OF ⊥AB ,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°,∴∠ACE=90°+∠A ,∵OA=OC ,∴∠A=∠ACO ,∴∠ACE=90°+∠ACO=∠ACO+∠OCE ,∴∠OCE=90°,∴OC ⊥CE ,∴EM 是⊙O 的切线;(2)∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°,∴∠ACO=∠BCE ,∵∠A=∠E ,∴∠A=∠ACO=∠BCE=∠E ,∴∠ABC=∠BCO+∠E=2∠A ,∴∠A=30°,∴∠BOC=60°,∴△BOC 是等边三角形,∴,∴阴影部分的面积1122π= 【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键. 21.(1)反比例函数解析式为y=8x,一次函数解析式为y=x+2;(2)△ACB 的面积为1. 【解析】【分析】(1)将点A坐标代入y=mx可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【详解】解:(1)将点A(2,4)代入y=mx,得:m=8,则反比例函数解析式为y=8x,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:2442k bk b+=⎧⎨-+=-⎩,解得:12kb=⎧⎨=⎩,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=12×2×1=1.【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.22.证明见解析.【解析】【分析】过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证.【详解】证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△BCF ≌△CDE(AAS),∴BF=CE ,又∵∠A=90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE=BF ,∴AE=CE.23.(1)2 (2)123,1x x =-=-【解析】【分析】(1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)原式=211+=2;(2)24(3)9x x x +=- 4(3)(3)(3)+=+-x x x x()33(3)0++=x x∴123,1x x =-=-【点睛】本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.24.(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.试题解析:(1)20÷10%=200,200×(1-45%-10%)=90 ;(2)90-25-10-5=50,补全条形统计图(3)503000200=750(人)答: 每天的骑行路程在2~4千米的大约750人25.(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.26.(1);(2),见解析.【解析】【分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣52.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元3.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或04.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .805.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分6.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC=AB B .∠C=12∠BODC .∠C=∠BD .∠A=∠B0D7.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为( )A .(32,0)B .(2,0)C .(52,0)D .(3,0)8.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.59.下列运算正确的是( )A .624a a a -=B .()222a b a b +=+C .()232622ab a b =D .2326a a a =10.如图,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )A .一直增大B .一直减小C .先减小后增大D .先增大后减小二、填空题(本题包括8个小题)11.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.12.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,PM=l ,则l 的最大值是13.在△ABC中,∠C=90°,若tanA=12,则sinB=______. 14.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =23+.其中正确的序号是 (把你认为正确的都填上).15.等腰ABC ∆中,AD 是BC 边上的高,且12AD BC =,则等腰ABC ∆底角的度数为__________. 16.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.17.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.18.如图,点,A B 是反比例函数(0,0)k y k x x=>>图像上的两点(点A 在点B 左侧),过点A 作AD x ⊥轴于点D ,交OB 于点E ,延长AB 交x 轴于点C ,已知2125OAB ADC S S ∆∆=,145OAE S ∆=,则k 的值为__________.三、解答题(本题包括8个小题)19.(6分)关于x 的一元二次方程ax 2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.20.(6分)在平面直角坐标系中,抛物线y =(x ﹣h )2+k 的对称轴是直线x =1.若抛物线与x 轴交于原点,求k 的值;当﹣1<x <0时,抛物线与x 轴有且只有一个公共点,求k 的取值范围.21.(6分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?22.(8分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)23.(8分)关于x 的一元二次方程230x x k -+=有实数根.求k 的取值范围;如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值. 24.(10分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.25.(10分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.求证:四边形ABCD是菱形;若AB=5,BD=2,求OE的长.26.(12分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168⨯⨯2=100-24=76.故选C.考点:勾股定理.5.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.B【解析】【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=12∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C=12∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.8.B【解析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =10°, ∴∠A =∠ABD ,∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =1. 故选B .9.D【解析】【分析】分别根据合并同类项、完全平方公式、积的乘方、单项式的乘法法则进行计算即可.【详解】A 、a 6和a 2不是同类项,无法合并,故本项错误;B 、()2222a b a ab b +=++,故本项错误;C 、()232624ab a b =,故本项错误;D 、23?26a a a =,故本项正确;故本题答案应为:D.【点睛】合并同类项、完全平方公式、积的乘方、单项式的乘法是本题的考点,熟练掌握运算法则是解题的关键. 10.C【解析】如图所示,连接CM ,∵M 是AB 的中点,∴S △ACM =S △BCM =12S △ABC , 开始时,S △MPQ =S △ACM =12S △ABC ; 由于P ,Q 两点同时出发,并同时到达终点,从而点P 到达AC 的中点时,点Q 也到达BC 的中点,此时,S △MPQ =14S △ABC ;。

陕西省铜川市九年级数学中考一模试卷

陕西省铜川市九年级数学中考一模试卷

陕西省铜川市九年级数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·奉化期末) 数0是()A . 最小整数B . 最小正数C . 最小自然数D . 最小有理数2. (2分)(2016·泰州) 人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A . 77×10﹣5B . 0.77×10﹣7C . 7.7×10﹣6D . 7.7×10﹣73. (2分)(2017·越秀模拟) 如图所示几何体的左视图是()A .B .C .D .4. (2分)(2019·北部湾模拟) 下列运算正确的是()A . a2 . a4=a8B . a6÷a3=a2C . (ab)2=a2b2D . (a4)2=a65. (2分)(2018·益阳模拟) 小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A . 67、68B . 67、67C . 68、68D . 68、676. (2分)二次函数与 x 轴的交点坐标是()A . (2,0)(3,0)B . (-2,0)(-3,0)C . (0,2)(0,3)D . (0,-2)(0,-3)7. (2分)(2018·吉林模拟) 在△ABC中,∠A,∠B都是锐角,tanA=1,sinB= ,你认为△ABC最确切的判断是()A . 等腰三角形B . 等腰直角三角形C . 直角三角形D . 锐角三角形8. (2分)(2012·来宾) 在一个不透明的袋子中,装有形状、质地、大小等完全相同的1个黑球、2个白球、3个黄球、4个红球.从中随机抽取一个,那么取出的小球是黄球的概率是()A .B .C .D .9. (2分)如图,已知∠AOB,求作射线OC,使OC平分∠AOB.①作射线OC.②在OA和OB上分别截取OD、OE,使OD=OE.③分别以D、E为圆心,以大于二分之一DE长为半径,在∠AOB内作弧,两弧交于点C.作法合理的顺序是()A . ①②③B . ②①③C . ③②①D . ②③①10. (2分)(2018·长沙) 小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A . 小明吃早餐用了25minB . 小明读报用了30minC . 食堂到图书馆的距离为0.8kmD . 小明从图书馆回家的速度为0.8km/min二、填空题 (共5题;共5分)11. (1分) (2016七下·恩施期末) 计算|1﹣ |﹣ =________.12. (1分)(2012·宜宾) 一元一次不等式组的解是________.13. (1分)如图,已知△ABC∽△DEF,且相似比为k,则k=________,直线y=kx+k的图象必经过________象限.14. (1分) (2016九上·石景山期末) 如图,在平面直角坐标系xOy中,点A在y轴上,点B在x轴上,∠ABO=60°,若点D(1,0)且BD=2OD.把△A BO绕着点D逆时针旋转m°(0<m<180)后,点B恰好落在初始Rt△ABO的边上,此时的点B记为B′,则点B′的坐标为________.15. (1分)(2017·江北模拟) 如图,正方形ABCD中,F为BC边上的中点,连接AF交对角线BD于G,在BD上截BE=BA,连接AE,将△ADE沿AD翻折得△ADE′,连接E′C交BD于H,若BG=2,则四边形AGHE′的面积是________.三、解答题 (共8题;共78分)16. (5分)先化简再求值:,其中.17. (2分)(2018·宿迁) 某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。

