(完整)正多边形与圆-练习题含答案,推荐文档

合集下载

人教版九年级上册正多边形和圆有关计算(含答案)

人教版九年级上册正多边形和圆有关计算(含答案)

正多边形和圆有关计算一、选择题1. 正三角形内切圆半径r 与外接圆半径R 之间的关系为( )A .4R =5rB .3R =4rC .2R =3rD .R =2r2. 用折纸的方法,可以直接剪出一个正五边形(如下图).方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等分,并沿五等分的线折叠,再沿CD 剪开,使展开后的图形为正五边形,则∠OCD 等于A .108°B .90°C .72°D .60°3. 一个正多边形的每个外角都是36°,这个正多边形是( ) A .正六边形B .正八边形C .正十边形D .正十二边形4. 已知一个多边形的内角和是540°,则这个多边形是( ) A .四边形 B .五边形 C .六边形 D .七边形5. 10.如图,小林从P 点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P ,则α( ) A .30° B .40° C .80° D .不存在6. 边长为a 的正六边形的内切圆的半径为( )A .2aB .aC .2a D .12a 7. 如图,⊙O 的内接多边形周长为3,⊙O 的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是()A BC .10D .8. 将边长为3cm 的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为( )A.2cm 2 B.4cm 2 C.8cm 2D .2 9. 如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是A .7B .8C .9D .1010. 一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是( ) A .2 B . 3C .1D .1211. 如图,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论错误的是A .弦AB 的长等于圆内接正六边形的边长B .弦AC 的长等于圆内接正十二边形的边长P α αC .AC BC =D .∠BAC =30°二、填空题12. 若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.13. 如图是一个五角星图案,中间部分的五边形ABCDE 是一个正五边形,则图中∠ABC 的度数是14. 如图,正六边形内接于圆O ,圆O 的半径为10,则圆中阴影部分的面积为 .15. 右图是对称中心为点O 的正六边形.如果用一个含30°角的直角三角板的角,借助点O (使角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能的值是16. 点M 、N 分别是正八边形相邻的边AB 、BC 上的点,且AM =BN ,点O 是正八边形的中心,则∠MON =____度.17. 若一个正n 边形的每个内角都等于120,则n = .18. 如图,在半径为,圆心角等于45°的扇形AOB 内部作一个正方形CDEF ,使点C 在OA 上,点D E 、在OB 上,点F 在⌒AB 上,则阴影部分的面积为(结果保留π) . 19. 如图,正六边形ABCDEF 的边长为2cm ,点P 为这个正六边形内部的一个动点,则点P 到这个正六边形各边的距离之和为__________cm .三、解答题20. (1)如图1,图2,图3,在ABC △中,分别以AB AC ,为边,向ABC △外作正三角形,正四边形,正五边形,BE CD ,相交于点O .①如图1,求证:ABE ADC △≌△; ②探究:如图1,BOC ∠= ; 如图2,BOC ∠= ; 如图3,BOC ∠= .O ACM NE DDA(2)如图4,已知:AB AD ,是以AB 为边向ABC △外所作正n 边形的一组邻边;AC AE ,是以AC 为边向ABC △外所作正n 边形的一组邻边.BE CD ,的延长相交于点O . ①猜想:如图4,BOC ∠= (用含n 的式子表示); ②根据图4证明你的猜想.21. 问题背景某课外学习小组在一次学习研讨中,得到了如下两个命题:①如图1,在正三角形ABC 中,M N ,分别是AC AB ,上的点,BM 与CN 相交于点O ,若60BON =∠,则BM CN =;②如图2,在正方形ABCD 中,M N ,分别是CD AD ,上的点,BM 与CN 相交于点O ,若90BON =∠,则BM CN =.然后运用类比的思想提出了如下命题:③如图3,在正五边形ABCDE 中,M N ,分别是CD DE ,上的点,BM 与CN 相交于点O ,若108BON =∠,则BM CN =. 任务要求(1)请你从①,②,③三个命题中选择一个....进行证明; (说明:选①做对的得4分,选②做对的得3分,选③做对的得5分) (2)请你继续完成下面的探索: ①如图4,在正(3)n n ≥边形ABCDEF中,M N ,分别是CD DE ,上的点,BM 与CN 相交于点O ,问当BON ∠等于多少度时,结论BM CN =成立?(不要求证明)②如图5,在正五边形ABCDE 中,M N ,分别是DE AE ,上的点,BM 与CN 相交于点O ,若108BON =∠时,请问结论BM CN =是否还成立?若成立,请给予证明;若不成立,请说明理由.(1)我选 . 证明:22. 图1是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm ,有三条边的长是3cm ,每个内角都是120,该六棱柱的高为3cm .现沿它的侧棱剪开展平,得到如图3的平面展形图.图5图1图2A图3图4ABCDE O MNF(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm 、宽为16.5cm 的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为 cm .(说明:以上裁剪均不计接缝处损耗.)图4 图523. 已知正n 边形的周长为60,边长为a . (1)当3n =时,请直接写出a 的值;(2)把正n 边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为7n +,周长为67,边长为b .有人分别取n 等于3,20,120,再求出相应的a 与b ,然后断言:“无论n 取任何大于2的正整数,a 与b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n 的值.图1图2图39cm3cm3cm24. 等腰三角形是我们熟悉的图形之一,下面介绍一种等分等腰三角形面积的方法:在△ABC 中,AB AC ,把底边BC 分成m 等份,连接顶点A BC 和底边各等分点的线段,即可把这个三角形的面积m 等分.B C问题的提出:任意给定一个正n 边形,你能把它的面积m 等分吗?探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m 等分?如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图①,这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图②,这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图③).这样就能把正三角形的面积四等分.① ② ③实验与验证:仿照上述方法,利用刻度尺,在图④中画出一种将正三角形的面积五等分的示意简图.猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m 等分?叙述你的分法并说明理由. 答:拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m 等分?(叙述分法即可,不需说明理由) ④A DB B B答:问题解决:怎样从正n边形的中心引线段,才能将这个正n边形的面积m等分?(叙述分法即可,不需说明理由)答:答案一、选择题1.D2. B3. C4. B5. B6. C7. C8. A9. B10. A11. DA456A二、填空题12. 813. 108°14. 100π-150 15. 2,3,4,6,12 16. 45 17. 6 18.5π382-19. 三、20. (1)①证法一:ABD △与ACE △均为等边三角形,AD AB ∴=,AC AE =2分且60BAD CAE ∠=∠=3分 BAD BAC CAE BAC ∴∠+∠=∠+∠, 即DAC BAE ∠=∠ 4分 ABE ADC ∴△≌△.5分证法二:ABD △与ACE △均为等边三角形, AD AB ∴=,AC AE = 2分 且60BAD CAE ∠=∠=3分 ADC ∴△可由ABE △绕着点A 按顺时针方向旋转60得到 4分 ABE ADC ∴△≌△. 5分②120,90,72. 8分(每空1分)(2)①360n10分②证法一:依题意,知BAD ∠和CAE ∠都是正n 边形的内角,AB AD =,AE AC =,(2)180n BAD CAEn-∴∠=∠=BAD DAE CAE DAE ∴∠-∠=∠-∠,即BAE DAC ∠=∠. 11分 ABE ADC ∴△≌△.12分 ABE ADC ∴∠=∠,180ADC ODA ∠+∠=,180ABO ODA ∴∠+∠= 13分360ABO ODA DAB BOC ∠+∠+∠+∠=,180BOC DAB ∴∠+∠=(2)180360180180n BOC DAB n n-∴∠=-∠=-= 14分 证法二:同上可证 ABE ADC △≌△.12分ABE ADC ∴∠=∠,如图,延长BA 交CO 于F ,180AFD ABE BOC ∠+∠+∠=, 180AFD ADC DAF ∠+∠+∠=13分360180BOC DAF BAD n∴∠=∠=-∠=14分证法三:同上可证 ABE ADC △≌△.12分ABE ADC ∴∠=∠.180()BOC ABE ABC ACB ACD ∠=-∠+∠+∠+∠180()BOC ADC ABC ACB ACD ∴∠=-∠+∠+∠+∠180ABC ACB BAC ∠+∠=-∠,180ADC ACD DAC ∠+∠=-∠ 180(360)BOC BAC DAC ∴∠=--∠-∠13分 即360180BOC BAD n∠=-∠=14分 证法四:同上可证 ABE ADC △≌△.12分AEB ACD ∴∠=∠.如图,连接CE ,BEC BOC OCE ∠=∠+∠ AEB AEC BOC ACD ACE ∴∠+∠=∠+∠-∠BOC AEC ACE ∴∠=∠+∠. 13分 即360180BOC CAE n∠=-∠=14分注意:此题还有其它证法,可相应评分.21. (1)选命题①.证明:在图1中,601260BON =∴+=,∠∠∠. 326013+=∴=,∠∠∠∠. 又60BC CA BCM CAN ===,∠∠,BCM CAN ∴△≌△. BM CN ∴=.选命题②.证明:在图2中,901290BON =∴+=,∠∠∠. 239013+=∴=,∠∠∠∠. 又90BC CD BCM CDN ===,∠∠,BCM CDN ∴△≌△. BM CN ∴=.选命题③.图1图2A证明:在图3中,10812108BON =∴+=,∠∠∠. 2318013+=∴=,∠∠∠∠. 又108BC CD BCM CDN ===,∠∠,BCM CDN ∴△≌△.BM CN ∴=.(2)①当(2)180n BON n-=∠时,结论BM CN =成立. ②BM CN =成立.证明:如图5,连结BD CE ,.在BCD △和CDE △中, 108BC CD BCD CDE CD DE ====,,∠∠,BCD CDE ∴△≌△.BD CE BDC CED DBC ECD ∴===,,∠∠∠∠.108CDE DEA ==∠∠,BDM CEN ∴=∠∠.108108OBC OCB OCB OCD MBC NCD +=+=∴=,,∠∠∠∠∠∠.又36DBC ECD ==∠∠,DBM ECN ∴=∠∠.BDM CEN BM CN ∴∴=.△≌△.22. (1)能.理由:由题设可知,图4中长方形的宽为616.5<.长方形的长为1217.5+<.故长为17.5cm ,宽为16.5cm 的长方形铁皮,能按图4的裁剪方法制作这样的无盖底盒.(2)15+.23. 解:(1)20a =3分图3图5 A B CD E O M N(2)此说法不正确4分 理由如下:尽管当3n =,20,120时,a b >或a b <,但可令a b =,得606077n n +=+, 即6067(*)7n n =+ 6分6042067n n ∴+-,解得60n -7分 经检验,60n =是方程(*)的根∴当60n =时,a b =,即不符合这一说法的n 的值为60. 8分24. (1)实验与验证:图(略)(2)猜想与证明:先连接正三角形的中心和各顶点,再把所得的每个等腰三角形的底边m 等分,连接中心和各等分点,依次把相邻的三个小三角形拼合在一起,即可把正三角形的面积m 等分.理由:正三角形被中心和各顶点连线分成三个全等的等腰三角形,所以这三个等腰三角形的底和高都相等;这个等腰三角形的底边被m 等分,所以所得到的每个小三角形的底和高都相等,即其面积都相等,因此,依次把相邻的三个小三角形拼合在一起合成的图形的面积也相等,即可把此正三角形的面积m 等分.(3)拓展与延伸:先连接正方形的中心和各顶点,再把所得的每个等腰三角形的底边m 等分,连接中心和各等分点,依次把相邻的四个小三角形拼合在一起,即可把正方形的面积m 等分.(4)问题解决:先连接正多边形的中心和各顶点,再把所得的每个等腰三角形的底边m 等分,连接中心和各等分点,依次把相邻的n 个小三角形拼合在一起,即可把正多边形的面积m 等分.。

