2019-2020学年东北三省三校高三第一次模拟考试数学(理)模拟试题有答案
东北三省三校(哈尔滨师大附中、东北师大附中)2020年高三第一次联合模拟考试理科数学试题(含评分细则
2020年高三第一次联合模拟考试理科数学第Ⅰ卷(选择题 共 60 分)、选择题:本题共 12小题,每小题 5 分.在每小题给出的四个选项中,只有一项是符合题 目要求的 .A.( , 1) (3,B.( , 1] [3,D.( , 1] [1,4.大约在 20 世纪 30 年代,世界上许多国家都流传着这样一个题目:任取一个正整数 n ,如果它是偶数,则除以 2;如果它是奇数,则将它乘以 3 加 1,这样反复运算,最后结果必然 是1 ,这个题目在东方称为“角谷猜想” ,世界一流的大数学家都被其卷入其中,用尽了各 种方法,甚至动用了最先进的电子计算机, 验算到对 700 亿以内的自然数上述结论均为正确 的,但却给不出一般性的证明,例如取 n 13,则要想算出结果 1,共需要经过的运算步数 是( )A.9B.10C.11D.125.已知 a ln3,b log 3 e,c log e (注:e 为自然对数的底数),则下列关系正确的是 ( )A.b acB.c b aC.b c aD.a b c6.已知在边长为 3 的等边 ABC 的中,1BD DC ,则 AD AC =( )2A.6B.9C.12D. 61.已知集合 A x 22x,B11 则 C R (A B) ( ) x2.已知复数 za bi(a,b R), z i1 是实数,那么复数 z 的实部与虚部满足的关系式为 A.a B.a b C.a 2b 0 D.a 2b 0 3.已知 是两个不同的平面,直线 m ,下列命题中正确的是( A.若 ,则 m ∥ B.若 ,则 m C.若 m∥,则 ∥D.若 m ,则C.[3, )7.如图,四边形 ABCD 是边长为 2 的正方形, ED 平面 ABCD , FC 平面 ABCD ,y 轴对称,则2nb n 为数阵从左至右的 n 列,从上到下的 n 行共 n 2个数的和,则数列的前 2020 项和为bnED 2FC 2 ,则四面体 A BEF 的体积为( )1 A.32 B. 3C.14 D.38.已知函数 f (x)sin2x 3 cos2x 的图像向右平移 (02)个单位后,其图像关于A.12B.6C.35 D. 122x9.已知椭圆 2a2yb 21(a b 0) 的右焦点为 F(c,0) ,上顶点为A(0,b) ,直线2 ax 上 c存在一点 P 满足 (FP FA) AP 0 ,则椭圆的离心率取值范围为(1A.[12,1) 2 B.[ 22 ,1) 51 C.[ 52 1,1) D.(0, 2 ]10. 已 知 定 义 在 R 上的函 数 f (x) , 满 足 f(1 x) f (1 x) , 当[1, ) 时f(x)1 x 2,xx12f ( 2 ),x[1,3) [3, ),则函数 f(x) 的图像与函数 g(x)ln x,xln(2 x),x 1的图像在区间 [ 5,7] 上所有交点的横坐标之和为(A.5B.6C.7D.911.已知数 a n 列的通项公式为 a n 2n2 ,将这个数列中的项摆放成如图所示的数阵,记第Ⅱ卷(非选择题 共 90 分)4 小题,每小题5 分,共 20 分 .把答案填写在答题纸相应位置上13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增 大.动力蓄电池技术作为新能源汽车的核心技术, 它的 不断成熟也是推动新能源汽车发展的主要动力 .假定现在市售的某款新能源汽车上, 车载动力蓄电池充放电循环次数达到 2000 次 的概率为 85%,充放电循环次数达到 2500 次的概率为 35%.若某用户的自用新能源汽车已经 经过了 2000 次充电,那么他的车能够充电 2500 次的概率为 .14.已知函数 f (x ) e x ae x 在[ 0,1]上不单调,则实数 a 的取值范围为.2*15.数列 a n 满足 a 1 1,a n (2S n 1) 2S n 2(n 2,n N *),则 a n =.16.已知函数 f (x ) (x 2 a )2 3x 2 1 b ,当 时(从①②③④中选出一个作为条件),函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一组即可)一)必考题:共 60 分 .17. (本小题满分 12 分)在 ABC 中,内角 A,B,C 的对边分别为 a,b,c ,已知 2bcosC 2a c (Ⅰ)求 B ;(Ⅱ)若 a 2, D 为AC 的中点,且 BD 3,求 c .18. (本小题满分 12 分)如图,三棱柱 A 1B 1C 1 ABC 中, BB 1 平面 ABC , AB BC , AB 2,BC 1,1011 A.20202019 B.20202020 C.2021 1010 D.202112.已知双曲线2y1 的 左 、 右 焦 点 分 别 为 F 1、F2 , 点3 1 2P 在双曲线上,且 F 1PF 2 120 ,F 1PF 2 的平分线交 x 轴于点 A ,则 PA ( )A. 55B.2 5 5C.3 55D. 5二、填空题:本题共 1①a2⑤ 4 个极小值35② a ③ a 1, 2 b 0 22⑥1 个极小值点⑦6 个零点④ a 1, 9 b4⑧4 个零点三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤2或 b 01 (Ⅱ)F 是线段CC1上一点,且直线AF 与平面ABB1A1所成角的正弦值为3,求二3 面角F BA1 A 的余弦值.19. (本小题满分12 分)为了研究55 岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100 万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,A 症状:入睡困难;B 症状:醒的太早;C 症状:不能深度入睡或做梦,得到的调查数据如下:数据1:出现A症状人数为8.5 万,出现B症状人数为9.3 万,出现C 症状人数为 6.5万,其中含AB症状同时出现 1.8 万人,AC症状同时出现1万人,BC症状同时出现2万人,ABC症状同时出现0.5 万人;数据2:同时有失眠症状和患心脑血管病的人数为5 万人,没有失眠症状且无心脑血管病的人数为73 万人.(Ⅰ)依据上述数据试分析55 岁左右的中国人患有失眠症的比例大约多少?(Ⅱ)根据以上数据完成如下列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在“强关联”?n(ad bc)2参考公式:K2(a b)(c d)(a c)(b d)20. (本小题满分12 分)1 2 2 1已知以动点P为圆心的⊙ P与直线l: x 相切,与定圆⊙ F:(x 1)2 y2相24 外切.(Ⅰ)求动圆圆心P的轨迹方程C ;(Ⅱ)过曲线C上位于x轴两侧的点M、N (MN 不与x轴垂直)分别作直线l 的垂线,垂足记为M 1、N1 ,直线l 交x轴于点A,记AMM 1、AMN、ANN 1的面积分别为S1、S2、S3 ,且S22 4S1S3 ,证明:直线MN过定点.21. (本小题满分12 分)12已知函数f(x) (x 1) ln( x 1)- ax2 x(a R) .2(Ⅰ)设f (x)为函数f(x) 的导函数,求函数f ( x)的单调区间;(Ⅱ)若函数f(x)在(0, )上有最大值,求实数a 的取值范围.二)选考题:共 10 分,请考生在第 22、23 题中任取一题作答 .如果多做,则按所做的第 题计分,作答时用 2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分 10 分.22. [选修 4-4:坐标系与参数方程 ]Ⅰ)求曲线 C 的普通方程及曲线 D 的直角坐标方程;Ⅱ)设 M 、N 分别为曲线 C 和曲线 D 上的动点,求 MN 的最小值 .23. [选修 4-5:不等式选将 ]设函数 f (x ) x 2 x 3(Ⅰ)求不等式 f (x ) 9的解集;(Ⅱ)过关于 x 的不等式 f (x ) 3m 2 有解,求实数 m 的取值范围一模答案、填空题1, n 113. 14. 15. a n2 16. ①⑥、② ,n 22n 1 2n 3⑤、③⑦、④⑧均可三、解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤.17.解析:(Ⅰ)由正弦定理得 2sin BcosC 2sin A sinC ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2⋯分⋯在直角坐标系 xOy 中,参数方程x cos (其中 y sin为参数)的曲线经过伸缩变换2x得到曲线 C ,以原点 O 为极点, yx 轴正半轴为极轴建立极坐标系,曲线 D 的极坐标方程为 sin (3 10 2又由sin A sin(B C) sin BcosC cosB sin C ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4⋯分⋯得2cos B sin C sinC 0 ,因为0 C ,所以sinC0,所以cosB1.因为0 B ,所以2.2B.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6⋯分⋯3uuur uuur uuur(Ⅱ)因为D 为AC 的中点,所以BA BC2BD ,⋯⋯⋯⋯⋯⋯⋯.8⋯分⋯uuu r uuur 2 uuur 2所以BC)2 (2BD)2,即a2 2 c ac12,⋯⋯⋯⋯⋯⋯⋯.1⋯0 ⋯分因为a 2,解方程c22c 8 0,得c 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯2 ⋯分18. 解析:(I )连结AB1交A1B于O,连结EO , OC11Q OA OB, AE EB, OE BB1, OE //BB1, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯分⋯21又DC1BB1,DC1// BB1,2OE/ /DC 1 ,因此,四边形DEOC 1为平行四边形,即ED / /OC1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2⋯分⋯Q OC1 面C1AB, ED 面C1AB, DE // 平面C1BA1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5⋯分⋯z(II )建立空间直角坐标系B xyz ,如图过F 作FH BB1 ,连结AHQ BB1 面ABC,AB 面ABC, AB BB1Q AB BC,BC I BB1, AB 面CBB1C1Q AB 面BAA1 B1 , 面BAA1B1 面CBB1C1,Q FH 面CBB1C1, FH BB1, 面BAA1B1 I 面CBB1C1 BB1, FH 面BAA1B1,即FAH 为直线AF 与平面ABB1 A1 所成角,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7⋯分⋯11记为,sin , AF 3,AF 3在Rt ACF 中,5 AC 2 CF 2 AF 2 CF 2 9, CF 2,uuur uuurF(0,2,1), A1(2,3,0), BF (0,2,1), BA1 (2,3,0),20.解析:ur 设平面 BAC 1的法向量 m (x, y,z ),ur m ur m uuur BF 2y uuur BA 1 2x3y 0 ur ,取 y 2,m ( 3,2, 4) 0 平面 BAA 1 的法向量 n (0,0,1) ,⋯⋯ur r |cos m,n |4 ⋯⋯⋯.1⋯1 ⋯分 29 1因此,二面角 F BA 1 A 的余弦值 429 .⋯29 19. 解析:设 A {出现 A 症状的人} 、 B 示有限集合元素个数) 根据数 .1⋯0 ⋯分.1⋯2分⋯出现 B 症状的人}、 C {出现 C 症状的人}( card 表 1 可 知card AI B 1.8,card AI C 1,card BI C 2,card AI BI C 0.5,所以 card AUBUC card A card B card card AI B card AI C card B I C card=8.5+9.3+6.5 1.8 1 0.5 20 1.3 6.2 0.5 40.51.5失眠人数(万)不失眠人数(万)患病人数(万) 5 7 12 不患病人数(万)15 73 882080100得患病总人数为 20 万人,比例大约为 20%.⋯⋯.4⋯分⋯ ⋯分⋯.9⋯分22100 5 73 15 7k 24.001 3.841.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯1 ⋯分12 88 80 20有 95%的把握说明失眠与中风或心脏病存在 “强关联 ” . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯2 ⋯分Ⅰ)设P x,y ,e P 半径为 R ,则R x 1, PF 21R 1 ,所以点 P 到直线 x2 1的 距离与到 F 1,0 的距离相等,故点 P 的轨迹方程 C 为 y 2 4x . .4⋯分⋯Ⅱ)设 M x 1, y 1 N x 2, y 2 ,则 M 1 2,y 11 N 12,y2 设直线 MN : x ty n t 22 0 代入 y 2 4x 中得 y 2 4ty 4n 0 y 1 y 2 4t, y 1y 2 4n 0. .6⋯分⋯Q S 1 2 x 1y 1 、 S 3 x 2 4S 1S 31 ty 1 n2ty 2n 1 2y 1y 221t y 1y 2 n2t y 1y2n22211 4nt 24t2nn22x12x 1 2 y 1y 24n214n222t 2 n 1 4n2 又 S 2 11 n y 1 y2 1 1 n y122 2 2 22 2 1 1 2 1 S 22 n 16t 2 16n 4 n 24 2 2 2 S 22 4S 1S 3 8nt 2 4 n 1 t 2 2n2y 24y 1y 22t 2 n . ⋯⋯⋯⋯⋯⋯.1⋯0 ⋯分21 1⋯⋯nn⋯⋯⋯⋯⋯⋯⋯⋯.1⋯1 ⋯分22 .⋯⋯.8⋯分⋯直线 MN 恒过 1,0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯2 ⋯分 221.解析: (Ⅰ) f x ln x 1 ax2 x .令 h xln x 1 ax ,1 fxhxa ; .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯分⋯x 11o当 a0时 ,h x 0 ,f 'x在 1, 上 递 增 ,无减 区间hx 0.⋯⋯⋯⋯⋯⋯⋯.3⋯分⋯2o当a0时,令 hx011 x 1,a令 h x0x11a所以, f 'x 在 1,11 上单调递增, 在 11, 上单调递减; .⋯⋯⋯ ⋯⋯⋯.5⋯aa分(Ⅱ)由(Ⅰ)可知,当 a 0 时,f ' x在 0, 上递增, f ' xf ' 0 0在 0,上递增,无最大值, 不合题意;x所以,当x0时,h x 2 x 1 ax 2 x 1 a x 1 x 12ax1.取t4211,则t 1 ,且h t t 1 2 a t 10.a a又因为h11h0 0,所以由零点存在性定理,存在x01 1,t ,使得a ah x00;⋯⋯⋯⋯⋯.1⋯1 ⋯分当x0, x0时,h x0 ,即f x 0;当x x0 ,时,h x0 ,即f x0;所以, f x 在0, x0上单调递增,在x0 ,上单调递减,在0,上有最大值f x0 .综上,0a1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯2 ⋯分在第22、23 题中任选一题做答,如果多做,则按所做的第一题记分,做答时用2.B.铅.笔.在答题卡上把所选题目对应的题号涂黑。
2020年东北三省三校高三第一次模拟考理科数学试卷含解析
D.VS
第 H 卷(非选择题 共90分)
二、填空题:本题共4小题,每小题5分 ,共20分.把答案填写在答题纸相应位置上. 13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力
蓄电池技术作为新能源、汽车的核心技术,它的不断成熟也是推动新能源、汽车发展的主要动力. 假定现在市售的某款新能源汽车上,车载动力蓄电池 充放电循环次数达到2000次的概率为 85字号,充放电循环次数达到2500次的概率为 35%.若某用户的自用新能源汽车已经经过了 2000次充电,那么他的车能够充电 2500次的概率为
f(x
)=
I ri
斗
一 lx-21,xξ[1,3)
/工 ← 1\
\2f(丁),巾,+∞)
’ 则函数
f(x )的图象与函数
rlnx,x二三1 g(x)=j\ln(2,--x)以1的图象
在区间[-5,7]上所有交点的横坐标之和为
A. 5
B. 6
C. 7
11.己知数列{a"}的通项公式为ι = 2η十2,将这个数列中的项摆
AB_lBC,AB = 2,BC二 l,BB I 二3,D是CC1 的中点,
E是AB 的中点.