铜川市2020版中考数学一模试卷(I)卷

铜川市2020版中考数学一模试卷(I)卷

铜川市2020版中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·平度模拟) 的相反数是()A .B . -C . ±D .2. (2分)(2020·西安模拟) 下列计算正确的是()A .B .C .D .3. (2分)(2019·湟中模拟) 下列图案,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分)(2018·龙湖模拟) 如图是由五个相同的小正方块搭成的几何体,其左视图是()A .B .C .D .5. (2分)已知点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=上,则()A . y1<y2<y3B . y3<y2<y1C . y3<y1<y2D . y2<y1<y36. (2分) (2020七下·马山期末) 如图,半径为1的圆,在x轴上从原点O开始向右滚动一周后,落定点M 的坐标为()A . (0,2π)B . (2π,0)C . (π,0)D . (0,π)7. (2分)(2020·哈尔滨模拟) 如图,点G、F分别是△ACD的边AC、CD上的点,AD的延长线与GF的延长线相交于点B,DE∥AC交GB于点E,则下列结论错误的是()A .B .C .D .8. (2分) (2018九上·扬州月考) 如图,在中,是直径,点是的中点,点是的中点,则的度数()A .B .C .D . 不能确定9. (2分)如图,在△ABC中,AB=AC,将△ABC绕B点逆时针方向旋转60°,得到△A′BC′,若A′C′⊥AB,则∠ABC′度数为()A . 15°B . 20°C . 25°D . 30°10. (2分)(2012·内江) 如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C 的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2 ,则y关于x的函数的图象大致为()A .B .C .D .二、填空题 (共10题;共10分)11. (1分) (2018七上·腾冲期末) 2017年腾冲市有9020名考生参加中考,数字9020用科学计数法表示为________.12. (1分) (2020八上·椒江期末) 若分式有意义,则x的取值范围是________.13. (1分)若m=,则m5﹣2m4﹣2011m3的值是________.14. (1分)(2014·台州) 因式分解a3﹣4a的结果是________.15. (1分)在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为________ .16. (1分) (2019九上·淮南月考) 若点A(1,y1),B(2,y2)在抛物线y=﹣(x+1)2﹣1上,则y1________ y2 .17. (1分)某商品的价格为a元,降价10%后,又降10%后,销售量猛增,这时商家决定提价20%,则最后这个商品的价格为________元.18. (1分) (2016八上·永城期中) 已知三角形三个内角的度数之比为1:2:3,若最长边的长是8cm,则最短的边长为________.19. (1分)(2019·港南模拟) 如图,菱形ACBD中,AB与CD相交于点O,∠ACB=120°,以C为圆心,CA 为半径作弧AB,再以C为圆心,CO为半径作弧EF,分别交CA、CB于点F、E,若CB=2,则图中阴影部分的面积是________.20. (1分)(2019八下·尚志期中) 如图,在四边形中,,若,则 ________.三、解答题 (共7题;共65分)21. (5分)(2017·永州) 计算:cos45°+(π﹣2017)0﹣.22. (1分)如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2 .已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①0<t≤5时,y= ;②当t=6秒时,△ABE≌△PQB;③cos∠CBE= ;④当t= 秒时,△ABE∽△QBP;⑤线段NF所在直线的函数关系式为:y=﹣4x+96.其中正确的是________.(填序号)23. (17分)(2020·德州) 某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有________人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为________;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.24. (10分)如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O(1)连接OA,求∠OAC的度数;(2)求:∠BOC。