正多边形及圆练习与答案

正多边形及圆练习与答案

第2章对称图形——圆2.6正多边形与圆知识点1正多边形的相关概念1.如图2-6-1,⊙O是正五边形ABCDE的外接圆,则∠AOB的度数是()A.72°B.60°C.54°D.36°图2-6-1图2-6-22.教材例题变式如图2-6-2,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为________.3.如图2-6-3,在正五边形ABCDE中,点F,G分别是BC,CD的中点.求证:△ABF≌△BCG.图2-6-3知识点2画正多边形4.画正六边形.5.[2016·淮安]如图2-6-4,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.图2-6-4图2-6-56.[2017·凉山]如图2-6-5,P,Q分别是⊙O的内接正五边形的边AB,BC上的点,BP=CQ,则∠POQ=________°.7.如图2-6-6①②③,等边三角形ABC、正方形ABCD、正五边形ABCDE分别是⊙O 的内接三角形、内接四边形、内接五边形,点M,N分别从点B,C开始,以相同的速度在圆周上逆时针运动,AM,BN相交于点P.图2-6-6(1)求图①中∠APB的度数.(2)图②中,∠APB的度数是________,图③中∠APB的度数是________.(3)根据前面的探索,你能否将本题推广到一般的正n边形的情况?若能,写出推广问题和结论;若不能,请说明理由.详解详析1.A [解析] ∵⊙O 是正五边形ABCDE 的外接圆,∴∠AOB =360°÷5=72°.2.3 33.证明:∵五边形ABCDE 是正五边形,∴AB =BC =CD ,∠ABC =∠BCD .∵F ,G 分别是BC ,CD 的中点,∴BF =12BC ,CG =12CD ,∴BF =CG . 在△ABF 和△BCG 中,∵AB =BC ,∠ABF =∠BCG ,BF =CG ,∴△ABF ≌△BCG .4.[解析] 画正六边形的途径有两种,一种是用量角器将圆六等分;另一种是用圆规和直尺将圆六等分.解: (方法一)用量角器将圆六等分(略).(方法二)用直尺和圆规将圆六等分.作法:1.在⊙O 中任意作一条直径AD ;2.分别以点A ,D 为圆心,⊙O 的半径为半径画弧,与⊙O 相交于B ,F 和C ,E ;3.依次连接AB ,BC ,CD ,DE ,EF ,F A ,六边形ABCDEF 就是所求作的正六边形.5.75 [解析] 设该正十二边形外接圆的圆心为O ,如图,连接A 10O 和A 3O . 由题意知,的长度=512⊙O 的周长, ∴∠A 3OA 10=512×360°=150°, ∴∠A 3A 7A 10=75°.6.727..解:(1)∵点M ,N 分别从点B ,C 开始以相同的速度在圆周上逆时针运动, ∴∠BAM =∠CBN .又∵∠APN =∠BPM ,∴∠APN =∠BPM =∠ABN +∠BAM =∠ABN +∠CBN =∠ABC =60°,∴∠APB =120°.(2)90° 72°(3)能推广到一般的正n 边形的情况.问题:正n 边形ABCD …内接于⊙O ,点M ,N 分别从点B ,C 开始,以相同的速度在圆周上逆时针运动,AM ,BN 相交于点P ,求∠APB 的度数.结论:∠APB 的度数为所在多边形的外角度数,即∠APB =360°n.。