C I )证明:DE//平面C1 BA1 ;
t C II) F是线段CC1 上一 点,且直线 AF与平面ABB1 A1 所成角的正弦值为 ,求二面角F BAi A的余 A
弦值.
D
C1
19.(本小题满分12分) 为了研究 55 岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽 取了100万个样本,调查 了他们每周是否至少三个晚上出现了三种失眠症状, A 症状:人睡困 难;B症状:醒得太早;C症状:不能深度入睡或做梦,得到的调查数据如下: 数据l:出现A 症状人数为8.5万,出现B 症状人数为9.3万,出现C症状人数为6. 5万,其中 含 AB 症状同时出现1.8万人,AC症状同时出现1 万人,BC症状同时出现2万人,ABC症状 同时出现0.5万人; 数据2:同时有失眠症状和忠心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人 数为73万人.
【精品】2019年东北三省三校(辽宁省实验中学)高考数学一模试卷(理科)【解析版】
省实验中学)高考数学一模试卷(理科)
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只
有一项是符合题目要求的)
1.(5 分)复数(1﹣i)(3+i)的虚部是( )
A.4
B.﹣4
C.2
D.﹣2
2.(5 分)若集合 A={x|﹣1≤x≤2},B={x|log3x≤1},则 A∩B=( )
第 1 页(共 24 页)
A.0
B.﹣1
C.1
D.2
8.(5 分)如图在直角坐标系 xOy 中,过坐标原点 O 作曲线 y=ex 的切线,切点为 P,过点
P 分别作 x,y 轴的垂线垂足分别为 A,B,向矩形 OAPB 中随机撒一粒黄豆,则它落到
阴影部分的概率为( )
A.
B.
C.
D.
第 2 页(共 24 页)
)| = ,
设“向矩形 OAPB 中随机撒一粒黄豆,则它落到阴影部分”为事件 A, 由几何概型的面积型可得:
P(A)= 故选:A.
= =,
第 9 页(共 24 页)
9.(5 分)已知 α,β 是不重合的平面,m,n 是不重合的直线,则 m⊥α 的一个充分条件是
()
A.m⊥n,n⊂α
B.m∥β,α⊥β
0.01 的前提下认为不足够的户外暴露时间与近视有关系?
近视
不近视
足够的户外暴露时间
不足够的户外暴露时间
附:K2=
P(K2≥k0)
0.050
0.010
0.001
k0
3.841
6.635
10.828
2019-2020年高三第一次模拟考试数学(理)试题 含答案(III)
2019-2020年高三第一次模拟考试数学(理)试题 含答案(III)2016.03注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一. 选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}{}=20,A x x B x x a -<=<,若AB A =,则实数a 的取值范围是(A )(,2]-∞- (B )[2,)-+∞ (C )(,2]-∞ (D )[2,)+∞ (2)若复数z 满足iii z -=+2,则复数z 的模为 (A )10 (B )10 (C )4 (D )3 (3)下列函数中,在(0,)+∞上单调递减,并且是偶函数的是(A )2y x = (B )3y x =- (C )ln y x =- (D )2x y =(4)双曲线的一个顶点为(2,0),一条渐近线方程为y =,则该双曲线的方程是(A )22148x y -= (B ) 22184y x -= (C )22124x y -= (D )22142x y -= (5)给出下列说法:①命题“32,10x R x x ∀∈-+≤”的否定是“0,x R ∃∈320010x x -+>”; ②若“p q ∧”为假命题,则,p q 均为假命题;③“三个数,,a b c 成等比数列”是“b = 其中不正确的个数为(A )0 (B )1 (C )2 (D )3(6)已知直线l ⊥平面α, 直线m ⊂平面β,给出下列命题:①α∥βl m ⇒⊥;②αβ⊥⇒l ∥m ;③l ∥m ⇒αβ⊥;④l m αβ⊥⇒⊥,其中正确的是(A )①②③ (B )②③④ (C )②④ (D )①③(7)记定义在区间[,]a b 上的连续函数()y f x =,如果存在0[,]x a b ∈,使得()()baf x dx f x b a=-⎰ 成立,则称0x 为函数()f x 在[,]a b 上的“平均值点”.那么函数3()2f x x x =+在[1,1]-上“平均值点”的个数为(A )1 (B )2 (C )3 (D )4(8)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形.若该几何体的体积为V ,并且可以用n 个这样的几何体拼成一个棱长为4的正方体,则,V n 的值是 (A )32,2V n ==(B )64,33V n == (C )32,63V n ==(D )16,4V n == (9)已知曲线()sin (0)f x x x ωωω=>的两条相邻的对称轴之间的距离为2π,且曲线关于点0(,0)x 成中心对称,若0[0,]2x π∈,则0x =(A )12π (B )6π (C )3π (D )512π (10)已知在三棱锥P ABC -中,1PA PB BC ===,AB =,AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为 (A(B )3π (C)3(D )2π (11)在平面直角坐标系xOy 中,已知⊙C :22(1)5x y +-=,点A 为⊙C 与x 轴负半轴的交点,过A 作⊙C 的弦AB ,记线段AB 的中点为M ,若O A O M =,则直线AB的斜率为(A )2- (B )12(C )2 (D )4 (12)已知函数32()f x x x x a =--+的图象与x 轴只有一个交点,则实数a 的取值范围是(A )1(,1)(,)9-∞--+∞ (B )5(,1)27- (C )(,1)-∞(D )5(,)(1,)27-∞-+∞第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第(13)题~(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答. 二.填空题:本大题共4小题;每小题5分,共20分. (13)若1,2,a b c a b ===+,且c a ⊥,则向量a 与b 的夹角为_________.(14)已知在等差数列{}n a 中,12017,a a 为方程210160x x -+=的两根,则210092016a a a ++=_______________.(15)设变量,x y 满足约束条件220,420,0,0,x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩目标函数(,z abx y a b =+均大于0)的最大值为8,则a b +的最小值为_____________.(16)已知12,F F 是椭圆2214x y +=的两个焦点,,A B 分别是该椭圆的左顶点和上顶点,点P 在线段AB 上,则12PF PF ⋅的最小值为________________. 三. 解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且21232621,4a a a a a +==.(I )求数列{}n a 的通项公式;(II )设21222log log log n n b a a a =++⋅⋅⋅+,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S . (18)(本小题满分12分)已知A B C ∆的内角C B A ,,的对边分别为c b a ,,,(,2)sin()am c b A B =-+,(sin 2,1)n C =,且满足0m n ⋅=.(I )求A ∠的大小;(II )若1a =,求ABC ∆周长的取值范围. (19)(本小题满分12分)如图,四棱锥P ABCD -的底面是菱形,PA ⊥平面ABCD ,AC BC =,,E F 分别是,BC PC 的中点.(I )证明:平面AEF ⊥平面PAD ;(II )若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为2,求二面角F AE B --的余弦值.(20)(本小题满分12分)已知函数2()ln()f x x a x x =+--在0x =处取得极值. (I )求函数()f x 的单调区间; (II )若关于x 的方程5()2f x x b =-+在区间(0,2)有两个不等实根,求实数b 的取值范围;(III )对于n N +∈,证明:22222341ln(1)123n n n ++++⋅⋅⋅+>+.(21)(本小题满分12分)从抛物线22x py Γ=:(p 为常数且0p >)外一点P 引抛物线Γ的两条切线PA 和PB (切点为A 、B ),分别与x 轴相交于点C 、D ,若AB 与y 轴相交于点Q .(I )求证:四边形PCQD 是平行四边形;(II )四边形PCQD 能否为矩形?若能,求出点Q 的坐标;若不能,请说明理由. 请考生在第(22)~(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,OC 交⊙O 于点E ,AE 的延长线交BC 于点D .(I )求证:2CE CD CB =⋅;(II )若2AB BC ==,求CE 和CD 的长.(23)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 232,21(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρθ=.(I )求出直线l 的普通方程与曲线C 的直角坐标方程; (II )设直线l 与曲线C 的交点为,A B ,求AB 的值. (24)(本小题满分10分)选修4-5:不等式选讲设函数()212f x x x =--+. (I )解不等式:()0f x >;(II )若()321f x x a ++≥-对一切实数x 均成立,求a 的取值范围.大庆市高三年级第一次教学质量检测数学试题参考答案及评分标准(理科)2016.03说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数.一.选择题二.填空题(13)34π; (14)15; (15)2; (16)115-. 三. 解答题(17)(本小题满分12分)解: (I )设数列{}n a 的公比为q ,由23264a a a =得225111()4a q a q a q =⋅,∴214q =. ……………………………….2分 由已知0q >,∴12q =,由1221a a +=得112a =. …………………………….4分故数列{}n a 的通项公式为12n n a =. ……………………………………….6分(II )21222log log log n n b a a a =++⋅⋅⋅+(1)(12)2n n n +=-++⋅⋅⋅+=-,……..9分∴12112()(1)1n b n n n n =-=--++, ∴121111111122[(1)()()]22311n n nS b b b n n n =++⋅⋅⋅+=--+-+⋅⋅⋅+-=-++. ……12分(18)(本小题满分12分)解:(I )∵0m n ⋅=,∴sin 220sin()aC c b A B ⋅+-=+, …………………2分∴2sin cos 20sin aC C c b C⋅+-=,即2cos 20a C c b +-=,…………………3分 由余弦定理得:2222202a b c a c b ab+-⋅+-=, …………………………………4分 整理得222+b c a bc -=,∴1cos 2A =,∵0A π<<,∴=3A π. ……………6分 (II )∵1cos 2A =,∴sin A =, …………………………………7分由正弦定理得:sin sin sin b c a B C A ====, …………………………8分 ABC ∆的周长1sin )1sin()]3332sin()16l a b c B C B B B ππ=++=++=+++=++…………………………………10分 ∵203B π<<,∴5666B πππ<+<,∴1sin()126B π<+≤, …………………11分 因此23l <≤,故ABC ∆周长的取值范围为(2,3]. …………………12分 (19)(本小题满分12分)解:(I )由四边形ABCD 是菱形,AC BC =,可得ABC ∆为正三角形.,∴AE B C ⊥. 又∵BC ∥AD ,∴AE AD ⊥ ……………………………………1分 ∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA ⊥AE , ∵PA ⊂平面PAD ,AD ⊂平面PAD ,且PA AD A =,∴AE ⊥平面PAD ,而AE ⊂平面AEF ,∴平面AEF ⊥平面PAD . …………………4分 (II )设2AB =,H 为PD 上任意一点,连接,AH EH , 由(I )知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角. …………5分在Rt EHA ∆中,AE =∴当AH 最短时,EHA ∠最大,即当AH PD ⊥时,EHA ∠最大,此时tan 2EHA ∠=. …………………6分∴AH 2AD =,∴45ADH ο∠=,∴2PA =. ………………8分 由(I )知,,AE AD AP 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系. 又,E F 分别是,BC PC 的中点,∴(0,0,0)A,1,0)B -,,0)C ,(0,2,0)D ,(0,0,2)P,E,1,1)2F . ………………9分 ∴(3,0,0)AE =,31(,1)2AF =. 设平面AEF 的法向量为111(,,)m x y z =,则0,0,m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩∴11110,10,2x y z =++= ………10分取11z =-,则(0,2,1)m =-为平面AEF 的一个法向量. 又PA ⊥平面ABC ,∴(0,0,1)n =为平面ABE 的一个法向量.∴cos ,5mn m n m n⋅===⨯, 故所求二面角的余弦值为………………………12分 (20)(本小题满分12分)解:(I )由已知得112()()()21x x a x a f x x x a x a-+-+'=--=++, ……………1分 ∵(0)0f '=,∴10aa-=,∴1a =. 因此2()ln(1)(1)f x x x x x =+-->-, ………………………2分于是32()12(1)(1)2()(1)11x x x x x f x x x x -+-+-+'==>-++, 由()0f x '>得10x -<<;由()0f x '<,得0x >,∴()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞. …………………4分 (II )令253()()()ln(1),(0,2)22g x f x x b x x x b x =--+=+-+-∈, 则21345()2122(1)x x g x x x x +-'=-+=-++,令()0g x '=,得1x =或54x =-(舍), 当01x <<时,()0g x '>;当12x <<时()0g x '<,即()g x 在(0,1)上单调递增,在(1,2)上单调递减. ………………………7分方程5()2f x x b =-+在区间(0,2)有两个不等实根等价于函数()g x 在(0,2)上有两个不同的零点.