陕西省铜川市2020年数学中考一模试卷(II)卷

陕西省铜川市2020年数学中考一模试卷(II)卷

陕西省铜川市2020年数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 3的绝对值是()A . -3B . 3C .D .2. (2分)(2019·扬州) 下列图案中,是中心对称图形的是()A .B .C .D .3. (2分) (2018七上·西城期末) 据中新社2017年10月8日报道,2017年我国粮食总产量达到736 000 000吨,将736 000 000用科学记数法表示为()A .B . 73.6×107C . 7.36×108D . 0.736×1094. (2分)关于x的一元二次方程ax2+bx=6的一个根为x=2,则代数式4a+2b的值是()A . 3B . 6C . 10D . 125. (2分)(2019·南浔模拟) 某移动台阶如图所示,它的主视图是()A .B .C .D .6. (2分)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东的方向,前进40海里到达B点,此时,测得海岛C位于北偏东的方向,则海里C到航线AB的距离CD是()A . 20海里B . 40海里C . 20 海里D . 40 海里7. (2分)(2018·东营) 为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A . 众数是100B . 中位数是30C . 极差是20D . 平均数是308. (2分)如图,从图甲到图乙的变换是()A . 轴对称变换B . 平移变换C . 旋转变换D . 相似变换9. (2分) (2019九上·万州期末) 如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图像大致是()A .B .C .D .10. (2分)(2014·嘉兴) 如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为()A . 2cmB . 2 cmC . 4cmD . 4 cm二、填空题 (共6题;共6分)11. (1分)因式分解:9a3b-ab________.12. (1分)将一次函数的图象向上平移个单位后,当时,的取值范围是________.13. (1分) (2017七下·惠山期中) 若x2﹣ax+9是一个完全平方式,则a=________.14. (1分)(2017·沂源模拟) 如图,三角板ABC的两直角边AC,BC的长分别是40cm和30cm,点G在斜边AB上,且BG=30cm,将这个三角板以G为中心按逆时针旋转90°,至△A′B′C′的位置,那么旋转后两个三角板重叠部分(四边形EFGD)的面积为________ cm2 .15. (1分)(2017·安岳模拟) 如图,将矩形ABCD沿直线AC折叠,点B落在点E处,连接DE,BE,若△ABE 为等边三角形,且S△CDE= ,则CD的长为________.16. (1分) (2018九上·滨州期中) “如果二次函数的图象与轴有两个公共点,那么一元二次方程有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若、(<)是关于的方程的两根且<则请用“<”来表示、、、的大小是________.三、解答题 (共9题;共78分)17. (5分)(2019·和平模拟) 计算:18. (5分)(2017·安岳模拟) 先化简,再求值:,其中.19. (10分) (2019七上·海安期末) 如图,已知线段a,b,c,用圆规和直尺作线段,使它等于a+2b–c.要求:保留作图痕迹.20. (5分)(2017·金乡模拟) 某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)21. (12分)(2017·溧水模拟) 综合题:求下列事件概率(1)小杨和小姜住在同一个小区,该小区到苏果超市有A、B、C三条路线.①求小杨随机选择一条路线,恰好是A路线的概率;②求小杨和小姜两人分别随机选择一条路线去苏果超市,恰好两人选择同一条路线的概率.(2)有4位顾客在超市中选购4种品牌的方便面.如果每位顾客从4种品牌中随机的选购一种,那么4位顾客选购同一品牌的概率是________,至少有2位顾客选择的不是同一品牌的概率是________(直接填字母序号)A.B.() 3 C.1﹣() 3 D.1﹣()3.22. (10分)(2011·宿迁) 如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.(1)当t≠1时,求证:△PEQ≌△NFM;(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.23. (10分) (2017九下·台州期中) 如图,直线y=- x+4与x轴交于点A ,与y交于点C ,已知二次函数的图象经过点A , C和点B(-1,0),(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;(3)有两个动点D、E同时从点O出发,其中点D以每秒个单位长度的速度沿折线OAC按O→A→C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O→C→A的路线运动,当点D、E两点相遇时,它们都停止运动,设D,E同时从点O出发t秒时,△ODE的面积为S,①请问D,E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值,若不存在,请说明理由;②直接写出S关于t的函数关系式,并写出自变量t的取值范围;③在②中,当t是多少时,S有最大值,并求出这个最大值.24. (11分)(2019·陕西模拟) 问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=________时,△APE 的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN 的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?25. (10分)(2018·道外模拟) 如图,抛物线y=-(x+k)(x-5)交x轴于点A、B(A左B右),交y轴交于点C,BD⊥AC垂足为D,BD与OC交于点E,且CE=4OE.(1)如图1,求抛物线的解析式;(2)如图2,点M为抛物线的顶点,MH⊥x轴,垂足为H,点P为第一象限MH右侧抛物线上一点,PN⊥x轴于点N,PA交MH于点F,FG⊥PN于点G,求tan∠GBN的值;(3)如图3,在⑵的条件下,过点P作BG的平行线交直线BC于点S,点T为直线PS上一点,TC交抛物线于点Q,若CQ=QT,TS= ,求点P的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共78分)17-1、18-1、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。

铜川市中考数学一模试卷

铜川市中考数学一模试卷

铜川市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) -1996的相反数是()A . 1996B . -1996C . ±1996D .2. (2分)若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则|b|﹣|a﹣b|等于()A . aB . ﹣aC . 2b+aD . 2b﹣a3. (2分)据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A . 0.8×1013B . 8×1012C . 8×1013D . 80×10114. (2分) (2016·湖州) 由六个相同的立方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .5. (2分) (2019八上·盘龙镇月考) 计算:(-x) ·2x的结果是()A . -2xB . -2xC . 2xD . 2x6. (2分)用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1);②可以画出∠AOB的平分线OP,如图(2);③可以检验工作的凹面是否成半圆,如图(3);④可以量出一个圆的半径,如图(4)。

上述四个方法中,正确的个数是()A . 1个B . 2个C . 3个D . 4个7. (2分)(2020·温州模拟) 已知一个圆锥的底面直径为20cm,母线长20cm,则这个圆锥的表面积是()cm²(结果保留)A . 100πB . 200πC . 300πD . 400π8. (2分)已知函数,当时,y的取值范围是()A .B .C .D .9. (2分)已知x1 , x2是一元二次方程x2-4x+1=0的两个实数根,则x1x2-x1-x2的值等于()A . -3B . -5C . 3D . 510. (2分)(2020·广东) 不等式组的解集为()A . 无解B .C .D .11. (2分) (2019九下·义乌期中) 如图,点A(﹣2,0),B(0,1),以线段AB为边在第二象限作矩形ABCD,双曲线y=(k<0)过点D,连接BD,若四边形OADB的面积为6,则k的值是()A . ﹣9B . ﹣12C . ﹣16D . ﹣1812. (2分)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A . a>0B . c<0C . b2-4ac<0D . a+b+c>0二、填空题 (共6题;共6分)13. (1分)(2020·台州模拟) 如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P是l上一动点,l到AB的距离为6,M,N分别为PA,PB的中点下列说法中:①线段MN的长始终为1;②△PAB的周长固定不变;③△PMN的面积固定不变;④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所在直线的距离必为9.其中正确的说法是________.14. (1分) (2018八上·天台月考) 阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.① 二次项系数2=1×2② 常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5③ 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12=________.15. (1分) (2017八下·新野期中) 若关于x的分式方程无解,则m的值为________.16. (1分)(2017·泾川模拟) 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是s =0.2,s =0.5,则设两人中成绩更稳定的是________(填“甲”或“乙”)17. (1分)(2019·贺州) 如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为________.18. (1分)(2017·莱芜) 直线y=kx+b与双曲线y=﹣交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b 向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE=________.三、解答题 (共7题;共89分)19. (10分)每年春节是市民购买葡萄酒的高峰期,某商场分两批购进同一种葡萄酒,第一批所用资金是8000元,第二批所用资金是10000元.第二批葡萄酒每瓶比第一批葡萄酒每瓶贵90元,结果购买数量比第一批少20%.(1)求该商场两次共购进多少瓶葡萄酒.(2)第一批葡萄酒的售价是每瓶200元,很快售完,但因为进价的提高第二批葡萄酒的售价在第一批基础上提高了2a%,实际售卖对比第一批少卖a%,结果两次销售共赚得利润3200元,求a(其中a>25).20. (9分)(2017·遵义) 贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有________人;(2)关注城市医疗信息的有________人,并补全条形统计图________;(3)扇形统计图中,D部分的圆心角是________度;(4)说一条你从统计图中获取的信息.21. (10分)(2019·武汉) 已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E ,分别交AM、BN于D、C两点(1)如图1,求证:AB2=4AD·BC(2)如图2,连接OE并延长交AM于点F ,连接CF .若∠ADE=2∠OFC , AD=1,求图中阴影部分的面积22. (10分)(2019·青海) 如图,在中,点、分别是半径、弦的中点,过点作于点 .(1)求证:是的切线;(2)若,,求的半径.23. (15分) (2016九上·古县期中) 如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.24. (20分) (2017九上·诸城期末) 某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以来累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:(1)该种软件上市第几个月后开始盈利?(2)求累积利润S(万元)与时间t(月)之间的函数表达式;(3)截止到几月末,公司累积利润达到30万元?(4)求公司第6个月末所累积的利润.25. (15分) (2017九上·老河口期中) 如图10,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC 相切于点D,与AC相交于点E,与AB相交于点F,连接AD.(1)求证:AD平分∠BAC;(2)若点E为的中点,探究线段BD,CD之间的数量关系,并证明你的结论;(3)若点E为的中点,CD=,求与线段BD,BF所围成的阴影部分的面积.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共89分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、24-4、25-1、25-2、25-3、。