中考数学圆与多边形专题含答案

中考数学圆与多边形专题含答案

【知识梳理】正多边形:各边相等、各角也相等的多边形叫做正多边形. 正多边形判定:“各边相等”、“各角相等”必须同时具备,缺一不可. 正多边形与圆的关系:正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.正多边形的中心:正多边形外接圆的圆心叫做正多边形的中心. 正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角. 正多边形的边心距:正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.与正多边形(正n 边形)有关的计算: 边长AB a半径OA R 周长 C=na面积 2AOB nar nS S ==△中心角∠AOBn ︒360 外角n︒360 内角∠CAB(1)180°-n︒360(2)nn ︒-180)2( 内角和︒-180)2(n边心距OH(1)nR OH ︒⨯=180cos(2)22)2(aR OH -=正三角形,正方形,正六边形的内外接圆半径与边长的关系。

正三角形 正方形 正六边形 内接 外接正多边形的边心距(正三角形,正方形,正六边形)【经典例题1】正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

若等腰直角三角形的外接圆半径的长为 2,则其内切圆半径的长为()A.2B.22-2C.2-2D.2-1 【解析】∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为22,∴它的内切圆半径为:R=21(22+22−4)=22−2.故选B.练习1-1如图,已知⊙O 的内接正六边形 ABCDEF 的边心距 OM =2,则该圆的内接正三角形 ACE 的面积为( ) A .2 B .4 C .63 D .43【解析】如图所示,连接OC ,OB ,过O 作ON ⊥CE 于N , ∵多边形ABCDEF 是正六边形, ∴∠COB=60°, ∵OC=OB ,∴△COB 是等边三角形, ∴∠OCM=60°, ∴OM=OC•sin ∠OCM , ∴33460sin =︒=OM OC .∵∠OCN=30°, ∴ON=21OC=332,CN=2,∴CE=2CN=4,∴该圆的内接正三角形ACE 的面积=343324213=⨯⨯⨯, 故选:D .练习1-2如图,边长为a 的正方形ABCD 和边长为b 的等边△AEF 均内接于⊙O ,则ab的值是( ) A .2 B .3 C .2 D .62【解析】设其半径是r ,则其正三角形的边长是3r , 正方形的边长是2r ,则它们的比是2:3.则内接正方形的边长与内接正三角形的边长的比为:6:3.即则ab的值=26,故选:D.练习1-3如图,△ABC 是半径为1的⊙O 的内接正三角形,则圆的内接矩形BCDE 的面积为( )A .3B .32C 3D 3【解析】过点O 作OF ⊥BC 于点F ,连结BD 、OC ,∵△ABC 是 O 的内接等边三角形,AB=1,∴BF=21BC=21,∠OBC=30°, ∴OB=︒30cos BF=2321=33,CD=BC•tan30°=33,∴矩形BCDE 的面积=BC•CD=33. 故选C .练习1-4如图,正六边形ABCDEF 内接于☉O ,已知☉O 的半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为 ( )A .2,3π B .23,π C .3,32π D .23,34π 【解析】解:如图所示,连接OC 、OB ∵多边形ABCDEF 是正六边形, ∴∠BOC=60°, ∵OA=OB ,∴△BOC 是等边三角形, ∴∠OBM=60°, ∴OM=OBsin ∠OBM=4×23=23, 弧BC 的长度=ππ34180460=⨯, 故选:A .练习1-5如图,等腰三角形ABC 的内切圆☉O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AB=AC=5,BC=6,则DE 的长是( )A .10103 B .5103 C .553 D .556 【解析】D练习1-6(2019·十堰中考)如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD =5,CE =13,则AE =( )A .3B .3 2C .4 3D .2 3 【解析】如解图,连接AC ,∵BA 平分∠DBE , ∴∠ABE =∠ABD ,∵四边形ABCD 是⊙O 的内接四边形, ∴∠ABC +∠ADC =180°. ∵∠ABC +∠ABE =180°,∴∠ABE =∠ADC ,∴∠ADC =∠ABD , ∵∠ABD =∠ACD ,∴∠ADC =∠ACD ,∴AC =AD =5.∵AE ⊥CE ,CE =13,∴AE =2222)13(5-=-CE AC =23.练习1-7如图,有一个圆O 和两个正六边形T 1,T 2.T 1的6个顶点都在圆周上,T 2的6条边都和圆O 相切(我们称T 1,T 2分别为圆O 的内接正六边形和外切正六边形).(1)设T 1,T 2的边长分别为a ,b ,圆O 的半径为r ,求r ∶a 及r ∶b 的值; (2)求正六边形T 1,T 2的面积比S 1∶S 2的值.T 1T 2O【解析】(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形。

2023年中考数学一轮专题练习 ——正多边形和圆(含解析)

2023年中考数学一轮专题练习 ——正多边形和圆(含解析)

2023年中考数学一轮专题练习 ——正多边形和圆一、单选题(本大题共8小题)1. (上海市2022年)有一个正n 边形旋转90后与自身重合,则n 为( ) A .6B .9C .12D .15 2. (湖南省邵阳市2022年)如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A.32 B .C D .523. (四川省雅安市2022年)如图,已知⊙O 的周长等于6π,则该圆内接正六边形ABCDEF 的边心距OG 为( )A .3B .32CD .34. (四川省南充市2022年)如图,在正五边形ABCDE 中,以AB 为边向内作正ABF ,则下列结论错误的是( )A .AE AF =B .EAF CBF ∠=∠C .F EAF ∠=∠D .CE ∠=∠ 5. (四川省内江市2022年)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和BC 的长分别为( )A .4,3πB .πC .43πD .32π6. (四川省成都市2022年)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )AB .C .3D .7. (广西玉林市2022年)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .08. (河南省2022年)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 二、填空题(本大题共5小题)9. (辽宁省营口市2022年)如图,在正六边形ABCDEF 中,连接,AC CF ,则ACF ∠= 度.10. (江苏省宿迁市2022年)如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是 .11. (吉林省长春市2022年)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若27AB =厘米,则这个正六边形的周长为 厘米.12. (吉林省2022年)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为 度.(写出一个即可)13. (黑龙江省绥化市2022年)如图,正六边形ABCDEF 和正五边形AHIJK 内接于O ,且有公共顶点A ,则BOH ∠的度数为 度.三、解答题(本大题共1小题)14. (浙江省金华市2022年)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.参考答案1. 【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90是30的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.2. 【答案】C【分析】作直径AD,连接CD,如图,利用等边三角形的性质得到∠B=60°,关键圆周角定理得到∠ACD=90°,∠D=∠B=60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD,连接CD,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD∴OA =OB =12AD 故选:C .3. 【答案】C【分析】 利用圆的周长先求出圆的半径,正六边形的边长等于圆的半径,正六边形一条边与圆心构成等边三角形,根据边心距即为等边三角形的高用勾股定理求出OG .【详解】∵圆O 的周长为6π,设圆的半径为R ,∴26R ππ=∴R =3连接OC 和OD ,则OC=OD=3∵六边形ABCDEF 是正六边形,∴∠COD =360606︒=︒, ∴△OCD 是等边三角形,OG 垂直平分CD , ∴OC =OD =CD ,1322CG CD ==∴OG =故选 C4. 【答案】C【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵多边形ABCDE 是正五边形,∴该多边形内角和为:5218540(0)-⨯︒=︒,AB AE =, ∴5401085C E EAB ABC ︒∠=∠=∠=∠==︒,故D 选项正确; ∵ABF 是正三角形,∴60FAB FBA F ∠=∠=∠=︒,AB AF FB ==,∴1086048EAF EAB FAB ∠=∠-∠=︒-︒=︒,1086048CBF ABC FBA ∠=∠-∠=︒-︒=︒, ∴EAF CBF ∠=∠,故B 选项正确;∵AB AE =,AB AF FB ==,∴AE AF =,故A 选项正确;∵60F ∠=︒,48EAF ∠=︒,∴F EAF ∠≠∠,故C 选项错误,故选:C .5. 【答案】D【分析】连接OC 、OB ,证出BOC ∆是等边三角形,根据勾股定理求出OM ,再由弧长公式求出弧BC 的长即可.【详解】解:连接OC 、OB ,六边形ABCDEF 为正六边形,360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆为等边三角形,6BC OB ∴==,OM BC ⊥,132BM BC ∴==,OM ∴==BC 的长为6062180ππ⨯==. 故选:D .6. 【答案】C【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π,∴⊙O 的半径为:3,∵∠BOC 61=⨯360°=60°, ∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .7. 【答案】B【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.解:∵2022÷3=674,2022÷1=2022,∴67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∴经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ⊥AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∴1,302AG AE FAE FEA =∠=∠=︒, ∴112FG AF ==,∴AG =∴AE =故选B .8. 【答案】B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1, AO =2,∠OPA =90°,∴OP =∴A(1第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1,∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,9. 【答案】30【分析】连接BE ,交CF 与点O ,连接OA ,先求出360606AOF ︒∠==︒,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.【详解】连接BE ,交CF 与点O ,连接OA ,在正六边形ABCDEF 中,360606AOF ︒∴∠==︒, OA OC =OAC OCA ∴∠=∠2AOF OAC ACF ACF ∠=∠+∠=∠30ACF =∴∠︒,故答案为:30.10. 【答案】【分析】如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P ,由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH = 可得直线MH 平分正六边形的面积,O 为正六边形的中心,再利用直角三角形的性质可得答案.【详解】解:如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P , 由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH =∴直线MH 平分正六边形的面积,O 为正六边形的中心,由正六边形的性质可得:AOF 为等边三角形,60,AFO 而6,AB =6,3,ABAF OF OA AP FP 226333,OP2,AM 则1,MP22OM13327,MH OM247.故答案为:11. 【答案】54【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.12. 【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】 解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒, 0360α︒<<︒,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).13. 【答案】12【分析】连接AO ,求出正六边形和正五边形的中心角即可作答.【详解】连接AO ,如图,∵多边形ABCDEF 是正六边形,∴∠AOB =360°÷6=60°,∵多边形AHIJK 是正五边形,∴∠AOH =360°÷5=72°,∴∠BOH =∠AOH -∠AOB =72°-60°=12°,故答案为:12.14. 【答案】(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:∵正五边形ABCDE .∴BC CD DE AE AB ====, ∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,∵ON OF =,∴ON OF FN ==,∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,∴AMN 是正三角形;(3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠.∵2AD AE =,∴272144AOD ∠=⨯︒=︒,∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==.。