∴(0)0,(1)0,(2)0g g g <⎧⎪>⎨⎪<⎩即0,1ln 20,2ln 310b b b -<⎧⎪⎪+->⎨⎪--<⎪⎩亦即0,1ln 2,2ln 3 1.b b b >⎧⎪⎪<+⎨⎪>-⎪⎩∴1ln 31ln 22b -<<+,故所求实数b 的取值范围为1ln 31ln 22b b ⎧⎫-<<+⎨⎬⎩⎭. (9)分(III )由(I )可得,当0x ≥时2ln(1)x x x +≤+(当且仅当0x =时等号成立),设1x n =,则2111l n (1)n n n +<+,即211ln n n n n ++< ① ………………………10分 ∴222222334411ln ,ln ,ln ,,ln 112233n n n n++>>>⋅⋅⋅>, 将上面n 个式子相加得:222223412341ln ln ln ln ln(1)123123n n n n n +++++⋅⋅⋅+>+++⋅⋅⋅+=+, 故22222341ln(1)123n n n++++⋅⋅⋅+>+. ………………………12分 (21)(本小题满分12分)解:(I )由2:2G x py =得22x y p=,∴x y p '=. ………………………1分设221212(,),(,)22x x A x B x p p ,则直线PA 的方程为2111()2x x y x x p p-=-,①直线PB 的方程为2222()2x x y x x p p-=- ②, ………………………3分由①、②解得1212,22x x x x x y p +==,∴P 点坐标为1212(,)22x x x xp+. ……………………4分 设点(0,)Q t ,则直线AB 的方程为y kx t =+. ………………………5分由22,x py y kx t⎧=⎨=+⎩得2220x pkx pt --=,则12122,2x x pk x x pt +==-, ∴(,)P pk t -,∴线段PQ 被x 轴平分,即被线段CD 平分. ………………………7分在①中,令0y =,解得12x x =,∴1(,0)2x C ;同理得2(,0)2xD ,∴线段CD 的中点坐标为12(,0)4x x +,即(,0)2pk. ………………………8分又∵直线PQ 的方程为2ty x t pk=-+,∴线段CD 的中点(,0)2pk 在直线PQ 上,即线段CD 被线段PQ 平分,因此四边形PCQD 是平行四边形. ………………………9分(II )由(I )得四边形PCQD 是平行四边形,要使四边形PCQD 是矩形,必须使得PQ CD ===2p t =.∴当点Q 为(0,)2p(即抛物线G 的焦点)时,四边形PCQD 为矩形. ……………………12分 (22)(本小题满分10分)选修4-1:几何证明选讲证明:(I )连接BE ,∵BC 为⊙O 的切线,∴∠90ABC O=,CBE A AEO CED ∠=∠=∠=∠. (3)分在CDE ∆和CEB ∆中,,CBE CED C C ∠=∠∠=∠,∴CDE ∆∽CEB ∆, ∴CE CD CB CE=,∴2CE CD CB =⋅. ……………………6分 (II)依题意OC =1CE OC OE =-,…8分 由(I )得2CE CD CB =⋅,∴21)2CD =,∴3CD = ……………………10分 (23)(本小题满分10分)选修4-4:坐标系与参数方程解:(I )由直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 232,21消去参数t 得普通方程为0323=-+-y x . (3)分由ρθ=,得2sin ρθ=,从而有22x y +=,所以曲线C的直角坐标方程为22(3x y +=. …………………………6分 (II )曲线C是圆心为,半径r =.圆心到直线l的距离1d ==, …………………8分所以AB==…………………………10分(24)(本小题满分10分)选修4-5:不等式选讲解:(I)3,2,1()31,2,213,.2x xf x x xx x⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩……………………………3分当2x≤-时,由()0f x>得30x-+>,解得2x≤-,…………………………4分当122x-<<时,由()0f x>得310x-->,解得123x-<<-,………………5分当12x≥时,由()0f x>得30x->,解得3x>,…………………………6分综上,得()0f x>的解集为1,33x x x⎧⎫<->⎨⎬⎩⎭或. ……………………………7分(II)∵()3221221224f x x x x x x++=-++=-++()12(24)5x x≥-++=. …………………………8分∴由题意可知15a-≤,解得46a-≤≤,……………………………9分故所求a的取值范围是{}46a a-≤≤. …………………………10分。
最新2019年东北三省三校第一次联合考试理科数学试题---含答案
12345 2019年三省三校高三第一次联合模拟考试6 理科数学答案7 一.选择题8 1-6 DBCABB 7-12 DACDCC9 二.填空题1013. 3 14. 乙 15. 78- 16. 4π11三.解答题1217. 解:(Ⅰ)1()2cos 21sin(2)1226f x x x x =++=++π2分13 ∵[0,]2x π∈,∴72666πππ≤+≤x4分14∴1sin(2)1226π≤++≤x 15 ∴函数()f x 的值域为1,22⎡⎤⎢⎥⎣⎦.6分16(Ⅱ)∵3()sin(2)162π=++=f A A ∴1sin(2)62π+=A17 ∵0π<<A ,∴132666πππ<+<A ,∴5266ππ+=A ,即3π=A8分18由正弦定理,2a A B ==,∴sin 2B =19 2034B B ππ<<∴=9分20∴sin sin()C A B =+=sin sin c bC B==,∴2=b 11分 21∴133sin 2∆+==ABC S bc A12分2218. 解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件A ,则1131241()2C C P A C ==23 故随机抽取2名,其中恰有一名学生不近视的概率为12.4分24 (Ⅱ)根据以上数据得到列联表:25近视 不近视 足够的户外暴露时间 40 60 不足够的户外暴露时间60408分26 所以2K 的观测值2200(40406060)8.000 6.635(4060)(6040)(4060)(6040)k ⨯⨯-⨯==>++++, 27 故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系. 12分28 19.解:(Ⅰ)在BDC ∆中,延长BF 交CD 于点M ,29 13OF OD =,BDC ∆是等边三角形30 F ∴为BDC ∆的重心31 13MF BM ∴=2分32 //EF 平面ACD , EF ⊂平面ABM ABM ACD AM =,且面面,33 //EF AM ∴34 13AE AB ∴=,即点E 为线段AB 上靠近点A 的三等分点. 4分35 (Ⅱ)等边BCD ∆中,OD BC ⊥,OD BCD ⊂平面,ABC BCD ⊥面面,交线为BC ,36 OD ABC ∴⊥平面6分37 如图以O 为原点建立空间直角坐标系O xyz - 38 点A 在平面BEF 上,所以二面角D FB E --与二面角D FB A --为相同二面角. 39 设2AB =,则3OD OA ==3(3,0,0),(0,1,0)F A B 40zyxAFOEDMCB3(0,1,),(3,1,0)BF BA∴=-=-41设平面AFB的法向量u(,,)x y z=,则⎧⎨⎩uu⋅=⋅=BFBA42即y zy⎧-+=⎪⎨-=,取1x=,则u=9分4344又OA⊥平面OBD,(3,0,0)OA =, 10分4546则cos<u,OA>=uu13==47又二面角D FB E--为钝二面角,所以余弦值为.12分4820.解:(Ⅰ)设),(yxP(2)x≠±,则2214xy+=,49因为)0,2(),0,2(BA-,则5041441422222221-=--=-=-⋅+=xxxyxyxykk2分51(,)Q x y设(2)x≠±52所以4422212243λλ-==-=-⋅+=kkxyxyxykk,53整理得1422=+λyx)2(±≠x.54所以,当4=λ时,曲线2C的方程为)2(422±≠=+xyx. . 4分55(Ⅱ)设),(),,(2211yxFyxE. 由题意知,56直线AM的方程为:26-=yx,直线BM的方程为:22+-=yx.57由(Ⅰ)知,曲线2C的方程为1422=+λyx)2(±≠x,.7分58联立)2(442622±≠⎩⎨⎧=+-=xyxyxλλ,消去x,得2(91)60y yλ+-λ=,得1961+=λλy59OA⋅OA联立)2(442222±≠⎩⎨⎧=++-=x y x y x λλ,消去x ,得2(1)20λ+-λ=y y ,得 122+=λλy 9分602212111111sin 91222211111sin 2222MA MF AMF y y MA MF S S MB ME MB ME BME y y ∠--+=====+∠--λλ 10分 61 设918()911g λ+λ==-λ+λ+,则()g λ在[1,3]上递增 62 又(1)5,(3)7g g ==,63 12S S ∴的取值范围为[]5,7 12分64 21.解:(Ⅰ)当1a =时,()()()x h x f x g x e x -=+=+,()1,x h x e -'=-+令()0,h x '=解得0x =6566 ()=(0)1h x h ∴=极小值4分67 (Ⅱ)设1()(1)ln(1)e ()e ln(1)e t t f t t g t at t ϕ+=--++--=-++-, 68 令1(1)t x x +=≥,()e ln e ,1x F x ax x a x =-+-+≥,69 1'()e x F x a x =-+,设1()()e x t x F x a x '==-+,21()e x t x x'=-,70 由1x ≥得,2211,01x x e e x≥∴<≤≥71 21'()e 0x t x x=->,()t x 在(1,)+∞单调递增, 72 即()F x '在(1,)+∞单调递增,(1)1F e a '=+-,73 ① 当e 10a +-≥,即e 1a ≤+时,(1,)x ∈+∞时,()(1)0F x F ''>≥,()F x 在(1,)+∞单调递增, 74 又(1)0F =,故当1x ≥时,关于x 的方程e ln e 0x ax x a -+-+=有且只有一个实数解.8分75②当10e a +-<,即1a e >+时,76 1(1)0,'(ln )0ln F F a a a a a a'<=-+>-=,又ln ln(1)1a e >+> 77 故00(1,ln ),()0x a F x '∃∈=,当0(1,)x x ∈时,()0F x '<,()F x 单调递减,又(1)0F =, 78 故当(]01,x x ∈时,()0F x <,79 在[)01,x 内,关于x 的方程e ln e 0x ax x a -+-+=有一个实数解1x =. 10分 80 又0(,)x x ∈+∞时,()0F x '>,()F x 单调递增,81 且22()ln 1a a F a e a a a e e a =+-+->-+,令2()1(1)x k x e x x =-+≥,82 ()()2x s x k x e x '==-,()e 2e 20x s x '=->->,故()k x '在()1,+∞单调递增,又(1)0k '>83 故()k x 在()1,+∞单调递增,故()(1)0k a k >>,故()0F a >,又0eaa x >>,由零点存在定理可知,84 101(,),()0x x a F x ∃∈=,85 故在()0,x a 内,关于x 的方程e ln e 0x ax x a -+-+=有一个实数解1x .此时方程有两个解. 86 综上,e 1a ≤+. 12分8722.解:(Ⅰ)22324103x x x y y αα⎧=+⎪∴-++=⎨=⎪⎩ 2分88 所以曲线C 的极坐标方程为24cos 10ρρθ-+=.4分89 (Ⅱ)设直线l 的极坐标方程为[)11(,0,)R θθρθπ=∈∈,其中1θ为直线l 的倾斜角, 90 代入曲线C 得214cos 10,ρρθ-+=设,A B 所对应的极径分别为12,ρρ.91 21211214cos ,10,16cos 40∴+==>∆=->ρρθρρθ7分 92 1212OA OB +=+=+=ρρρρ8分93 1cos θ∴= 满足0∆>16πθ∴=或56π, l 的倾斜角为6π或56π, 94则1tan k θ==-10分95 23.解:(Ⅰ)因为a x a x x a x x f 444)(=--≥+-=,所以 a a 42≤,解得 44≤≤-a . 96 故实数a 的取值范围为]4,4[-. 4分97 (Ⅱ)由(1)知,4=m ,即424x y z ++=. 根据柯西不等式98222)(z y y x +++[][]2222221)2(4)(211+-+⋅+++=z y y x 99 []21162)(42112=+-+≥z y y x 8分100 等号在z y y x =-=+24即884,,72121x y z ==-=时取得. 101 所以222)(z y y x +++的最小值为2116. 10分 102 103104。
2019年东北三省三校第一次联合考试理科数学试题---含答案
2019年三省三校高三第一次联合模拟考试理科数学答案一.选择题1-6 DBCABB 7-12 DACDCC二.填空题13. 3 14. 乙 15. 78-16. 4π 三.解答题17. 解:(Ⅰ)1()2cos 21sin(2)1226f x x x x =++=++π 2分 ∵[0,]2x π∈,∴72666πππ≤+≤x 4分∴1sin(2)1226π≤++≤x ∴函数()f x 的值域为1,22⎡⎤⎢⎥⎣⎦. 6分 (Ⅱ)∵3()sin(2)162π=++=f A A ∴1sin(2)62π+=A ∵0π<<A ,∴132666πππ<+<A ,∴5266ππ+=A ,即3π=A8分由正弦定理,2a AB ==,∴sin B = 2034B B ππ<<∴=9分∴sin sin()C AB =+=sin sin c bC B ==,∴2=b11分∴1sin 2∆==ABC S bc A 12分 18. 解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件A ,则1131241()2C C P A C == 故随机抽取2名,其中恰有一名学生不近视的概率为12. 4分(Ⅱ)根据以上数据得到列联表: 近视 8分所以2K 的观测值2200(40406060)8.000 6.635(4060)(6040)(4060)(6040)k ⨯⨯-⨯==>++++, 故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.12分 19.解:(Ⅰ)在BDC ∆中,延长BF 交CD 于点M , 13OF OD =,BDC ∆是等边三角形 F ∴为BDC ∆的重心13MF BM ∴= 2分//EF 平面ACD , EF ⊂平面ABM ABMACD AM =,且面面, //EF AM ∴13AE AB ∴=,即点E 为线段AB 上靠近点A 的三等分点. 4分(Ⅱ)等边BCD ∆中,O D B C ⊥,OD BCD ⊂平面,ABC BCD ⊥面面,交线为BC ,OD ABC ∴⊥平面 6分如图以O 为原点建立空间直角坐标系O xyz -点A 在平面BEF 上,所以二面角D FB E --与二面角D FB A --为相同二面角.设2AB =,则OD OA =,(0,0,(0,1,0)3F A B3(0,1,),(3,1,0)3BF BA ∴=-=- 设平面AFB 的法向量u (,,)x y z =,则⎧⎨⎩u u 00⋅=⋅=BF BA 即030y z y ⎧-+=⎪⎨-=,取1x =,则u (1,)= 9分又OA ⊥平面OBD ,(3,0,0)OA =,10分则cos <u ,OA >=u u 13== 又二面角D FB E --为钝二面角,所以余弦值为 . 12分 20.解:(Ⅰ)设),(00y x P 0(2)x ≠±,则220014x y +=, 因为)0,2(),0,2(B A -,则4144142220202020000021-=--=-=-⋅+=x x x y x y x y k k 2分(,)Q x y 设(2)x ≠±所以4422212243λλ-==-=-⋅+=k k x y x y x y k k , 整理得 1422=+λy x )2(±≠x . 所以,当4=λ时,曲线2C 的方程为 )2(422±≠=+x y x . .4分(Ⅱ)设),(),,(2211y x F y x E . 由题意知,直线AM 的方程为:26-=y x ,直线BM 的方程为:22+-=y x . 由(Ⅰ)知,曲线2C 的方程为1422=+λy x )2(±≠x , .7分 联立 )2(442622±≠⎩⎨⎧=+-=x y x y x λλ,消去x ,得2(91)60y y λ+-λ=,得 1961+=λλy 联立)2(442222±≠⎩⎨⎧=++-=x y x y x λλ,消去x ,得2(1)20λ+-λ=y y ,得 122+=λλy 9分 2212111111sin 91222211sin 2222MA MF AMF y y MA MF S S MB ME MB ME BME y y ∠--+=====+∠--λλ 10分 设918()911g λ+λ==-λ+λ+,则()g λ在[1,3]上递增 又(1)5,(3)7g g ==,OA ⋅OA12S S ∴ 的取值范围为[]5,7 12分21.