铜川市2020年中考数学一模试卷D卷

铜川市2020年中考数学一模试卷D卷

铜川市2020年中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·马山月考) 下列说法正确的是()A . 的平方根是B . 的立方根是C . 如果一个数有平方根,那么这个数的平方根一定有两个D . 立方根等于的实数是2. (2分) (2017七上·萧山期中) 中国的陆地面积约为,将这个数用科学记数法可表示为().A .B .C .D .3. (2分)(2020·阜宁模拟) 如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=32°,∠C=26°,则∠D的度数是()A . 58°B . 59°C . 60°D . 69°4. (2分) (2019八上·朝阳期中) 已知点 P(− 2,3)关于 y 轴的对称点为 Q(a,b),则 a + b 的值是()A . 5B . –5C . 1D . –165. (2分)(2020·桂阳模拟) 函数y= 中,自变量x的取值范围是()B . x>﹣1C . x≠﹣1D . x>16. (2分)下面的图形中,不是轴对称图形的是()A . 有两个内角相等的三角形B . 线段C . 有一个内角是30°,另一个内角是120°的三角形D . 有一个内角是60°的直角三角形;7. (2分)(2017·邗江模拟) 一个几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的侧面积是()A . π cm2B . 2π cm2C . 4π cm2D . π cm28. (2分)在实数范围内定义新运算:,则不等式的非负整数解为()A .B . 1C . 0D .9. (2分)如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A . 70°B . 20°C . 35°10. (2分)(2017·海宁模拟) 如图所示,两个反比例函数y= 和y= 在第一象限内的图象依次是C1和C2 ,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A . k1+k2B . k1﹣k2C . k1•k2D . k1•k2﹣k2二、填空题 (共8题;共8分)11. (1分) (2019七下·南县期末) 已知,,则 ________.12. (1分)分解因式:ax2-a=________.13. (1分) (2019九上·无锡月考) 已知关于x的方程,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③ .则正确结论的序号是________.(填上你认为正确结论的所有序号)14. (1分)如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为(2,4),点E 的坐标为(﹣1,2),则点P的坐标为________ .15. (1分)三角形两边长分别是2,4,第三边长为偶数,第三边长为________.16. (1分) (2016九上·余杭期中) 已知△ABC的边BC=2 cm,且△ABC内接于半径为2cm的⊙O,则∠A=________度.17. (1分)如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2 ,则DE=________.18. (1分) (2016九上·广饶期中) 二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为________.三、解答题 (共10题;共76分)19. (5分)(2020·新疆) 计算: .20. (5分)先化简,再求值:÷-,其中.21. (5分) (2017八上·灯塔期中) 如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.22. (7分)(2017·玄武模拟) 某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.(1)该公司在全市一共投放了________万辆共享单车;(2)在扇形统计图中,B区所对应扇形的圆心角为________°;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.23. (5分)如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180° )(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,求∠AOC ;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).24. (5分) (2017九上·肇源期末) 列分式方程解应用题:某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?25. (10分)(2017·无棣模拟) 如图,一次函数y=ax+b(a≠0)的图形与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).(1)求该反比例函数和一次函数的解析式.(2)求△AOC的面积.26. (15分)(2011·连云港) 因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3)与时间t(h)之间的函数关系.求:(1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?27. (4分)如图1,一张△ABC纸片,点M、N分别是AC、BC上两点.(均只需写出结论即可)(1)若沿直线MN折叠,使C点落在BN上,则∠AMC′与∠ACB的数量关系是________.(2)若折成图2的形状,猜想∠AMC′、∠BNC′和∠ACB的数量关系是________.(3)若折成图3的形状,猜想∠AMC′、∠BNC′和∠ACB的数量关系是________.(4)将上述问题推广,如图4,将四边形ABCD纸片沿MN折叠,使点C、D落在四边形ABNM的内部时,∠AMD′+∠BNC′与∠C、∠D之间的数量关系是________.28. (15分)(2020·宜兴模拟) 如图,在平面直角坐标系中,点A(a,0)是x轴正半轴上一点,PA⊥x轴,点B坐标为(0,b)(b>0),动点M在y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.(1)若a=2b,点D坐标为(m,n),求的值;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求经过点B,Q两点的直线解析式;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共76分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、24-1、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、27-4、28-1、28-2、。