人教版九年级上册数学《正多边形和圆》同步练习及答案

人教版九年级上册数学《正多边形和圆》同步练习及答案

24.3正多边形和圆知识点1.________________ 相等, ______________也相等的多边形叫做正多边形.2.把一个圆分红几等份,连结各点所获得的多边形是________________ ,它的中心角等于______________________________________________.3.一个正多边形的外接圆的 ____________叫做这个正多边形的中心,外接圆的__________叫做正多边形的半径,正多边形每一边所对的__________ 叫做正多边形的中心角,中心到正多边形的一边的____________叫做正多边形的边心距.4.正 n 边形的半径为 R,边心距为 r ,边长为 a,(1)中心角的度数为: ______________.(2)每个内角的度数为: _______________________.(3)每个外角的度数为: ____________.(4)周长为: _________,面积为: _________.5. 正 n 边形都是轴对称图形,当边数为偶数时,它的对称轴有_______条,而且仍是中心对称图形;当边数为奇数时,它不过 _______________. (填“轴对称图形” 或“中心对称图形” )一、选择题1. 以下说法正确的选项是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形2. (2013?天津)正六边形的边心距与边长之比为()A.:3B.: 2C. 1:2D.: 23.(2013山东滨州) 若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,32B.3 2,3C.6,3D. 62,3 24.如下图,正六边形 ABCDEF内接于⊙ O,则∠ ADB的度数是().第 4 题A. 60°B.45°C.30°D.22.5°5. 半径相等的圆的内接正三角形,正方形,正六边形的边长的比为()A.1: 2: 3B.3: 2:1C.3:2:1D.1:2:36.圆内接正五边形 ABCDE中,对角线 AC和 BD订交于点 P,则∠ APB的度数是().A. 36°B.60°C.72°D.108°第 6 题7.(2013?自贡)如图,点 O是正六边形的对称中心,假如用一副三角板的角,借助点 O(使该角的极点落在点 O处),把这个正六边形的面积 n 平分,那么 n 的全部可能取值的个数是()第 7 题A.4B.5C.6D. 78.如图,△ PQR是⊙ O的内接正三角形,四边形 ABCD是⊙ O的内接正方形,BC∥QR,则∠ AOQ的度数是()A.60 °B.65°C.72 °D.75°第 8 题二、填空题9.一个正 n 边形的边长为 a,面积为 S,则它的边心距为 __________.10. 正多边形的一其中心角为36 度 , 那么这个正多边形的一个内角等于__________ 度 .211. 若正六边形的面积是24 3 cm,则这个正六边形的边长是 __________.第 13题12.已知正六边形的边心距为3,则它的周长是_______.13. 点 M、 N分别是正八边形相邻的边AB、 BC上的点,且 AM=BN,点 O是正八边形的中心,则∠MON=_____________.14.边长为 a 的正三角形的边心距、半径(外接圆的半径)和高之比为_________________.15.要用圆形铁片截出边长为4cm 的正方形铁片,则采用的圆形铁片的直径最小要__________cm.16.若正多边形的边心距与边长的比为1:2 ,则这个正多边形的边数是 __________.17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.18.(2013 ?徐州 ) 如图,在正八边形ABCDEFGH中,四边形 BCFG的面积为20cm2,则正八边形的面积为________cm2.第 18题三、解答题19. 比较正五边形与正六边形,能够发现它们的同样点与不一样点.正五边形正六边形比如它们的一个同样点:正五边形的各边相等,正六边形的各边也相等.它们的一个不一样点:正五边形不是中心对称图形,正六边形是中心对称图形. 请你再写出它们的两个同样点和不一样点.同样点:( 1)____________________________________________________________________;(2) ___________________________________________________________________.不一样点:( 1)____________________________________________________________________;(2)____________________________________________________________________. 20. 已知,如图,正六边形ABCDEF的边长为 6cm,求这个正六边形的外接圆半径R、边心距r 6、面积 S6.第 20题21. 如图,⊙ O的半径为 2 ,⊙O的内接一个正多边形,边心距为1,求它的中心角、边长、面积 .第 21题22.已知⊙ O和⊙ O上的一点 A.(1)作⊙ O的内接正方形ABCD和内接正六边形AEFCGH;(2)在( 1)题的作图中,假如点 E 在弧 AD上,求证: DE是⊙ O内接正十二边形的一边.第 22题23.如 1、 2、 3、⋯、 n,M、 N 分是⊙O 的内接正三角形 ABC、正方形 ABCD、正五形 ABCDE、⋯、正 n 形ABCDE⋯的 AB、 BC上的点,且 BM=CN, OM、 ON.(1)求 1 中∠ MON的度数;(2)2 中∠ MON的度数是 _________, 3 中∠ MON的度数是 _________;(3)研究∠ MON的度数与正 n 形数 n 的关系 ( 直接写出答案 ).24.3正多边形和圆知识点1.各边各角2.正多边形正多边形每一边所对的圆心角3.圆心半径圆心角距离360(2)(n2) 180360(5)nar4. (1)n (3)(4)nan n25.n 轴对称图形一、选择题1.C2.B3.B4.C5.B6.C7.B解:依据圆内接正多边形的性质可知,只需把此正六边形再化为正多边形即可,即让周角除以 30 的倍数就能够解决问题.360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.所以 n 的全部可能的值共五种状况,应选 B.8.D二、填空题9. 2S10.14411.4cm 12.1213.45° 14.1:2:3 15.42 16.四 17.2:3na18.40三、解答题19.同样点:( 1)每个内角都相等(或每个外角都相等或对角线都相等);( 2)都是轴对称图形(或都有外接圆和内切圆).不一样点:( 1)正五边形的每个内角是108°,正六边形的每个内角是120°;( 2)正五边形的对称轴是 5 条,正六边形的对称轴是 6 条.20.解:连结OA,OB.过点 O作 OG AB于G.AOB =60, OA OBAOB 是等边三角形OA OB6即 R=6OA OB ,OG ABAG 1AB13 262在 Rt AOG 中, r 6OG OA 2AG 2 6 2 3 2 3 3S1663354362R 6 cm , r 6 3 3 cm , S654 3 cm 2 .21.解:连结 OB∵在 Rt △ AOC中, AC= OA2OC 2 2 1=1∴AC=OC∴∠ AOC=∠ OAC=45°∵OA=OB OC⊥ AB∴A B=2AC=2 ∠ AOB=2∠ OAC=2× 45° =90°∴这个内接正多边形是正方形 .∴面积为22=4∴中心角为90°,边长为2,面积为 4.22.(1) 作法:①作直径 AC; ②作直径BD⊥AC; ③挨次连结A、B、C、 D 四点 ,四边形 ABCD即为⊙O 的内接正方形 ;第 22题④分别以A、 C 为圆心,以OA长为半径作弧,交⊙O于E、H、F、G;⑤按序连结A、 E、 F、 C、 G、H 各点 .六边形 AEFCGH即为⊙O 的内接正六边形.(2)证明:连结 OE、DE.∵∠ AOD=360=90°,∠ AOE=360=60°,46∴∠ DOE =∠ AOD -∠ AOE = 90° -60 ° =30°.∴DE 为⊙O 的内接正十二边形的一边.23.(1) 方法一:连结 OB 、 OC.∵正△ ABC 内接于⊙ O ,∴∠ OBM=∠OCN =30°,∠ B OC=120°.又∵ BM=CN , OB=OC ,∴△ OBM ≌△ OCN ( SAS ) .∴∠ BOM =∠ CON.∴∠ MON=∠BOC=120°.方法二:连结 OA 、 OB.∵正△ ABC 内接于⊙ O ,∴ AB=AC ,∠ OAM=∠OBN=30°, ∠AOB=120°.又∵ BM = CN ,∴ A M=BN.又∵ OA=OB,∴△ AOM ≌△ BON ( SAS ) .∴∠ AOM=∠BON.∴∠ MON=∠AOB=120°.(2)90 ° 72 °(3) ∠MON=360.n。