解:(Ⅰ)当1a =时,()()()x h x f x g x e x -=+=+,()1,x h x e -'=-+令()0,h x '=解得0x =()=(0)1h x h ∴=极小值 4分 (Ⅱ)设1()(1)ln(1)e ()e ln(1)e t t f t t g t at t ϕ+=--++--=-++-,令1(1)t x x +=≥,()e ln e ,1x F x ax x a x =-+-+≥,1'()e x F x a x =-+,设1()()e x t x F x a x '==-+,21()e x t x x'=-, 由1x ≥得,2211,01x x e e x≥∴<≤≥Q 21'()e 0x t x x =->,()t x 在(1,)+∞单调递增, 即()F x '在(1,)+∞单调递增,(1)1F e a '=+-,① 当e 10a +-≥,即e 1a ≤+时,(1,)x ∈+∞时,()(1)0F x F ''>≥,()F x 在(1,)+∞单调递增,又(1)0F =,故当1x ≥时,关于x 的方程e ln e 0x ax x a -+-+=有且只有一个实数解. 8分②当10e a +-<,即1a e >+时,1(1)0,'(ln )0ln F F a a a a a a'<=-+>-=,又ln ln(1)1a e >+> 故00(1,ln ),()0x a F x '∃∈=,当0(1,)x x ∈时,()0F x '<,()F x 单调递减,又(1)0F =, 故当(]01,x x ∈时,()0F x <,在[)01,x 内,关于x 的方程e ln e 0x ax x a -+-+=有一个实数解1x =. 10分又0(,)x x ∈+∞时,()0F x '>,()F x 单调递增,且22()ln 1a a F a e a a a e e a =+-+->-+,令2()1(1)x k x e x x =-+≥, ()()2x s x k x e x '==-,()e 2e 20x s x '=->->,故()k x '在()1,+∞单调递增,又(1)0k '>故()k x 在()1,+∞单调递增,故()(1)0k a k >>,故()0F a >,又0ea a x >>,由零点存在定理可知,101(,),()0x x a F x ∃∈=,故在()0,x a 内,关于x 的方程e ln e 0x ax x a -+-+=有一个实数解1x .此时方程有两个解. 综上,e 1a ≤+. 12分22.解:(Ⅰ)22324103x x x y y αα⎧=+⎪∴-++=⎨=⎪⎩2分 所以曲线C 的极坐标方程为24cos 10ρρθ-+=.4分(Ⅱ)设直线l 的极坐标方程为[)11(,0,)R θθρθπ=∈∈,其中1θ为直线l 的倾斜角, 代入曲线C 得214cos 10,ρρθ-+=设,A B 所对应的极径分别为12,ρρ. 21211214cos ,10,16cos 40∴+==>∆=->ρρθρρθ7分 1212OA OB +=+=+=ρρρρ8分 1cos θ∴= 满足0∆>16πθ∴=或56π, l 的倾斜角为6π或56π, 则1tan k θ==10分 23.解:(Ⅰ)因为a x a x x a x x f 444)(=--≥+-=,所以 a a 42≤,解得 44≤≤-a .故实数a 的取值范围为]4,4[-.4分(Ⅱ)由(1)知,4=m ,即424x y z ++=. 根据柯西不等式 222)(z y y x +++[][]2222221)2(4)(211+-+⋅+++=z y y x []21162)(42112=+-+≥z y y x 8分 等号在z y y x =-=+24即884,,72121x y z ==-=时取得. 所以222)(z y y x +++的最小值为2116. 10分。
2019届东北三省三校高三第一次联合模拟考试理科数学试题及答案
东北三省三校高三第一次联合模拟考试理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}21x x A =-<<,{}220x x x B =-≤,则AB =( )A .{}01x x <<B .{}01x x ≤<C .{}11x x -<≤D .{}21x x -<≤ 2、复数212ii+=-( ) A .()22i+ B .1i + C .iD .i -3、点()1,1M 到抛物线2y ax =准线的距离为2,则a 的值为( ) A .14 B .112-C .14或112-D .14-或1124、设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n =( )A .6B .7C .10D .95、执行如图所示的程序框图,要使输出的S 值小于1,则输入的t 值不能是下面的( )A .2012B .2013C .2014D .2015 6、下列命题中正确命题的个数是( ) ①对于命题:p R x ∃∈,使得210x x +-<,则:p ⌝R x ∀∈,均有210x x +->②p 是q 的必要不充分条件,则p ⌝是q ⌝的充分不必要条件 ③命题“若x y =,则sin sin x y =”的逆否命题为真命题④“1m =-”是“直线1:l ()2110mx m y +-+=与直线2:l 330x my ++=垂直”的充要条件A .1个B .2个C .3个D .4个7、如图,网格纸上小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .8C .10D .128、设双曲线的一个焦点为F ,虚轴的一个端点为B ,焦点F 到一条渐近线的距离为d ,若F 3dB ≥,则双曲线离心率的取值范围是( ) A .(1,2⎤⎦B .)2,⎡+∞⎣C .(]1,3D .)3,⎡+∞⎣9、不等式组2204x y -≤≤⎧⎨≤≤⎩表示的点集记为A ,不等式组220x y y x-+≥⎧⎨≥⎩表示的点集记为B ,在A 中任取一点P ,则P∈B 的概率为( )A .932 B .732 C .916D .71610、设二项式12nx ⎛⎫- ⎪⎝⎭(n *∈N )展开式的二项式系数和与各项系数和分别为n a ,n b ,则1212n na a ab b b ++⋅⋅⋅+=++⋅⋅⋅+( )A .123n -+B .()1221n -+C .12n +D .111、已知数列{}n a 满足3215334n a n n m =-++,若数列的最小项为1,则m的值为( )A .14B .13C .14-D .13-12、已知函数())()()0ln 10x f x x x ≥=⎪--<⎩,若函数()()F x f x kx =-有且只有两个零点,则k 的取值范围为( )A .()0,1B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫⎪⎝⎭D .()1,+∞二、填空题(本大题共4小题,每小题5分,共20分.) 13、向量a ,b 满足1a =,2b =,()()2a b a b+⊥-,则向量a 与b 的夹角为 .14、三棱柱111C C AB -A B 各顶点都在一个球面上,侧棱与底面垂直,C 120∠A B =,C C A =B =,14AA =,则这个球的表面积为 .15、某校高一开设4门选修课,有4名同学,每人只选一门,恰有2门课程没有同学选修,共有 种不同选课方案(用数字作答).16、已知函数()()sin 2cos y x x πϕπϕ=+-+(0ϕπ<<)的图象关于直线1x =对称,则sin 2ϕ= .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)已知C ∆AB 的面积为2,且满足0C 4<AB⋅A ≤,设AB 和C A 的夹角为θ. ()1求θ的取值范围;()2求函数()22sin 3cos 24f πθθθ⎛⎫=+-⎪⎝⎭的取值范围.18、(本小题满分12分)为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽样100名市民,按年龄情况进行统计的频率分布表1和频率分布直方图2.()1频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图估计这500名市民的平均年龄;()2在抽出的100名市民中,按分层抽样法抽取20人参加宣传活动,从这20人中选取2名市民担任主要发言人,设这2名市民中“年龄低于30岁”的人数为X ,求X 的分布列及数学期望. 19、(本小题满分12分)如图,四棱锥CD P -AB 的底面是边长为1的正方形,PA ⊥底面CD AB ,E 、F 分别为AB 、C P 的中点.()I 求证:F//E 平面D PA ;()II 若2PA =,试问在线段F E 上是否存在点Q ,使得二面角Q D -AP -的余弦值为55?若存在,确定点Q 的位置;若不存在,请说明理由.20、(本小题满分12分)已知椭圆22221x y a b+=(0a b >>)的左、右焦点为1F 、2F ,点()2,2A 在椭圆上,且2F A 与x 轴垂直.()1求椭圆的方程;()2过A 作直线与椭圆交于另外一点B ,求∆AOB 面积的最大值. 21、(本小题满分12分)已知a 是实常数,函数()2ln f x x x ax =+. ()1若曲线()y f x =在1x =处的切线过点()0,2A -,求实数a 的值;()2若()f x 有两个极值点1x ,2x (12x x <), ()I 求证:102a -<<; ()II 求证:()()2112f x f x >>-.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲如图,在C ∆AB 中,C 90∠AB =,以AB 为直径的圆O 交C A 于点E ,点D 是C B 边的中点,连接D O 交圆O 于点M . ()I 求证:D E 是圆O 的切线;()II 求证:D C D C D E⋅B =M⋅A +M⋅AB .23、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是212x t m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). ()I 求曲线C 的直角坐标方程与直线l 的普通方程;()II 设点(),0m P ,若直线l 与曲线C 交于A ,B 两点,且1PA ⋅PB =,求实数m 的值. 24、(本小题满分10分)选修4-5:不等式选讲 设函数()212f x x x =--+. ()I 解不等式()0f x >;()II 若0R x ∃∈,使得()2024f x m m +<,求实数m 的取值范围.东北三省三校三校第一次联合模拟考试理科数学试题参考答案一.选择题:1.B2.C3.C4.B5.A6.B7.C8.A9.A 10.C 11.B 12.C 二.填空题:13. 9014. 64π 15. 84 16. 54-三.解答题:17.解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,,则由已知:2sin 21=θbc ,4cos 0≤<θbc , 4 分可得1tan ≥θ,所以:)2,4[ππθ∈. 6 分(Ⅱ)2π()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭. 8 分)2,4[ππθ∈ ,∴)32,6[32πππθ∈-,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=.所以:函数)(θf 的取值范围是]3,2[12 分18.解:(1)由表知:①,②分别填300.0,35.补全频率分布直方3 分年龄(岁)平均年龄估值为:5.33)1.0853.07535.0652.05505.045(21=⨯+⨯+⨯+⨯+⨯(岁)6 分(2)由表知:抽取的20人中,年龄低于30岁的有5人,X 的可能取值为0,1,2 3821)0(222015===C C XP 3815)1(22011515===C C C X P 382)2(22025===C C X P 9 分X的分布列为X12P3821 3815 38210 分期望2138223815138210)(=⨯+⨯+⨯=X E (人)12 分19.证明: (Ⅰ)取PD 中点M , 连接MA MF ,, 在△CPD 中, F 为PC 的中点, DC MF 21//∴,正方形ABCD 中E 为AB 中点,DC AE 21//∴,MF AE //∴ 故:EFMA为平行四边形 AM EF //∴2 分又⊄EF 平面PAD,⊂AM 平面PAD∴//EF 平面PAD4 分(Ⅱ) 如图:以点A 为坐标原点建立空间直角坐标系:yz111(0,0,2),(0,1,0),(1,1,0),(0,,0),(,,1)222P B C E F由题易知平面PAD 的法向量为)0,1,0(=n , 6 分 假设存在Q 满足条件:设11,(,0,1),(,,)222EQ EF EF Q λλλ== ,]1,0[∈λ1(0,0,2),(,,),22AP AQ λλ==设平面PAQ 的法向量为(,,)m x y z =,10(1,,0)220x y z m z λλλ⎧++=⎪⇒=-⎨⎪=⎩10 分∴21,cos λλ+-< 由已知:5512=+λλ解得:21=λ 所以:满足条件的Q存在,是EF中点。
东北三省三校2019届高三下学期3月一模考试数学(理)试卷.doc
2019年三省三校高三第一次联合模拟考试理科数学答案一.选择题1-6 DBCABB 7-12 DACDCC 二.填空题13. 3 14. 乙 15. 78- 16. 4π 三.解答题17. 解:(Ⅰ)1()2cos 21sin(2)1226f x x x x =++=++π2分∵[0,]2x π∈,∴72666πππ≤+≤x4分∴1sin(2)1226π≤++≤x ∴函数()f x 的值域为1,22⎡⎤⎢⎥⎣⎦.6分(Ⅱ)∵3()sin(2)162π=++=f A A ∴1sin(2)62π+=A∵0π<<A ,∴132666πππ<+<A ,∴5266ππ+=A ,即3π=A8分由正弦定理,2aA B ==,∴sin B =2034B B ππ<<∴=9分 ∴sin sin()C AB =+=,sin sin c bC B==,∴2=b 11分∴13sin 22∆==ABC S bc A12分18. 解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件A ,则1131241()2C C P A C == 故随机抽取2名,其中恰有一名学生不近视的概率为12.4分(Ⅱ)根据以上数据得到列联表:8分所以2K 的观测值2200(40406060)8.000 6.635(4060)(6040)(4060)(6040)k ⨯⨯-⨯==>++++, 故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系. 12分19.解:(Ⅰ)在BDC ∆中,延长BF 交CD 于点M ,13OF OD =,BDC ∆是等边三角形F ∴为BDC ∆的重心13MF BM ∴=2分//EF 平面ACD , EF ⊂平面ABM ABMACD AM =,且面面,//EF AM ∴13AE AB ∴=,即点E 为线段AB 上靠近点A 的三等分点.4分(Ⅱ)等边B C D ∆中,O D B C⊥,OD BCD ⊂平面,ABC BCD ⊥面面,交线为BC ,OD ABC ∴⊥平面 6分如图以O 为原点建立空间直角坐标系O xyz -点A 在平面BEF上,所以二面角D FB E --与二面角D FB A --为相同二面角. 设2AB =,则OD OA ==(0,0,(0,1,0)3F A B 3(0,1,),(3,1,0)3BF BA ∴=-=-设平面AFB 的法向量u (,,)x y z =,则⎧⎨⎩u u 0⋅=⋅=BF BA即030y z y ⎧-+=⎪-=,取1x =,则u = 9分又OA ⊥平面OBD ,(3,0,0)OA =, 10分则cos <u ,OA >=u u 1313== 又二面角D FB E --为钝二面角,所以余弦值为 .12分20.解:(Ⅰ)设),(00y x P 0(2)x ≠±,则220014x y +=, 因为)0,2(),0,2(B A -,则4144142220202020000021-=--=-=-⋅+=x x x y x y x y k k2分(,)Q x y 设(2)x ≠±所以4422212243λλ-==-=-⋅+=k k x y x y x y k k , 整理得1422=+λy x )2(±≠x . 所以,当4=λ时,曲线2C 的方程为 )2(422±≠=+x y x . . 4分(Ⅱ)设),(),,(2211y x F y x E . 由题意知,直线AM 的方程为:26-=y x ,直线BM 的方程为:22+-=y x .由(Ⅰ)知,曲线2C 的方程为1422=+λy x )2(±≠x , .7分联立 )2(442622±≠⎩⎨⎧=+-=x y x y x λλ,消去x ,得2(91)60y y λ+-λ=,得 1961+=λλy 联立)2(442222±≠⎩⎨⎧=++-=x y x y x λλ,消去x ,得2(1)20λ+-λ=y y ,得 122+=λλy 9分2212111111sin 91222211111sin 2222MA MF AMF y y MA MF S S MB ME MB ME BME y y ∠--+=====+∠--λλ 10分OA ⋅OA设918()911g λ+λ==-λ+λ+,则()g λ在[1,3]上递增 又(1)5,(3)7g g ==,12S S ∴的取值范围为[]5,7 12分21.