陕西省铜川市名校2020届数学中考模拟试卷

陕西省铜川市名校2020届数学中考模拟试卷

陕西省铜川市名校2020届数学中考模拟试卷一、选择题1.如图,在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F,连接CD,交EF于点K,则下列说法正确的是( )A.DE ADBC EF=B.FK BFKE FC=C.DE AEFC EC=D.BD BFAD FC=2.若k>0,点P(﹣k,k)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限3.已知关于x的一元二次方程kx2﹣2x+3=0有两个不相等的实数根,则k的取值范围是()A.k<13B.k>﹣13C.k>﹣13且k≠0D.k<13且k≠04.如图,在Rt△ACB中,∠ACB=90°,AC=BC,点D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE,若,AD=2BD,则CF等于()A. B. C. D.5.在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A. B. C. D.6.不等式组的整数解之和为( )A.–3B.–1C.1D.37.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),给出以下五个结论:①AE=CF;②∠APE=∠CPF;③连接EF,△EPF是等腰直角三角形;④EF=AP;⑤S四边形AFPE=S△APC,其中正确的有几个()A.2个B.3个C.4个D.5个8.在同一直角坐标平面内,如果直线y =k 1x 与双曲线2k y x=没有交点,那么k 1和k 2的关系一定是( ) A.k 1+k 2=0 B.k 1•k 2<0C.k 1•k 2>0D.k 1=k 29.一元二次方程经过配方后可变形为( )A. B.C.D.10.下列说法正确的是( ) A .菱形的对角线垂直且相等B .到线段两端点距离相等的点,在线段的垂直平分线上C .角的平分线就是角的对称轴D .形状相同的两个三角形就是全等三角形11.温州市2019年一季度生产总值(GDP )为129 800 000 000元.将129 800 000 000用科学记数法表示应为( ) A .1298×108B .1.298×108C .1.298×1011D .1.298×101212.若用“*”表示一种运算规则,我们规定:a*b =ab ﹣a+b ,如:3*2=3×2﹣3+2=5.以下说法中错误的是( )A .不等式(﹣2)*(3﹣x )<2的解集是x <3B .函数y =(x+2)*x 的图象与x 轴有两个交点C .在实数范围内,无论a 取何值,代数式a*(a+1)的值总为正数D .方程(x ﹣2)*3=5的解是x =5 二、填空题13.已知关于x 的方程240x x m -+=有一个根为3,则m 的值为_______. 14.请你写出一个正方形具有而平行四边形不一定具有的特征:______ .15.函数y=11x-x 的取值范围是_____. 16.a 、b 为实数,且ab=1,设11a b P a b =+++,1111Q a b =+++,则P_______Q (选填“>”、“<”或“=”).17.如图,将平行四边形ABCD 沿对角线AC 折叠,使点B 落在点B ' 处,若∠1=∠2=44°,则∠B 的大小为_________度.18.如图,在圆心角为120°的扇形OAB 中,半径OA =2,C 为AB 的中点,D 为OA 上任意一点(不与点O 、A 重合),则图中阴影部分的面积为____.三、解答题19.甲,乙两人玩“石头,剪刀,布”的游戏,试求在一次比赛时两人做同种手势(石头,石头)的概率.20.如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,连接BD.(1)求证:BG与⊙O相切;(2)若58EFAC,求BEOC的值.21.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.96.5,96.5甲、乙两校参与测试的老师成绩的平均数平均数、中位数、众数如下表:(1)m=;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则在各自学校参与测试老师中成绩的名次相比较更靠前的是(填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.22.已知:点A,B位于直线m的两侧,在直线m上求作点P,使|PA﹣PB|的值最大.23.阅读与思考:阿基米德(公元前287年一公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,阿基米德流传于世的著作有10余种,多为希腊文手稿下面是《阿基米德全集》中记载的一个命题:AB是⊙O的弦,点C在⊙O上,且CD⊥AB于点D,在弦AB上取点E,使AD=DE,点F是BC上的一点,且CF=CA,连接BF可得BF=BE.(1)将上述问题中弦AB改为直径AB,如图1所示,试证明BF=BE;(2)如图2所示,若直径AB=10,EO=12OB,作直线l与⊙O相切于点F.过点B作BP⊥l于点P.求BP的长.24.如图,AB,CD是圆O的直径,AE是圆O的弦,且AE∥CD,过点C的圆O切线与EA的延长线交于点P,连接AC.(1)求证:AC平分∠BAP;(2)求证:PC2=PA•PE;(3)若AE-AP=PC=4,求圆O的半径.25.设a,b是任意两个不等实数,我们规定满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数闭区间[m,n]上的“闭函数”.如函数y=﹣x+4.当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”(1)反比例函数2019yx是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由.(2)若二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).【参考答案】***一、选择题13.14.一组邻边相等15.x≥﹣2且x≠116.=17.114度18.23π.三、解答题19.1 3【解析】【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【详解】列表得:可知共有3×3=9种可能,两人做同种手势的有3种,所以概率是93.【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(1)见解析(2)BE OC=54【解析】【分析】(1)延长BO交⊙O 于H,连接CH.想办法证明OB⊥BG即可.(2)利用相似三角形的性质即可解决问题.【详解】(1)证明:延长BO交⊙O 于H,连接CH.∵BH是直径,∴∠BCH=90°,∴∠CBH+∠H=90°,∵∠CBG=∠CAB=∠H,∴∠CBG+∠CBH=90°,∴OB⊥BG,∴BG是⊙O的切线.(2)解:连接AD.∵CD是直径,∴∠CAD=90°,∵EF ⊥BC ,∴∠BFE=∠CAD=90°, ∵∠FBE=∠CDA , ∴△EBF ∽△CDA , ∴EF AC =BEDC , ∴2BE OC =58, ∴BE OC =54. 【点睛】本题考查圆周角定理,切线的判定,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题. 21.(1)96.5;(2)王;(3)140人. 【解析】 【分析】(1)根据中位数的定义即可解决问题; (2)利用中位数的性质即可判断;(3)首先确定甲校的96分以上人数为206120⨯=人,再求出乙校的96分以上的人数即可. 【详解】 解:(1)中位数96.596.596.52+== ,故答案为96.5.(2)根据中位数即可判断,甲校的王老师成绩在各自学校参与测试老师中成绩的名次相比较更靠前. 故答案为王.(3)甲校的96分以上人数为206120⨯= 人, 所以乙校的96分以上的人数为2120100140⨯-=人. 