人教版九年级上《24.3正多边形和圆》练习题含答案

人教版九年级上《24.3正多边形和圆》练习题含答案

24.3正多边形和圆知识点1正多边形与圆的关系1.如果一个四边形的外接圆与内切圆是同心圆,那么这个四边形一定是()A.矩形B.菱形C.正方形D.不能确定2.如图24-3-1所示,已知△ABC是⊙O的内接等腰三角形,顶角∠BAC=36°,弦BD,CE分别平分∠ABC,∠ACB.求证:五边形AEBCD是正五边形.图24-3-1知识点2与正多边形有关的计算3.如果一个正多边形的中心角为72°,那么这个正多边形的边数是()A.4 B.5 C.6 D.74.若正方形的边长为6,则其内切圆半径的大小为()A.3 2 B.3 C.6 D.6 25.2021·南平若正六边形的半径为4,则它的边长等于()A.4 B.2 C.2 3 D.4 36.如图24-3-2所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()图24-3-2A.60°B.45°C.30°D.22.5°7.正八边形的中心角等于________度.8.将一个边长为1的正八边形补成如图24-3-3所示的正方形,这个正方形的边长等于________.(结果保留根号)图24-3-39.2022·资阳边长相等的正五边形和正六边形如图24-3-4所示拼接在一起,则∠ABC =________°.图24-3-410.如图24-3-5,已知正五边形ABCDE,M是CD的中点,连接AC,BE,AM.求证:(1)AC=BE;(2)AM⊥CD.图24-3-5知识点3与正多边形有关的作图11.已知⊙O和⊙O上的一点A,作⊙O的内接正方形和内接正六边形(点A为正方形和正六边形的顶点).12.如图24-3-6所示,⊙O的内接多边形的周长为3,⊙O的外切多边形的周长为3.4,则下列各数中与此圆的周长最接近的是()图24-3-6A. 6B.8C.10D.1713.若AB是⊙O内接正五边形的一边,AC是⊙O内接正六边形的一边,则∠BAC等于()A.120°B.6°C.114°D.114°或6°14.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A. 2 B.2 2-2C.2- 2 D.2-115.2022·达州以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.22 B.32 C. 2 D.316.2022·云南如图24-3-7,边长为4的正方形ABCD外切于⊙O,切点分别为E,F,G,H.则图中阴影部分的面积为________.图24-3-717.如图24-3-8,正六边形ABCDEF内接于⊙O,若⊙O的内接正三角形ACE的面积为48 3,试求正六边形的周长.图24-3-818.如图24-3-9①②③④,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDEFG…的边AB,BC上的点,且BM=CN,连接OM,ON.图24-3-9(1)求图①中∠MON的度数;(2)图②中,∠MON的度数是________,图③中∠MON的度数是________;(3)试探究∠MON的度数与正n边形的边数n的关系(直接写出答案).教师详解详析1.C [解析] 只有正多边形的外接圆与内切圆才是同心圆,故这个四边形是正方形.故选C .2.证明:∵△ABC 是等腰三角形,且∠BAC =36°, ∴∠ABC =∠ACB =72°.又∵BD 平分∠ABC ,CE 平分∠ACB , ∴∠ABD =∠CBD =∠BCE =∠ACE =36°, 即∠BAC =∠ABD =∠CBD =∠BCE =∠ACE , ∴BC ︵=AD ︵=CD ︵=BE ︵=AE ︵,∴A ,E ,B ,C ,D 是⊙O 的五等分点, ∴五边形AEBCD 是正五边形.3.B [解析] 设这个正多边形为正n 边形,由题意可知72n =360,解得n =5.故选B . 4.B5.A [解析] 正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边组成一个等边三角形.因为正六边形的外接圆半径等于4,所以正六边形的边长等于4.6.C [解析] 连接OB ,则∠AOB =60°, ∴∠ADB =12∠AOB =30°.7.45 8.1+2[解析] 如图,∵△BDE 是等腰直角三角形,BE =1,∴BD =22,∴正方形的边长等于AB +2BD =1+ 2.9.24 [解析] 正六边形的一个内角=16×(6-2)×180°=120°,正五边形的一个内角=15×(5-2)×180°=108°,∴∠BAC =360°-(120°+108°)=132°.∵两个正多边形的边长相等,即AB =AC ,∴∠ABC =12×(180°-132°)=24°.10.证明:(1)由五边形ABCDE 是正五边形,得AB =AE ,∠ABC =∠BAE ,AB =BC , ∴△ABC ≌△EAB ,∴AC =BE.(2)连接AD ,由五边形ABCDE 是正五边形,得AB =AE ,∠ABC =∠AED ,BC =ED , ∴△ABC ≌△AED , ∴AC =AD.又∵M 是CD 的中点, ∴AM ⊥CD. 11.解:如图所示.作法:①作直径AC ;②作直径BD ⊥AC ,依次连接AB ,BC ,CD ,DA ,则四边形ABCD 是⊙O 的内接正方形;③分别以点A ,C 为圆心,OA 的长为半径画弧,交⊙O 于点E ,H 和F ,G ,顺次连接AE ,EF ,FC ,CG ,GH ,HA ,则六边形AEFCGH 为⊙O 的内接正六边形.12.C [解析] 根据两点之间,线段最短可得圆的周长大于3而小于3.4,选项中只有C 满足要求.13.D [解析] 分两种情况考虑:(1)如图①所示,∵AB 是⊙O 内接正五边形的一边,∴∠AOB =360°5=72°.∵AC 是⊙O 内接正六边形的一边,∴∠AOC =360°6=60°,∴∠BOC =72°-60°=12°,∴∠BAC =12∠BOC =6°.(2)如图②所示,∠AOB =72°,∠AOC =60°,∴∠OAB =54°,∠OAC =60°,∴∠BAC =60°+54°=114°.综上所述,可知选D .14.B [解析] ∵等腰直角三角形的外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边的长均为2 2.如图,根据三角形内切圆的性质可得CD =CE =r ,AD =BE =AO =BO =2 2-r ,∴AB =AO +BO =4 2-2r =4,解得r =2 2-2.故选B .15.A [解析] 如图①,∵OC =2,∴OD =1;如图②,∵OB =2,∴OE =2; 如图③,∵OA =2,∴OD =3, 则该三角形的三边长分别为1,2, 3. ∵12+(2)2=(3)2, ∴该三角形是直角三角形, ∴该三角形的面积是12×1×2=22.故选A .16.2π+4 [解析] 如图,连接HO ,并延长交BC 于点P ,连接EO ,并延长交CD 于点M.∵正方形ABCD 外切于⊙O , ∴∠A =∠B =∠AHP =90°,∴四边形AHPB 为矩形,∴∠OPB =90°. 又∵∠OFB =90°,∴点P 与点F 重合, ∴HF 为⊙O 的直径, 同理:EG 为⊙O 的直径.由∠D =∠OGD =∠OHD =90°且OH =OG 知,四边形DGOH 为正方形. 同理:四边形OGCF 、四边形OFBE 、四边形OEAH 均为正方形, ∴DH =DG =GC =CF =2,∠HGO =∠FGO =45°, ∴∠HGF =90°,GH =GF =GC 2+CF 2=2 2, 则阴影部分面积=12S ⊙O +S △HGF=12·π·22+12×2 2×2 2 =2π+4. 故答案为2π+4.17.解:如图,连接OA ,作OH ⊥AC 于点H ,则∠OAH =30°.在Rt △OAH 中,设OA =R ,则OH =12R ,由勾股定理可得AH =OA 2-OH 2=R 2-(12R )2=123R. 而△ACE 的面积是△OAH 面积的6倍,即6×12×12 3R ×12R =48 3,解得R =8, 即正六边形的边长为8,所以正六边形的周长为48.18.解:(1)方法一:如图①,连接OB ,OC.图①∵正三角形ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120°.又∵BM =CN ,OB =OC , ∴△OBM ≌△OCN ,∴∠BOM =∠CON ,∴∠MON =∠BOC =120°.方法二:如图②,连接OA ,OB.图②∵正三角形ABC 内接于⊙O ,∴AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°.∵BM =CN ,∴AM =BN.又∵OA=OB,∴△AOM≌△BON,∴∠AOM=∠BON,∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=360°n.。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