解:(Ⅰ)当1a =时,()()()xh x f x g x e x -=+=+,()1,x h x e -'=-+令()0,h x '=解得0x =()=(0)1h x h ∴=极小值4分(Ⅱ)设1()(1)ln(1)e ()eln(1)e t t f t t g t at t ϕ+=--++--=-++-,令1(1)t x x +=≥,()e ln e ,1xF x ax x a x =-+-+≥,1'()e x F x a x=-+,设1()()e x t x F x a x '==-+,21()e x t x x '=-,由1x ≥得,2211,01x x e e x≥∴<≤≥Q21'()e 0x t x x=->,()t x 在(1,)+∞单调递增,即()F x '在(1,)+∞单调递增,(1)1F e a '=+-,① 当e 10a +-≥,即e 1a ≤+时,(1,)x ∈+∞时,()(1)0F x F ''>≥,()F x 在(1,)+∞单调递增, 又(1)0F =,故当1x ≥时,关于x 的方程e ln e 0x ax x a -+-+=有且只有一个实数解. 8分②当10e a +-<,即1a e >+时,1(1)0,'(ln )0ln F F a a a a a a'<=-+>-=,又ln ln(1)1a e >+> 故00(1,ln ),()0x a F x '∃∈=,当0(1,)x x ∈时,()0F x '<,()F x 单调递减,又(1)0F =, 故当(]01,x x ∈时,()0F x <,在[)01,x 内,关于x 的方程e ln e 0xax x a -+-+=有一个实数解1x =.10分又0(,)x x ∈+∞时,()0F x '>,()F x 单调递增,且22()ln 1a a F a e a a a e e a =+-+->-+,令2()1(1)x k x e x x =-+≥,()()2x s x k x e x '==-,()e 2e 20x s x '=->->,故()k x '在()1,+∞单调递增,又(1)0k '>故()k x 在()1,+∞单调递增,故()(1)0k a k >>,故()0F a >,又0eaa x >>,由零点存在定理可知,101(,),()0x x a F x ∃∈=,故在()0,x a 内,关于x 的方程e ln e 0x ax x a -+-+=有一个实数解1x .此时方程有两个解. 综上,e 1a ≤+.12分22.解:(Ⅰ)22324103x x x y y αα⎧=+⎪∴-++=⎨=⎪⎩2分所以曲线C 的极坐标方程为24cos 10ρρθ-+=.4分(Ⅱ)设直线l 的极坐标方程为[)11(,0,)R θθρθπ=∈∈,其中1θ为直线l 的倾斜角,代入曲线C 得214cos 10,ρρθ-+=设,A B 所对应的极径分别为12,ρρ.21211214cos ,10,16cos 40∴+==>∆=->ρρθρρθ7分1212OA OB +=+=+=ρρρρ8分1cos θ∴= 满足0∆>16πθ∴=或56π, l 的倾斜角为6π或56π, 则1tan k θ==10分23.解:(Ⅰ)因为a x a x x a x x f 444)(=--≥+-=,所以 a a 42≤,解得 44≤≤-a . 故实数a 的取值范围为]4,4[-. 4分(Ⅱ)由(1)知,4=m ,即424x y z ++=. 根据柯西不等式222)(z y y x +++[][]2222221)2(4)(211+-+⋅+++=z y y x []21162)(42112=+-+≥z y y x 8分等号在z yy x =-=+24即884,,72121x y z ==-=时取得. 所以222)(z y y x +++的最小值为2116. 10分。
东北三省三校2020届高三数学第一次联合模拟考试试题理含解析
A。 B.
C. D.
【答案】C
【解析】
【分析】
先由题意,得到点 也在函数图象上,函数 在 上为减函数,将不等式化为 ,根据函数单调性,即可得出结果.
【详解】根据题意, 为偶函数, 且经过点 ,则点 也在函数图象上,
【详解】不等式组 所表示的平面区域如图所示:
表示过可行域内的点 与
点 的直线的斜率的最大值,
由 ,解得 ,
这时 ,
故目标函数 的最大值是 。
故选D。
【点睛】本题考查非线性目标函数最优解,对目标函数的几何意义理解是解题的关键,属于基础题.
11. 的内角 , , 的对边为 , , ,若 ,且 的面积为 ,则 的最大值为( )
又当 时,不等式 恒成立,
则函数 在 上为减函数,
因为 ,所以
解得 或 .
故选:C
【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性与单调性的概念即可,属于常考题型。
10.已知实数 , 满足不等式组 ,目标函数 的最大值是( )
A. B. C。 D。
【答案】D
【解析】
【分析】
作出可行域,利用目标函数的几何意义,即可求出目标函数最大值。
∴ ,∴ ,故选B。
【点睛】本题考查集合间的运算,属于基础题。
2.设 : , : ,若 是 的必要不充分条件,则实数 的取值范围是( )
A。 B. C。 D.
【答案】C
【解析】
【分析】
解不等式,求出命题 , 成立的解集,把 是 的必要不充分条件转化为解集间的集合关系,即可求出实数 的取值范围.
2019年东北三省三校第一次联合考试理科数学试题--含答案(可编辑修改word版)
2分
∵ x [0, ] ,∴ 2x 7
2
6
66
4分
∴ 1 sin(2x ) 1 2
2
6
∴函数
f
(x)
的值域为
1 2
,
2
.
(Ⅱ)∵ f ( A) sin(2A ) 1 3 ∴ sin(2A ) 1
6
2
62
∵0
A
,∴
2A
13
,∴ 2A
5
,即
A
6
66
66
F '(x) ex a 1 ,设 t(x) F(x) ex a 1 , t(x) ex 1 ,
x
x
x2
由 x 1得, x2 1,0 1 1 Q ex e x2
t '(x)
ex
1 x2
0 , t(x) 在 (1, ) 单调递增,
即 F(x) 在 (1, ) 单调递增, F(1) e 1 a ,
OD 平面ABC
6分
如图以 O 为原点建立空间直角坐标系 O xyz
点 A 在平面 BEF 上,所以二面角 D FB E 与二面角 D FB A 为相同二面角.
设 AB 2 ,则 OD OA 3 , F (0, 0, 3 ), A( 3, 0, 0), B(0,1, 0) 3
BF (0, 1,
. 4分
由(Ⅰ)知,曲线 C2 的方程为
x2 4
y2
1 (x
2) ,
.7 分
联立
x x2
6y2 4 y2 4
(
x
2)
,消去
x
,得
(9
1)
y
2
6y
09601 东北三校2020届高三第一次模拟考试数学(理)试题 含答案
17.解析:
(Ⅰ)由正弦定理得 2 sin B cos C = 2 sin A + + sin C ,……………………………….2 分 又由 sin A = sin(B + C) = sin B cos C + cos B sin C ,……………………………….4 分
得 2 cos B sin C + sin C = 0 ,
(II)建立空间直角坐标系 B − xyz ,如图
C
DF
过 F 作 FH ⊥ BB1 ,连结 AH
Q BB1 ⊥ 面ABC, AB ⊂ 面ABC,∴ AB ⊥ BB1
B
H
Q AB ⊥ BC, BC I BB1,∴ AB ⊥ 面CBB1C1
O
Q AB ⊂ 面BAA1B1,∴面BAA1B1 ⊥ 面CBB1C1,
=8.5+9.3+6.5 − (1.8 +1+ 2) + 0.5
= 20
.……………………………….4 分
A
6
B
1.3
6.2
0.5 1.5
0.5
得患病总人数为 20 万人,比例大约为 20%.……………………………….6 分
患病人数(万) 不患病人数(万)
失眠人数(万) 5 15 20
不失眠人数(万)
Q OA
=
OB,
AE
=
EB,∴OE
=
1 2
BB1,
OE
/
/ BB1 ,……………………………….1
分
又
DC1
=
1 2
BB1
,
DC1
//
BB1
,
东北三省三校2020年高三第一次联合模拟考试理科数学试题 (含评分细则)
2020年高三第一次联合模拟考试理科数学第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0322<--=x x x A ,⎭⎬⎫⎩⎨⎧>=11x xB 则=)(B AC R Y ( ) A.),3()1,(+∞--∞Y B.),3[]1,(+∞--∞Y C.),3[+∞ D.),1[]1,(+∞--∞Y 2.已知复数),(R b a bi a z ∈+=,1+i z是实数,那么复数z 的实部与虚部满足的关系式为( )A.0=+b aB.0=-b aC.02=-b aD.02=+b a 3.已知βα,是两个不同的平面,直线α⊂m ,下列命题中正确的是( ) A.若βα⊥,则β∥m B.若βα⊥,则β⊥m C.若β∥m ,则βα∥ D.若β⊥m ,则βα⊥4.大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1,这个题目在东方称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明,例如取13=n ,则要想算出结果1,共需要经过的运算步数是( )A.9B.10C.11D.125.已知e c e b a πlog ,log ,3ln 3===(注:e 为自然对数的底数),则下列关系正确的是( )A.c a b <<B.a b c <<C.a c b <<D.c b a << 6.已知在边长为3的等边ABC ∆的中,21=,则⋅=( ) A.6 B.9 C.12 D.6-7.如图,四边形ABCD 是边长为2的正方形,⊥ED 平面ABCD ,⊥FC 平面ABCD ,22==FC ED ,则四面体BEF A -的体积为( )A.31 B.32 C.1 D.34 8.已知函数x x x f 2cos 32sin )(+=的图像向右平移)20(πϕϕ<<个单位后,其图像关于y 轴对称,则=ϕ( )A.12π B.6π C.3π D.125π 9.已知椭圆)0(12222>>=+b a b y a x 的右焦点为)0,(c F ,上顶点为),0(b A ,直线ca x 2=上存在一点P 满足0)(=⋅+,则椭圆的离心率取值范围为( )A.)1,21[B.)1,22[C.)1,215[-D.]22,0( 10.已知定义在R 上的函数)(x f ,满足)1()1(x f x f -=+,当),1[+∞∈x 时⎪⎩⎪⎨⎧+∞∈-∈--=),3[),21(2)3,1[,21)(x x f x x x f ,则函数)(x f 的图像与函数⎩⎨⎧<-≥=1),2ln(1,ln )(x x x x x g 的图像在区间]7,5[-上所有交点的横坐标之和为( )A.5B.6C.7D.911.已知数{}n a 列的通项公式为22+=n a n ,将这个数列中的项摆放成如图所示的数阵,记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列⎭⎬⎫⎩⎨⎧n b n 的前2020项和为( )A.20201011 B.20202019 C.20212020 D.2021101012.已知双曲线1322=-y x 的左、右焦点分别为21F F 、,点P 在双曲线上,且ο12021=∠PF F ,21PF F ∠的平分线交x 轴于点A ,则=PA ( )A.55 B.552 C.553 D.5 第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上. 13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的 不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为 .14.已知函数xx ae e x f -+=)(在]1,0[上不单调,则实数a 的取值范围为 .15.数列{}n a 满足11=a ,),2(2)12(*2N n n S S a n n n ∈≥=-,则n a = .16.已知函数b x a x x f ----=13)()(222,当 时(从①②③④中选出一个作为条件),函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一组即可) ①21-≤a ②2523<<a ③02,1<<-=b a ④249,1-<<-=b a 或0=b ⑤4个极小值点 ⑥1个极小值点 ⑦6个零点 ⑧4个零点 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. (一)必考题:共60分. 17.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知c a C b +=2cos 2(Ⅰ)求B ;(Ⅱ)若2=a ,D 为AC 的中点,且3=BD ,求c . 18.(本小题满分12分)如图,三棱柱ABC C B A -111中,⊥1BB 平面ABC ,BC AB ⊥,2=AB ,1=BC ,31=BB ,D 是1CC 的中点,E 是AB 的中点.(Ⅰ)证明:DE ∥平面11BA C ;(Ⅱ)F 是线段1CC 上一点,且直线AF 与平面11A ABB 所成角的正弦值为31,求二面角A BA F --1的余弦值. 19.(本小题满分12分)为了研究55岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,A 症状:入睡困难;B 症状:醒的太早;C 症状:不能深度入睡或做梦,得到的调查数据如下: 数据1:出现A 症状人数为8.5万,出现B 症状人数为9.3万,出现C 症状人数为6.5万,其中含AB 症状同时出现1.8万人,AC 症状同时出现1万人,BC 症状同时出现2万人,ABC 症状同时出现0.5万人;数据2:同时有失眠症状和患心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人数为73万人.(Ⅰ)依据上述数据试分析55岁左右的中国人患有失眠症的比例大约多少?(Ⅱ)根据以上数据完成如下列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在“强关联”?参考数据如下:参考公式:))()()(()(22d b c a d c b a bc ad n K ++++-=20.(本小题满分12分)已知以动点P 为圆心的⊙P 与直线21:-=x l 相切,与定圆⊙:F 41)1(22=+-y x 相外切.(Ⅰ)求动圆圆心P 的轨迹方程C ;(Ⅱ)过曲线C 上位于x 轴两侧的点N M 、(MN 不与x 轴垂直)分别作直线l 的垂线,垂足记为11N M 、,直线l 交x 轴于点A ,记11ANN AMN AMM ∆∆∆、、的面积分别为321S S S 、、,且31224S S S =,证明:直线MN 过定点.21.(本小题满分12分)已知函数)(21-1ln()1()(2R a x ax x x x f ∈-++=). (Ⅰ)设)(x f '为函数)(x f 的导函数,求函数)(x f '的单调区间; (Ⅱ)若函数)(x f 在),0(+∞上有最大值,求实数a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任取一题作答.如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分10分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,参数方程⎩⎨⎧==θθsin cos y x (其中θ为参数)的曲线经过伸缩变换⎩⎨⎧='='yy xx 2:ϕ得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为2103)4sin(=+πθρ. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设N M 、分别为曲线C 和曲线D 上的动点,求MN 的最小值.23.[选修4-5:不等式选将] 设函数32)(-++=x x x f (Ⅰ)求不等式9)(>x f 的解集;(Ⅱ)过关于x 的不等式23)(-≤m x f 有解,求实数m 的取值范围.一模答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBDABABDCCDB13.14.15. ()()1,12,22123n n a n n n =⎧⎪=⎨-≥⎪--⎩16. ①⑥、②⑤、③⑦、④⑧均可三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得2sin cos 2sin sin B C A C =++,……………………………….2分又由sin sin()sin cos cos sin A B C B C B C =+=+,……………………………….4分 得2cos sin sin 0B C C +=,因为0C π<<,所以sin 0C ≠,所以1cos 2B =-.