【点睛】本题考查了用样本估计总体,中位数,平均数,众数等,理解题意,灵活运用所学知识解决问题是解题关键. 22.见解析; 【解析】 【分析】作点A 关于直线l 的对称点A′,则PA =PA′,因而|PA ﹣PB|=|PA′﹣PB|,则当A′,B 、P 在一条直线上时,|PA ﹣PB|的值最大. 【详解】解:作点A 关于直线l 的对称点A′,连A′B 并延长交直线l 于P .点P 即为所求. 【点睛】本题考查轴对称﹣最短问题,解题的关键是学会利用轴对称解决问题,属于中考常考题型.23.(1)见解析;(2)458 BP=.【解析】【分析】(1)连接CE、BC,证出△CEB≌△CFB,则可得出结论;(2)先求BE长,证出△AFB∽△FPB,得比例线段即可求出BP长.【详解】(1)如图1所示,连接CE、BC,∵CD⊥AB,AD=DE,∴AC=CE,∴∠CAE=∠CEA,又∵AC CF=,∴CA=CF,∠FBC=∠EBC,∴CE=CF,又∵∠A+∠F=180°,∠CEA+∠CEB=180°,∴∠CEB=∠F,∴△CEB≌△CFB(AAS),∴BE=BF;(2)如图2所示,连接AF,∵AB=10,EO=12 OB,∴EB=7.5,∵AB为⊙O的直径,∴∠AFB=90°,∵l与与⊙O相切于点F,∴∠OFP=90°,∴∠AFO=∠BFP,又∵OF=OA,∴∠OAF=∠OFA,∴∠OAF=∠BFP,∵BP⊥l于点P,∴∠BPF=90°,∴△AFB∽△FPB,BP BFBF BA∴=,即7.5 7.510 BP=,458BP∴=.【点睛】本题考查了圆内接四边形的性质、圆周角定理、等腰三角形的性质、全等三角形的判定和性质,相似三角形的判定和性质、勾股定理的应用等知识.24.(1)证明见解析;(2)证明见解析;(3)5.【解析】【分析】(1)OA=OC,则∠OCA=∠OAC,CD∥AP,则∠OCA=∠PAC,即可求解;(2)证明△PAC∽△PCE,即可求解;(3)利用△PAC∽△CAB、PC2=AC2-PA2,AC2=AB2-BC2,即可求解.【详解】解:(1)∵OA=OC,∴∠OCA=∠OAC,∵CD∥AP,∴∠OCA=∠PAC,∴∠OAC=∠PAC,∴AC平分∠BAP;(2)连接AD,∵CD为圆的直径,∴∠CAD=90°,∴∠DCA+∠D=90°,∵CD∥PA,∴∠DCA=∠PAC,又∠PAC+∠PCA=90°,∴∠PAC=∠D=∠E,∴△PAC∽△PCE,∴PA PC PC PE=,∴PC2=PA•PE;(3)AE=AP+PC=AP+4,由(2)得16=PA(PA+PA+4),PA2+2PA-8=0,解得,PA=2,连接BC,∵CP是切线,则∠PCA=∠CBA,Rt△PAC∽Rt△CAB,AP AC PCAC AB BC==,而PC2=AC2-PA2,AC2=AB2-BC2,其中PA=2,解得:AB=10,则圆O的半径为5.【点睛】此题属于圆的综合题,涉及了三角形相似、勾股定理运用的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.25.(1)是;(2)k的值是﹣2;(3)y=﹣x+m+n.【解析】【分析】(1)根据反比例函数2019yx=的单调区间进行判断;(2)由于二次函数y=x2-2x-k的图象开口向上,对称轴为x=1,所以二次函数y=x2-2x-k在闭区间[1,2]内,y随x的增大而增大.当x=1时,y=1,所以k=-2.当x=2时,y=2,所以k=-2.即图象过点(1,1)和(2,2),所以当1≤x≤2时,有1≤y≤2,符合闭函数的定义,所以k=-2.(3)根据新定义运算法则,分两种情况:k>0,k<0,列出关于系数k、b的方程组,通过解该方程组即可求得系数k、b的值,即可解答.【详解】解:(1)反比例函数2019yx=是闭区间[1,2019]上的“闭函数”,理由:∵当x=1时,y=2019,当x=2019时,y=1,∴反比例函数2019yx=是闭区间[1,2019]上的“闭函数”;(2)∵二次函数y=x2﹣2x﹣k=(x﹣1)2﹣1﹣k,∴当x>1时,y随x的增大而增大,∵二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,∴当x=1时,12﹣2×1﹣k=1,得k=﹣2,即k的值是﹣2;(3)∵一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,∴当k>0时,km b m kn b n+=⎧⎨+=⎩,得k1b0=⎧⎨=⎩,即此函数的解析式为y=x;当k<0时,km b n kn b m+=⎧⎨+=⎩,得k1b m n=-⎧⎨=+⎩,即此函数的解析式为y=﹣x+m+n.【点睛】本题考查的是反比例函数的性质,解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一模试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.计算:(-)2-1=()A. -B. -C. -D. 02.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.3.如图,∠B=40°,∠ACD=108°,若B、C、D三点在一条直线上,则∠A的大小是()A. 148°B. 78°C. 68°D. 50°4.对于正比例函数y=-3x,当自变量x的值增加1时,函数y的值增加()A. -3B. 3C. -D.5.计算(-2x2y)3的结果是()A. -8x6y3B. 6x6y3C. -8x5y3D. -6x5y36.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF交于点E,则的值为()A. B. C. D.7.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是()A. -2<k<2B. -2<k<0C. 0<k<4D. 0<k<28.如图,在矩形ABCD中,E为AD的中点,∠BED的角平分线交BC于F.若AB=6,BC=16,则FC的长度为()A. 4B. 5C. 6D. 89.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5D. 510.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为()A. 3或6B. 1或6C. 1或3D. 4或6二、填空题(本大题共4小题,共12.0分)11.分解因式:x3-2x2+x=______.12.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是______°.13.如图,平面直角坐标系中,等腰Rt△ABC的顶点A.B分别在x轴、y轴的正半轴,∠ABC=90°,CA⊥x轴,点C在函数y=的图象上.若AB=2,则k的值为______.14.如图,已知正方形ABCD中,AB=6,E是边AD的中点,P是边CD上的动点,Q是半圆BC上的动点,则PE+PQ的最小值是______.三、计算题(本大题共1小题,共5.0分)15.解分式方程:+=1.四、解答题(本大题共10小题,共73.0分)16.计算:+(π-5)0-|2-3|.17.如图,已知△ABC,利用尺规在BC上找一点P,使得△ABP与△ACP均为直角三角形(不写作法,保留作图痕迹)18.如图,在矩形ABCD中,E是AB的中点,连接DE、CE.求证:△ADE≌△BCE.19.家访是学校与家庭沟通的有效渠道,是形成教育合力的关键,是转化后进生的催化剂.某市教育局组织全市中小学教师开展家访活动活动过程中,教育局随机抽取了部分教师调查其近两周家访次数,将采集到的数据按家访次数分成五类,并分别绘制了下面的两幅不完整的统计图.请根据以上信息,解答下列问题:(1)请把条形统计图补充完整;(2)所抽取的教师中,近两周家访次数的众数是______次,平均每位教师家访______次;(3)若该市有12000名教师,请估计近两周家访不少于3次的教师有多少名?20.