初中数学正多边形和圆解答题专题训练含答案

初中数学正多边形和圆解答题专题训练含答案

初中数学正多边形和圆解答题专题训练含答案姓名:__________ 班级:__________考号:__________一、解答题(共15题)1、如图,PM 、PN 是⊙ O 的切线,切点分别是A 、B ,过点O 的直线CE∥PN ,交⊙ O 于点C 、D ,交PM 于点E ,AD 的延长线交PN 于点F ,若BC∥PM .( 1 )求证:∠P =45° ;( 2 )若CD = 6 ,求PF 的长.2、如图,是的直径,为上一点(不与点,重合)连接,,过点作,垂足为点.将沿翻折,点落在点处得,交于点.( 1 )求证:是的切线;( 2 )若,,求阴影部分面积.3、已知:三角形ABC内接于⊙O,过点A作直线EF.(1)如图,AB为直径,要使得EF是⊙O的切线,只需保证∠CAE=∠_____,并证明之;(2)如图,AB为⊙O非直径的弦,(1)中你所添出的条件仍成立的话,EF还是⊙O的切线吗?若是,写出证明过程;若不是,请说明理由并与同学交流.4、如图,△ABC中,O为外心,三条高AD、BE、CF交于点H,直线ED和AB交于点M,FD 和AC交于点N.求证:OB⊥DF .5、如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为()cm ,正六边形的边长为()cm.求这两段铁丝的长。