因为0B π<<,所以23B π=.……………………………….6分 (Ⅱ)因为D 为AC 的中点,所以2BA BC BD +=u u u r u u u r u u u r,……………………………….8分所以22()(2)BA BC BD +=u u u r u u u r u u u r,即2212a c ac ++=,……………………………….10分 因为2a =,解方程2280c c --=,得4c =.……………………………….12分 18.解析:(I )连结1AB 交1A B 于O ,连结1,EO OC11,,,2OA OB AE EB OE BB ==∴=Q 1//OE BB ,……………………………….1分 又1112DC BB =,1DC //1BB , 1//OE DC ∴,因此,四边形1DEOC 为平行四边形,即1//ED OC ……………………………….2分111,,OC C AB ED C AB ⊂⊄Q 面面DE ∴//平面11C BA (II )建立空间直角坐标系B xyz -,如图 过F 作1FH BB ⊥,连结AH11,,BB ABC AB ABC AB BB ⊥⊂∴⊥Q 面面 111,,AB BC BC BB AB CBB C ⊥∴⊥Q I 面 111111,,AB BAA B BAA B CBB C ⊂∴⊥Q 面面面111,,FH CBB C FH BB ⊂⊥Q 面11111,BAA B CBB C BB =I 面面11FH BAA B ⊥面,即FAH ∠为直线AF 与平面11ABB A 所成角,……………………………….7分 记为θ,11sin ,3,3AF AF θ==∴= 在Rt ACF ∆中,222259,2,AC CF AF CF CF ==+=+∴=11(0,2,1),(2,3,0),(0,2,1),(2,3,0),F A BF BA ==u u u r u u u rBA B C OH设平面1BAC 的法向量(,,)m x y z =u r,120230m BF y z m BA x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩u r u u u r ur u u u r ,取2,(3,2,4)y m ==--u r 平面1BAA 的法向量(0,0,1)n =r,……………………………….10分|cos ,|m n <>=u r r ……………………………….11分 因此,二面角1F BA A --的余弦值……………………………….12分19. 解析:设A ={出现A 症状的人}、B ={出现B 症状的人}、C ={出现C 症状的人}(card 表示有限集合元素个数) 根据数据1可知()()()()1.8,1,2,0.5card A B card A C card B C card A B C ====I I I I I ,所以()()()()()()()card A B C card A card B card C card A B card A C card B C card=++-+++⎡⎤⎣⎦U U I I I (9)分()22100573157 4.001 3.84112888020k ⨯⨯-⨯=≈>⨯⨯⨯.……………………………….11分有95%的把握说明失眠与中风或心脏病存在“强关联” .……………………………….12分20.解析:(Ⅰ)设(),P x y ,P e 半径为R ,则11,22R x PF R =+=+,所以点P 到直线1x =-的距离与到()1,0F 的距离相等,故点P 的轨迹方程C 为24y x =.……………………………….4分 (Ⅱ)设()()1122,,M x y N x y 、,则11211,,22M y N y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭、 设直线():0MN x ty n t =+≠代入24y x =中得2440y ty n --=12124,40y y t y y n +==-<.……………………………….6分 11132211112222S x y S x y =+⋅=+⋅Q 、 131112114S S 22x x y y ⎛⎫⎛⎫∴=++ ⎪⎪⎝⎭⎝⎭()12122212122222211221142211444221242ty n ty n y y t y y n t y y n nnt t n n nt n n⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫=+++++⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫=-++++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=++⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.……………………………….8分又21211112222S n y y n =+⋅-=+()()22222211116164422S n t n n t n ⎛⎫⎛⎫∴=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭.……………………………….10分2222221311484222S S S nt n t n n ⎛⎫⎛⎫=⇔=+⇔=+ ⎪ ⎪⎝⎭⎝⎭12n ⇒=.……………………………….11分∴直线MN 恒过1,02⎛⎫⎪⎝⎭.……………………………….12分21.解析:(Ⅰ)()()ln 1f x x ax '=+-令()()()ln 1h x f x x ax '==+-, ()11h x a x '=-+;.……………………………….1分 1o 当0a ≤时,()0h x '>,()'f x ∴在()1,-+∞上递增,无减区间()0h x '=.……………………………….3分 2o 当0a >时,令()1011h x x a'>⇒-<<-, 令()101h x x a'<⇒>- 所以,()'f x 在11,1a ⎛⎫-- ⎪⎝⎭上单调递增,在11,a⎛⎫-+∞ ⎪⎝⎭上单调递减; (5)分(Ⅱ)由(Ⅰ)可知,当0a ≤时,()'fx ∴在()0,+∞上递增,()()''00f x f ∴>=()f x ∴在()0,+∞上递增,无最大值,不合题意;.……………………………….6分 1o 当1a ≥时,()1101h x a a x '=-<-≤+ ()'f x ∴在()0,+∞上递减,()()''00f x f ∴<=,()f x ∴在()0,+∞上递减,无最大值,不合题意;.……………………………….8分2o 当01a <<时,110a->,由(Ⅰ)可知()'fx 在10,1a ⎛⎫- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;.……………………………….9分 设()1ln g x x x =--,则()1x g x x-'=; 令()001g x x '<⇒<<;令()01g x x '>⇒>()g x ∴在()0,1上单调递减,在()1,+∞单调递增; ()()10g x g ∴≥=,即ln 1x x ≤-由此,当0x >时,1≤<ln x <所以,当0x >时,()()12h x ax a x <<+=-. 取241t a =-,则11t a >-,且()20h t <-=. 又因为()1100h h a ⎛⎫->= ⎪⎝⎭,所以由零点存在性定理,存在011,x t a ⎛⎫∈- ⎪⎝⎭,使得()00h x =;.……………………………….11分当()00,x x ∈时,()0h x >,即()0f x '>;当()0,x x ∈+∞时,()0h x <,即()0f x '<;所以,()f x 在()00,x 上单调递增,在()0,x +∞上单调递减,在()0,+∞上有最大值()0f x .综上,01a <<.……………………………….12分在第22、23题中任选一题做答,如果多做,则按所做的第一题记分,做答时用2B ..铅笔..在答题卡上把所选题目对应的题号涂黑。
东北三校2019届高三第一次模拟考试 数学(理)
哈师大附中、东北师大附中、辽宁省实验中学2019年高三第一次联合模拟考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项: 1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用o .5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R ,集合A={x|x≥2},B={x|0≤x<5},则集合(C u A )B= ( ) A .{x|0<x<2} B .{x |0<x≤2} C .{x|0≤x<2}D .{x| 0≤x≤2} 2.命题“若x>1,则x>0”的否命题是( )A .若x>l ,则x≤0B .若x≤l ,则x>0C .若x≤1,则x≤0D .若x<l ,则x<0 3.在复平面内复数z=341ii+-对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知数列{a n }是等差数列,且a 1+a 4+a 7= 2π,则tan( a 3+a 5)的值为 ( )AB .C D .5.与椭圆C :221612y x + =l 共焦点且过点(1 ( )A .x 2一23y =1B .y 2—2x 2=1C .22y 一22x =1 D .23y 一x 2 =16.将4名实习教师分配到高一年级的3个班实习,若每班至少1名教师,则不同的分配方案种数为( )A .12B .36C .72D .1087.按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是( ) A .5B .6C .7D .88.若n 的展开式中第四项为常数项,则n=( )A .4B .5C .6D .79.已知函数y=Asin (x ωϕ+)+k 的最大值为4,最小值为0,最小正周期为2π,直线x=3π是其图象的一条对称轴,则下面各式中符合条件的解析式为( ) A .y= 4sin (4x+6π) B .y =2sin (2x+3π)+2C .y= 2sin (4x+3π)+2D .y=2sin (4x +6π)+210.点A 、B 、C 、D 在同一个球的球面上,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为 ( )A .1256πB .8πC .254πD .2516π11.若点P 在抛物线y 2= 4x 上,则点P 到点A (2,3)的距离与点P 到抛物线焦点的距离之差( ) A .有最小值,但无最大值 B .有最大值,但无最小值 C .既无最小值,又无最大值 D .既有最小值,又有最大值12.已知f (x )=111nxnx x-+,f (x )在x=x O 处取最大值,以下各式正确的序号为 ( ) ①f (x o )<x o ②f (x o )=x o ③f (x o )>x o ④f (x o )<12 ⑤f (x o )>12A .①④B .②④C .②⑤D .③⑤第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答。
2020东北三校一模理科数学
哈尔滨师大附中 2020年高三第一次联合模拟考试 东北师大附中 理 科 数 学辽宁省实验中学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟,答卷前,考生务必将自己的姓名、准考证号填写在答题卡的相应位置上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在试卷上无效。
3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}⎭⎬⎫⎩⎨⎧>=<--=11,0322x x B x x x A ,则=)(B A R Y C.A ),3()1,(+∞--∞Y .B ),3[]1,(+∞--∞Y .C ),3[+∞ .D ),1[]1,(+∞--∞Y2. 已知复数),(R b a bi a z ∈+=,1+i z是实数,那么复数z 的实部与虚部满足的关系式为.A 0=+b a.B 0=-b a .C 02=-b a .D 02=+b a3. 已知βα,是两个不同的平面,直线α⊂m ,下列命题中正确的是.A 若βα⊥,则β//m .B 若βα⊥,则β⊥m .C 若β//m ,则βα// .D 若β⊥m ,则βα⊥4. 大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,职责除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1.这个题目在东方被称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性证明,例如取13=n ,则要想算出结果1,共需要经过的运算步骤是.A 9 .B 10 .C 11 .D 125. 已知e c e b a πlog log 3ln 3===,,,则下列关系正确的是.A c a b << .B a b c << .C a c b <<.D c b a <<6. 已知边长为3的等边ABC ∆,DC BD 21=,则=⋅AC AD.A 6.B 9 .C 12 .D 6-7. 如图,四边形ABCD 是边长为2的正方形,⊥ED 平面ABCD ,⊥FC 平面ABCD ,22==FC ED ,则四面体BEF A -的体积为.A 31 .B 32.C 1.D 34 8. 已知函数)(x f x x 2cos 32sin +=的图象向右平移)20(πϕϕ<<个单位后,其图象关于y 轴对称,则=ϕ.A 12π .B 6π .C 3π .D 125π 9. 已知椭圆)0(12222>>=+b a by a x 的右焦点为)0,(c F ,上顶点为),0(b A ,直线c a x 2=上存在一点P 满足0)(=⋅+AP FA FP ,则椭圆的离心率取值范围为.A )1,21[.B )1,22[.C )1,215[- .D ]22,0( 10. 已知定义在R 上的函数)(x f ,满足)1()1(x f x f -=+,当),1[+∞∈x 时,⎪⎩⎪⎨⎧+∞∈-∈--=),3[)21(2)3,1[21)(x xf x x x f ,则函数)(x f 的图象与函数⎩⎨⎧<-≥=1)2ln(1ln )(x x x xx g 的图象在区间]7,5[-上所有交点的横坐标之和为 .A 5.B 6 .C 7 .D 911. 已知数列{}n a 的通项公式为22+=n a n ,将这个数列中的项摆成如图所示的数阵,记n b 为数阵从左至右的n列,从上到下的n 行共2n 个数的和,则数列⎭⎬⎫⎩⎨⎧n b n 的前2020项和为.A 20201011.B 20202019.C 20212020.D 2021101012. 已知双曲线1322=-y x 的左右焦点分别为21F F 、,点P 在双曲线上,且ο12021=∠PF F ,21PF F ∠的平分线交x 轴于点A ,则=PA.A 55 .B 552 .C 553 .D 5122125431432321-++++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅n n n nn n n a a a a a a a a a a a a a a a a第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分,把答案填写在答题纸相应位置上. 13. 近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大,动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力。
东北三省三校(哈师大附中、东北师大附中、辽宁实验中学)2020年高三第一次联合模拟考试理数学 含评分细则