如图,小华和小康想用标杆来测量河对岸的树AB的高,两人在确保无安全隐患的情况下,小康在F处竖立了一根标杆EF,小华走到C处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上,此时测得小华的眼睛到地面的距离DC=1.6米;然后,小华在C处蹲下,小康平移标杆到H处时,小华恰好看到标杆顶端G和树的顶端B在一条直线上,此时测得小华的眼睛到地面的距离MC=0.8米.已知EF=GH=2.4米,CF=2米,FH=1.6米,点C、F、H、A在一条直线上,点M在CD 上,CD⊥AC,EF⊥AC,CH⊥AC,AB⊥AC,根据以上测量过程及测量数据,请你求出树AB的高度.21.油炸冰激凌是以面包、鸡蛋、冰激凌为材料制作的一种西式小吃,某油炸冰激凌专卖店每天固定制作甲、乙两个款型的油炸冰激凌共1000个,且所有产品当天全部售出,原料成本、销售单价及店员生产提成如表所示:甲(元/个)乙(元/个)原料成本108销售单价2016生产提成2 1.5x个,每天获得的总利润为y元.(1)求出y与x之间的函数关系式;(2)若该店每天投入总成本不超过10750元,应怎样安排甲、乙两种款型的制作量,可使该店这一天所获得的利润最大?并求出最大利润(总成本=原料成本+生产提成,利润=销售收入-投入总成本)22.某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.(1)求从这五名翻译中随机挑选一名会翻译英语的概率;(2)若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.23.如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.24.已知抛物线L:y=x2+bx+c经过点M(2,-3),与y轴交于点C(0,-3).(1)求抛物线L的表达式;(2)试判断抛物线L与x轴交点的情况;(3)平移该抛物线,设平移后的抛物线为L′,抛物线L′的顶点记为P,它的对称轴与x轴交于点Q,已知点N(2,-8),怎样平移才能使得以M、N、P、Q为顶点的四边形为菱形?25.(1)问题提出:如图①,在Rt△BAC中,∠BAC=90°,点D,E分别是CB,AB的中点,点F是BD 的中点,若AB=8,AC=6,则EF=______;(2)问题探究:如图②,已知:M是弓形AB上的中点,AB=24,弓形AB的高是8,则对应⊙O的面积为多少?(结果保留根号或π)(3)问题解决:如图③,在半径为5的⊙O中,弦BC=8,点A为优弧BC上的动点,过点A作AD⊥BC 于点D,过点B作BE⊥AC于点E.AD和BE交于点P,连接PC,试求△PBC面积的最大值.答案和解析1.【答案】C【解析】解:原式=-1=-,故选:C.原式先计算乘方运算,再计算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.【答案】B【解析】解:将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是圆锥,故选:B.根据直角三角形绕直角边旋转是圆锥,可得答案.本题考查了点、线、面、体,熟记各种平面图形旋转得到的立体图形是解题的关键.3.【答案】C【解析】解:∵∠B=40°,∠ACD=108°,∴∠A=∠ACD-∠B=108°-40°=68°.故选:C.根据三角形的一个外角等于和它不相邻的两个内角的和进行计算.本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.4.【答案】A【解析】解:当x=a时,y=-3a,当x=a+1时,y=-3(a+1),∵-3(a+1)-(-3a)=-3a-3+3a=-3,∴当自变量x的值增加1时,函数y的值增加-3,故选:A.根据题意,可以先出x=a时的函数值,然后再写出x=a+1时的函数值,再作差,即可得到当自变量x的值增加1时,函数y的值增加多少,本题得以解决.本题考查正比例函数的性质,解答本题的关键是明确题意,利用正比例函数的性质解答.5.【答案】A【解析】解:(-2x2y)3=-8x6y3.故选A.根据幂的乘方与积的乘方运算法则进行运算即可.本题考查了幂的乘方与积的乘方运算,解答本题的关键是掌握各部分的运算法则.6.【答案】A【解析】解:∵∠BAC=90°,AB=20,AC=15,∴BC==25,∵AB•AC=BC•AD,∴AD==12,则CD==9,∵CF平分∠ACB,∴∠ACF=∠DCE,又∵∠CAF=∠CDE=90°,∴△CAF∽△CDE,∴===,故选:A.先求得BC=25、AD==12、CD==9,再证△CAF∽△CDE得=,据此代入计算即可.本题主要考查相似三角形的判定与性质,解题的关键是掌握勾股定理、相似三角形的判定与性质等知识点.7.【答案】D【解析】解:∵直线l2与x轴的交点为A(-2,0),∴-2k+b=0,∴解得∵直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.首先根据直线l2与x轴的交点为A(-2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.【答案】C【解析】解:在矩形ABCD中,AD∥BC,AD=BC=16,∵E为AD的中点,∴AE=AD=×16=8,在Rt△ABE中,BE===10,∵EF是∠BED的角平分线,∴∠BEF=∠DEF,∵AD∥BC,∴∠BFE=∠DEF,∴∠BEF=∠BFE,∴BE=BF,∴FC=BC-BF=16-10=6.故选:C.根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出∠BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF 代入数据计算即可得解.本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,是基础题,熟记各性质是解题的关键.9.【答案】B【解析】【分析】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选B.10.【答案】B【解析】解:当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.11.【答案】x(x-1)2【解析】【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.【解答】解:x3-2x2+x=x(x2-2x+1)=x(x-1)2.故答案为:x(x-1)2.12.【答案】60【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°-300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠CPD=180°-120°=60°.故答案是:60;根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠CPD的度数.本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.13.【答案】4【解析】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×=4.故答案为4.作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.14.【答案】6-3【解析】解:取BC的中点O,连接OE,作E点关于CD的对称点E′,连接OE′交CD于P,交半圆于Q,如图,∵PE=PE′,∴PE+PQ=PE′+PQ=QE′,∴此时PE+PQ有最小值,∵E是边AD的中点,∴OE⊥AD,OE=6,∵DE′=DE=3,∴OE′=6,∴QE′=6-3,即PE+PQ的最小值是6-3.取BC的中点O,连接OE,作E点关于CD的对称点E′,连接OE′交CD于P,交半圆于Q,如图,利用对称的性质和两点之间线段最短可判断此时PE+PQ有最小值,然后计算OE′,从而得到QE′.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了最短路径问题.15.