6、如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需要个五边形.7、如图,是等边三角形.(1)作的外接⊙(用尺规作图,保留作图痕迹,不写作法);(2)若,求⊙的半径.8、图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.9、如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)当∠E=∠F时,则∠AD C=__________°;(2)当∠A=55°,∠E=30°时,求∠F的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.10、如图,是的内接正五边形.求证:.11、如图,正三角形ABC内接于⊙O,若AB=cm,求⊙O的半径.12、如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是弧AB的中点,求EG•ED的值.13、如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.14、一个边长为4的等边三角形ABC的高与⊙O的直径相等,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,(1)求等边三角形的高;(2)求CE的长度;(3)若将等边三角形ABC绕点C顺时针旋转,旋转角为α(0°<α<360°),求α为多少时,等边三角形的边所在的直线与圆相切.15、如图,为等边的外接圆,半径为2,点在劣弧上运动(不与点重合),连接,,.(1)求证:是的平分线;(2)四边形的面积是线段的长的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点分别在线段,上运动(不含端点),经过探究发现,点运动到每一个确定的位置,的周长有最小值,随着点的运动,的值会发生变化,求所有值中的最大值.============参考答案============一、解答题1、( 1 )见解析;( 2 ) 3 .【分析】( 1 )连接OB ,证明四边形是平行四边形,由平行四边形的性质解得,结合切线的性质及等腰三角形的性质,解得,据此解题;( 2 )连接AC ,证明,可得,结合( 1 )中,解得,再结合切线的性质及等腰三角形的性质解得,最后根据全等三角形对应边相等解题即可.【详解】解:( 1 )连接OB ,如图,,四边形是平行四边形,PN 是⊙ O 的切线,;( 2 )连接AC ,如图,PM 、PN 是⊙ O 的切线,四边形是平行四边形,在与中,PM 是⊙ O 的切线,.【点睛】本题考查圆的切线性质、切线长定理、全等三角形的判定与性质、平行四边形的判定与性质、平行线的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.2、( 1 )见解析;( 2 )【解析】【分析】( 1 )连接OC ,先证明∠ CDA =90° ,根据折叠的性质和圆的半径相等证明OC AE ,从而求出∠ ECO =90° ,问题得证;( 2 )连接,过点作于点,证明四边形OCEG 为矩形,求出,,,进而求出,∠ COF =30° ,分别求出矩形OCEG 、△ OGF 、扇形COF 面积,即可求出阴影部分面积.【详解】解:( 1 )如图,连接OC ,∵ ,∴∠ CDA =90° ,∵ 翻折得到,∴∠ EAC =∠ DAC ,∠ E =∠ CDA =90° ,∴∠ EAD =2∠ DAC ,∵ OA = OC ,∴∠ OAC =∠ OCA∴∠ COD =2∠ OAC ,∴∠ COD =∠ EAD ,∴ OC AE ,∴∠ ECO =180°-∠ E =90° ,∴ OC ⊥ EC ,∴ 是的切线;( 2 )如图,连接,过点作于点,∵∠ E =∠ ECO =90° ,∴ 四边形OCEG 为矩形.∵ ,,∴ ,∴ ,∴ ,∵ 于点,OA = OF =2 ,∴ ,∠ FAO =∠ AFO =30° ,∵ OC AE ,∴∠ COF =∠ AFO =30° ,∴ 矩形OCEG 面积为,△ OGF 面积为,扇形COF 面积为∴ 阴影部分面积= 矩形OCEG 面积 -△ OGF 面积 - 扇形COF 面积 = .【点睛】本题为圆的综合题,考查了切线的判定,垂径定理,扇形的面积等知识,综合性较强,熟练掌握相关定理并根据题意添加辅助线是解题的关键.3、(1)ABC 证明:∵AB为⊙O直径, ∴∠ACB=90°.∴∠BAC+∠ABC=90°. 若∠CAE=∠ABC. ∴∠BAC+∠CAE=90°,即∠BAE=90°,OA⊥AE. ∴EF为⊙O的切线.(2)证明:连接AO并延长交⊙O于点D,连接CD, ∴∠ADC=∠ABC.∵AD为⊙O的直径, ∴∠DAC+∠ADC=90°.∵∠CAE=∠ABC=∠ADC, ∴∠DAC+∠CAE=90°. ∴∠DAE=90°,即OA⊥EF,EF为⊙O的切线.4、证明:∵A、C、D、F四点共圆∴∠BDF=∠BAC又∠OBC=(180°-∠BOC)=90°-∠BAC∴OB⊥DF.5、解: 由已知得,正五边形周长为5()cm,正六边形周长为6()cm.因为正五边形和正六边形的周长相等,所以.…………2分整理得, 配方得,解得(舍去).、故正五边形的周长为(cm). ………………6分又因为两段铁丝等长,所以这两段铁丝的总长为420cm.答:这两段铁丝的总长为420cm. …………7分6、 7;7、(1)作图略.作图正确给3分,若没有写出“⊙就是所求作的”扣1分;(2)连结,作于点,则,,, 5分在中,设,则,解得,∴⊙的半径为.6分8、【考点】正多边形和圆;圆锥的计算;作图—复杂作图.【分析】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O 于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【解答】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.9、【考点】圆内接四边形的性质;圆周角定理.【分析】(1)由∠E=∠F,易得∠ADC=∠ABC,又由圆的内接四边形的性质,即可求得答案;(2)由∠A=55°,∠E=30°,首先可求得∠ABC的度数,继而利用圆的内接四边形的性质,求得∠ADC的度数,则可求得答案;(3)由三角形的内角和定理与圆的内接四边形的性质,即可求得180°﹣∠A﹣∠F+180°﹣∠A﹣∠E=180°,继而求得答案.【解答】解:(1)∵∠E=∠F,∠DCE=∠BCF,∠ADC=∠E+∠DCE,∠ABC=∠BCF+∠F,∴∠ADC=∠ABC,∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠ABC=180°,∴∠ADC=90°.故答案为:90°;(2)∵在△ABE中,∠A=55°,∠E=30°,∴∠ABE=180°﹣∠A﹣∠E=95°,∴∠ADF=180°﹣∠ABE=85°,∴在△ADF中,∠F=180°﹣∠ADF﹣∠A=40°;(3)∵∠ADC=180°﹣∠A﹣∠F,∠ABC=180°﹣∠A﹣∠E,∵∠ADC+∠ABC=180°,∴180°﹣∠A﹣∠F+180°﹣∠A﹣∠E=180°,∴2∠A+∠E+∠F=180°,∴∠A==.【点评】此题考查了圆的内接四边形的性质以及圆的内接四边形的性质.注意圆内接四边形的对角互补.10、证明见解析【分析】根据正五边形的性质求出,根据三角形的内角和定理,可得∠CBD的度数,进而可得出∠ABD的度数,然后根据同旁内角互补,两直线平行可证得结论.【详解】证明:∵是正五边形,∴.又∵,∴,∴,∴,∴.【点睛】本题考查的是正多边形和圆,熟知正五边形的性质是解答此题的关键.11、 2cm【解析】利用等边三角形的性质得出点O既是三角形内心也是外心,进而求出∠OBD=30°,BD=CD,再利用锐角函数关系得出BO即可.【详解】过点O作OD⊥BC于点D,连接BO,∵正三角形ABC内接于⊙O,∴点O即是三角形内心也是外心,∴∠OBD=30°,BD=CD=BC=AB=,∴cos30°===,解得:BO=2,即⊙O的半径为2cm.【点睛】考查了正多边形和圆,利用正多边形内外心的特殊关系得出∠OBD=30°,BD=CD是解题关键.12、(1)见解析;(2)∠BDF=110°;(3)18【分析】(1)直接利用圆周角定理得出AD⊥BC,劲儿利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,再求出AE的长,进而得出△AEG∽△DEA,求出答案即可.【详解】解:(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∵∠AOE=90°,且AO=OE=3,∴AE=,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△D EA,∴,即EG•ED==18.【点睛】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识,根据题意得出AE,AB的长是解题关键.13、(1)C (0,3);(2)t的值为4+或4+3;(3)t的值为1或4或5.6.【解析】试题分析:(1)由∠CBO=45°,∠BOC为直角,得到△BOC为等腰直角三角形,又OB=3,利用等腰直角三角形AOB的性质知OC=OB=3,然后由点C在y轴的正半轴可以确定点C的坐标;(2)需要对点P的位置进行分类讨论:①当点P在点B右侧时,如图2所示,由∠BCO=45°,用∠BCO-∠BCP求出∠PCO为30°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;②当点P在点B左侧时,如图3所示,用∠BCO+∠BCP求出∠PCO为60°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;(3)当⊙P与四边形ABCD的边(或边所在的直线)相切时,分三种情况考虑:①当⊙P与BC边相切时,利用切线的性质得到BC垂直于CP,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此时△COP为等腰直角三角形,可得出OP=OC,由OC=3,得到OP=3,用OQ-OP求出P运动的路程,即可得出此时的时间t;②当⊙P与CD相切于点C时,P与O重合,可得出P运动的路程为OQ的长,求出此时的时间t;③当⊙P与AD相切时,利用切线的性质得到∠DAO=90°,得到此时A为切点,由PC=PA,且PA=9-t,PO=t-4,在Rt△OCP中,利用勾股定理列出关于t的方程,求出方程的解得到此时的时间t.综上,得到所有满足题意的时间t的值.试题解析::(1)∵∠BCO=∠CBO=45°,∴OC=OB=3,又∵点C在y轴的正半轴上,∴点C的坐标为(0,3);(2)分两种情况考虑:①当点P在点B右侧时,如图2,若∠BCP=15°,得∠PCO=30°,故PO=CO•tan30°=,此时t=4+;②当点P在点B左侧时,如图3,由∠BCP=15°,得∠PCO=60°,故OP=COt an60°=3,此时,t=4+3,∴t的值为4+或4+3;(3)由题意知,若⊙P与四边形ABCD的边相切时,有以下三种情况:①当⊙P与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP=3,此时t=1;②当⊙P与CD相切于点C时,有PC⊥CD,即点P与点O重合,此时t=4;③当⊙P与AD相切时,由题意,得∠DAO=90°,∴点A为切点,如图4,PC2=PA2=(9-t)2,PO2=(t-4)2,于是(9-t)2=(t-4)2+32,即81-18t+t2=t2-8t+16+9,解得:t=5.6,∴t的值为1或4或5.6.14、(1)2;(2)3;(3)α=60°或120°或180°或300°.【分析】(1)作AM⊥MC于M,在直角三角形ACM中,利用勾股定理即可解题,(2)连接EF,在直角三角形CEF中, 利用勾股定理即可解题,(3)画出图形即可解题.【详解】解:(1)如图,作AM⊥MC于M.∵△ABC是等边三角形,∴∠MAC=∠MAB=30°,∴CM=AC=2,∴AM===2(2)∵CF是⊙O直径,∴CF=CM=2,连接EF,则∠CEF=90°,∵∠ECF=90°﹣∠ACB=30°,∴EF=CF=,∴CE===3.(3)由图象可知,α=60°或120°或180°或300°时,等边三角形的边所在的直线与圆相切.【点睛】本题考查了直线和圆的位置关系,属于简单题,作辅助线和利用勾股定理求边长是解题关键.15、 (1)详见解析;(2)是,;(3)【分析】(1)根据等弧对等角的性质证明即可;(2)延长DA到E,让AE=DB,证明△EAC≌△DBC,即可表示出S的面积;(3)作点D关于直线BC、AC的对称点D1、D2,当D1、M、N、D共线时△DMN取最小值,可得t=D1D2,有对称性推出在等腰△D1CD2中,t=,D与O、C共线时t取最大值即可算出.【详解】(1)∵△ABC为等边三角形,BC=AC,∴,都为圆,∴∠AOC=∠BOC=120°,∴∠ADC=∠BDC=60°,∴DC是∠ADB的角平分线.(2)是.如图,延长DA至点E,使得AE=DB.连接EC,则∠EAC=180°-∠DAC=∠DBC.∵AE=DB,∠EAC=∠DBC,AC=BC,∴△EAC≌△DBC(SAS),∴∠E=∠CDB=∠ADC=60°,故△EDC是等边三角形,∵DC=x,∴根据等边三角形的特殊性可知DC边上的高为∴.(3)依次作点D关于直线BC、AC的对称点D1、D2,根据对称性C△DMN =DM+MN+ND=D1M+MN+ND2.∴D1、M、N、D共线时△DMN取最小值t,此时t=D1D2,由对称有D1C=DC=D2C=x,∠D1CB=∠DCB,∠D2CA=∠DCA,∴∠D1CD2=∠D1CB+∠BCA+∠D2CA=∠DCB+60°+∠DCA=120°.∴∠CD1D2=∠CD2D1=60°,在等腰△D1CD2中,作CH⊥D1D2,则在Rt△D1CH中,根据30°特殊直角三角形的比例可得D1H=,同理D2H=∴t=D1D2=.∴x取最大值时,t取最大值.即D与O、C共线时t取最大值,x=4.所有t值中的最大值为.【点睛】本题考查圆与正多边形的综合以及动点问题,关键在于结合题意作出合理的辅助线转移已知量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形与圆
副标题题号
一二总分
得分
一、选择题(本大题共5小题,共15.0分)
1.有一边长为4的正n 边形,它的一个内角为,则其外接圆的半径为 120∘()
A. B. 4 C. D. 2
4323【答案】B
【解析】解:经过正n 边形的中心O 作边AB 的垂线OC ,
则度,度,
∠B =60∠O =30在直角中,根据三角函数得到.
△OBC OB =4故选B .
根据正n 边形的特点,构造直角三角形,利用三角函数解决.
正多边形的计算一般要经过中心作边的垂线,并连接中心与一个端
点构造直角三角形,把正多边形的计算转化为解直角三角形.
2.如图,的外切正六边形ABCDEF 的边长为2,则图中
⊙O 阴影部分的面积为 ()A.
3−π2B.
3−32πC. 2−π3
D. 3−π3【答案】A
【解析】解:六边形ABCDEF 是正六边形,
∵,
∴∠AOB =60∘是等边三角形,,
∴△OAB OA =OB =AB =2设点G 为AB 与的切点,连接OG ,则,
⊙O OG ⊥AB ,
∴OG =OA ⋅sin 60∘=2×32=3∴S 阴影=S △OAB −S 扇形OMN =12×2×3−60π×(3)2360=3−π2