东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2020年高三第一次联合模拟考试理科数学第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0322<−−=x x x A ,⎭⎬⎫⎩⎨⎧>=11x xB 则=)(B AC R ( ) A.),3()1,(+∞−−∞ B.),3[]1,(+∞−−∞ C.),3[+∞ D.),1[]1,(+∞−−∞ 2.已知复数),(R b a bi a z ∈+=,1+i z是实数,那么复数z 的实部与虚部满足的关系式为( )A.0=+b aB.0=−b aC.02=−b aD.02=+b a 3.已知βα,是两个不同的平面,直线α⊂m ,下列命题中正确的是( ) A.若βα⊥,则β∥m B.若βα⊥,则β⊥m C.若β∥m ,则βα∥ D.若β⊥m ,则βα⊥4.大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1,这个题目在东方称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明,例如取13=n ,则要想算出结果1,共需要经过的运算步数是( )A.9B.10C.11D.125.已知e c e b a πlog ,log ,3ln 3===(注:e 为自然对数的底数),则下列关系正确的是( ) A.c a b << B.a b c << C.a c b << D.c b a <<6.已知在边长为3的等边ABC ∆的中,DC BD 21=,则AC AD ⋅=( ) A.6 B.9 C.12 D.6−7.如图,四边形ABCD 是边长为2的正方形,⊥ED 平面ABCD ,⊥FC 平面ABCD ,22==FC ED ,则四面体BEF A −的体积为( )A.31 B.32 C.1 D.34 8.已知函数x x x f 2cos 32sin )(+=的图像向右平移)20(πϕϕ<<个单位后,其图像关于y 轴对称,则=ϕ( )A.12π B.6π C.3π D.125π9.已知椭圆)0(12222>>=+b a b y a x 的右焦点为)0,(c F ,上顶点为),0(b A ,直线ca x 2=上存在一点P 满足0)(=⋅+AP FA FP ,则椭圆的离心率取值范围为( )A.)1,21[B.)1,22[C.)1,215[− D.]22,0( 10.已知定义在R 上的函数)(x f ,满足)1()1(x f x f −=+,当),1[+∞∈x 时⎪⎩⎪⎨⎧+∞∈−∈−−=),3[),21(2)3,1[,21)(x x f x x x f ,则函数)(x f 的图像与函数⎩⎨⎧<−≥=1),2ln(1,ln )(x x x x x g 的图像在区间]7,5[−上所有交点的横坐标之和为( )A.5B.6C.7D.911.已知数{}n a 列的通项公式为22+=n a n ,将这个数列中的项摆放成如图所示的数阵,记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列⎭⎬⎫⎩⎨⎧n b n 的前2020项和为( )A.20201011 B.20202019 C.20212020 D.2021101012.已知双曲线1322=−y x 的左、右焦点分别为21F F 、,点P 在双曲线上,且 12021=∠PF F ,21PF F ∠的平分线交x 轴于点A ,则=PA ( )A.55 B.552 C.553 D.5 第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上. 13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的 不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为 .14.已知函数x x ae e x f −+=)(在]1,0[上不单调,则实数a 的取值范围为 .15.数列{}n a 满足11=a ,),2(2)12(*2N n n S S a n n n ∈≥=−,则n a = .16.已知函数b x a x x f −−−−=13)()(222,当 时(从①②③④中选出一个作为条件),函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一组即可) ①21−≤a ②2523<<a ③02,1<<−=b a ④249,1−<<−=b a 或0=b ⑤4个极小值点 ⑥1个极小值点 ⑦6个零点 ⑧4个零点三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. (一)必考题:共60分. 17.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知c a C b +=2cos 2(Ⅰ)求B ;(Ⅱ)若2=a ,D 为AC 的中点,且3=BD ,求c . 18.(本小题满分12分)如图,三棱柱ABC C B A −111中,⊥1BB 平面ABC ,BC AB ⊥,2=AB ,1=BC ,31=BB ,D 是1CC 的中点,E 是AB 的中点.(Ⅰ)证明:DE ∥平面11BA C ;(Ⅱ)F 是线段1CC 上一点,且直线AF 与平面11A ABB 所成角的正弦值为31,求二面角A BA F −−1的余弦值. 19.(本小题满分12分)为了研究55岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,A 症状:入睡困难;B 症状:醒的太早;C 症状:不能深度入睡或做梦,得到的调查数据如下: 数据1:出现A 症状人数为8.5万,出现B 症状人数为9.3万,出现C 症状人数为6.5万,其中含AB 症状同时出现1.8万人,AC 症状同时出现1万人,BC 症状同时出现2万人,ABC 症状同时出现0.5万人;数据2:同时有失眠症状和患心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人数为73万人.(Ⅰ)依据上述数据试分析55岁左右的中国人患有失眠症的比例大约多少?(Ⅱ)根据以上数据完成如下列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在“强关联”?参考数据如下:参考公式:))()()(()(22d b c a d c b a bc ad n K ++++−=20.(本小题满分12分)已知以动点P 为圆心的⊙P 与直线21:−=x l 相切,与定圆⊙:F 41)1(22=+−y x 相外切.(Ⅰ)求动圆圆心P 的轨迹方程C ;(Ⅱ)过曲线C 上位于x 轴两侧的点N M 、(MN 不与x 轴垂直)分别作直线l 的垂线,垂足记为11N M 、,直线l 交x 轴于点A ,记11ANN AMN AMM ∆∆∆、、的面积分别为321S S S 、、,且31224S S S =,证明:直线MN 过定点.21.(本小题满分12分)已知函数)(21-1ln()1()(2R a x ax x x x f ∈−++=).(Ⅰ)设)(x f '为函数)(x f 的导函数,求函数)(x f '的单调区间; (Ⅱ)若函数)(x f 在),0(+∞上有最大值,求实数a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任取一题作答.如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分10分. 22.[选修4-4:坐标系与参数方程] 在直角坐标系xOy 中,参数方程⎩⎨⎧==θθsin cos y x (其中θ为参数)的曲线经过伸缩变换⎩⎨⎧='='yy xx 2:ϕ得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为2103)4sin(=+πθρ. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设N M 、分别为曲线C 和曲线D 上的动点,求MN 的最小值.23.[选修4-5:不等式选将] 设函数32)(−++=x x x f (Ⅰ)求不等式9)(>x f 的解集;(Ⅱ)过关于x 的不等式23)(−≤m x f 有解,求实数m 的取值范围.东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2020年高三第一次联合模拟考试理科数学答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B BDABABDCCDB二、填空题13.14.15. ()()1,12,22123n n a n n n =⎧⎪=⎨−≥⎪−−⎩16. ①⑥、②⑤、③⑦、④⑧均可三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得2sin cos 2sin sin B C A C =++,……………………………….2分 又由sin sin()sin cos cos sin A B C B C B C =+=+,……………………………….4分 得2cos sin sin 0B C C +=,因为0C π<<,所以sin 0C ≠,所以1cos 2B =−.因为0B π<<,所以23B π=.……………………………….6分 (Ⅱ)因为D 为AC 的中点,所以2BA BC BD +=,……………………………….8分 所以22()(2)BA BC BD +=,即2212a c ac ++=,……………………………….10分 因为2a =,解方程2280c c −−=,得4c =.……………………………….12分 18.解析:(I )连结1AB 交1A B 于O ,连结1,EO OC11,,,2OA OB AE EB OE BB ==∴=1//OE BB ,……………………………….1分 又1112DC BB =,1DC //1BB , 1//OE DC ∴,因此,四边形1DEOC 为平行四边形,即1//ED OC ……………………………….2分111,,OC C AB ED C AB ⊂⊄面面DE ∴//平面11C BA ……………………………….5分(II )建立空间直角坐标系B xyz −,如图过F 作1FH BB ⊥,连结AH11,,BB ABC AB ABC AB BB ⊥⊂∴⊥面面 111,,AB BC BC BB AB CBBC ⊥∴⊥面 111111,,AB BAA B BAA B CBBC ⊂∴⊥面面面111,,FH CBBC FH BB ⊂⊥面11111,BAA B CBBC BB =面面11FH BAA B ⊥面, 即FAH ∠为直线AF 与平面11ABB A 所成角,……………………………….7分 记为θ,11sin ,3,3AF AF θ==∴= 在Rt ACF ∆中,222259,2,AC CF AF CF CF ==+=+∴=11(0,2,1),(2,3,0),(0,2,1),(2,3,0),F A BF BA ==设平面1BAC 的法向量(,,)m x y z =,120230m BF y z m BA x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取2,(3,2,4)y m ==−− 平面1BAA 的法向量(0,0,1)n =,……………………………….10分4|cos ,|291m n <>=⋅……………………………….11分 BC1A 1B 1C D OFHxyz因此,二面角1F BA A −−的余弦值……………………………….12分19. 解析:设A ={出现A 症状的人}、B ={出现B 症状的人}、C ={出现C 症状的人}(card 表示有限集合元素个数) 根据数据1可知()()()()1.8,1,2,0.5card A B card A C card B C card A B C ====,所以()()()()()()()card A B C card A card B card C card A B card A C card B C card=++−+++⎡⎤⎣⎦()=8.5+9.3+6.5 1.8120.520−+++=.……………………………….4分得患病总人数为20万人,比例大约为20%.……………………………….6分.……………………………….9分()22100573157 4.001 3.84112888020k ⨯⨯−⨯=≈>⨯⨯⨯.……………………………….11分有95%的把握说明失眠与中风或心脏病存在“强关联” .………………………….12分B20.解析: (Ⅰ)设(),P x y ,P 半径为R ,则11,22R x PF R =+=+,所以点P 到直线1x =−的距离与到()1,0F 的距离相等,故点P 的轨迹方程C 为24y x =.……………………………….4分(Ⅱ)设()()1122,,M x y N x y 、,则11211,,22M y N y ⎛⎫⎛⎫−− ⎪ ⎪⎝⎭⎝⎭、设直线():0MN x ty n t =+≠代入24y x =中得2440y ty n −−=12124,40y y t y y n +==−<.……………………………….6分 11132211112222S x y S x y =+⋅=+⋅、 131112114S S 22x x y y ⎛⎫⎛⎫∴=++ ⎪⎪⎝⎭⎝⎭()12122212122222211221142211444221242ty n ty n y y t y y n t y y n nnt t n n nt n n⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫=+++++⋅−⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫=−++++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=++⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.……………………………….8分又21211112222S n y y n =+⋅−=+()()22222211116164422S n t n n t n ⎛⎫⎛⎫∴=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭.……………………………….10分2222221311484222S S S nt n t n n ⎛⎫⎛⎫=⇔=+⇔=+ ⎪ ⎪⎝⎭⎝⎭12n ⇒=.…………………….11分∴直线MN 恒过1,02⎛⎫⎪⎝⎭.…………………………….12分21.解析:(Ⅰ)()()ln 1f x x ax '=+−令()()()ln 1h x f x x ax '==+−, ()11h x a x '=−+;.……………………………….1分 1当0a ≤时,()0h x '>,()'f x ∴在()1,−+∞上递增,无减区间()0h x '=.……………………………….3分 2当0a >时,令()1011h x x a '>⇒−<<−, 令()101h x x a'<⇒>− 所以,()'f x 在11,1a ⎛⎫−− ⎪⎝⎭上单调递增,在11,a ⎛⎫−+∞ ⎪⎝⎭上单调递减;.……………………………….5分 (Ⅱ)由(Ⅰ)可知,当0a ≤时,()'f x ∴在()0,+∞上递增,()()''00f x f ∴>=()f x ∴在()0,+∞上递增,无最大值,不合题意;.……………………………….6分 1当1a ≥时,()1101h x a a x '=−<−≤+ ()'f x ∴在()0,+∞上递减,()()''00f x f ∴<=,()f x ∴在()0,+∞上递减,无最大值,不合题意;.……………………………….8分 2当01a <<时,110a−>, 由(Ⅰ)可知()'f x 在10,1a ⎛⎫− ⎪⎝⎭上单调递增,在11,a ⎛⎫−+∞ ⎪⎝⎭上单调递减;.……………………………….9分设()1ln g x x x =−−,则()1x g x x−'=; 令()001g x x '<⇒<<;令()01g x x '>⇒>()g x ∴在()0,1上单调递减,在()1,+∞单调递增;()()10g x g ∴≥=,即ln 1x x ≤−由此,当0x >时,1<ln x <所以,当0x >时,()()12h x ax a x <<+=−.取241t a =−,则11t a >−,且()20h t <−=. 又因为()1100h h a ⎛⎫−>= ⎪⎝⎭,所以由零点存在性定理,存在011,x t a ⎛⎫∈− ⎪⎝⎭,使得()00h x =;.……………………………….11分当()00,x x ∈时,()0h x >,即()0f x '>;当()0,x x ∈+∞时,()0h x <,即()0f x '<;所以,()f x 在()00,x 上单调递增,在()0,x +∞上单调递减,在()0,+∞上有最大值()0f x .综上,01a <<.……………………………….12分在第22、23题中任选一题做答,如果多做,则按所做的第一题记分,做答时用2B ..铅笔..在答题卡上把所选题目对应的题号涂黑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨师大附中、东北师大附中、辽宁省实验中学高三第一次联合模拟考试理科数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数21ii+的模为( ) A.12B.2C.2D.22.已知集合{}29A x y x ==-,{}B x x a =≥,若A B A =I ,则实数a 的取值范围是( ) A.(],3-∞-B.(),3-∞-C.(],0-∞D.[)3,+∞3.从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为( ) A.14B.12C.13D.234.