【答案】解:去分母得:2+x(x+2)=x2-4,解得:x=-3,经检验x=-3是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.【答案】解:原式=3+1-(3-2)=3+1-3+2=5-2.【解析】原式利用二次根式性质,零指数幂法则,以及绝对值的代数意义计算即可求出值.此题考查了实数的运算,零指数幂,绝对值的代数意义,以及二次根式性质,熟练掌握运算法则是解本题的关键.17.【答案】解:如图,点P为所作.【解析】过A点作BC的垂线,垂足为P,点P满足条件.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.18.【答案】证明:∵四边形ABCD是矩形,∴AD=BC,∠A=∠B=90°.∵E是AB的中点,∴AE=BE.在△ADE与△BCE中,,∴△ADE≌△BCE(SAS).【解析】由矩形的性质得出AD=BC,∠A=∠B=90°,由全等三角形的判定定理SAS即可证得结论.本题主要考查了全等三角形的判定,矩形的性质;熟练掌握矩形的性质和全等三角形的判定方法是解题的关键.19.【答案】(1)家访总人数:54÷36%=150(人),家访4次的人数:150×28%=42(人)家访2次的人数:150-6-54-42-18=30(人)条形统计图补全如下:(2)3 ,3.24 ;(3)近两周家访不少于3次的教师有12000×=9120(名).【解析】【分析】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.(1)根据图补全条形统计图;(2)根据统计图可知,家访3次的人数最多,所以众数为3,再计算出平均家访次数;(3)近两周家访不少于3次的教师有12000×即可计算出来.【解答】解:(1)见答案;(2)根据统计图可知,家访3次的人数最多,所以众数为3,平均每位教师家访:(6×1+30×2+54×3+42×4+18×5)÷150=3.24(次),故答案为3,3.24;(3)见答案.20.【答案】解:过点D作DP⊥AB于点P,交EF于点N,过点M作MQ⊥AB于点Q,交GH于点K,由题意可得:∠EDN=∠BDP,∠BPD=∠END,∠GMK=∠BMQ∠BQM=∠GKM,DP=MQ=AC,DN=CF,MK=CH,∴△DEN∽△DBP,△GMK∽△BMQ,∴,∴,∴AB=8.8米∴树AB的高度为8.8米.【解析】本题考查了相似三角形的应用,正确的识别图形是解题的关键.根据相似三角形的性质得方程,解方程组即可得到结论.21.【答案】解:(1)设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元,可得:y=(20-10-2)x+(16-8-1.5)(1000-x)=1.5x+6500;(2)由题意,12x+9.5(1000-x)≤10750,解得x≤500,∵y=1.5x+6500,1.5>0,∴x=500时,y有最大值=1.5×500+6500=7250,答:该店每天制作甲、乙款型的油炸冰激凌各500个,可使该店这一天所获得的利润最大,最大利润7250元.【解析】(1)根据总利润=销售甲、乙两个款型的油炸冰激凌的利润之和,列出式子即可解决问题;(2)设安排甲款型的油炸冰激凌x个,则安排乙款型的油炸冰激凌(1000-x)个,根据题意得到不等式,解不等式即可得到结论.本题考查了一次函数的应用,难度一般,解答本题的关键是读懂题意列出函数关系式并熟练掌握及一次函数最大值的方法.22.【答案】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率==.【解析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【答案】(1)证明:连接OC,AC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.【解析】(1)连接OC,AC,根据平行线的性质得到∠1=∠ACB,由圆周角定理得到∠1=∠ACB=90°,根据线段垂直平分线的性质得到DB=DC,求得∠DBE=∠DCE,根据切线的性质得到∠DBO=90°,求得OC⊥DC,于是得到结论;(2)解直角三角形即可得到结论.本题考查了切线的判定和性质,垂径定理,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.24.【答案】解:(1)抛物线L:y=x2+bx+c经过点M(2,-3),点C(0,-3).代入得,解得,∴抛物线L的表达式为:y=x2-2x-3;(2)令x2-2x-3=0,则△=b2-4ac=(-2)2-4×1×(-3)=16>0,∴抛物线L与x轴有两个不同的交点;(3)由题意得,M(2,-3),N(2,-8),∴MN∥y轴,MN=5,∵PQ∥MN∥y轴,∴当PQ=MN=5时,四边形MNPQ为平行四边形.设点Q(m,0),则P点的坐标为(m,-5),要使得以M、N、P、Q为顶点的四边形为菱形,只需PN=MN=5,∴(m-2)2+(-5+8)2=52,解得m1=6,m2=-2,∴点P的坐标为(6,-5)或(-2,-5).∵y=x2-2x-3=(x-1)2-4,∴抛物线L的顶点坐标为(1,-4),∴①当点P的坐标为(6,-5)时,6-5=1,-5-(-4)=-1,∴将原抛物线先向右平移5个单位,再向下平移1个单位,可得到符合条件的抛物线L′;②当点P的坐标为(-2,-5)时,-2-1=-3,-5-(-4)=-1,∴将原抛物线先向左平移3个单位,再向下平移1个单位,可得到符合条件的抛物线L″.【解析】(1)将M、C两点的坐标代入y=-x2+bx+c,得到关于b、c的二元一次方程组,求出b、c的值,得出抛物线L的函数表达式;(2)利用一元二次方程的根的判别式的符号与根的情况进行判断;(3)由题意得,M(2,-3),N(2,-8),则当PQ=MN=5时,四边形MNPQ为平行四边形.设点Q(m,0),则P点的坐标为(m,-5),根据菱形的性质得到PN=MN=5,故(m-2)2+(-5+8)2=52,易得点P的坐标为(6,-5)或(-2,-5).由抛物线的平移规律“上加下减,左加右减”求得答案.本题考查了抛物线与x轴的交点,二次函数的解析式,二次函数的性质,菱形的性质,二次函数图象与几何变换,(1)中求出二次函数的解析式是关键,(3)中利用分类讨论的数学思想.25.【答案】【解析】解:(1)如图①中,在Rt△ABC中,∵AB=8,AC=6,∴BC==10,∵BD=CD,∴AD=BC=5,∵BE=EA,BF=FD,∴EF=AD=,故答案为.(2)如图②中,设圆心为O,连接OM,OB,OM交AB于E.设OB=r.∵=,∴OM⊥BA,EM=8,∴AE=EB=12在Rt△OEB中,∵OE2+EB2=OB2∴(r-8)2+122=r2,∴r=13,∴对应⊙O的面积为169π.(3)如图3-1中,延长CP交AB于F.∵在半径为5的⊙O中,弦BC=8,∴∠BAC是定值,设∠BAC=α,∵AD,BE是高,∴CF也是△ABC的高,∴∠ABE=∠ACF=90°-α,∵∠BPD=∠ABP+∠BAP,∠CPD=∠ACP+∠CAP,∴∠BPC=∠ABP+∠BAP+∠CAP+∠PCA=90°+90°-α=180°-α,∴∠BPC是定值,∴点P的运动轨迹是弧线,如图3-2中,当A,O,D共线时,PD定值最大,此时△PBC的面积最大.连接OC,在Rt△ODC中,OD==3,∴AD=5+3=8,AC=AB=4,∵•BC•AD=•AB•CF,∴CF==,∴AF==,∵cos∠BAD==,∴=,∴PA=6,∴PD=AD-PA=2,∴△PBC的面积的最大值=×8×2=8.(1)如图①中,利用勾股定理求出BC,利用直角三角形斜边中线的性质求出AD,利用三角形的中位线定理即可解决问题.(2)如图②中,设圆心为O,连接OM,OB,OM交AB于E.设OB=r.利用勾股定理构建方程即可解决问题.(3)首先证明∠BPC是定值,推出点P的运动轨迹是弧线,如图3-2中,当A,O,D 共线时,PD定值最大,此时△PBC的面积最大.本题属于圆综合题,考查了直角三角形斜边中线定理,三角形中位线定理,解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

相关文档
最新文档