故选A .
由于六边形ABCDEF 是正六边形,所以,故是等边三角形,
∠AOB =60∘△OAB ,设点G 为AB 与的切点,连接OG ,则,
OA =OB =AB =2⊙O OG ⊥AB ,再根据,进而可得出结论.
OG =OA ⋅sin 60∘S 阴影=S △OAB −S 扇形OMN 本题考查的是正多边形和圆,根据正六边形的性质求出是等边三角形是解答此△OAB 题的关键.
3.如图,是等边三角形ABC 的外接圆,的半径为2,则
⊙O ⊙O 等边的边长为 △ABC ()
A. 1
B.
C.
D. 2323【答案】D
【解析】解:作于D ,连接OB ,如图所示:
OD ⊥BC 则
,BD =CD =12BC 是等边三角形ABC 的外接圆,
∵⊙O ,
∴∠OBD =12∠ABC =30∘,
∴OD =12OB =1,
∴BD =3OD =3,
∴BC =2BD =23即等边的边长为;
△ABC 23故选:D .
作于D ,连接OB ,由垂径定理得出
,由等边三角形的性质和OD ⊥BC BD =CD =12BC 已知条件得出,求出OD ,再由三角函数求出BD ,即可得出
∠OBD =12∠ABC =30∘
BC 的长.本题考查了等边三角形的性质、垂径定理、含角的直角三角形的性质、三角函数;30∘熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.
4.如图,正六边形ABCDEF 内接于,半径为4,则这
⊙O 个正六边形的边心距OM 和的长分别为 BC
⏜()A. 2,π3
B. ,23π
C. ,32π
3
D. ,234π
3
【答案】D
【解析】解:连接OB ,

∵OB =4,∴BM =2,
∴OM =23,BC ⏜=60π×4180=43π故选:D .
正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM ,再利用弧长公式求解即可.
本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.
5.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,
则该三角形的面积是 ()
A. B. C. D. 223223
【答案】A
【解析】解:如图1,

∵OC =2;∴OD =2×sin 30∘=1如图2,

∵OB =2;
∴OE =2×sin 45∘=2如图3,

∵OA =2,
∴OD =2×cos 30∘=3则该三角形的三边分别为:1,,,
23,∵(1)2+(2)2=(3)2该三角形是直角三角形,
∴该三角形的面积是:.
∴12×1×2=22故选:A .
由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,
根据解直角三角形的知识解答是解题的关键.
二、填空题(本大题共1小题,共3.0分)
6.已知一个正六边形的边心距为,则它的半径为______ .
3【答案】2
【解析】解:如图,在中,,,
Rt △AOG OG =3∠AOG =30∘ ;
∴OA =OG ÷cos 30∘=3÷32=2故答案为:2.
设正六边形的中心是O ,一边是AB ,过O 作与G ,在直
OG ⊥AB 角中,根据三角函数即可求得OA .
△OAG 本题主要考查正多边形的计算问题,常用的思路是转化为直角三角形中边和角的计算,属于常规题.。

相关文档
最新文档