已知1sin 33a π⎛⎫-= ⎪⎝⎭,则5cos 6a π⎛⎫-= ⎪⎝⎭( )A.13B.13-C.22D.2-5.中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点()2,4-,则它的离心率为( ) A.5B.2C.3D.56.()52121x x ⎛⎫+- ⎪⎝⎭展开式中的常数项是( )A.12B.12-C.8D.8-7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A.32B.92C.1D.38.已知函数()()3cos 0f x x x ωωω=+>的图象的相邻两条对称轴之间的距离是2π,则该函数的一个单调增区间为( )A.,36ππ⎡⎤-⎢⎥⎣⎦B.5,1212ππ⎡⎤-⎢⎥⎣⎦C.2,63ππ⎡⎤⎢⎥⎣⎦D.2,33ππ⎡⎤-⎢⎥⎣⎦9.辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入8521m=,6105n=,则输出m的值为( )A.148B.37C.333D.010.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S ABCD-,该四棱锥的侧面积为43,则该半球的体积为( )A.43πB.23π82π42π11.已知抛物线2:2C y x=,直线1:2l y x b=-+与抛物线C交于A,B两点,若以AB为直径的圆与x轴相切,则b的值是( )A.15- B.25- C.45- D.85-12.在ABC△,90C=∠°,24AB BC==,,M N是边AB上的两个动点,且1MN=,则CM CN⋅u u u u r u u u r的取值范围为( )A.11,94⎡⎤⎢⎥⎣⎦B.[]5,9 C.15,94⎡⎤⎢⎥⎣⎦D.11,54⎡⎤⎢⎥⎣⎦二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC△中,2AB=,7AC=23ABCπ=∠,则BC=______________.14.若,x y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则1yx+的最大值为______________.15.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A 、B 、C ,已知: ①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C 学科; ③在长春工作的教师教A 学科;④乙不教B 学科. 可以判断乙教的学科是______________.16.已知函数()21ln 2f x x x x =+,0x 是函数()f x 的极值点,给出以下几个命题:①010x e <<;②01x e>;③()000f x x +<;④()000f x x +>;其中正确的命题是______________.(填出所有正确命题的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知正项数列{}n a 满足:2423n nn S a a =+-,其中n S 为数列{}n a 的前n 项和. (1)求数列{}n a 的通项公式; (2)设211n n b a =-,求数列{}n b 的前n 项和n T . 18.某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间[]20,10--,需求量为100台;最低气温位于区间[)25,20--,需求量为200台;最低气温位于区间[)35,25--,需求量为300台。
公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表: 最低气温(℃) [)35,30--[)30,25--[)25,20--[)20,15--[]15,10--天数112536162(1) 求11月份这种电暖气每日需求量X (单位:台)的分布列;(2) 若公司销售部以每日销售利润Y (单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?19.如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且PA PD =,底面ABCD 为矩形,点M 、E 、N 分别为线段AB 、BC 、CD 的中点,F 是PE 上的一点,2PF FE =.直线PE 与平面ABCD 所成的角为4π.(1)证明:PE ⊥平面MNF ;(2)设AB AD =,求二面角B MF N --的余弦值.20.已知椭圆()2222:10x y C a b a b+=>>过抛物线2:4M x y =的焦点F ,1F ,2F 分别是椭圆C 的左、右焦点,且1126F F F F ⋅=u u u u r u u u u r.(1)求椭圆C 的标准方程;(2)若直线l 与抛物线M 相切,且与椭圆C 交于A ,B 两点,求OAB △面积的最大值. 21.已知函数()x f x e =,()ln g x x =,()h x kx b =+.(1)当0b =时,若对任意()0,x ∈+∞均有()()()f x h x g x ≥≥成立,求实数k 的取值范围;(2)设直线()h x 与曲线()f x 和曲线()g x 相切,切点分别为()()11,A x f x ,()()22,B x g x ,其中10x <. ①求证:2x e >;②当2x x ≥时,关于x 的不等式()11ln 0a x x x x -+-≥恒成立,求实数a 的取值范围.22.已知曲线1C 的极坐标方程为:4cos ρθ=,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,曲线2C的参数方程为:132x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),点()3,0A .(1)求出曲线1C 的直角坐标方程和曲线2C 的普通方程; (2)设曲线1C 与曲线2C 相交于P ,Q 两点,求AP AQ ⋅的值. 23.已知不等式25211x x ax -++>-. (1)当1a =时,求不等式的解集; (2)若不等式的解集为R ,求a 的范围.三省三校一模考试(数学理科)答案 一.选择题:CABBA BDABD CA 二.填空题: 13.1 14.3215.C 16.①③ 三.解答题:17. (本题满分12分)解:(Ⅰ)令1n =,得2111423a a a =+-,且0n a >,解得13a =.当2n ≥时,221114422n n n n n n S S a a a a ----=-+-,即2211422n n n n n a a a a a --=-+-,整理得11()(2)0n n n n a a a a --+--=,Q 0n a >,12n n a a -∴-=, 所以数列{}n a 是首项为3,公差为2的等差数列, 故3(1)221n a n n =+-⨯=+. (Ⅱ)由(Ⅰ)知:22111111()1444(1)41n n b a n n n n n n ====--+++, 12+n n T b b b ∴=++L 11111111(1)(1)422314144nn n n n =-+-++-=-=+++L .18.(本题满分12分)解:(1)由已知X 的可能取值为100,200,300 X 的分布列为(2) 由已知 ①当订购200台时,E()[20010050(200100)]0.22002000.835000Y =⨯-⨯-⨯+⨯⨯=(元) ② 当订购250台时,E()[20010050(250100)]0.2[20020050(250200)]0.4Y =⨯-⨯-⨯+⨯-⨯-⨯+[200250]0.437500⨯⨯=(元)综上所求,当订购250台时,Y 的数学期望最大,11月每日应订购250台。
19.(本题满分12分).解:(Ⅰ)取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP AD ⊥.因为平面PAD ⊥平面ABCD ,所以OP ⊥平面ABCD ,4PEO π∠=,OP OE =.方法一:因为//MN BC ,//OE AB ,所以MN OE ⊥,所以MN PE ⊥.又144EF PE ==,12EQ OE =,所以4EF EQ EO EP ==,所以EFQ ∆∽EOP ∆, 所以2EFQ EOP π∠=∠=,所以PE FQ ⊥.且MN FQ Q =I ,所以PE ⊥平面MNF .方法二:取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP AD ⊥. 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面AC ,4PEO π∠=,OP OE =.又因为//MN BC ,//OE AB ,所以MN OE ⊥,所以MN PE ⊥.以O 点为原点,射线OA 、OE 、OP 方向为x 轴、y 轴、z 轴,建立空间直角坐标系O xyz -.设AB m =,AD n =,则()0,0,P m ,()0,,0E m ,,,022n m M ⎛⎫ ⎪⎝⎭,30,,44m m F ⎛⎫⎪⎝⎭, 于是()0,,PE m m =-u u u r,,,244n m m MF ⎛⎫=- ⎪⎝⎭u u u u r .所以0PE MF ⋅=u u u r u u u u r,所以PE MF ⊥,且MN MF M =I ,所以PE ⊥平面MNF(Ⅱ)取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP AD ⊥. 因为平面PAD ⊥平面AC ,所以OP ⊥平面AC ,4PEO π∠=,OP OE =.以O 点为原点,射线OA 、OE 、OP 方向为x 轴、y 轴、z 轴的正方向, 建立空间直角坐标系O xyz -.设AB AD m ==,则()0,0,P m ,()0,,0E m ,,,02m B m ⎛⎫ ⎪⎝⎭,,,022m m M ⎛⎫ ⎪⎝⎭,30,,44m m F ⎛⎫ ⎪⎝⎭, 于是()0,,PE m m =-u u u r ,0,,02m BM ⎛⎫=- ⎪⎝⎭u u u u r ,,,244m m m BF ⎛⎫=-- ⎪⎝⎭u u ur .设平面BMF 的一个法向量为=1n (),,x y z ,则00BM BF ⎧⋅=⎪⎨⋅=⎪⎩11u u u u r u u u rn n , 从而020244my m m m x y z ⎧-=⎪⎪⎨⎪--+=⎪⎩,令1x =,得()1,0,2=1n .而平面NMF 的一个法向量为=2n ()0,,PE m m =-u u u r.所以cos ,⋅<>==121212=n n n n n n 20.(本题满分12分).解: (Ⅰ)(0,1),1F b ∴=Q ,又1126F F F F ⋅=u u u r u u u u r,226,c c ∴==又222,2a b c a -=∴=,∴椭圆C 的标准方程为2214x y +=.(Ⅱ)设直线l 与抛物线相切于点00(,)P x y ,则2000:()42x x l y x x -=-,即20024x x y x =-, 联立直线与椭圆200222414x x y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y ,整理得22340001(1)404x x x x x +-+-=. 由240016(1)0x x ∆=+->,得2008x <<+设1122(,),(,)A x y B x y ,则:34001212220016,14(1)x x x x x x x x -+==++.则120|||AB x x =-==原点O 到直线l的距离2d =故OAB ∆面积1||2S d AB =⋅=202000111x x +=≤=+, 当且仅当24400016(1)x x x +-=,即204x =+取等号,故OAB ∆面积的最大值为1. 21.(本题满分12分)解(Ⅰ):当0b =时:()h x kx = 由()()()f x h x g x ≥≥知:ln x e kx x ≥≥依题意:ln x e xk x x ≥≥对(0,)x ∈+∞恒成立 设/2(1)()(0),()x x e e x m x x m x x x -=>∴= 当(0,1)x ∈时/()0m x <;当(1+)x ∈∞,时/()0m x >,min [()](1)m x m e ∴==设/2ln 1ln ()(0),()x xn x x n x x x -=>∴= 当(0,)x e ∈时/()0n x >;当(+)x e ∈∞,时/()0n x <,max 1[()]()n x n e e∴== 故:实数k 的取值范围是1[]e e, (Ⅱ)由已知:()'x fx e =,()'1g x x=①:由()1111x xy e e x -=-得:()()1111xxh x e x e =+-⋅ 由()2221ln y x x x x -=-得:()221ln 1h x x x x =+- 故()11212111ln x x e x e x x ⎧=⎪⎨⎪-=-⎩Q 10x <,()1110x e x ∴-<,2ln 1x ∴>,故:2x e >②:由①知:12x x e-=,()11111xe x x -=+且21x e >>由()11ln 0a x x x x -+-≥得:()11ln a x x x x -≥-,()2x x ≥ 设()()2ln G x x x x x x =-≥()'1ln 1ln 0G x x x =--=-<()G x ∴在)2,x +∞⎡⎣为减函数,()()2222max ln G x G x x x x ∴==-⎡⎤⎣⎦由()12221ln a x x x x -≥-得:()()12211ln a x x x -≥-∴()()1111a x x -≥-又10x <1a ∴≤22.解:(本小题满分10分) (Ⅰ)4cos ρθ=Qθρρcos 42=∴222cos ,sin x y x y ρρθρθ=+∴==Q x y x 422=+∴1C ∴的直角坐标方程为:x y x 422=+13,23),2x t y x y ⎧=-⎪⎪∴=-⎨⎪=⎪⎩Q 2C ∴的普通方程为)3(3--=x y (Ⅱ)将x y x t y t x 4,23,21322=+⎪⎪⎩⎪⎪⎨⎧=-=代入 得:)213(443)213(22t t t -=+-t t t 212932-=+-∴ 032=--∴t t3,12121-=⋅=+∴t t t t由t 的几何意义可得:32121===⋅⋅t t t t AQ AP 23.(本小题满分10分)(Ⅰ)当1a =时:不等式为:25211x x x -++>-等价于::11552222252112521125211x x x x x x x x x x x x ⎧⎧⎧<--≤≤>⎪⎪⎪⎨⎨⎨⎪⎪⎪-+-->--+++>--++>-⎩⎩⎩或或 解得::11552222x x x <--≤≤>或或 所以:不等式的解集为:∞∞(-,+) (Ⅱ)设函数()2521f x x x =-++=1442156225442x x x x x ⎧-+<-⎪⎪⎪-≤≤⎨⎪⎪->⎪⎩设函数()1g x ax =-过定点(0,-1) 画出),()f x g x (的图像,由数形结合得a 的范围是14[4,)5-2018年三省三校一模考试(数学理科)答案 一.选择题:CABBA BDABD CA 二.填空题: 13.1 14.3215.C 16.①③ 三.解答题:17. (本题满分12分)解:(Ⅰ)令1n =,得2111423a a a =+-,且0n a >,解得13a =. ……1分 当2n ≥时,221114422n n n n n n S S a a a a ----=-+-,即2211422n n n n n a a a a a --=-+-,整理得11()(2)0n n n n a a a a --+--=,Q 0n a >,12n n a a -∴-=, ……4分 所以数列{}n a 是首项为3,公差为2的等差数列,故3(1)221n a n n =+-⨯=+. …….6分 (Ⅱ)由(Ⅰ)知:22111111()1444(1)41n n b a n n n n n n ====--+++, ……9分12+n n T b b b ∴=++L 11111111(1)(1)422314144nn n n n =-+-++-=-=+++L . ……12分18.(本题满分12分)解:(1)由已知X 的可能取值为100,200,300 X 的分布列为…….4分(2) 由已知①当订购200台时,E()[20010050(200100)]0.22002000.835000Y =⨯-⨯-⨯+⨯⨯=(元) …….7分② 当订购250台时,E()[20010050(250100)]0.2[20020050(250200)]0.4Y =⨯-⨯-⨯+⨯-⨯-⨯+[200250]0.437500⨯⨯=(元)…….11分综上所求,当订购250台时,Y 的数学期望最大,11月每日应订购250台。